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Abstract. Statistical methods to model check stochastic systems have
been, thus far, developed only for a sublogic of continuous stochastic logic
(CSL) that does not have steady state operators and unbounded until
formulas. In this paper, we present a statistical model checking algorithm
that also verifies CSL formulas with unbounded untils. The algorithm is
based on Monte Carlo simulation of the model and hypothesis testing
of the samples, as opposed to sequential hypothesis testing. The use of
statistical hypothesis testing allows us to exploit the inherent parallelism
in this approach. We have implemented the algorithm in a tool called
VESTA, and found it to be effective in verifying several examples.

1 Introduction

Stochastic models and temporal logics such as continuous stochastic logic
(CSL) [1, 3] and probabilistic computation tree logic (PCTL) [9] are widely used
to model practical systems and analyze their performance and reliability. There
are two primary approaches to analyzing the stochastic behavior of such sys-
tems: numerical and statistical. In the numerical approach, the formal model of
the system is model checked for correctness with respect to the specification using
symbolic and numerical methods. Model checkers for different classes of stochas-
tic processes and specification logics have been developed [10, 15, 14, 4, 5, 16, 2].
Although the numerical approach is highly accurate, it suffers from state-space
explosion and being computationally intensive. An alternate method, proposed
in [21], is based on Monte Carlo simulation of the model and performing se-
quential hypothesis testing on the sample generated. In [17], this method was
extended to statistically verify black-box, deployed systems that can only be
passively observed. Being statistical in nature, these methods are less accurate:
they only provide probabilistic guarantees of correctness.

Both statistical approaches (presented in [21, 17]), considered only a sublogic
of continuous stochastic logic (CSL) that excludes steady state operators and
unbounded until operators. In [19] the algorithm was extended to deal with
a very limited class of unbounded until formulas. In particular, the algorithm
in [19] cannot prove that a formula of the form P<p(true U φ) holds at a state,
which states that the probability that eventually φ will hold along a random
path is less than p.

In this paper, we extend the statistical verification method in [21], to verify
CSL (or PCTL) formulas that may have unbounded until connectives. Specif-
ically, we consider a sublogic of CSL (and PCTL) that contains all the logical
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connectives, except for the steady-state operator and present a model checking
algorithm for it. As in [21], we assume we have a model that can be simulated on
a need basis. The samples generated by Monte Carlo simulation are subjected
to hypothesis testing. However, unlike [21], we do simple hypothesis testing as
opposed to sequential hypothesis testing. Simple hypothesis testing has the ad-
vantage that it is inherently amenable to parallelism as in this testing approach,
the decision to sample does not depend on the results of previously conducted
statistical tests. We exploit this in our implementation of the algorithm.

We make no inherent assumptions about the model that is being verified,
other than it can be simulated using discrete event simulation, and that the
model checking problem is well defined with respect to CSL (or PCTL). Thus,
our algorithm can be successfully applied to Discrete Time Markov Chains,
Continuous Time Markov Chains, and Semi Markov Chains. However, it is un-
clear whether our method can be applied to Generalized Semi Markov Processes
(GSMP). This is because there is no well understood definition of a probability
space on execution paths of a GSMP such that the model checking problem is
well-defined, i.e., path formulas in CSL define measurable sets.

The rest of the paper is organized as follows. In Section 2, we formally present
our assumptions about the system being analyzed, and introduce the syntax and
semantics of CSL (and PCTL). The model checking algorithm for the logic is
presented in Section 3. The algorithm is inductive based on the structure of the
formula being verified, and we present the details of the algorithm for all the CSL
connectives in our sublogic, including those that have been considered in previous
statistical model checking algorithms [21]. There are two reasons for doing this.
First, we wanted this paper to be self-contained. Second, though our analysis of
the old operators is similar to that presented in [21], there are subtle technical
differences because our algorithm does simple hypothesis testing as opposed to
sequential hypothesis testing. Section 4 contains details of our implementation in
the VESTA tool and the results of our experimental analysis of the tool. Finally,
conclude in Section 5.

2 Model and Logic
2.1 Model
For model-checking, we consider stochastic models that meet the following re-
quirements:

1. Sample execution paths can be generated through discrete-event simulation.
Execution paths will be a sequence of the form π = s0

t0→ s1
t1→ s2

t2→ · · ·
where each si is a state of the model and ti ∈ R>0 is the time spent in the
state si before moving to the state si+1.

2. A probability space can be defined on the execution paths of the model in
such a way that the paths satisfying any path formula in our concerned logic
(CSL or PCTL), is measurable.

3. The number of states of the system is finite.

It has been shown that commonly used models such as continuous-time
Markov chains (CTMC) [18], semi-Markov chains (SMC) [7, 16], which are a
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generalization of CTMC, meet the above requirements. However, it is unclear if
models like Generalized Semi Markov Processes (GSMPs) satisfy these require-
ments. Specifically, we do not know how to assign a measure space on execution
paths of a GSMP 1. While we believe our algorithm will work for any model that
satisfies the above conditions, in order to establish the mathematical concepts
and notation clearly, we focus on SMCs.

Let AP be a set of finite atomic propositions. A labelled semi-Markov chain
(SMC) is a tuple M = (S, sI ,P,Q, L) where

1. S is a finite set of states,
2. sI is the initial state,
3. P : S×S → [0, 1] is a transition probability matrix such that

∑
s′∈S P(s, s′) =

1 for each s in S,
4. Q : S ×S → (R≥0 → [0, 1]) is a matrix of continuous cumulative probability

distribution functions such that P(s, s′) = 0 implies for all t, Q(s, s′, t) = 1,
5. L : S → 2AP is a labelling function that maps every state to a set of atomic

propositions.

If for any two states s and s′, P(s, s′) > 0 then there is a transition from
s to s′, and the probability of the transition is given by P(s, s′). Thus we can
see (S, sI ,P, L) as the discrete-time Markov chain embedded in the SMC M.
Once a next state s′ from the current state s is sampled according to the matrix
P, the sojourn time in the state s is determined according to the cumulative
probability distribution function Q(s, s′, t). The probability to move from state
s to s′ within t units of time given that s′ is sampled as the next state is given
by Q(s, s′, t). Note that if all the probability distribution functions in the matrix
Q are exponential then the SMC becomes a CTMC.

A sequence π = s0
t0→ s1

t1→ s2
t2→ · · · is called a path of M, if s0 = sI , si ∈ S,

ti ∈ R≥0, and P(si, si+1) > 0 for all i ≥ 0. We denote the ith state in an execution
π by π[i] = si, and the time spent in the ith state by δ(π, i) = ti. The time at
which the execution enters state π[i+ 1] is given by τ(π, i+ 1) =

∑j=i
j=0 δ(π, j).

The state of the execution at time t (if the sum of sojourn times in all states in
the path exceeds t), denoted by π(t), is the state si such that i is the smallest
number for which t ≤ τ(π, i+ 1). We let Path(s) be the set of paths starting at
state s.

Let s0, s1, . . . , sk ∈ S with P(si, si+1) > 0 for all 0 ≤ i < k. Let
I0, I1, I2, . . . Ik−1 be non-empty intervals in R≥0. Then C(s0, I0, s1, . . . Ik−1, sk)
denotes a cylinder set consisting of all paths π ∈ Path(s0) such that π[i] = si

(for 0 ≤ i ≤ k), and δ(π, i) ∈ Ii (for i < k). Let B be the smallest σ-algebra on
Path(s0) which contains all the cylinders C(s0, I0, s1, . . . Ik−1, sk). The measure
µ on cylinder sets can be inductively defined as µ(C(s0)) = 1 and for k > 0 as

µ(C(s0)) = 1, and
µ(C(s0, I0, s1, . . . Ik−1, sk))

= µ(C(s0, I0, s1, . . . sk−1)) · P(sk−1, sk) · (Q(sk−1, sk, u) − Q(sk−1, sk, �))

1 A state of GSMP contains several dense real-time clocks.
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where � = inf Ik and u = sup Ik. The probability measure on B is then defined as
the unique measure that agrees with µ (as defined above) on the cylinder sets.

2.2 Continuous Stochastic Logic and Probabilistic Computation
Tree Logic

Continuous stochastic logic (CSL) is introduced in [1] as a logic to express prob-
abilistic properties of continuous time Markov chains (CTMCs). In this paper we
adopt a sublogic of CSL that excludes the steady-state probabilistic operators.
We next present the syntax and the semantics of the logic.
CSL Syntax

φ ::= true | a ∈ AP | ¬φ | φ ∧ φ | P��p(ψ)

ψ ::= φ U φ | φ U≤tφ | Xφ | X≤tφ

where AP is the set of atomic propositions, �� ∈ {<,≤, >,≥}, p ∈ [0, 1], and
t ∈ R≥0. Here φ represents a state formula and ψ represents a path formula. The
notion that a state s (or a path π) satisfies a formula φ is denoted by s |= φ (or
π |= φ), and is defined inductively as follows:
CSL Semantics

s |= true
s |= a iff a ∈ AP(s)
s |= ¬φ iff s �|= φ
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= P��p(ψ) iff Prob{π ∈ Path(s) | π |= ψ} �� p
π |= Xφ iff τ(π, 1) <∞ and π[1] |= φ

π |= X≤tφ iff τ(π, 1) ≤ t and π[1] |= φ
π |= φ1 U φ2 iff ∃x ∈ R≥0 (π(x) |= φ2 and ∀y ∈ [0, x). π(y) |= φ1)

π |= φ1 U≤tφ2 iff ∃x ∈ [0, t]. (π(x) |= φ2 and ∀y ∈ [0, x). π(y) |= φ1)

It can shown that for any path formula ψ and any state s, the set {π ∈
Path(s) | π |= ψ} is measurable [16]. A formula P��p(ψ) is satisfied by a state
s if Prob[path starting at s satisfies ψ] �� p. The path formula Xφ holds over a
path if φ holds at the second state on the path. The formula φ1 U≤tφ2 is true
over a path π if φ2 holds in some state along π at a time x ∈ [0, t], and φ holds
along all prior states along π.

Note that if we change the time domain in the above logic from R≥0 to natural
numbers N, we get the logic PCTL (stands for probabilistic computation tree
logic) [9]. The model-checking algorithm that we describe next is correct for both
time domains. Therefore, we can use the model-checking algorithm for verifying
properties expressed in both CSL and PCTL. In case of model-checking a PCTL
formula, we will assume that the model provided is discrete-time with unit time
associated with every transition.

3 Statistical Model Checking

In this section we will present our model checking algorithm which we will refer to
as A. The algorithm proceeds recursively based on the structure of the formula.
The details of the algorithm will be presented in the coming sections. However,
before doing so we present the theorem that formally states the correctness of
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the algorithm. We believe, the statement of the theorem is instructive in under-
standing the subsequent analysis. The algorithm A takes as input a stochastic
model M, a formula φ in CSL, error bounds α∗ and β∗, and three other param-
eters δ1, δ2, and ps. The result of model checking on these parameters, denoted
by Aδ1,δ2,ps(M, φ, α∗, β∗), can be either true or false. The algorithm provides
the following correctness guarantees.

Theorem 1. If the model M satisfies the following conditions

C1: For every subformula of the form P≥pψ in the formula φ and for every state
s in M, the probability that a path from s satisfies ψ must not lie in the
range [p−δ1−α∗

1−α∗ , p+δ1
1−β∗ ];

C2: For any subformula of the form φ1 U φ2 and for every state s in M, the
probability that a path from s satisfies φ1 U φ2 must not lie in the range
(0, δ2

(1−ps)N ], where N is the number of states in the model M.

Then the algorithm provides the following guarantees

R1 : Prob[Aδ1,δ2,ps(M, φ, α∗, β∗) = true | M �|= φ] ≤ α∗

Prob[Aδ1,δ2,ps(M, φ, α∗, β∗) = false | M |= φ] ≤ β∗

Condition C1 requires that the model be such that for any subformula P≥pψ,
the probability of ψ being satisfied at a state be bounded away from p. Condition
C2 requires that either an until formula does not hold in a state or it holds with
some probability that is bounded away from 0. Under such circumstances, we
guarantee that the probability of error of A is within the required bounds.

A few points about the algorithm are in order. First, the requirement that the
model satisfy condition C1, is something that previous stochastic model checking
algorithms also have. Second, the error bounds α∗ and β∗ are parameters to the
algorithm. Hence, we can improve the confidence in the algorithm’s answer to as
close to 1 as we like. Third, the bounds required in conditions C1 and C2 depend
on the parameters δ1, δ2, and ps given to the algorithm. Thus, they can be tuned
based on the model and formula being analyzed, to ensure that C1 and C2 are
satisfied. Typically, for our experiments, we picked δ1 = δ2 = 0.01 and ps = 0.1.
Note that one easily pick ps to be 1/cN where N is the number of state and c
is some positive constant. This will ensure that the upper bound of the range in
condition C2 is some small real close to 0. However, making ps smaller comes with
a price: if we make ps very small, the expected length of the samples increases.
This can increase the computation cost, wich we noticed in our experiments.
However, techniques such as caching and discounting optimization (discussed
later in Section 4) helped us to reduce this computation cost considerably.

Finally, before presenting our algorithm, we would like to highlight some
notational simplifications that we will make in the following sections. The pa-
rameters δ1, δ2, and ps are global to the algorithm A; therefore, we will omit
the superscript δ1, δ2, ps from Aδ1,δ2,ps(M, φ, α∗, β∗) and write it simply as
A(M, φ, α∗, β∗). The value of the error bounds α and β will change for the
invocation of A on various subformulas; therefore, we will carry them with A.
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The result of model-checking a state formula φ at a state s will be denoted by
A(s, φ, α, β); similarly, the result of model-checking a path formula ψ over a
path π will be denoted by A(π, ψ, α, β). Note that A(M, φ, α∗, β∗) is same as
A(sI , φ, α

∗, β∗).
The algorithm proceeds recursively based on the structure of the formula

being verified. For each of the logical operators, we present the statistical tests
that the algorithm performs. The analysis for the operators previously considered
in [21], are similar but have subtle technical differences because our algorithm
is based on simple hypothesis testing, and not on sequential hypothesis testing.
The algorithm for the unbounded until operator (Section 3.5) is novel and is our
principal technical contribution in this paper.

3.1 Probabilistic Operator: Computing A(s,P��p(ψ), α, β)
We use statistical hypothesis testing [12] to verify a probabilistic property φ =
P��p(ψ) at a given state s. Without loss of generality, we show our procedure for
φ = P≥p(ψ). This is because, for the purpose of statistical analysis, P<p(ψ) is
essentially the same as ¬P≥1−p(ψ) and < (or >) is in effect the same as ≤ (or
≥). Let p′ be the probability that ψ holds over a random path starting at s. We
say that s |= P≥p(ψ) if and only if p′ ≥ p and s �|= P≥p(ψ) if and only if p′ < p.

We want to decide whether s |= P≥p(ψ) or s �|= P≥p(ψ). By condition C1,
we know that p′ cannot lie in the range [p−δ1−α

1−α , p+δ1
1−β ], which implies that p′

cannot lie in the range [p − δ1, p + δ1]. Accordingly, we set up the following
experiment. Let H0 : p′ < p−δ1 be the null hypothesis and H1 : p′ > p+δ1 be the
alternative hypothesis. Let n be the number of execution paths sampled from the
state s. We will show how to estimate n from the different given parameters. Let
X1,X2, . . . , Xn be a random sample having Bernoulli distribution with unknown
mean p′ ∈ [0, 1] i.e., for each i ∈ [1, n], Prob[Xi = 1] = p′. Then the sum
Y = X1 +X2 + . . .+Xn has binomial distribution with parameters n and p′. We
say that xi, an observation of the random variable Xi, is 1 if the ith sample path
from s satisfies ψ and 0 otherwise. In the experiment, we reject H0 : p′ < p− δ1
and say A(s, φ, α, β) = true if

∑
xi

n ≥ p; otherwise, we reject H1 : p′ ≥ p and
say A(s, φ, α, β) = false if

∑
xi

n < p. Given the above experiment, to meet the
requirement R1 of A, we must have

Prob[accept H1 | H0 holds] = Prob[Y/n ≥ p | p′ < p− δ1] ≤ α
Prob[accept H0 | H1 holds] = Prob[Y/n < p | p′ > p+ δ1] ≤ β

Accordingly, we can choose the unknown parameter n for this experiment such
that Prob[Y/n ≥ p | p′ < p − δ1] ≤ Prob[Y/n ≥ p | p′ = p − δ1] ≤ α and
Prob[Y/n < p | p′ ≥ p+ δ1] ≤ Prob[Y/n < p | p′ = p+ δ1] ≤ β. In other words,
we want to choose the smallest n such that both Prob[Y/n ≥ p] ≤ α when Y is
binomially distributed with parameters n and p − δ1, and Prob[Y/n < p] ≤ β
when Y is binomially distributed with parameters n and p+ δ1, holds.

3.2 Nested Probabilistic Operators: Computing A(s,P��p(ψ), α, β)

The above procedure for hypothesis testing works if the truth value of ψ over
a sample path determined by the algorithm is the same as the actual truth
value. However, in the presence of nested probabilistic operators in ψ, A cannot
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determine the satisfaction of ψ over a sample path exactly. Therefore, in this
situation we need to modify the hypothesis test so that we can use the inexact
truth values of ψ over the sample paths.

Let the random variable X be 1 if a sample path π from s actually satisfies
ψ in the model and 0 otherwise. Let the random variable Z be 1 for a sample
path π if A(π, ψ, α, β) = true and 0 if A(π, ψ, α, β) = false. In our algorithm,
we cannot get samples from the random variable X; instead, our samples come
from the random variable Z. Let X and Z have Bernoulli distributions with
parameters p′ and p′′ respectively. Let Z1, Z2, . . . , Zn be a random sample from
the Bernoulli distribution with unknown mean p′′ ∈ [0, 1]. We say that zi, an
observation of the random variable Zi, is 1 if A(πi, ψ, α, β) = true for ith sample
path πi from s and 0 otherwise.

We want to test the null hypothesis H0 : p′ < p − δ1 against the alternative
hypothesis H1 : p′ > p + δ1. Using the samples from Z we can estimate p′′.
However, we need an estimation for p′ in order to decide whether φ = P≥p(ψ)
holds in state s or not. To get an estimate for p′ we note that the random
variables X and Z are related as follows: Prob[Z = 1 | X = 0] ≤ α′ and
Prob[Z = 0 | X = 1] ≤ β′, where α′ and β′ are the error bounds within which A
verifies the formula ψ over a sample path from s. We can set α′ = α and β′ = β.
By elementary probability theory, we have

Prob[Z = 1] = Prob[Z = 1 | X = 0]Prob[X = 0]+Prob[Z = 1 | X = 1]Prob[X = 1]

Therefore, we can approximate p′′ = Prob[Z = 1] as follows:

Prob[Z = 1] ≤ α(1− p′) + 1.p′ = p′ + (1− p′)α
Prob[Z = 1] ≥ Prob[Z = 1 | X = 1]Prob[X = 1] ≥ (1− β)p′ = p′ − βp′

This gives the following range in which p′′ lies: p′ − βp′ ≤ p′′ ≤ p′ + (1 − p′)α.
By condition C1, we know that p′ cannot lie in the range [p−δ1−α

1−α , p+δ1
1−β ].

Accordingly, we set up the following experiment. Let H0 : p′ < p−δ1−α
1−α be the

null hypothesis and H1 : p′ > p+δ1
1−β be the alternative hypothesis. Let us say

that we accept H1 if our observation
∑

zi

n ≥ p and we accept H0 if
∑

zi

n < p.
By the requirement of algorithm A, we want Prob[accept H1 | H0 holds] ≤ α

and Prob[accept H0 | H1 holds] ≤ β. Hence, we want Prob[
∑

Zi

n ≥ p | p′ <
p−δ1−α

1−α ] ≤ Prob[
∑

Zi

n ≥ p | p′′−α
1−α ≤ p−δ1−α

1−α ] = Prob[
∑

Zi

n ≥ p | p′′ < p − δ1] ≤
Prob[

∑
Zi

n ≥ p | p′′ = p − δ1] ≤ α. Similarly, we want Prob[
∑

Zi

n < p | p′′ =
p+ δ1] ≤ β. Note that

∑
Zi is distributed binomially with parameters n and p′′.

We choose the smallest n such that the above requirements for A are satisfied.

3.3 Negation : Computing A(s,¬φ,α, β)

For the verification of a formula ¬φ at a state s, we recursively verify φ at state
s. If we know the decision of A for φ at s, we can say that A(s,¬φ, α, β) =
¬A(s, φ, β, α).
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3.4 Conjunction : Computing A(s, φ1 ∧ φ2, α, β)

Suppose that we can compute A(s, φ1, α1, β1) and A(s, φ2, α2, β2). If one of
A(s, φ1, α1, β1) or A(s, φ2, α2, β2) is false, we say A(s, φ1 ∧ φ2, α, β) = false.
Then, we have

Prob[A(s, φ1 ∧ φ2, α, β) = false | s |= φ1 ∧ φ2]
= Prob[A(s, φ1, α1, β1) = false ∨ A(s, φ2, α2, β2) = false | s |= φ1 ∧ φ2]
≤ Prob[A(s, φ1, α1, β1) = false | s |= φ1 ∧ φ2] + Prob[A(s, φ2, α2, β2) = false | s |= φ1 ∧ φ2]
= Prob[A(s, φ1, α1, β1) = false | s |= φ1] + Prob[A(s, φ2, α2, β2) = false | s |= φ2]
≤ β1 + β2

= β [by the requirement R1 of A]

The equality of the expressions in the third and fourth line of the above derivation
follows from the fact that s |= φ1 ∧ φ2 implies s |= φ1, and s |= φ1 ∧ φ2 implies
s |= φ2. We set β1 = β2 = β/2.

If both A(s, φ1, α1, β1) or A(s, φ2, α2, β2) are true, we say A(s, φ1∧φ2, α, β) =
true. Then, we have

Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ1 ∧ φ2]
≤ max(Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ1],Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ2])
≤ max(Prob[A(s, φ1, α1, β1) = true | s �|= φ1],Prob[A(s, φ2, α2, β2) = true | s �|= φ2]
≤ max(α1, α2)

We set α1 = α2 = α.

3.5 Unbounded Until: Computing A(π, φ1 U φ2, α, β)

Consider the problem of checking if a path π satisfies an until formula φ1 U φ2.
We know that if π satisfies φ1Uφ2 then there will be a finite prefix of π which will
witness this satisfaction; namely, a finite prefix terminated by a state satisfying
φ2 and preceded only by states satisfying φ1. On the other hand, if π does not
satisfy φ1U φ2 then π may have no finite prefix witnessing this fact; in particular
it is possible that π only visits states satisfying φ1 ∧ ¬φ2. Thus, to check the
non-satisfaction of an until formula, it seems that we have to sample infinite
paths.

Our first important observation in overcoming this challenge is to note that
set of paths with non-zero measure that do not satisfy φ1U φ2 have finite prefixes
that are terminated by states s from which there is no path satisfying φ1 U φ2,
i.e., s |= P=0(φ1U φ2). We therefore set about trying to first address the problem
of statistically verifying if a state s satisfies P=0(φ1 U φ2). It turns out that this
special combination of a probabilistic operator and an unbounded until is indeed
easier to statistically verify. Observe that by sampling finite paths from a state
s, we can witness the fact that s does not satisfy P=0(φ1U φ2). Suppose we have
a model that satisfies the following promise: either states satisfy P=0(φ1U φ2) or
states satisfy P>δ(φ1U φ2), for some positive real δ. Now, in this promise setting,
if we sample an adequate number of finite paths and none of those witness the
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satisfaction then we can statistically conclude that the state satisfies P=0(φ1Uφ2)
because we are guaranteed that either a significant fraction of paths will satisfy
the until formula or none will.

While this gives us hope, there is one more challenge to address. We want to
sample finite paths from a state s to check if φ1 U φ2 is satisfied. However, we
do not know a priori a bound of the lengths of paths that may satisfy the until
formula. Thus, we need a mechanism to sample finite paths of any length. We
overcome this last challenge by sampling paths with a stopping probability: as
we sample a path, at each state, with probability ps we decide to stop sampling
further, and with probability 1 − ps we choose to extend the sampled path by
one more step. This allows us to sample paths in such a way that there is a
non-zero probability of sampling every finite path.

We are now ready to present the details of our algorithm for the unbounded
until operator. In Section 3.5, we first show how the special formula P=0(φ1U φ2)
can be statistically checked at a state. Then (Section 3.5) we show how to use
the algorithm for the special case to verify unbounded until formulas.

Computing A(s,P=0(φ1 U φ2), α, β) To compute A(s,P=0(φ1 U φ2), α, β),
we first compute A(s,¬φ1 ∧ ¬φ2, α, β). If the result is true, we say
A(s,P=0(φ1 U φ2), α, β) = true. Otherwise, if the result is false, we have to
check if the probability of a path from s satisfying φ1 U φ2 is non-zero. For this
we set up an experiment as follows.

Let p be the probability that a random path from s satisfies φ1 U φ2. Let the
null hypothesis be H0 : p > δ2 and the alternative hypothesis be H1 : p = 0 where
δ2 is the small real, close to 0, provided as parameter to the algorithm. The above
test is one-sided: we can check the satisfaction of the formula φ1 U φ2 along a
path by looking at a finite prefix of a path; however, if along a path φ1 ∧ ¬φ2

holds only, we do not know when to stop and declare that the path does not
satisfy the φ1U φ2. Therefore, checking the violation of the formula along a path
may not terminate if the formula is not satisfied by the path. To mitigate this
problem, we modify the model by associating a stopping probability ps with
every state s in the model. While sampling a path from a state, we stop and
return the path so far simulated with probability ps. This allows one to generate
paths of finite length from any state in the model.

Formally, we modify the model M as follows: we add a terminal state s⊥
to the set S of all states of M. Let S′ = S ∪ {s⊥}. For every state s ∈ S,
we define P(s, s⊥) = ps, P(s⊥, s⊥) = 1, and for every pair of states s, s′ ∈ S,
we modify P(s, s′) to P(s, s′)(1 − ps). For every state s ∈ S, we pick some
arbitrary probability distribution function for Q(s, s⊥, t) and Q(s⊥, s⊥, t). We
further assume that L(s⊥) is the set of atomic propositions such that s⊥ �|= φ2.
This in turn implies that any path (there is only one path) from s⊥ do not satisfy
φ1 U φ2. Let us denote this modified model by M′. Given this modified model,
the following result holds:

Theorem 2. If a path from any state s ∈ S in the model M satisfies φ1Uφ2 with
some probability, say p, then a path sampled from the same state in the modified
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model M′ will satisfy the same formula with probability at least p(1−ps)N , where
N = |S|.

Proof. Let the set S be partitioned into three disjoint subsets, Strue , Sfalse ,
and S?, as follows:

Strue = {s ∈ S | s |= φ2}
Sfalse = {s ∈ S | it is not the case that ∃k and ∃s1s2 . . . sk such that s = s1

and there is a non-zero probability of transition from si to si+1 for 1 ≤ i < k

and si |= φ1 for all 1 ≤ i < k, and sk ∈ Strue}
S? = S − Strue− Sfalse

Similarly, let the set S′ be partitioned into the sets S′true , S′false , and S′?. It
is easy to see that S′true = Strue , S′false = Sfalse ∪ {s⊥}, and S′? = S?. We
know from [8] that if xs denotes the probability that φ1 U φ2 is satisfied over a
path starting at s in M, then the probabilities can be calculated by solving the
linear system of equations:

xs =
∑

s′∈S P(s, s′)xs′ , if s ∈ S?

xs = 1, if s ∈ Strue

xs = 0, if s ∈ Sfalse

Let x∗s be the solution to the above system of linear equation.
Similarly, if x′s denotes the probability that φ1 U φ2 is satisfied over a path

starting at s in M′, then the probabilities can be calculated by solving the linear
system of equations:

x′s =
∑

s′∈S P(s, s′)(1− ps)x
′
s′ , if s ∈ S′?

x′s = 1, if s ∈ S′true

x′s = 0, if s ∈ S′false

Let x̂s be the solution to the above system of linear equations. To prove the
theorem, we need to show that x̂s ≥ (1 − ps)Nx∗s for every s.

Suppose the second system of equations was solved by Gaussian elimination.
If a variable x′s was the ith variable to be solved for in the Gaussian elimination
procedure, then we will show that x̂s = (1 − ps)ix∗s; the theorem would then
follow because there are only N variables. This stronger claim can be shown by
straightforward induction on i. �	

By condition C2 of algorithm A, p does not lie in the range (0, δ2
(1−ps)N ].

In other words, the modified probability p(1 − ps)N (= p′, say) of a path from
s satisfying the formula φ1 U φ2 does not lie in the range (0, δ2]. To take into
account the modified model with stopping probability, we modify the experiment
to test whether a path from s satisfies φ1 U φ2 as follows. We change the null
hypothesis to H0 : p′ > δ2 and the alternative hypothesis to H1 : p′ = 0.

Let n be the number of finite execution paths sampled from the state s in
the modified model. Let X1,X2, . . . , Xn be a random sample having Bernoulli
distribution with mean p′ ∈ [0, 1] i.e., for each j ∈ [1, n], Prob[Xj = 1] = p′. Then
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the sum Y = X1 +X2 + . . . +Xn has binomial distribution with parameters n
and p′. We say that xj , an observation of the random variable Xj , is 1 if the
jth sample path from s satisfies φ1 U φ2 and 0 otherwise. In the experiment, we
reject H0 : p′ > δ2 if

∑
xj

n = 0; otherwise, if
∑

xj

n > 0, we reject H1 : p′ = 0.
Given the above experiment, to make sure that the errors in decision is bounded
by α and β, we must have

Prob[accept H1 | H0 holds] = Prob[Y/n = 0 | p′ > δ2] ≤ α
Prob[accept H0 | H1 holds] = Prob[Y/n ≥ 1 | p′ = p] = 0 ≤ β

Hence, we can choose the unknown parameter n for this experiment such that
Prob[Y/n = 0 | p′ > δ2] ≤ Prob[Y/n = 0 | p′ = δ2] ≤ α i.e., n is the smallest
natural number such that (1 − δ2)n ≤ α.

Note that in the above analysis we assumed that φ1 U φ2 has no nested
probabilistic operators; therefore, it can be verified over a path without error.
However, in the presence of nested probabilistic operators, we need to modify
the experiment in a way similar to that given in section 3.2.

Computing A(π, φ1 U φ2, α, β) Once we know how to compute
A(s,P=0(φ1 U φ2), α, β), we can give a procedure to compute A(π, φ1 U φ2, α, β)
as follows. Let S be the set of states of the model. We partition S into the sets
Strue , Sfalse , and S? as described previously. Then the following results hold,

Theorem 3.

Prob[π ∈ Path(s) | π |= φ1 U φ2]
= Prob[π ∈ Path(s) | ∃k and s1s2 . . . sk such that s1s2 . . . sk is a prefix of π and

s1 = s and si ∈ S? for all 1 ≤ i < k and sk ∈ Strue]
Prob[π ∈ Path(s) | π �|= φ1 U φ2]
= Prob[π ∈ Path(s) | ∃k and s1s2 . . . sk such that s1s2 . . . sk is a prefix of π and

s1 = s and si ∈ S? for all 1 ≤ i < k and sk ∈ Sfalse]

Therefore, to check if a sample path π = s1s2s3 . . . (ignoring the time-stamps
on transitions) from state s satisfies (or violates) φ1 U φ2, we need to find a k
such that sk ∈ Strue (or sk ∈ Sfalse ) and for all 1 ≤ i < k, si ∈ S?. This is
done iteratively as follows:
i ← 1

while(true){
if si ∈ Strue then return true;

else if si ∈ Sfalse then return false;

else i← i+ 1;

}
The above procedure will terminate with probability 1 because, by Theorem 3,
the probability of reaching a state in Strue or Sfalse after traversing a finite
number of states in S? along a random path is 1.

To check whether a state si belongs to Strue , we compute A(s, φ2, αi, βi); if
the result is true, we say si ∈ Strue .
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The check for si ∈ Sfalse is essentially computing A(si,P=0(φ1U φ2), αi, βi).
If the result is true then si ∈ Sfalse ; else, we sample the next state si+1 and
repeat the loop as in the above pseudo-code.

The choice of αi and βi in the above decisions depends on the error bounds
α and β with which we wanted to verify φ1 U φ2 over the path π. By arguments
similar to conjunction, it can shown that we can choose each αi and βi such that
α =

∑
i∈[1,k] αi and β =

∑
i∈[1,k] βi where k is the length of the prefix of π that

has been used to compute A(π, φ1 U φ2, α, β). Since, we do not know the length
k before-hand we choose to set αi = α/2i and βi = β/2i for 1 ≤ i < k, and
αk = α/2k−1 and βk = β/2k−1.

3.6 Bounded Until: Computing A(π, φ1 U≤tφ2, α, β)
The satisfaction or violation of a bounded until formula φ1 U≤tφ2 over a path π
can be checked by looking at a finite prefix of the path. Specifically, in the worst
case, we need to consider all the states π[i] such that τ(π, i) ≤ t. The decision
procedure can be given as follows:
i ← 0

while(true){
if τ(π, i) > t then return false;

else if π[i] |= φ2 then return true;

else if π[i] �|= φ1 then return false;

else i← i+ 1;

}
where the checks π[i] |= φ2 and π[i] �|= φ1 are replaced by A(π[i], φ2, αi, βi) and
A(π[i],¬φ1, αi, βi), respectively. The choice of αi and βi are done as in the case
of unbounded until.

3.7 Bounded and Unbounded Next : Computing A(π,X≤tφ, α, β)
and A(π,Xφ, α, β)

For unbounded next, A(π,Xφ, α, β) is same as the result of A(π[1], φ, α, β).
For bounded next, A(π,X≤tφ, α, β) returns true if A(π[1], φ, α, β) = true and
τ(π, 1) ≤ t. Otherwise, A(π,X≤tφ, α, β) returns false.

3.8 Computational Complexity

The expected length of the samples generated by the algorithm depends on the
various probability distributions associated with the stochastic model in addi-
tion to the parameters α, β, ps, δ1, and δ2. Therefore, an upper bound on the
expected length of samples cannot be estimated without knowing the proba-
bility distributions associated with the stochastic model. This implies that the
computational complexity analysis of our algorithm cannot be done in a model
independent way. However, in the next section, we provide experimental results
to show the performance of the algorithm.

4 Implementation and Experimental Evaluation
We have implemented the above algorithm as part of the tool called VeStA.
The tool is implemented in Java and is available from http://osl.cs.uiuc.
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edu/∼ksen/vesta/. A stochastic model can be specified by implementing a Java
interface, called State. In addition, the tool provides two abstract classes Ctmc
and Dtmc, which can be easily extended to specify a CTMC or DTMC, respec-
tively, in a way close to the PRISM Modelling Language [14].

The model-checking module of VeStA implements the algorithm A. It can
be executed in two modes: single-threaded mode and multithreaded mode. The
single threaded mode is suitable for a single processor machine; the multi-
threaded mode exploits the parallelism of the algorithm when executed on a
multi-processor machine. While verifying a formula of the form P��p(ψ), the ver-
ification of ψ over each sample path is independent of each other. This allows
us to run the verification of ψ over each sample path in a separate thread, pos-
sibly running on a separate processor. Note that this kind of parallelism can be
exploited only if we do simple hypothesis testing where we can determine the
number of samples required before-hand and then carry out the testing over each
sample in parallel. The same is not true for sequential hypothesis testing, which
is by nature sequential or non-parallel.

4.1 Experimental Evaluation

We successfully used the tool to verify several DTMC (discrete-time Markov
chains) and CTMC (continuous-time Markov chains) models. We report the
performance of our tool in the verification of unbounded until formulas over
a DTMC model. We also report the performance of our tool in verifying two
CTMC models used for case studies in [20]. The experiments were done on a
single-processor 2GHz Pentium M laptop with 1GB SDRAM running Windows
XP.2 We give a brief description of our case studies below followed by our results
and conclusions. The details for the case studies can be obtained from http:
//osl.cs.uiuc.edu/∼ksen/vesta/.

IPv4 ZeroConf Protocol: We picked the DTMC model of the IPv4 Zero-
Conf Protocol described in [6]. We next describe the model briefly without ex-
plaining its actual relation to the protocol. The DTMC model has N + 3 states:
{s0, s1, . . . , sn, ok, err}. From the initial state s0, the system can go to two states:
state s1 with probability q and state ok with probability 1− q. From each of the
states si (i ∈ [1, N −1]) the system can go to two possible states: state si+1 with
probability r and state s0 with probability 1− r. From the state sN the system
can go to the state err with probability r or return to state s0 with probability
1 − r. Let the atomic proposition a be true if the system is in the state err and
false in any other state. The property that we considered is P��p(true U a).

The result of our experiment is plotted in Figure 1. In the plot x–axis rep-
resents N in the above model and y–axis represents the running time of the
algorithm. The solid line represents the performance of the tool when it is used
without any optimization. We noticed that computing A(s,P=0(φ1 U φ2), α, β)
2 [20] used a 500 MHz Pentium III. However, our performance gain due to the use of

faster processor is more than offset by the use of Java instead of C.
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Fig. 1. Performance Measure for Verifying Unbounded Until Formula

at every state along a path while verifying an unbounded until formula has a
large performance overhead. Therefore, we used the following optimization that
reduces the number of time we compute A(s,P=0(φ1 U φ2), α, β).

Discount Optimization: Instead of computing A(s,P=0(φ1 U φ2), α, β) at every
state along a path, we can opt to perform the computation with certain prob-
ability say pd = 0.1, called discount probability. Note that once a path reaches
a state s ∈ Sfalse , any other state following s in the path also belongs to
Sfalse . Therefore, this way of discounting the check of s ∈ Sfalse , or comput-
ing A(s,P=0(φ1 U φ2), α, β), does not influence the correctness of the algorithm.
However, the average length of sample paths required to verify unbounded until
increases. The modified algorithm for checking unbounded until becomes
i ← 1

while(true){
if si ∈ Strue then return true;

else if rand(0.0, 1.0) ≤ pd then if si ∈ Sfalse then return false;

else i← i+ 1;

}
The two dashed lines in the plot show the performance of the algorithm when

the discount probability is pd = 0.1 and pd = 0.5.

Caching: To boost the performance, we also allowed the algorithm to cache the
results of some computations. Thus, if the algorithm has already computed and
cached A(s, φ, α, β), any future computation of A(s, φ, α′, β′) can use the cached
value provided that α ≤ α′ and β ≤ β′. However, note that we must maintain a
constant size cache to avoid state-space explosion problem. The plot shows the
performance of the tool with caching turned on (with no discount optimization).

Cyclic Polling System: This case study is based on a cyclic server polling
system, taken from [13]. The model is represented as a CTMC. We use N to
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denote the number of stations handled by the polling server. Each station has a
single-message buffer and they are cyclically attended by the server. The server
serves the station i if there is a message in the buffer of i and then moves on to
poll the station (i+1) modulo N . Otherwise, the server starts polling the station
i+1 modulo N . The polling and service times are exponentially distributed. The
state space of the system is Θ(N.2N ). We verified the property that “once a job
arrives at the first station, it will be polled within T time units with probability
at least 0.5.” The property is verified at the state in which all the stations have
one message in their message buffer and the server is serving station 1. In CSL
the property can be written as (m1 = 1) → P≥0.5(true U≤T (s = 1 ∧ a = 0 )),
where m1 = 1 means there is one message at station 1, and s = 1∧ a = 0 means
that the server is polling station 1. The results of the case study is plotted in
Fig. 3.
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Tandem Queuing Network: This case study is based on a simple tandem
queuing network studied in [11]. The model is represented as a CTMC which
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consists of a M/Cox2/1-queue sequentially composed with a M/M/1-queue. We
useN to denote the capacity of the queues. The state space is Θ(N2). We verified
the CSL property P<0.5(true U≤T full) which states that the probability of the
queuing network becoming full within T time units is less than 0.5.

To model-checking the above two models, we used α = 0.01, β = 0.01. The
results of the experiments are plotted in Fig. 2 and in Fig. 3. The graphs on the
left side plot the size of the state space of the model under verification versus the
running time (in seconds) of the model-checker. The plots show that the tool can
effectively model-check large state spaces in a reasonable amount of time. The
graphs on the right hand side plots the time T considered in the CSL formula
against the running-time (in seconds) of the model-checker. We found that the
running time of our tool is comparatively better than that in [20].

The experiments show that the tool is able to handle such large state space;
it does not suffer from memory problem due to state-explosion because states
are sampled as required and discarded when not needed. Specifically, it can be
shown that the number of states stored in the memory at any time is linearly pro-
portional to the maximum depth of nesting of probabilistic operators in a CSL
formula. Thus the implementation can scale up with computing resources with-
out suffering from traditional memory limitation due to state-explosion problem.

5 Conclusion

The statistical model-checking algorithm we have developed for stochastic mod-
els has at least three advantages over previous work. First, our algorithm can
model check CSL formulas which have unbounded untils. Second, our algorithm
is inherently parallel; this parallelism is facilitated by the fact that we use simple
statistical hypothesis testing rather than sequential hypothesis testing. Finally,
the algorithm does not suffer from the state-space explosion problem since we
do not need to store the intermediate states of an execution. However, our al-
gorithm also has at least two limitations. First, the algorithm cannot guarantee
the accuracy that numerical techniques achieve. Second, if we try to increase
the accuracy by making the error bounds very small, the running time increases
considerably. Thus our technique should be seen as an alternative to numerical
techniques to be used only when it is infeasible to use numerical techniques, for
example, in large-scale systems.
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