
University of Novi Sad
Faculty of Sciences

Department of Mathematics and Informatics
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Foreword

In this dissertation, we investigate polynomial functions on finite Mal’cev
algebras. Mal’cev algebras are a special class of universal algebras that contains
many well known classes of algebras such as groups and rings.

In general it is a difficult task to describe which functions on a given universal
algebra are polynomials. We know a list of properties that are satisfied by poly-
nomial functions: each polynomial function preserves all congruence relations;
furthermore, if a polynomial function is added to an algebra as an additional
fundamental operation, then the commutator operation of the new expanded al-
gebra is the same as the commutator operation of the original algebra. In [22],
the following natural problem is proposed: given such a list of properties, charac-
terize those algebras in which every function that satisfies all of these properties
is a polynomial function. One instance is the characterization of affine complete
algebras. An algebra is called affine complete if every congruence preserving
function is a polynomial function (cf. [24]). We will investigate this concept for
algebras that have a group reduct; we call such algebras expanded groups. Of
course, they are a special class of Mal’cev algebras.

However, it is hard to determine when a single algebra is affine complete.
In [30], finite affine complete abelian groups are described. Except for the sub-
varieties of this variety, there is no other variety of groups for which the affine
complete finite members have been determined. Thus, an interesting question is
whether the property of affine completeness is a decidable property. We say that
the property of an algebra is a decidable property if there is an algorithm that
takes a given algebra on the input and gives back the answer whether the algebra
has the property. In [4], it was proved that there is an algorithm that decides
whether a given finite nilpotent group is affine complete. Here, we generalize this
result for a subclass of Mal’cev algebras.

The second approach in our investigation of polynomials arises from the fol-
lowing observation. Composing fundamental operations of a finite Mal’cev al-
gebra in two different ways one can obtain the same polynomial function. The
problem is to determine whether two such different compositions of fundamental
operations induce the same polynomial function. This problem is usually referred
to as the polynomial equivalence problem. In [15, 12] it is proved that on finite
nilpotent groups and finite nilpotent rings, it can be checked in polynomial time
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4 FOREWORD

whether two given terms induce the same function. This dissertation provides a
decidability result for a larger class of algebras.

The third problem we consider is: How many distinct sets of polynomial
functions that are closed for composition and contain constant functions and
projections can be obtained depending on a set of fundamental operations of
a finite Mal’cev algebra. This set of functions is called a polynomial Mal’cev
clone and therefore the problem is to count nonequivalent polynomial Mal’cev
clones on a finite set. In [21] it was proved that for a finite set A with |A| ≥ 4
infinitely many constantive clones (clones that contain all constant operations)
on A contain a Mal’cev operation. In the case that the Mal’cev operation is the
Mal’cev operation of some abelian group and p is a prime, there are precisely two
constantive clones on Zp that contain the ternary function (x, y, z) 7→ x− y + z.
Furthermore, E. Aichinger and P. Mayr have shown in [6] that there are precisely
17 different clones that contain the binary operation of the cyclic group Zpq,
where p and q are two different prime numbers. In [10] it was shown that in the
case of Zp2 and Zp×Zp, p a prime number, there are countably many clones that
contain the Mal’cev operation and all the constant operations. It is not known
whether there exists a finite set A such that there are uncountably many Mal’cev
clones on A.

This dissertation is divided in three chapters. The first chapter is introduc-
tory. There, we define all fundamental notions and recall some fundamental prop-
erties about universal algebras, especially Mal’cev algebras, expanded groups,
rings, nearrings, modules and lattices. We also introduce binary commutators,
list some preliminaries from tame congruence theory and prove some properties
of one special class of lattices. Most of the results concerning that class of lattices
are original.

In the second chapter we develop our main technical tool which we use
throughout the dissertation. Namely, we further develop the concept of higher
commutators which was introduced by A. Bulatov in [9]. The paper [9] defines
higher commutators as a generalization of usual binary commutators and ex-
hibits some fundamental properties. Chapter 2 of this dissertation is a thorough
study of the higher commutator operation and its connections to the polynomial
functions of Mal’cev algebras. The techniques to prove the properties of higher
commutators, and the actual proofs are the author’s original contribution as well
as the applications of higher commutators presented in this dissertation, which
suggest that higher commutators could be a useful tool for further research in
universal algebra. Thus we can say that the properties of higher commutators
that allow effective manipulation of expressions containing higher commutators
are one of the main contributions of this dissertation.

The main results of the dissertation are formulated and proved in Chapter
3. This chapter is divided in three sections: about affine completeness, about
polynomial equivalence problem and about the number of Mal’cev clones on a fi-
nite set. We present a characterization of affine complete expanded groups whose
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congruence lattice has a special property (Theorem §3.1.10). This result is a
part of the paper [8], which has appeared in Algebra Universalis. For a finite
nilpotent algebra of finite type that is a product of algebras of prime power or-
der and generates a congruence modular variety (this class of algebras is studied
by K. Kearnes in [25]), we are able to show that the property of affine com-
pleteness is decidable (Theorem §3.1.18). Moreover, the polynomial equivalence
problem has polynomial complexity in the length of the input polynomials (The-
orem §3.2.3). A paper containing these two results together with the results on
higher commutators from Chapter 2 is submitted and is under review. These
results have been published in the form of a preprint in the Preprint series of the
Departments of Mathematics at the Johannes Kepler University in Linz, Austria
(Number 564, August 2008) under the title Some Applications of Higher Com-
mutators in Mal’cev Algebras. As the final contribution of this dissertation, we
prove that the polynomial functions of a finite Mal’cev algebra whose congru-
ence lattice is of height at most 2 can be described by a finite set of relations
(Theorem §3.3.22). This result can be found in [7] and will be published in Acta
Mathematica Hungarica.

At the end I want to thank to my advisors Dozent Dr. Erhard Aichinger from
Institute for Algebra at JKU Linz, Austria, for the fruitful collaboration in the
research, and Professor Dragan Mašulović from Department of Mathematics and
Informatics, University of Novi Sad, Serbia, for useful suggestions and help in
the preparation of the papers and the dissertation. Furthermore, I want to thank
Professor Sinǐsa Crvenković, Professor Rozália Madarász-Szilágyi and dr Petar
Marković as well as the Department of Mathematics and Informatics, University
of Novi Sad, Serbia. I would also like to thank WUS Austria, Austrian Exchange
Service (ÖAD), Professor Günter Pilz and JKU Linz in Austria, for the financial
support for altogether 11 months long research stays during which the most of
the investigation was realized and most of the results were obtained.

I would also thank my family for the inexhaustible support.

Novi Sad, 2009

Neboǰsa Mudrinski





CHAPTER 1

Introduction

In this chapter we recall some fundamental notions and their fundamental
properties that we use throughout the dissertation. We suppose that the reader
is familiar with elementary universal algebraic notions such as (universal) al-
gebra, homomorphism, isomorphism, subalgebra, direct and subdirect product,
isomorphism theorems and varieties. For these notions we refer to [13, 29].

1. Elementary Notions

Given an algebra A and k ∈ N, a function f from Ak to A is called a k-ary
polynomial function of A if there are a natural number l, elements a1, . . . , al ∈ A,
and a (k + l)-ary term t in the language of A such that

f(x1, . . . , xk) = tA(x1, . . . , xk, a1, . . . , al)

for all x1, . . . , xk ∈ A. Here, we shall call polynomial functions shortly polynomi-
als. By PolkA we denote the set of all k-ary polynomials of A and PolA :=⋃

k≥0 PolkA. We will usually denote a tuple (vector) (x0, . . . , xk) by x and

its ith component by xi or x(i). For arbitrary tuples x,y ∈ Ak and a con-
gruence α of an algebra A we write x ≡α y if x(i) ≡α y(i) for every i ∈
{0, . . . , k − 1}. Also, for f : Ak+m+n → A and tuples x = (x0, . . . , xk−1) ∈ Ak,
y = (y0, . . . , ym−1) ∈ Am and z = (z0, . . . , zn−1) ∈ An, we write f(x,y, z) instead
of f(x0, . . . , xk−1, y0, . . . , ym−1, z0, . . . , zn−1).

We say that algebras A and B, not necessarily with the same fundamental
operations, are polynomially equivalent if they have the same set of polynomial
functions.

Definition 1.1. A ternary operation m on a set A is said to be a Mal’cev
operation if the equations

m(x, x, y) = y = m(y, x, x)

are valid for all x, y ∈ A. An algebra A is called a Mal’cev algebra if A has a
Mal’cev term operation.

One of the most important classes of Mal’cev algebras are expanded groups.

Definition 1.2. We call an algebra V an expanded group if it has the oper-
ation symbols + (binary), − (unary) and 0 (nullary) and its reduct (V, +,−, 0)
is a group.
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8 1. INTRODUCTION

When we speak about the Mal’cev term of V, we mean the operation m(x, y, z) :=
x−y+z, despite of the fact that other ternary term functions satisfying m(x, x, y) =
m(y, x, x) = y may exist. The following structure can be seen as an expanded
group and will be mentioned several times in the sequel.

Definition 1.3. Let (M, +,−, 0) be an Abelian group and let R be a ring
with identity. We call an algebra M = (M, +,−, 0, {fr : M → M | r ∈ R}) an
R-module M if

(1) fr(x + y) = fr(x) + fr(y)
(2) fr+s(x) = fr(x) + fs(x)
(3) fr(fs(x)) = frs(x)
(4) f1(x) = x

for all x, y ∈ M and r, s ∈ R. We shortly denote R-modules M by (M, +,−, 0, R).

Let m,n ∈ N. For a field D, let Mn(D) be the ring of (n× n)-matrices over
D. For every A ∈ Mn(D) and every (n ×m)-matrix X with entries from D we
define fA(X) := AX. Then we have the Mn(D)-module of all (n×m)-matrices
with entries from D. We denote it by D(n×m).

We need one generalization of modules obtained using near-rings instead of
rings. Here we give the definition, and more about this structure can be found
in [31].

Definition 1.4. Let R = (R, +, ·) be an algebra with two binary operations
such that (R, +) is a (not necessary abelian) group, (R, ·) is a monoid and

(x + y) · z = x · z + y · z
for all x, y, z ∈ R. Then, we say that R is a near-ring.

One of the first examples of near-rings is the following structure that we shall
use several times in the sequel. Let V be an expanded group with a group reduct
(V, +,−, 0). By P0(V) we denote the set of all unary polynomials p of V such
that p(0) = 0. If we define

(p + q)(x) := p(x) + q(x),

for all x ∈ V and for all p, q ∈ Pol1V, and by ◦ we denote the usual composition
of functions, then (P0(V), +, ◦) is a near-ring.

Definition 1.5. Let R = (R, +, ◦) be a near-ring and (M, +) a group. The
structure M = (M, +,−, 0, {fr : M → M | r ∈ R}) is a near-ring module if

(1) fr◦s(x) = fr(fs(x));
(2) fr+s(x) = fr(x) + fs(x)

for all x ∈ M and r, s ∈ R. When it is clear from the context, a near-ring module
M over R will be referred to as an R-module and denoted by (M, +,−, 0, R),
just like in the case of ring modules.
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Let V be an expanded group with a group reduct (V, +,−, 0). Using the
previous example we can construct a near-ring module M = (V, +,−, 0, P0(V)),
where fp(v) := p(v) for all p ∈ P0(V) and all v ∈ V .

Definition 1.6. A partially ordered set (P,≤) consists of a nonempty set P
and binary relation ≤ that satisfies:

(1) x ≤ x (reflexivity);
(2) (x ≤ y) ∧ (y ≤ x) ⇒ (x = y) (antisymmetry);
(3) (x ≤ y) ∧ (y ≤ z) ⇒ x ≤ z (transitivity)

for all x, y, z ∈ P . When the relation ≤ is clear from the context we call P
partially ordered set. We shall shortly call a partially ordered set poset.

Let (P,≤) be a partially ordered set. Let Q ⊆ P . If there exists an element
z ∈ P such that

(1) (∀x ∈ Q)(z ≤ x) and

(2) (∀y ∈ P )

((
(∀x ∈ Q) y ≤ x

) ⇒ (y ≤ z)

)

then one can easily show that z is unique. We call such an element infimum of
Q and write inf Q. Dually, we define supremum of Q, in abbreviation, sup Q.

Definition 1.7. An algebra (L,∧,∨) is called a lattice if L is a nonempty
set, and ∧ and ∨ are binary operations on L that satisfy the following conditions:

(L1) x ∧ y = y ∧ x; x ∨ y = y ∨ x (commutative law)
(L2) (x ∧ y) ∧ z = x ∧ (y ∧ z); (x ∨ y) ∨ z = x ∨ (y ∨ z) (associative law)
(L3) x ∧ x = x; x ∨ x = x (idempotent law)
(L4) x ∧ (x ∨ y) = x; x ∨ (x ∧ y) = x (absorption law)

for all x, y, z ∈ L.

We define a lattice ordered set as a partially ordered set L such that for every
two elements a, b ∈ L there exist inf{a, b} and sup{a, b}. The following theorem
describes how we switch from lattice to lattice ordered set and vice versa. The
proof can be found in [16].

Theorem 1.8. (i) Let the poset (L,≤) be a lattice ordered set. Set

a ∧ b = inf{a, b},
a ∨ b = sup{a, b}

for all a, b ∈ L. Then the algebra La = (L,∧,∨) is a lattice.
(ii) Let the algebra (L,∧,∨) be a lattice. Set

a ≤ b if and only if a ∧ b = a.

for all a, b ∈ L. Then Lp = (L,≤) is a lattice ordered set.
(iii) Let the poset (L,≤) be a lattice ordered set. Then (La)p = L.
(iv) Let the algebra (L,∧,∨) be a lattice. Then (Lp)a = L.



10 1. INTRODUCTION

We shall choose the more appropriate concept according to the context and
situation.

In a lattice L = (L,∧,∨) we write a ≺ b if a ≤ b and a ≤ x ≤ b implies
x = a or x = b for all x ∈ L. If L has a smallest element 0 and a largest element
1, then every a ∈ L such that 0 ≺ a is called an atom and every b ∈ L such that
b ≺ 1 is called a coatom. We denote the finite lattices such that every atom is a
coatom by Mi, where i denotes the number of atoms (coatoms).

Definition 1.9. Let L = (L,∧,∨) be a lattice. We say that L is

(1) modular if x ≤ z implies x ∨ (y ∧ z) = (x ∨ y) ∧ z for all x, y, z ∈ L,
(2) distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ L.

Definition 1.10. Let L = (L,∧,∨) be a lattice. We say that L is a complete
lattice if there exist inf X and sup X for every X ⊆ L. Usually, we denote inf X
by

∧
X and sup X by

∨
X.

Definition 1.11. Let L = (L,∧,∨) be a complete lattice. An element a ∈ L
is called compact if for all X ⊆ L the following holds: if a ≤ ∨

X, then a ≤ ∨
Y

for some finite Y ⊆ X. L is called algebraic if every element of L is the join of a
set of compact elements of L.

Lemma 1.12. (cf. [29, Lemma 4.49(iii)]) Let L be an algebraic lattice. If
x, y ∈ L such that x < y, then there exists a, b ∈ L satisfying x ≤ a ≺ b ≤ y.

In a lattice L by I[a, b] we denote the set {x ∈ L | a ≤ x ≤ b} and call it an
interval or quotient. The sublattice of L whose universe is I[a, b] will be denoted
by I[a, b]. When an interval I[a, b] contains only a and b we call it a prime interval
or prime quotient.

Definition 1.13. Let L = (L,∧,∨) be a lattice and let a, b, c, d ∈ L.

(1) The interval I[a, b] transposes up to I[c, d] if a = b∧ c and d = b∨ c. We
write I[a, b] ↗ I[c, d].

(1ω) The interval I[a, b] weakly transposes up to I[c, d] if a = b∧ c and b ≤ d.
We write I[a, b] ↗ω I[c, d].

(2) The interval I[a, b] transposes down to I[c, d] if c = a ∧ d and b = a ∨ d.
We write I[a, b] ↘ I[c, d].

(2ω) The interval I[a, b] weakly transposes down to I[c, d] if c ≤ a and b = a∨d.
We write I[a, b] ↘ ωI[c, d].

We say that intervals I[a, b] and I[c, d] transpose if either (1) or (2) is true, and
that I[a, b] and I[c, d] weakly transpose if either (1ω) or (2ω) is true. The intervals
I[a, b] and I[c, d] are projective (weakly projective) if there exists a finite sequence

I[a, b] = I[c0, d0], I[c1, d1], . . . , I[cn, dn] = I[c, d]

in L such that I[ci, di] and I[ci+1, di+1] transpose (weakly transpose) for all i ∈
{0, . . . , n− 1}. We write I[a, b] ! I[c, d] (I[a, b] !ω I[c, d]).
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Note that ! is the smallest equivalence relation that contains ↗. The
following lemma makes a connection between these two concepts of projectivity.

Lemma 1.14. (cf. [16, p. 171, Lemma 1]) Let L be a lattice and let a, b, c, d ∈
L such that a ≤ b and c ≤ d. Then the following conditions are equivalent:

(1) I[a, b] !ω I[c, d]
(2) There is an n ∈ N and there are quotients

I[a, b] = I[c0, d0], I[c′0, d
′
0], I[c1, d1], I[c′1, d

′
1] . . . , I[cn, dn] = I[c, d]

in L such that I[ci, di] and I[c′i, d
′
i] transpose, and I[c′i, d

′
i] is a subinterval

of I[ci+1, di+1] for all i ∈ {0, . . . , n− 1}.
Definition 1.15 (G.Grätzer, E. T. Schmidt). Let us call a lattice L weakly

modular if for every two weakly projective intervals I[a, b] and I[c, d] of L there
exists a proper subinterval I[c′, d′] of I[c, d] such that I[c′, d′] !ω I[a, b].

Proposition 1.16. (cf. [16, p.176. Corollary 9]) Every modular lattice is
weakly modular.

Definition 1.17. Let L = (L,∧,∨) be a complete lattice. An element a ∈ L
is called strictly meet irreducible if a <

∧{x ∈ L | a < x}. We define a+ :=
∧{x ∈

L | a < x}. An element b ∈ L is called strictly join irreducible if
∨{x ∈ L |x <

b} < b. We define b− :=
∨{x ∈ L | x < b}.

Clearly, we have a ≺ a+ and b− ≺ b for every strictly meet irreducible element
a and every strictly join irreducible element b in a lattice L.

Proposition 1.18. (cf. [29, Theorem 2.19]) In an algebraic lattice, every
element is the meet of a set of strictly meet irreducible elements.

We shall work mostly with finite lattices. In finite lattices strictly meet irre-
ducible elements and meet irreducible elements are the same. We call an element
a of a lattice L meet irreducible if a 6= 1 and

a = b ∧ c implies a = b or a = c

for all b, c ∈ L. Dually, we define join irreducible elements and they are precisely
strictly join irreducible elements in finite lattices.

Definition 1.19. Let L1 = (L1,∧1,∨1) and L2 = (L2,∧2,∨2) be two lattices.
A bijective mapping f : L1 → L2 is called an isomorphism if

f(x ∧1 y) = f(x) ∧2 f(y)

f(x ∨1 y) = f(x) ∨2 f(y)

for all x, y ∈ L1.

Definition 1.20. Let L be a lattice. We say that L satisfies the descending
chain condition if, given any sequence x1 ≥ x2 ≥ · · · ≥ xn ≥ . . . of elements of
L, there exists a k ∈ N such that xk = xk+1 = . . . ...
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2. Congruences and Ideals

Definition 2.1. Let A be an algebra. A binary relation θ on A such that

(R) x ≡θ x (reflexivity)
(S) x ≡θ y =⇒ y ≡θ x (symmetry)
(T) x ≡θ y ∧ y ≡θ z =⇒ x ≡θ z (transitivity) for all x, y, z ∈ A and
(C) if f is n-ary operation of A and x1 ≡θ y1, . . . , xn ≡θ yn then f(x1, . . . , xn) ≡θ

f(y1, . . . , yn) for all x1, . . . , xn, y1, . . . , yn ∈ A (compatibility)

is called a congruence of A. By ConA we denote the set of all congruences of A.

All nontrivial algebras have at least two congruences: by 0A we denote the
equality relation (the smallest element in ConA) and by 1A we denote the full
relation on the domain (the largest element in ConA). We omit the indices when
the algebra is clear from the context. We say that an algebra A is simple if 0, 1
are the only congruences of A.

As it is mentioned in [19, p.25] to check whether an equivalence relation is a
congruence of a given algebra A it is enough to check whether is it compatible
with unary polynomials of A.

Let A be an algebra and k ∈ N0. A function f : Ak → A preserves a
congruence α of A if for every a,b ∈ Ak such that a ≡α b we have f(a) ≡α f(b).
The function f is congruence preserving if it preserves all congruences of A. Let
us note that every constant function is a congruence preserving function.

In an algebra A for x,y ∈ Ak we denote the congruence generated by
{(x(i),y(i)) | i ∈ {0, . . . , k − 1}} by ΘA(x,y). A congruence that is generated
by a single pair in A2 is called a principal congruence of A (see [13, Defini-
tion 5.6]). In Mal’cev algebras, we have a useful characterization of congruences
generated by a pair of vectors:

Proposition 2.2. Let k ≥ 1 and let A be a Mal’cev algebra. If a,b ∈ Ak,
then

ΘA(a,b) = {(p(a), p(b)) | p ∈ PolkA}.
Proof: Let m be a Mal’cev term of A and θ := {(p(a), p(b)) | p ∈ PolkA}.
We have to prove ΘA(a,b) = θ. First, we show that θ is a congruence of A.
Clearly, (a(i),b(i)) ∈ θ for all i ∈ {0, . . . , k − 1}, because the projections πi are
k-ary polynomials. All constant functions can be seen as k-ary polynomials and
therefore θ is a reflexive relation. To show symmetry, suppose that (p(a), p(b)) ∈
θ, where p ∈ PolkA. We define q ∈ PolkA such that q(x) := m(p(a), p(x), p(b)).
Then (q(a), q(b)) ∈ θ. Hence, (p(b), p(a)) ∈ θ. Now we show the transitivity.
Let (p(a), p(b)), (q(a), q(b)) ∈ θ where p, q ∈ PolkA such that p(b) = q(a). We
define r ∈ PolkA such that r(x) := m(p(x), q(a), q(x)). Then (r(a), r(b)) ∈ θ
and hence (p(a), q(b)) ∈ θ. Composition of a unary and a k-ary polynomial is a
k-ary polynomial and thus θ is a congruence of A. Hence, ΘA(a,b) ⊆ θ. Now,
let ρ ∈ ConA be such that (a(i),b(i)) ∈ ρ for every i ∈ {0, . . . , k − 1}. Then
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by compatibility we have (p(a), p(b)) ∈ ρ for all p ∈ PolkA. Hence θ ⊆ ρ and
therefore θ ⊆ ΘA(a,b). 2

Let A be an algebra. For every α, β ∈ ConA, we define α∨β to be the smallest
congruence of A that contains α ∪ β. By [13, Theorem 5.5], (ConA,∩,∨) is an
algebraic lattice. Mal’cev algebras are congruence permutable by [13, Theorem
12.2]. Hence, in Mal’cev algebras we have α ∨ β = α ◦ β for every α, β ∈ ConA.
We say that an algebra A is congruence modular if the lattice ConA is modular.
The following characterization we use in Lemma §3.1.17.

Proposition 2.3. (Gumm) Let V be a variety. Then V is modular if and
only if there exist terms p and q0, . . . , qn for some n ∈ N such that in every A ∈ V
the following is true:

(1) q0(x, y, z) = x;
(2) qi(x, y, x) = x for i ≤ n;
(3) qi(x, y, y) = qi+1(x, y, y) for i even;
(4) qi(x, x, y) = qi+1(x, x, y) for i odd;
(5) qn(x, y, y) = p(x, y, y);
(6) p(x, x, y) = y

for every x, y, z ∈ A.

Proof: See [14, Theorem 6.4]. 2

Definition 2.4. Let V be an expanded group. A subset I of V is an ideal
of V if I is a normal subgroup of V, and for all k ∈ N, for all k-ary fundamental
operations f of V, and for all v ∈ V k and i ∈ Ik, we have

f(v + i)− f(v) ∈ I.

The set of all ideals of V is denoted by IdV.

Clearly, IdV has at least two elements: 0 and V , in every expanded group
V. If IdV has exactly two elements, we say that V is a simple expanded group.
Modules and rings are called simple if they are simple as expanded groups.

We say that a ring R is primitive if there is a simple R-module M such that
RM = {fr(m) | r ∈ R,m ∈ M} 6= {0M}.

Proposition 2.5. Every finite primitive ring is simple and has an identity
element.

Proof: The statement can be obtained directly from [36, Theorem 19, p.64]. 2

A useful fact linking ideals with polynomial functions is given in the following
proposition.

Proposition 2.6. Let V be an expanded group. A subset I of V is an ideal
of V if and only if for all a, b ∈ I and for all p ∈ Pol1V with p(0) = 0 we have
a + b ∈ I and p(a) ∈ I.
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Proof: See [31, Theorem 7.123]. 2

In an expanded group V, we define I + J := {i + j | i ∈ I, j ∈ J} for every
I, J ∈ IdV. One can easily show that I+J is the smallest ideal of V that contains
both I and J . Furthermore, (IdV,∩, +) is an algebraic lattice isomorphic to
(ConV,∩,∨) and the isomorphism γV : IdV → ConV is given by

γV (I) := {(x, y) |x− y ∈ I}
for every I ∈ IdV. Thus, for I ∈ IdV and for a, b ∈ V such that a ≡γV (I) b we
shall write a ≡I b.

3. Binary Commutators

In this section we recall the definition of the binary commutator and its im-
portant properties in universal algebras (cf. [19, 29]). We also give a proof of
Gumm’s result (Proposition 3.11) as a model for several proofs of our results in
Chapters 2 and 3.

In [3, Proposition 2.1, Proposition 2.3] a proof is stated that the centralizing
relation defined in [29] is the same as the following centralizing relation:

Definition 3.1. Let α, β, η be congruences of an algebra A. We say that α
centralizes β modulo η, written

C(α, β; η),

if for all n ≥ 1 and every p ∈ Poln+1A, a, b ∈ A such that a ≡α b and c,d ∈ An

such that c ≡β d we have

p(a, c) ≡η p(a,d) implies p(b, c) ≡η p(b,d).

It follows immediately from the definition that for congruences α, β, {ηi | i ∈
I} of an algebra A, we have: if C(α, β; ηi) for each i ∈ I, then

C(α, β;
∧
i∈I

ηi).

This justifies the following definition.

Definition 3.2. Let A be an algebra. For congruences α and β of A we
define their commutator, denoted [α, β], to be the smallest congruence η of A
for which α centralizes β modulo η. The centralizer of β modulo α, denoted
(α : β)A, is the largest congruence γ such that γ centralizes β modulo α. We
omit the subscript when the algebra is clear from the context.

Example 3.3. Let M = (M, +,−, 0, R) be an R-module and let us calculate
[1, 1]. One can easily show, using inductive arguments, that for every n ∈ N and
every polynomial p ∈ PolnM there exist α ∈ M and r0, . . . , rn−1 ∈ R such that

p(x0, . . . , xn−1) = fr0(x0) + · · ·+ frn−1(xn−1) + α
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for all x0, . . . , xn−1 ∈ M . If for k ≥ 0, a ∈ M , u,v ∈ Mk and p ∈ Polk+1M
we have p(a,u) = p(a,v), then p(b,u) = p(b,v) for every b ∈ M . This yields
C(1, 1; 0) and therefore [1, 1] = 0.

Let α, β, η ∈ ConA. The following properties can be shown directly from the
definition of centralizers and commutators:

(BC1) [α, β] ≤ α ∧ β;
(BC2) for all γ, δ ∈ ConA such that α ≤ γ, β ≤ δ, we have

[α, β] ≤ [γ, δ];

Furthermore, in [3, Proposition 2.4, Proposition 2.5] it has been proved that if
A generates a congruence permutable variety, then, we have:

(BC4) [α, β] = [β, α];
(BC5) [α, β] ≤ η if and only if C(α, β; η);
(BC6) If η ≤ α, β, then in A/η, we have [α/η, β/η] = ([α, β] ∨ η)/η;
(BC7) If I is a nonempty set, and {ρi | i ∈ I} ⊆ ConA, then:

∨
i∈ I [α, ρi] =

[α,
∨

i∈I ρi] and similarly
∨

i∈ I [ρi, β] = [
∨

i∈I ρi, β].

One can see that (BC4), (BC5), (BC6) and (BC7) are corollaries of results
(HC4), (HC5), (HC6) and (HC7) shown in Chapter 2.

Lemma 3.4. Let k ∈ N, let A be an algebra with a Mal’cev term m, let
α, β ∈ ConA and let p ∈ PolkA. If [α, β] = 0 and a,b, c ∈ Ak such that
a ≡α b ≡β c , then we have

m(p(a), p(b), p(c)) = p(m(a(1),b(1), c(1)), . . . , m(a(k),b(k), c(k))).

Proof: The statement can be obtained directly from [3, Proposition 2.6]. 2

Lemma 3.5. Let A be an algebra with a Mal’cev term m, let α, β ∈ ConA
and let θ, a, b ∈ A. If [α, β] = 0 and a ≡α b ≡β θ, then we have

m(m(a, b, θ), θ, b) = a.

Proof: Using Lemma 3.4 we obtain

m(m(a, b, θ), θ, b) = m(m(a, b, θ),m(b, b, θ),m(b, θ, θ))

= m(m(a, b, b),m(b, b, θ),m(θ, θ, θ)) = m(a, θ, θ) = a.

2

Lemma 3.6. Let k ∈ N, let A be an algebra with a Mal’cev term m, let θ
be an arbitrary element of A, and let a,b ∈ Ak. Take any p ∈ PolkA and let
α ∈ ConA. If p|θ/α = θ, a ≡α b and [α, 1] = 0, then p(a) = p(b).

Proof: The statement can be obtained from [3, Proposition 2.8.(1)] for β = 1. 2

Lemma 3.7. Let A be an algebra with a Mal’cev term m, let α, β ∈ ConA
and let θ, a, b ∈ A. If [α, β] = 0 and a ≡α b ≡β θ, then we have

m(a, b, θ) = m(a, θ, m(θ, b, θ)).
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Proof: Using Lemma 3.4 we obtain

m(a, b, θ) = m(m(a, θ, θ),m(θ, θ, b),m(θ, θ, θ))

= m(m(a, θ, θ),m(θ, θ, θ),m(θ, b, θ)) = m(a, θ, m(θ, b, θ)).

2

We say that f : Ak → A, k ≥ 1, is a commutator preserving function of A if
f is congruence preserving function of A and for every two congruences α, β of
A we have [α, β]A = [α, β]A+f , where A + f denotes the algebra obtained from
A by adding the function f as a fundamental operation.

Lemma 3.8. (cf.[6, Lemma 2.6.]) Let k ∈ N, let A be an algebra with a
Mal’cev term m, and f a mapping Ak → A. If we define

ρ(α, β, η,m) := {(a, b, c, d) ∈ A4 | a ≡α b, b ≡β c,m(a, b, c) ≡η d},
for every α, β, η ∈ ConA, then the following are equivalent:

(1) f is a commutator preserving function of A
(2) f preserves all congruences of A and relations from the set

{ρ(α, β, η,m) |α, β, η ∈ ConA, C(α, β; η)}.
Lemma 3.9. (cf.[6, Lemma 2.4.]) Let A be an algebra with a Mal’cev term

m, and α, β, η ∈ ConA. Then the following are equivalent:

(1) Every f ∈ PolA preserves ρ(α, β, η, m).
(2) α centralizes β modulo η.

The rest of this section is devoted to some special classes of algebras whose
congruence lattices satisfy additional properties with respect to the binary com-
mutator operation.

Definition 3.10. (cf.[2, p. 106.]) An algebra A is called TC-neutral (neutral
with the respect to the term condition commutator) if [α, β] = α ∧ β for all
α, β ∈ ConA.

We say that an algebra A is abelian if [1, 1] = 0. Abelian algebras are char-
acterized by the following theorem.

Proposition 3.11 (Gumm). Suppose that a variety V has permuting con-
gruences. For A ∈ V the following are equivalent.

(1) A is Abelian.
(2) A is polynomially equivalent to a module over a ring.

Proof: Let m be a Mal’cev term for V . Since (2)⇒(1) is already proved in
Example 3.3 it remains to prove (1)⇒(2). Suppose that A is Abelian. Our task
is to construct a module polynomially equivalent to A.
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We choose an arbitrary element of A, write it as 0, and hold it fixed throughout
the argument. Then we put

x + y := mA(x, 0, y)

−x := mA(0, x, 0).

In order to establish that we have defined a commutative group (A, +,−, 0),
we use several times the facts that mA commutes with itself, by Lemma 3.4, and
obeys Mal’cev conditions. Let x, y, z ∈ A. Then we have:

x + 0 = mA(x, 0, 0) = x;

x + y = mA(mA(0, 0, x), mA(0, 0, 0),mA(y, 0, 0))

= mA(mA(0, 0, y),mA(0, 0, 0),mA(x, 0, 0)) = y + x;

x + (−x) = mA(mA(x, 0, 0), mA(x, x, 0),mA(0, x, 0))

= mA(mA(x, x, 0),mA(0, x, x),mA(0, 0, 0)) = 0;

(x + y) + z = mA(mA(x, 0, y),mA(0, 0, 0), mA(0, 0, z))

= mA(mA(x, 0, 0), mA(0, 0, 0),mA(y, 0, z)) = x + (y + z)

The ring we need is easily defined. We put

R := {r ∈ Pol1A | r(0) = 0}.
For r, s ∈ R, we define

(r + s)(x) := r(x) + s(x) for all x ∈ A.

Now, (R, +) is an Abelian group. Clearly, R is closed under usual composition
of functions denoted by ◦ and ◦ is right distributive with respect to +. Again,
by Lemma 3.4 we have that every r ∈ R commutes with mA. Hence, r(x + y) =
r(mA(x, 0, y)) = mA(r(x), r(0), r(y)) = r(x) + r(y) for every x, y ∈ A and r ∈ R.
One can easily show that ◦ is left distributive with respect to +. We obtain that
R = (R, +, ◦,−, o, idA) is a ring with identity, where the unary polynomial o is
the constant with value 0. Thus, we have an R-module M = (A, +,−, 0, R). It
is easy to see that PolM ⊆ PolA because the fundamental operations of M are
polynomial operations of A. Let us show that PolA ⊆ PolM. Let f ∈ PolA.
Then g(x) := f(x) − f(0, . . . , 0) defines a polynomial operation of A. Now,
g(0, . . . , 0) = 0 and by Lemma 3.4, g commutes with mA. Therefore

g(x0 + y0, . . . , xn−1 + yn−1) = g(x0, . . . , xn−1) + g(y0, . . . , yn−1),

for all xi, yi ∈ A. An obvious inductive argument then gives that

g(x0, . . . , xn−1) = r0(x0) + · · ·+ rn−1(xn−1)

where

ri(x) = g(0, . . . , 0,

ith
↓
x, 0, . . . , 0)

and ri ∈ R. This completes the proof. 2
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Proposition 3.12. Suppose that ConA has a sublattice isomorphic to M3

consisting of permuting congruences. Then A is abelian.

Proof: See [29, Lemma 4.153, p.254]. 2

Definition 3.13. (cf. [14]) Let A be an algebra. We say that A is k-step
nilpotent or nilpotent of class k if

[ 1, . . . , [1︸ ︷︷ ︸
k

, 1]] = 0.

We say that A is nilpotent if it is k-step nilpotent for a k ∈ N.

Clearly, a 1-step nilpotent algebra is abelian.

Lemma 3.14. (cf.[14, Corollary 7.4]) Let A be a nilpotent Mal’cev algebra
with Mal’cev term m, and let b, c ∈ A. Then the function x → m(x, b, c) is a
bijection.

Lemma 3.15. (cf.[25, Theorem 2.7]) A congruence modular variety generated
by a nilpotent algebra is congruence permutable.

In [22], the condition (SC1) has been isolated as an important condition in
describing polynomials in a certain class of algebras.

Definition 3.16. A finite algebra A in congruence modular variety satisfies
the condition (SC1) if (µ : µ+) ≤ µ+ for every strictly meet irreducible congruence
µ of A.

Definition 3.17. (cf. [3, Definition 1.1]) A Mal’cev algebra A is called a
central-by-simple-nonabelian algebra if A has a congruence γ 6= 1A such that
A/γ is simple, [1, 1] = 1 and [γ, 1] = 0.

4. Commutator Ideals in Expanded Groups

Definition 4.1. (cf. [34]) Let V be an expanded group, and let A,B be
ideals of V. We define the commutator ideal [A,B]V as the ideal of V that is
generated by

{p(a, b) ||| a ∈ A, b ∈ B, p ∈ Pol2(V), p(x, 0) = p(0, x) = 0 for all x ∈ V }.
Lemma 4.2. Let V be an expanded group, let A,B be ideals of V, k ∈ N, c ∈

Polk+1V such that c(x,0) = c(0,y) = 0 for all x ∈ V,y ∈ V k and a ∈ A,b ∈ Bk.
Then, c(a,b) ∈ [A,B].

Proof: We proceed by induction on k. The case k = 1 is obvious from the
definition. Now we assume k ≥ 2. Defining

p(x, y) := c(x, b1, . . . , bk−1, y)− c(x, b1, . . . , bk−1, 0),

we see that p(a, bk) ∈ [A,B]. By the induction hypothesis also c(a, b1, . . . , bk−1, 0)
is in [A,B]. So p(a, bk)+ c(a, b1, . . . , bk−1, 0), which is c(a, b1, . . . , bk), is contained
in [A,B]. 2
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Analogously, we can prove that p(a,b) lies in [A, B]V if a ∈ Ak, b ∈ Bk,
p ∈ Pol2k(V), and p(0,y) = p(x,0) = 0 for all x,y ∈ V k.

Proposition 4.3. Let V be an expanded group, and let A,B be ideals of V.
Let α := γ(A) and β := γ(B) be the congruences corresponding to A and B,
respectively. Then, [α, β] = γ([A,B]).

Proof: See [6, Lemma 2.9]. 2

Definition 4.4. Let V be an expanded group. For two ideals A,B of V, we
write CV (A : B) for the largest ideal of V that satisfies [B, C]V ≤ A; this ideal
is called the centralizer of B modulo A.

The following proposition is the consequence of Propositions 2.2 and 6.1 in
[5], but here, we give a direct proof.

Proposition 4.5. Let V be an expanded group, and let A,B,C,D be ideals
of V such that A ≺ B and C ≺ D. We assume that the intervals I[A,B] and
I[C,D] are projective. Then, CV (A : B) = CV (C : D).

Proof: We consider I[A,B] ↗ I[C, D] without lost of generality. We show that
for each ideal X of V, we have [X,D]V ≤ C if and only if [X,B]V ≤ A. To
prove the “if”-direction of this statement, we compute [X, D]V = [X,B ∨ C]V,
which, by the distributivity of the commutator with respect to joins, is equal
to [X, B]V ∨ [X, C]V and hence [X,D]V ≤ A ∨ C = C. In order to prove
“only if”, we observe that [X, B]V ≤ [X, D]V, and hence [X,B]V ≤ C. Thus,
[X, B]V ≤ C ∧B = A. 2

Definition 4.6. (cf.[5]) An expanded group V satisfies the condition (SC1)
if for every strictly meet irreducible ideal M of V we have (M : M+) ≤ M+.

5. Tame Congruence Theory in Mal’cev Algebras

In this section we introduce the fundamental notions of tame congruence
theory (cf. [19]). In this sense Mal’cev algebras have a simple local structure
that is completely determined by binary commutators.

Definition 5.1. Let A be an algebra, let θ ∈ ConA, let ∅ 6= U ⊆ A and let
h : An → A. We define:

(1) θ|U := θ ∩ (U × U);
(2) h|U = h|Un := {(x0, . . . , xn−1, h(x0, . . . , xn−1))|(x0, . . . , xn−1) ∈ Un};
(3) (PolA)|U is the set of all h|U such that h ∈ PolnA for some n ∈ N and

h(Un) ⊆ U ;
(4) A|U := (U, (PolA)|U), called the algebra induced on U by A (or an

induced algebra of A).

Definition 5.2. Let A be a finite algebra and let α < β be two congruences of
A. We define UA(α, β) to be the set of all sets of the form f(A) where f ∈ Pol1A
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and f(β) 6⊆ α. We define MA(α, β) to be the set of all minimal members of
UA(α, β); i.e., U ∈ MA(α, β) if and only if U ∈ UA(α, β) and there does not
exist a V ∈ UA(α, β) with V ⊆ U , V 6= U . The members of MA(α, β) are called
〈α, β〉-minimal sets of A.

Definition 5.3. A finite algebra C will be called minimal relative to its
congruence quotient 〈δ, θ〉, or simply 〈δ, θ〉-minimal, if C ∈ MC(δ, θ).

A finite algebra C is called minimal if C is 〈0C , 1C〉-minimal, or equivalently,
|C| > 1 and every nonconstant f ∈ Pol1C is a permutation of C.

Theorem 5.4 (P.P.Pálfy). Every minimal algebra of at least three elements,
that has a polynomial operation which depends on more than one variable, is
polynomially equivalent to a vector space over a finite field.

Proof: See [19, Theorem 4.7]. 2

Lemma 5.5 (D. Hobby, R. McKenzie). Every algebra on the two element
domain {0, 1} is polynomially equivalent to one of the following, no two of which
are polynomially equivalent: E0 = ({0, 1}), E1 = ({0, 1},′ ), E2 = ({0, 1}, +),
E3 = ({0, 1},∨,∧,′ ), E4 = ({0, 1},∨,∧), E5 = ({0, 1},∨), E6 = ({0, 1},∧).

Proof: See [19, Lemma 4.8]. 2

The algebras E5 and E6 are isomorphic, and every algebra isomorphic to one
of them is called a two-element semilattice. An algebra is a two-element lattice
or Boolean algebra if it is isomorphic to E4 (or to E3, respectively).

Definition 5.6. Let M be a minimal algebra.

(1) M is of type 1 or unary type, if PolM = Pol(M, Π) for a subgroup Π of
the group of all permutations on set M .

(2) M is of type 2 or affine type, if M is polynomially equivalent to a vector
space.

(3) M is of type 3 or Boolean type, if M is polynomially equivalent to a
two-element Boolean algebra.

(4) M is of type 4 or lattice type, if M is polynomially equivalent to a two-
element lattice.

(5) M is of type 5 or semilattice type, if M is polynomially equivalent to a
two-element semilattice.

Now as a consequence of Theorem 5.4 and Lemma 5.5 we obtain the full
classification of minimal algebras in the following corollary.

Corollary 5.7. If a finite algebra is minimal, then it is of one of types 1-5.

Definition 5.8. Let C be an algebra and δ, θ ∈ ConC such that C is 〈δ, θ〉-
minimal. By a 〈δ, θ〉-trace in C we mean any set N ⊆ C of the form x/θ such
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that x/θ 6= x/δ. The body and the tail of C (with respect to 〈δ, θ〉) are defined
in this way:

body =
⋃
{x/θ | x/θ 6= x/δ},

tail = C\body.

Definition 5.9. Let A be an algebra and α, β ∈ ConA such that α ≺ β. By
an 〈α, β〉-trace of A we mean any set N ⊆ A such that for some U ∈ MA(α, β),
N ⊆ U and N is an 〈α|U , β|U〉-trace of the 〈α|U , β|U〉-minimal algebra A|U (i.e.,
N = x/β ∩ U for some x ∈ U such that x/β ∩ U 6⊆ x/α). The body and the tail
of A (with respect to 〈α|U , β|U〉) are defined in this way:

body =
⋃
{x/β ∩ U |x/β ∩ U * x/α},
tail = C\body.

Definition 5.10. Let C be an algebra and δ, θ ∈ ConC such that C is
minimal relative to 〈δ, θ〉. Let i ∈ {1, 2, 3, 4, 5}. We say that C has type i relative
to 〈δ, θ〉 if for each 〈δ, θ〉-trace N , (C|N)/(δ|N) is minimal algebra of type i.

Theorem 5.11 (D. Hobby, R. McKenzie). In every finite algebra A that is
minimal with respect to its congruence quotient 〈α, β〉, all 〈α, β〉-traces induce
minimal algebras of the same type.

Proof: See [19, Theorem 4.23, Definition 4.21]. 2

Definition 5.12. Let A be an algebra, α, β, γ, λ ∈ ConA such that α ≺ β
and let U ∈ MA(α, β). We define the type of 〈α, β〉, written typ(α, β), to be the
type of A|U relative to 〈α|U , β|U〉. By typ{γ, λ} we denote the set {typ(α, β) | γ ≤
α ≺ β ≤ γ}. By typ{A} we denote the set typ{0A, 1A}. By typ{V} we denote
the set

⋃{typ{A} |A ∈ V}.
Theorem 5.13 (D. Hobby, R. McKenzie). Let V be a locally finite variety.

If V is congruence permutable then typ{V} ∈ {2, 3}.
Proof: See [19, Theorem 9.14(1)]. 2

Corollary 5.14. Let A be a finite Mal’cev algebra. Then typ{A} ∈ {2, 3}.
Proof: Since A is finite, V(A) is a locally finite variety by [13, Theorem 10.16].
By Theorem 5.13 we have typ{V(A)} ∈ {2, 3}. Clearly, typ{A} ∈ {2, 3}. 2

Theorem 5.15 (D. Hobby, R. McKenzie). Let A be a finite Mal’cev algebra
and let α, β ∈ ConA be such that α ≺ β. Then, 〈α, β〉 has type 2 if and only if
it is abelian.

Proof: This is a consequence of Corollary 5.14 and [19, Theorem 5.7(3)]. 2

In case of a type 2 quotient α ≺ β in an algebra A, we define subtyp(α, β) to be
the cardinality of the scalar field for the appropriate vector space. If typ(α, β) =
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3 then subtype(α, β) = ∅. Furthermore, by exttyp(α, β), we denote the pair
(typ(α, β), subtyp(α, β)).

In the case of type 2 for congruences α and β of a given algebra A, α ≺ β,
we define subtyp(α, β) to be the cardinality of the scalar field for the appropri-
ate vector space. If typ(α, β) = 3 then subtype(α, β) = ∅. Furthermore, by
exttyp(α, β), we denote the pair (typ(α, β), subtyp(α, β)).

Let A be an algebra from a congruence permutable veriety. We say that a
function f : Ak → A is A-typ-admissible if f is a congruence preserving function
and for every α, β ∈ ConA such that α ≺ β we have typA+f (α, β) = typA(α, β).
We say that a function f : Ak → A is A-exttyp-admissible if f is a congru-
ence preserving function and for every α, β ∈ ConA such that α ≺ β we have
exttypA+f (α, β) = exttypA(α, β).

6. Lattices With Special Properties

This section is devoted to one special class of complete lattices that we need
in the first section of Chapter 3. We first demonstrate some advanced properties
of homogeneous series in modular lattices which we then use to introduce and
characterize (APMI) lattices. The section ends with a collection of results that
are not needed for the rest of the thesis, but contribute to deeper understanding
of (APMI) lattices.

6.1. Homogeneous series in modular lattices. In this subsection, we
will investigate certain elements in modular lattices. In [5], homogeneous elements
of a bounded lattice played an important role.

Definition 6.1. Let L be a bounded lattice. We call an element µ of L
homogeneous if

(1) µ > 0,
(2) for all α, β, γ, δ ∈ L with α ≺ β ≤ µ and γ ≺ δ ≤ µ, the intervals I[α, β]

and I[γ, δ] are projective intervals of L, and
(3) there are no α, β, γ, δ ∈ L such that α ≺ β ≤ µ ≤ γ ≺ δ, and I[α, β] and

I[γ, δ] are projective.

It is not hard to show that this definition is equivalent to the definition of
homogeneous elements of finite lattices given in [5, Definition 7.1]. We recall that
an element µ of L is called distributive if µ ∨ (α ∧ β) = (µ ∨ α) ∧ (µ ∨ β) for all
α, β ∈ L. For a lattice L, let D(L) denote the set of distributive elements of L.
In a modular lattice, D(L) is closed under joins and meets, and therefore, it is
the universe of a sublattice of L (this follows from [16, p. 187, Theorem 6, and p.
188, Theorem 9]). From [16, p. 176, Corollary 9] and [16, p. 186, Theorem 5, and
p. 187, Theorem 6] we obtain that in a modular lattice L, we have α∨ (β ∧ γ) =
(α ∨ β)∧ (α ∨ γ) and α ∧ (β ∨ γ) = (α ∧ β)∨ (α ∧ γ) if at least one of α, β, γ lies
in D(L).
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Theorem 6.2 (G.Grätzer, E. T. Schmidt). In a weakly modular lattice L, an
element a ∈ L is distributive if and only if

(a ∨ x) ∧ (x ∨ y) ∧ (y ∨ a) = (a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a)

for all x, y ∈ L.

Proof: See [16, p. 187, Theorem 6]. 2

Corollary 6.3. In every modular lattice every distributive element is dually
distributive.

Proof: Every modular lattice is weakly modular by Proposition 1.16. One can
easily see that the necessary and sufficient condition for distributivity in Theorem
6.2 is selfdual. 2

Lemma 6.4. (cf. [8, Lemma 7.3]) Let L be an algebraic modular lattice. Then
every homogeneous element of L is distributive.

Definition 6.5. Let L be an algebraic modular lattice with |L| > 1, and let
n ∈ N. A sequence (α0, α1, . . . , αn) is a homogeneous series for L if

(1) for each i ∈ {1, . . . , n}, αi is a homogeneous element of the lattice
I[αi−1, 1], and

(2) α0 = 0 and αn = 1.

Proposition 6.6. (cf. [8, Proposition 7.5]) Let L be an algebraic modular
lattice with |L| > 1, let n ∈ N, and let (α0, . . . , αn) be a homogeneous series of
L. Then for all i ∈ {0, . . . , n}, αi is a distributive element of L.

Proposition 6.7. (cf. [8, Proposition 7.8]) Let L be an algebraic modular
lattice with |L| > 1. We assume that L has a homogeneous series (α0, . . . , αn).
Let m ∈ N, and let β0, . . . , βm ∈ D(L) be such that β0 < β1 < · · · < βm. Then
the following are equivalent:

(1) The sequence (β0, . . . , βm) is a homogeneous series of L.
(2) The sequence (β0, . . . , βm) is a maximal chain in the lattice D(L).

6.2. Modular lattices with adjacent projective meet irreducible el-
ements.

Definition 6.8. Let L be a complete lattice. We say that L has adjacent
projective meet irreducibles if for all strictly meet irreducible elements α, β of L
such that I[α, α+] ! I[β, β+], we have α+ = β+.

As an abbreviation, we say that L satisfies the property (APMI) if it has
adjacent projective meet irreducibles. As an example, we consider the following
lattice L = M2,3, which satisfies (APMI).
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M2,3 satisfies (APMI)
We note that the dual of this lattice does not satisfy (APMI).

The following proposition provide us with a class of (APMI) lattices.

Proposition 6.9. (cf. [8, Proposition 8.2]) Let V be an expanded group with
(SC1). Then the congruence lattice of V satisfies the property (APMI).

We will now see that several facts that were established in [22] for the con-
gruence lattice of an algebra with (SC1) hold for all algebraic modular lattices
with (APMI).

Proposition 6.10. (cf. [8, Proposition 8.3]) Let L be an algebraic modular
lattice with (APMI), and let α, β be strictly join irreducible elements of L. We
assume I[α−, α] ! I[β−, β] and α ≤ β. Then α = β.

Proposition 6.11. (cf. [8, Proposition 8.4]) Let L be an algebraic modular
lattice with (APMI), and let α, β, γ be strictly join irreducible elements of L such
that I[α−, α] ! I[β−, β], and β < γ. Then we have α < γ.

For a lattice L, we abbreviate the set of strictly join irreducible elements of
L by J(L). For α, β ∈ J(L), we define a relation ∼ by

α ∼ β :⇔ I[α−, α] ! I[β−, β].

On J(L)/∼, we define a relation ≤ by

≤ := {(α/∼, β/∼) |||α, β ∈ J(L) and α ≤ β}.
Hence, we have α/∼ ≤ β/∼ if there are α′, β′ ∈ J(L) such that α′ ∼ α, β′ ∼ β,
and α′ ≤ β′.

Proposition 6.12. (cf. [8, Proposition 8.5]) Let L be an algebraic modular
lattice with (APMI). Then ≤ is a partial order on J(L)/∼.

Following [16], we call a lattice L atomic if it has a 0, and for every α ∈ L\{0}
there is a γ ∈ L such that 0 ≺ γ ≤ α.

Proposition 6.13. (cf. [8, Proposition 8.6]) Let L be an atomic algebraic
modular lattice with (APMI), and let α ∈ J(L) be such that α/∼ is a minimal
element of (J(L)/∼,≤). Then every α′ ∈ α/∼ is an atom of L.

The next Proposition yields that in a modular lattice of finite height with
(APMI), the partially ordered set (J(L)/∼,≤) contains a minimal element.
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Proposition 6.14. (cf. [8, Proposition 8.7]) Let L be a modular lattice with
(APMI) of finite height n, and let α1, . . . , αm ∈ J(L) be such that

α1/∼ < α2/∼ < · · · < αm/∼.

Then m ≤ n.

Proposition 6.15. (cf. [8, Proposition 8.8]) Let L be an algebraic modular
lattice with (APMI) that satisfies the descending chain condition. We assume
that α ∈ J(L) is such that α/∼ is a minimal element of (J(L)/∼,≤). Let µ be
the element of L defined by

µ :=
∨
{β ||| β ∈ α/∼}.

Then µ is a homogeneous element of L.

For an element µ of a complete lattice L, we define

Φ(µ) := µ ∧
∧
{α ∈ L |||α ≺ µ}.

Proposition 6.16. (cf. [8, Proposition 8.9]) Let L be a modular lattice of
finite height that satisfies (APMI). Then L has a homogeneous element. Further-
more, for every homogeneous µ ∈ L, I[0, µ] is a simple complemented modular
lattice, and Φ(µ) = 0.

We note that the structure of simple complemented modular lattices with
finite height is well known by [29, Theorem 4.87].

For an element µ of a complete lattice L, we define

µ∗ :=
∨
{α ∈ L |||α ∧ µ = 0}.

Proposition 6.17. (cf. [8, Proposition 8.10]) Let L be a modular lattice
of finite height with (APMI), and let µ be a homogeneous element of L. Then
µ ∧ µ∗ = 0, and for all α ∈ L, we have α ≥ µ or α ≤ µ ∨ µ∗.

6.3. The Class of (APMI) Lattices. In this subsection we analyze the
class of (APMI) lattices in universal algebraic and first order logic sense. Since
the class is new we would like to know whether (APMI) property can be described
using identities or first order predicate formulas.

Proposition 6.18. (a) The (APMI) property is not representable with
a set of identities on the language of bounded lattices ∧,∨, 0, 1.

(b) The class of (APMI) lattices is not closed for subdirect products.

Proof:

(a) It is not hard to see that the lattice L1 obtained as the direct product
of the diamond M3 = ({0, a, b, c, 1},∧,∨) and the two element lattice
{0,1} = ({0, 1},∧,∨) is an (APMI) lattice. The lattice

L2 = ({(0, 0), (a, 0), (b, 0), (c, 0), (1, 0), (a, 1), (1, 1)},∧,∨)
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is a sublattice of L1. The element (b, 0) is (strictly) meet irreducible
and I[(b, 0), (1, 0)] is projective to I[(a, 1), (1, 1)], where (a, 1) is also
(strictly) meet irreducible. Thus L2 does not satisfy the (APMI) prop-
erty. Then we conclude that the class of (APMI) lattices is not closed for
substructures and thus does not form a variety. By Theorem of Birkhoff
(see [29]) this is not an equational class.

(b) Since π1(L2) = M3 and π2(L2) = {0, 1} we conclude that L2 is a sub-
direct product of M3 × {0,1}. It is easy to verify that M3 and {0,1}
are (APMI) lattices and thus we obtain that a subdirect product of two
(APMI) lattices is not necessarily an (APMI) lattice. ¤

In order to investigate the behavior of this class under other class operators
such as the direct product, we first prove the following lemma.

Lemma 6.19. Let I 6= ∅ and let {Li|i ∈ I} be a family of bounded lattices.
An element µ ∈ ∏

i∈I Li is a meet irreducible if µ(j) is meet irreducible element
of Lj for precisely one j ∈ I and µ(i) = 1 for i 6= j.

Proof: If µ 6= 1 is meet irreducible in
∏

i∈I Li then there is a j ∈ I such that
µ(j) 6= 1Lj

. If there exists an i, i 6= j with this property then for k ∈ {i, j} we
define:

µk(t) =

{
µ(k), t = k

1, t 6= k

It is clear that µ = µi∧µj. Contradiction. Let µ(j) be a meet irreducible element
of Lj for precisely one j ∈ I and µ(i) = 1 for i 6= j. Since 1Li

is meet irreducible
in every Li, if µ(i) = α(i) ∧ β(i) for every i ∈ I and α, β ∈ ∏

i∈I Li, we conclude
that µ = α or µ = β. ¤

Now, we can prove the following.

Proposition 6.20. The class of (APMI) lattices is closed for arbitrary direct
products.

Proof: If µ ∈ ∏
i∈I Li, where Li satisfies the (APMI) property for every i ∈ I

and µ+ is the unique cover of µ then µ is meet irreducible. By Lemma 6.19 for
precisely one j ∈ I, µ(j) 6= 1Lj

and for this j, µ(j) is meet irreducible in Lj.
Now, µ+(j) is the unique cover of µ(j), since µ+ is the unique cover of µ.

Let α, β ∈ ∏
i∈I Li, α, β 6= 1 where Li satisfies the (APMI) property for every

i ∈ I, let α+ be the unique cover of α and β+ the unique cover of β such that
I[α, α+] is projective to I[β, β+]. We proved above that there exist j, k ∈ I such
that α+(i) = 1Li

, for every i ∈ I, i 6= j and α+(j) is the unique cover of α(j)
in Lj and also, β+(i) = 1Li

, for every i ∈ I, i 6= k and β+(k) is unique cover of
β(k) in Lk. Since α, β 6= 1 and I[α(i), α+(i)] is projective to I[β(i), β+(i)] in Li,
for every i ∈ I, while I[α, α+] is projective to I[β, β+], we conclude that j = k.
Now, I[α(j), α+(j)] is projective to I[β(j), β+(j)] in Lj and Lj has the (APMI)
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property, thus α+(j) = β+(j). That implies α+ = β+, while α+(i) = 1Li
= β+(i),

for every i ∈ I, i 6= j. ¤
Proposition 6.21. Class of (APMI) lattices is elementary class on the lan-

guage of bounded lattices.

Proof: Let us introduce the following notation.

(1) ≺ (x, y) ≡ (x ≤ y ∧ ¬x = y ∧ (∀z)(x ≤ z ∧ z ≤ y ⇒ z = x ∨ z = y))
(2) HUC(x, y) ≡ (x ≤ y ∧ (∀z)(x ≤ z ∧ ¬(x = z) ⇒ y ≤ z))
(3) ↗ (x, y, z, t) ≡ (≺ (x, y)∧ ≺ (z, t) ∧ (y ∧ z = x) ∧ (y ∨ z = t))
(4) ↘ (x, y, z, t) ≡ (≺ (x, y)∧ ≺ (z, t) ∧ (x ∧ t = z) ∧ (x ∨ t = y))
(5) T (x, y, z, t) ≡↗ (x, y, z, t)∨ ↘ (x, y, z, t)

Let

Φ0(x, y, z, t) ≡ (∀x)(∀y)(∀z)(∀t)(HUC(x, z)&HUC(y, t)&T (x, z, y, t) ⇒ z = t)

and

Φk(x, y, z, t) ≡ (∀x)(∀y)(∀z)(∀t)
(

HUC(x, z) ∧HUC(y, t)∧
(∃u1) . . . (∃uk)(∃v1) . . . (∃vk)

( ≺ (u1, v1) ∧ · · · ∧ ≺ (uk, vk)∧
T (x, z, u1, v1) ∧ · · · ∧ T (uk, vk, y, t)

) ⇒ z = t

)
,

for every k ≥ 1.
We will prove that the set of formulas {Φ0, . . . , Φk, . . . } together with formulas

which define bounded lattices is the set of formulas which determine the class of
(APMI) lattices.

Let L be a bounded lattice such that L |= Φk for every k ≥ 0 and let µ1, µ2 ∈ L
be such that they have unique covers µ+

1 , µ+
2 ∈ L, such that µ1 ≺ µ+

1 , µ2 ≺ µ+
2

and I[µ1, µ
+
1 ] ! I[µ2, µ

+
2 ].

(1) If I[µ1, µ
+
1 ] ↗ I[µ2, µ

+
2 ] or I[µ1, µ

+
1 ] ↘ I[µ2, µ

+
2 ] then µ+

1 = µ+
2 , since

L |= Φ0.
(2) If I[µ1, µ

+
1 ](↗ ∪ ↘)kI[µ2, µ

+
2 ], for some k > 0 then µ+

1 = µ+
2 , since

L |= Φk.

In both cases the (APMI) property is satisfied.
Now, suppose that a bounded lattice L is an (APMI) lattice. Let k > 0. If

L |= HUC(x, z) ∧HUC(y, t)∧
(∃u1) . . . (∃uk)(∃v1) . . . (∃vk)(≺ (u1, v1) ∧ · · · ∧ ≺ (uk, vk)∧

T (x, z, u1, v1) ∧ · · · ∧ T (uk, vk, y, t))

for some x, y, z, t then I[x, z] ! I[y, t] which implies z = t by (APMI), since z
is the unique cover of x and t is the unique cover of y. Thus,

L |= HUC(x, z) ∧HUC(y, t)∧
(∃u1) . . . (∃uk)(∃v1) . . . (∃vk)(≺ (u1, v1) ∧ · · · ∧ ≺ (uk, vk)∧
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T (x, z, u1, v1) ∧ · · · ∧ T (uk, vk, y, t)) ⇒ z = t.

So, L |= Φk. Similarly, L |= Φ0. ¤

7. Polynomials and Clones

In this dissertation, we investigate polynomial functions on Mal’cev algebras.
In this section we provide precise definitions of various types of affine complete-
ness, clones and a few related notions.

Let k ∈ N. An algebra A is k-affine complete if every k-ary congruence
preserving function is a polynomial function. An algebra A is affine complete if
it is k-affine complete for every k, k ≥ 1. Among a number of classes of affine
complete algebras, we will use affine complete Mn(D)-modules to obtain the
results in Chapter 3.

Theorem 7.1. Let k, m, n ∈ N, let D be a finite field, let Mn(D) be the
ring of n × n-matrices over D, and let D(n×m) denote the Mn(D)-module of all
n ×m-matrices with entries from D. Then, D(n×m) is k-affine complete if and
only if m ≥ 2 or (k = m = n = 1 and |D| = 2).

Proof: See [8, Theorem 6.1(1)]. 2

Proposition 7.2. Let A be a finite TC-neutral Mal’cev algebra and let k ≥ 2.
Then every homomorphic image of A is k-affine complete.

Proof: The statement can be obtained from [2, Proposition 2.1] and [2, Proposi-
tion 5.2]. 2

On several occcasions we use the following two generalizations of affine com-
pleteness, that are introduced in [22]. An algebra A is k-polynomially rich if
every k-ary A-typ-admissible function is a polynomial of A. We say that A is
polynomially rich if it is k-polynomially rich for every k ∈ N. Moreover, A is
k-weakly polynomially rich if every k-ary A-exttyp-admissible function is a poly-
nomial of A. We say that A is weakly polynomially rich if it is k-polynomially
rich for every k ∈ N.

Proposition 7.3. Let A be a finite Mal’cev algebra such that A and all
subdirectly irreducible members of H(A) satisfy the condition (SC1). Then, A is
weakly polynomially rich.

Proof: See [22, Theorem 24, Theorem 31]. 2

The polynomial equivalence problem, also called identity checking problem
with constants, for a Mal’cev algebra A is the problem of deciding whether the
identity s ≈ t is satisfied by A for given polynomial terms s and t of A. Here, a
polynomial term is a term that is built up from variables and the elements of A
using the operation symbols of A.
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A clone on a set A is a collection of finitary functions on A that contains all
projections and is closed under all compositions. We investigate those clones that
contain all constant functions; such clones have been called constantive in [21].
We shall also call such clones polynomial clones. If F be a set of polynomials of
an algebra A, we denote the clone generated by F by Clo(F ).

Using the language of clone theory, the question of classifying algebras modulo
polynomial equivalence can be rephrased as the question of describing all polyno-
mial clones on a finite set; so the above results mean that there are 7 constantive
clones on a two element set, and for |A| ≥ 3, there are 2ℵ0 clones containing all
constant functions on A. A fundamental result in clone theory states that every
clone on A can be described by a set of finitary relations on A [32, Satz 1.2.1, p.
53]. In this dissertation we exhibit a class of clones such that each clone can be
described by a single relation.

In [21] it was proved that for a finite set A with |A| ≥ 4 infinitely many
constantive clones on A contain a Mal’cev operation. Now given a finite set and
a Mal’cev operation on this set, one may ask in how many constantive clones
this operation is contained. For a prime p, there are precisely two constantive
clones on the cyclic group Zp with p elements that contain the ternary function
(x, y, z) 7→ x · y−1 · z. On the cyclic group Zpq, where p and q are two different
prime numbers, there are exactly 17 different constantive clones that contain the
binary group multiplication [6], and in general, on every finite group of squarefree
order, the number of constantive clones that contain the group multiplication is
finite [27]. In [10] it was shown that in the case of Zp2 and Zp × Zp, p a prime
number, there are countably many clones that contain the group multiplication
and all the constant operations. It is not known whether there exists a finite set
A such that there are uncountably many Mal’cev clones on A.

For k ≥ 0, we denote the set of all k-ary polynomials on an algebra A by
PolkA, and we let PolA := ∪k≥0PolkA be the set of all polynomials on A. For
k ≥ 1, we write Invk(A, PolA) for the set of all at most k-ary relations on the set A
that are invariant under all polynomial functions of A, and we let Inv(A, PolA) :=
∪k≥1Invk(A, PolA) be the set of all finitary relations that are invariant under
PolA. If R is a set of relations on A, we denote the set of all the operations on
A that preserve all relations from the set R by Comp(A,R). As a consequence of
[32, Satz 1.2.1, p. 53], if A is finite we have

PolA = Comp (A, Inv(A, PolA)).

This tells that polynomials of A are completely determined by the infinite set
Inv(A, PolA) of relations on A. For many Mal’cev algebras, though, we can
actually give a finite subset R of Inv(A, PolA) that describes polynomials. In
fact, it is not known whether the following conjecture is true.

Conjecture. For every finite Mal’cev algebra A there is a finite set R of
relations on A such that PolA = Comp(A,R).
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By [32, p. 50] we know that for every finite set R of relations on a set A,
there is a single finitary relation ρ on A such that Comp(A,R) = Comp(A, {ρ}).
Hence the claim of the the conjecture is that for every finite Mal’cev algebra,
the polynomials can be described by one single relation. If this conjecture holds,
then it has two rather immediate consequences:

(1) On a finite set A, there are at most countably many constantive clones
that contain a Mal’cev operation. Hence, there is a countable list of finite
Mal’cev algebras such that every finite Mal’cev algebra is polynomially
equivalent to an isomorphic copy of one of the algebras in the list.

(2) There is no infinitely descending chain of constantive Mal’cev clones on
a finite base set.

We devote Section 3 of Chapter 3 to these questions. Actually, to test whether
an n-ary function is contained in Comp(A, Inv(A, PolA)) it is sufficient to check
whether f preserves all the relations of arity at most |A|n, as stated in the fol-
lowing lemma.

Lemma 7.4. (cf. [32, Folgerung 1.1.18, p.49]) Let A be a finite algebra, n ∈ N,

and f : An → A. Then f ∈ PolnA if and only if f ∈ Comp(A, Inv|A|
n

(A, PolA)).

Lemma 7.5. Let A be a Mal’cev algebra with a Mal’cev term m. If f ∈
Comp(A, Inv4(A, PolA)) then f is a commutator preserving function of A.

Proof: We have {ρ(α, β, η,m) |α, β, η ∈ ConA, C(α, β; η)} ⊆ Inv4(A, PolA), by
Lemma 3.9. Clearly, ConA ⊆ Inv4(A, PolA) and thus f is a commutator pre-
serving function by Lemma 3.8. 2



CHAPTER 2

Higher Commutators

Many properties of a universal algebra can be seen from its congruence lattice
and the binary commutator operation on this lattice. The binary commutator
operation for arbitrary universal algebras was introduced in [35] and studied
further in [3, 14, 17, 29]. However, even in a congruence permutable variety,
an algebra need not be determined up to polynomial equivalence by its unary
polynomial functions, its congruences, and the commutator operation on these
congruences. In [9], A. Bulatov generalized the binary commutator operation by
introducing n-ary commutator operations for all n ∈ N and thereby provided a
finer tool to distinguish between polynomially inequivalent algebras.

In this thesis we use n-ary commutator operations to obtain the main the-
orems of this thesis given in Chapter 3 (Theorem §3.2.3, Theorem §3.1.18 and
Theorem §3.3.22). However, the main part of this chapter is devoted to proving
several properties of Bulatov’s higher commutator operations in congruence per-
mutable varieties. While these properties seem quite natural, our proofs require
a rather technical tool that we develop here, namely the difference operator on
polynomial functions. The higher commutator operations are particularly inter-
esting for expanded groups. In Corollary 4.11, we give a description of the higher
commutator operations for expanded groups that resembles the description of the
binary commutator operation stated in Definition 4.1.

1. Higher Commutators

In this section, we define the higher centralizers and the higher commutators
and list their properties, which we will prove in this chapter.

Definition 1.1 (cf.[9]). Let A be an algebra, let n ∈ N, and let α1, . . . , αn, β, δ
be congruences of A. Then we say that α1, . . . , αn centralize β modulo δ if for all
polynomials f(x1, . . . ,xn,y) and vectors a1,b1, . . . , an,bn, c,d from A satisfying:

(1) ai ≡αi
bi for all i ∈ {1, 2, . . . , n},

(2) c ≡β d, and
(3) f(x1, . . . ,xn, c) ≡δ f(x1, . . . ,xn,d) for all (x1, . . . ,xn) ∈ {a1,b1}×· · ·×

{an,bn}\{(b1, . . . ,bn)}
we have

f(b1, . . . ,bn, c) ≡δ f(b1, . . . ,bn,d).

We abbreviate this property by C(α1, . . . , αn, β; δ).

31
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It follows immediately from the definition that for congruences α1, . . . , αn, β,
{δi | i ∈ I}, we have: if C(α1, . . . , αn, β; δi) for each i ∈ I, then

C(α1, . . . , αn, β;
∧
i∈I

δi).

This justifies the following definition.

Definition 1.2 (cf.[9]). Let A be an algebra, let n ≥ 2, and let α1, . . . , αn

be congruences of A. The smallest congruence δ such that C(α1, . . . , αn−1, αn; δ)
holds is called the (n-ary) commutator of α1, . . . , αn. We abbreviate it by [α1, . . . , αn].

Notice that for n = 1 in Definition 1.1 we obtain the definition of the (binary)
centralizing relation that is used in [14]. For n = 2, Definition 1.2 yields the
binary term-condition commutator ([29, Definition 4.150]).

Proposition 1.3. (cf. [9, Proposition 1]) Let k ≥ 1 and let α0, . . . , αk be
congruences of an algebra A. Then:

(HC1) [α0, . . . , αk] ≤
∧

0≤i≤k αi;
(HC2) for all β0, . . . , βk ∈ ConA such that α0 ≤ β0, . . . , αk ≤ βk, we have

[α0, . . . , αk] ≤ [β0, . . . , βk];

(HC3) [α0, . . . , αk] ≤ [α1, . . . , αk].

Proof: (HC1) First, we prove C(α0, . . . , αk; αi) for every i ∈ {0, . . . , k}. Let j ∈
{0, . . . , k}, f(x0, . . . ,xk) be a polynomial and vectors a0,b0, . . . , ak−1,bk−1, c,d
from A satisfying:

(1) ai ≡αi
bi for all i ∈ {0, 1, . . . , k − 1},

(2) c ≡αk
d, and

(3) f(x0, . . . ,xk−1, c) ≡αj
f(x0, . . . ,xk−1,d) for all (x0, . . . ,xk−1) ∈ {a0,b0}×

· · · × {ak−1,bk−1}\{(b0, . . . ,bk−1)}.
Using (1) for i := j and (3) for (x0, . . . , xk−1) := (b0, . . . ,bj−1, aj,bj+1, . . . ,bk−1)
we obtain:

f(b0, . . . ,bk−1, c) ≡αj
f(b0, . . . ,bj−1, aj,bj+1, . . . ,bk−1, c)

≡αj
f(b0, . . . ,bj−1, aj,bj+1, . . . ,bk−1,d) ≡αj

f(b0, . . . ,bk−1,d).

Therefore, we have C(α0, . . . , αk; αj), by definition. Hence, [α0, . . . , αk] ≤ αj.
Now, we easily obtain [α0, . . . , αk] ≤

∧
0≤i≤k αi.

(HC2) We shall show that C(α0, . . . , αk; [β0, . . . , βk]). Let f(x0, . . . ,xk) be
a polynomial and vectors a0,b0, . . . , ak−1,bk−1, c,d from A and j ∈ {0, . . . , k}
satisfying:

(1) ai ≡αi
bi for all i ∈ {0, 1, . . . , k − 1},

(2) c ≡αk
d, and

(3) f(x0, . . . ,xk−1, c) ≡[β0,...,βk] f(x0, . . . ,xk−1,d) for all (x0, . . . ,xk−1) ∈
{a0,b0} × · · · × {ak−1,bk−1}\{(b0, . . . ,bk−1)}.
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Then by assumptions we have

(1’) ai ≡βi
bi for all i ∈ {0, 1, . . . , k − 1} and

(2’) c ≡βk
d.

We know that C(β0, . . . , βk; [β0, . . . , βk]) and then (1’), (2’) and (3) yield

f(b0, . . . ,bk−1, c) ≡[β0,...,βk] f(b0, . . . ,bk−1,d).

(HC3) Let us show that C(α0, . . . , αk; [α1, . . . , αk]). Let f(x0, . . . ,xk) be a
polynomial and vectors a0,b0, . . . , ak−1,bk−1, c,d from A satisfying:

(1) ai ≡αi
bi for all i ∈ {0, 1, . . . , k − 1},

(2) c ≡αk
d, and

(3) f(x0, . . . ,xk−1, c) ≡[α1,...,αk] f(x0, . . . ,xk−1,d) for all (x0, . . . ,xk−1) ∈
{a0,b0} × · · · × {ak−1,bk−1}\{(b0, . . . ,bk−1)}.

Now, we define a polynomial q of A by

g(x1, . . . ,xk) := f(b0,x1, . . . ,xk).

Then, using (3), we obtain
(3’) g(x1, . . . ,xk−1, c) ≡[α1,...,αk] g(x1, . . . ,xk−1,d) for all (x1, . . . ,xk−1) ∈

{a1,b1} × · · · × {ak−1,bk−1}\{(b1, . . . ,bk−1)}.
We know that C(α1, . . . , αk; [α1, . . . , αk]) and therefore (1) for i 6= 0, (2) and

(3’) yield
g(b1, . . . ,bk−1, c) ≡[α1,...,αk] g(b1, . . . ,bk−1,d)

or equivalently, f(b0, . . . ,bk−1, c) ≡[α1,...,αk] f(b0, . . . ,bk−1,d). 2

Let k ≥ 1 and let α0, . . . , αk, η be congruences of an algebra A that generates
a congruence permutable variety. Then, we have:

(HC4) [α0, . . . , αk] = [απ(0), . . . , απ(k)] for every permutation π of the set {0, . . . , k};
(HC5) [α0, . . . , αk] ≤ η if and only if C(α0, . . . , αk; η);
(HC6) If η ≤ α0, . . . , αk, then in A/η, we have

[α0/η, . . . , αk/η] = ([α0, . . . , αk] ∨ η)/η;
(HC7) If I is a nonempty set, j ∈ {0, . . . , k}, and {ρi | i ∈ I} ⊆ ConA, then:∨

i∈ I [α0, . . . , αj−1, ρi, αj+1, . . . , αk] = [α0, . . . , αj−1,
∨

i∈I ρi, αj+1, . . . , αk];
(HC8) [α0, [α1, . . . , αk]] ≤ [α0, α1, . . . , αk], and more generally

[α0, . . . , αi−1, [αi, . . . , αk]] ≤ [α0, . . . , αk] for all i ∈ {1, . . . , k}.
The proofs of properties (HC4)-(HC8) are given in Section 4. Actually,

for k = 1, as a special case we obtain several properties of the binary com-
mutator operation on Mal’cev algebras that have been listed in [29, Exercises
4.156(1),(11),(13)] and [6, Proposition 2.3].

We notice that the higher commutator operations of an algebra are not de-
termined by its binary commutator operation. As examples, we consider the
expansions of the cyclic group (Z4, +) that were studied in [10]. For n ≥ 2,
let An be the algebra (Z4, +, fn), where fn is the n-ary operation defined by
fn(x1, . . . , xn) := 2x1 · · · xn. An has exactly three congruences; we denote them
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by 0, α, and 1. Then from Lemma 2.4 of [6], one can easily infer that for
n ≥ 2, An satisfies [1, 1] = α and [1, α] = 0. Furthermore, in A2 we have
[1, 1, 1] = 0, but in A3, we have [1, 1, 1] = α. The property [1, 1, 1]A2 = 0
can be proved by observing that all ternary polynomial functions of A2 are
of the form (x, y, z) 7→ a0 + a1x + a2y + a3z + 2a4xy + 2a5xz + 2a6yz with
a0, . . . , a6 ∈ Z4. Now one can use Corollary 4.11 to show that [1, 1, 1]A2 = 0.
The property [1, 1, 1]A3 = α is easier to show: Since [1, 1, 1]A3 ≤ [1, 1]A3 by
(HC3), we have [1, 1, 1]A3 6= 1. Now we show [1, 1, 1]A3 6= 0. Seeking a con-
tradiction, we assume C(1, 1, 1; 0). Since f3(α0, α1, 0) = f3(α0, α1, 3) for all
(α0, α1) ∈ {(0, 0), (0, 3), (3, 0)}, C(1, 1, 1; 0) yields f3(3, 3, 0) = f3(3, 3, 3), a con-
tradiction. Thus [1, 1, 1]A3 = α.

Similarly, if k ≥ 2 and n ≥ 2, one obtains [1, [1, 1]]An = 0, [ 1, . . . , 1︸ ︷︷ ︸
k

]An = α if

k ≤ n and [ 1, . . . , 1︸ ︷︷ ︸
k

]An = 0 if k > n.

2. The Difference Operator

The main tool for proving the properties of higher commutators will be the
difference operator D defined in this section.

Definition 2.1. Let A be an algebra. Then for each k ∈ N0, i ∈ {0, 1, . . . , k},
and y ∈ A, we define a mapping E

(i)
y : Polk+1A → PolkA by:

E(i)
y (p) (x0 . . . , xi−1, xi+1, . . . , xk) := p(x0, . . . , xi−1, y, xi+1, . . . , xk)

for all p ∈ Polk+1A and x0, . . . , xi−1, xi+1, . . . , xk ∈ A.

Example 2.2. Let

p(x0, x1, x2) = x0x
2
1x2

be a polynomial of the ring Z8. Then E
(1)
5 (p)(x0, x2) = x0x2.

Definition 2.3. Let A be a Mal’cev algebra with Mal’cev term m, let θ ∈ A,
and let (ai)i∈N0 be a sequence of elements of A. Then for each k ∈ N, we define

a mapping D
(k)
θ,(a0,...,ak−1) : PolkA → PolkA, by the following equations:

D
(1)
θ,a0

(f)(x0) := m(f(x0), f(a0), θ)

for every f ∈ Pol1A, x0 ∈ A and

D
(k+1)
θ,(a0,...,ak)(p)(x0, . . . , xk) := m




D
(k)
θ,(a0,...,ak−1)

(
E

(k)
xk (p)

)
(x0, . . . , xk−1)

D
(k)
θ,(a0,...,ak−1)

(
E

(k)
ak (p)

)
(x0, . . . , xk−1)

θ




for every k ∈ N, p ∈ Polk+1A and x0, . . . , xk ∈ A.
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Note that the definition of D depends on the Mal’cev term m, which will

always be clear from the context. Also, we use m




a
b
c


 instead of m(a, b, c) if

this improves readability.

Example 2.4. Let p be a ternary polynomial of an expanded group (V, +,−, 0, F ).
For θ = 0 and a0, a1, a2 ∈ V we obtain:

D
(3)
0,(a0,a1,a2)(p)(x0, x1, x2) =

= D
(2)
0,(a0,a1)

(
E(2)

x2
(p)

)
(x0, x1)− D

(2)
0,(a0,a1)

(
E(2)

a2
(p)

)
(x0, x1) =

= D
(1)
0,a0

(
E(1)

x1
(E(2)

x2
(p))

)
(x0)− D

(1)
0,a0

(
E(1)

a1
(E(2)

x2
(p))

)
(x0)

−
(

D
(1)
0,a0

(
E(1)

x1
(E(2)

a2
(p))

)
(x0)− D

(1)
0,a0

(
E(1)

a1
(E(2)

a2
(p))

)
(x0)

)
=

=

(
(E(1)

x1
(E(2)

x2
(p)))(x0)− (E(1)

x1
(E(2)

x2
(p)))(a0)

)

−
(

(E(1)
a1

(E(2)
x2

(p)))(x0)− (E(1)
a1

(E(2)
x2

(p)))(a0)

)

+

(
(E(1)

a1
(E(2)

a2
(p)))(x0)− (E(1)

a1
(E(2)

a2
(p)))(a0)

)

−
(

(E(1)
x1

(E(2)
a2

(p)))(x0)− (E(1)
x1

(E(2)
a2

(p)))(a0)

)

= (p(x0, x1, x2)− p(a0, x1, x2))− (p(x0, a1, x2)− p(a0, a1, x2))

+(p(x0, a1, a2)− p(a0, a1, a2))− (p(x0, x1, a2)− p(a0, x1, a2))

= p(x0, x1, x2)− p(a0, x1, x2) + p(a0, a1, x2)− p(x0, a1, x2)

+p(x0, a1, a2)− p(a0, a1, a2) + p(a0, x1, a2)− p(x0, x1, a2)

Lemma 2.5. Let A be a Mal’cev algebra with a Mal’cev term m, θ ∈ A, k ∈ N,
and let α be a congruence of A. Let q ∈ PolkA such that q(Ak) ⊆ θ/α. Then for

every (x0, . . . , xk−1) ∈ Ak, we have: D
(k)
θ,(θ,...,θ)(q)(x0, . . . , xk−1) ∈ θ/α.

Proof: We show the statement by induction on k. For k = 1 and x0 ∈ A, we

have q(x0) ∈ θ/α and q(θ) ∈ θ/α, and thus D
(1)
θ,θ(q)(x0) = m(q(x0), q(θ), θ) ≡α

m(θ, θ, θ) = θ ∈ θ/α. Now let k ≥ 2 and x0, . . . , xk−1 ∈ A. Since q(Ak) ⊆ θ/α,

we clearly have E
(k−1)
xk−1 (q)(Ak−1) ⊆ θ/α and E

(k−1)
θ (q)(Ak−1) ⊆ θ/α. Thus, by

the induction hypothesis, both a := D
(k−1)
θ,(θ,...,θ)(E

(k−1)
xk−1 (q))(x0, . . . , xk−2) and b :=

D
(k−1)
θ,(θ,...,θ)(E

(k−1)
θ (q))(x0, . . . , xk−2) lie in θ/α. Hence we have m(a, b, θ) ∈ θ/α.

This completes the proof. 2



36 2. HIGHER COMMUTATORS

Definition 2.6. Let A be an algebra with a Mal’cev term m and let k ∈ N.
Then we define a mapping Fθ,u : PolkA → PolkA by:

Fθ,u(p)(x0, . . . , xk−1) := m(p(x0, . . . , xk−2, xk−1), p(x0, . . . , xk−2, u), θ)

for all p ∈ PolkA and x0, . . . , xk−1, θ, u ∈ A.

Example 2.7. Let p be a ternary polynomial of an expanded group (V, +,−, 0, F ).
For θ = 0 and u ∈ V we obtain:

F0,u(p)(x0, x1, x2) = p(x0, x1, x2)− p(x0, x1, u).

We need the following technical lemma.

Lemma 2.8. Let A be an algebra with a Mal’cev term m and k ∈ N. Then
for all q ∈ Polk+1A and x0, . . . , xk−2, θ, t, u, v ∈ A, we have:

E
(k−1)
t (E(k)

v (Fθ,u(q)))(x0, . . . , xk−2) = E(k−1)
v (Fθ,u(E

(k−1)
t (q)))(x0, . . . , xk−2).

Proof: Let q ∈ Polk+1A. We calculate the left hand side:

E
(k−1)
t (E(k)

v (Fθ,u(q)))(x0, . . . , xk−2) = E(k)
v (Fθ,u(q))(x0, . . . , xk−2, t) =

= Fθ,u(q)(x0, . . . , xk−2, t, v) = m(q(x0, . . . , xk−2, t, v), q(x0, . . . , xk−2, t, u), θ).

Now, we compute the right hand side:

E(k−1)
v (Fθ,u(E

(k−1)
t (q)))(x0, . . . , xk−2) = Fθ,u(E

(k−1)
t (q))(x0, . . . , xk−2, v)

= m(E
(k−1)
t (q)(x0, . . . , xk−2, v), E

(k−1)
t (q)(x0, . . . , xk−2, u), θ) =

= m(q(x0, . . . , xk−2, t, v), q(x0, . . . , xk−2, t, u), θ).

2

Definition 2.9. Let A be an algebra, let k ∈ N, let p : Ak → A, let
(a0, . . . , ak−1) ∈ Ak, and let θ ∈ A. Then p is absorbing at (a0, . . . , ak−1) with
value θ if for all (x0, . . . , xk−1) ∈ Ak we have: if there is an i ∈ {0, 1, . . . , k − 1}
such that xi = ai, then p(x0, . . . , xk−1) = θ. Note that p(a0, . . . , ak−1) = θ.

Example 2.10. In a ring R, for a, b, c, d ∈ R, the function f(x, y, z) :=
(x− a)(y − b)(z − c) + d is absorbing at (a, b, c) with value d.

Lemma 2.11. Let A be a Mal’cev algebra with a Mal’cev term m, let k ≥ 1,

(a0, . . . , ak−1) ∈ Ak and θ ∈ A. If q ∈ PolkA, then D
(k)
θ,(a0,...,ak−1)(q) is absorbing

at (a0, . . . , ak−1) with value θ.

Proof: We prove the statement by induction on k. Using Definition 2.3, we see

that D
(1)
θ,a0

(q)(a0) = m(q(a0), q(a0), θ) = θ. For the induction step, let k ≥ 2,

(x0, . . . , xk−1) ∈ Ak such that there is an i ∈ {0, 1, . . . , k − 1} with xi = ai, and
let q ∈ PolkA. We want to prove

(2.1) D
(k)
θ,(a0,...,ak−1)(q)(x0, . . . , xk−1) = θ.
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If xk−1 = ak−1, then we obtain (2.1) directly from Definition 2.3. If there
exists an i ∈ {0, . . . , k − 2} such that xi = ai then we reason as follows: Since

E
(k−1)
xk−1 (q), E

(k−1)
ak−1 (q) ∈ Polk−1A, we have

D
(k−1)
θ,(a0,...,ak−2)(E

(k−1)
xk−1

(q))(x0, . . . , xk−2) = D
(k−1)
θ,(a0,...,ak−2)(E

(k−1)
ak−1

(q))(x0, . . . , xk−2) = θ

by the induction hypothesis. Now, by Definition 2.3 we obtain (2.1). 2

Example 2.12. Let p be a ternary polynomial of an expanded group (V, +,−, 0, F ).
We already calculated in Example 2.4:

D
(3)
0,(a0,a1,a2)(p)(x0, x1, x2) = p(x0, x1, x2)−p(a0, x1, x2)+p(a0, a1, x2)−p(x0, a1, x2)

+p(x0, a1, a2)− p(a0, a1, a2) + p(a0, x1, a2)− p(x0, x1, a2)

and hence, D
(3)
0,(a0,a1,a2)(p)(a0, x1, x2) = D

(3)
0,(a0,a1,a2)(p)(x0, a1, x2)

= D
(3)
0,(a0,a1,a2)(p)(x0, x1, a2) = 0.

Definition 2.13. Let A be an algebra and let θ ∈ A. For each n ∈ N and

I ⊆ {0, . . . , n− 1}, we define a function S
(n)
I,θ : An → An by

S
(n)
I,θ (x0, . . . , xn−1) := (y0, . . . , yn−1)

for all x0, . . . , xn−1 ∈ A, where yj := xj if j ∈ I, and yj := θ if j 6∈ I.

In the previous definition, all entries whose indices are not listed in I are
replaced with θ.

Definition 2.14. Let A be an algebra and let θ ∈ A. For each n ∈ N and

I ⊆ {0, . . . , n− 1}, we define a function H
(n)
I,θ : PolnA → PolnA by

(H
(n)
I,θ (p))(x0, . . . , xn−1) := p(S

(n)
I,θ (x0, . . . , xn−1))

for all (x0, . . . , xn−1) ∈ An.

Example 2.15. For a0, a1, a2 ∈ A we have S
(3)
{0,2},θ(a0, a1, a2) = (a0, θ, a2) and

H
(3)
{0,2},θ(p)(a0, a1, a2) = p(a0, θ, a2).

Proposition 2.16. Let A be an algebra, let θ ∈ A, let α ∈ ConA and let

k ≥ 1. If p ∈ PolkA such that p(Ak) ⊆ θ/α then H
(k)
I,θ (p)(Ak) ⊆ θ/α for every

I ⊆ {0, . . . , k − 1}.
Proof: Obviously, we have H

(k)
I,θ (p)(Ak) = p(S

(k)
I,θ (Ak)) ⊆ p(Ak). 2

In a Mal’cev algebra A with a Mal’cev term m and θ ∈ A we define a binary
polynomial +θ and a unary polynomial −θ such that:

a +θ b := m(a, θ, b)

and
−θ (a) := m(θ, a, θ)



38 2. HIGHER COMMUTATORS

for all a, b ∈ A. We abbreviate ((a1 +θ a2) +θ · · ·+θ an−1) +θ an by θ

∑n
i=1 ai. By

(−1)k · a, we mean −θ (a) if k is odd, and a if k is even.

Lemma 2.17. Let A be a Mal’cev algebra with a Mal’cev term m, let θ ∈ A,
k ∈ N, α ∈ ConA and p ∈ PolkA such that [α, α] = 0 and p(Ak) ⊆ θ/α. Then:

(1) (θ/α, +θ,−θ, θ) is an abelian group and m(a, b, θ) = a +θ (−θ (b)) for all
a, b ∈ θ/α

(2) there exists a bijective mapping ϕk : {1, . . . , 2k} → P({0, . . . , k − 1})
such that ϕk(1) = {0, . . . , k − 1} and

D
(k)
θ,(θ,...,θ)(p) = θ

2k∑
i=1

(−1)k−|ϕk(i)| ·H(k)
ϕk(i),θ(p).

Proof: (1) Since a +θ b ∈ θ/α and −θ (a) ∈ θ/α for all a, b ∈ θ/α, we know
that (θ/α, +θ,−θ, θ) is an abelian group by Lemma §1.3.4 and the calculations
in the proof of Proposition §1.3.11. By Lemma §1.3.7 we obtain m(a, b, θ) =
m(a, θ, m(θ, b, θ)) = a +θ (−θ (b)) for all a, b ∈ θ/α.

(2) We proceed by induction on k. For k = 1 we define ϕ1(1) := {0} and
ϕ1(2) := ∅. Then, by Definition 2.3 and (1), for x0 ∈ A, we have

D
(1)
θ,θ(p)(x0) = m(p(x0), p(θ), θ) = p(x0)+θ(−θ(p(θ))) = θ

2∑
i=1

(−1)1−|ϕ1(i)|·H(1)
ϕ1(i),θ(p)(x0).

For k > 1 we define ϕk : {1, . . . , 2k} → P({0, . . . , k−1}) by ϕk(i) := ϕk−1(i)∪{k−
1} and ϕk(2

k+1−i) := ϕk−1(i) for i ∈ {1, . . . , 2k−1}. Now, let (x0, . . . , xk−1) ∈ Ak.
Using item (1) we compute

(2.2) D
(k)
θ,(θ,...,θ)(p)(x0, . . . , xk−1) =

D
(k−1)
θ,(θ,...,θ)

(
E(k−1)

xk−1
(p)

)
(x0, . . . , xk−2) +θ (−θ

(
D

(k−1)
θ,(θ,...,θ)

(
E

(k−1)
θ (p)

)
(x0, . . . , xk−2)

)
).

Since E
(k−1)
xk−1 (p)(Ak−1) ⊆ θ/α and E

(k−1)
θ (p)(Ak−1) ⊆ θ/α, we may use the induc-

tion hypothesis and obtain that the last expresson is equal to

θ

2k−1∑
i=1

(−1)k−1−|ϕk−1(i)| ·
(
H

(k−1)
ϕk−1(i),θ(E

(k−1)
xk−1

(p))
)

(x0, . . . , xk−2)

+θ

(−θ

(
θ

2k−1∑
i=1

(−1)k−1−|ϕk−1(i)| ·
(
H

(k−1)
ϕk−1(i),θ(E

(k−1)
θ (p))

)
(x0, . . . , xk−2)

))
.

The last expression is equal to

θ

2k−1∑
i=1

(−1)k−1−|ϕk−1(i)| ·
(
E(k−1)

xk−1
(p)

)
(S

(k−1)
ϕk−1(i),θ(x0, . . . , xk−2))
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+θ

(
θ

2k−1∑
i=1

(−1)k−|ϕk−1(i)| ·
(
E

(k−1)
θ (p)

)
(S

(k−1)
ϕk−1(i),θ(x0, . . . , xk−2))

)

= θ

2k−1∑
i=1

(−1)k−1−|ϕk−1(i)| · p(S
(k−1)
ϕk−1(i),θ(x0, . . . , xk−2), xk−1)

+θ

(
θ

2k−1∑
i=1

(−1)k−|ϕk−1(i)| · p(S
(k−1)
ϕk−1(i),θ(x0, . . . , xk−2), θ)

)

= θ

2k−1∑
i=1

(−1)k−|ϕk(i)| · p(S
(k)
ϕk(i),θ(x0, . . . , xk−1))

+θ

(
θ

2k∑

i=2k−1+1

(−1)k−|ϕk(i)| · p(S
(k)
ϕk(i),θ(x0 . . . , xk−1))

)

= θ

2k∑
i=1

(−1)k−|ϕk(i)| ·H(k)
ϕk(i),θ(p)(x0, . . . , xk−1).

2

In an algebra A we say that a function f : An → A depends on its i th
argument if there are a, b ∈ A and (x1, . . . , xn) ∈ An such that

p(x1, . . . , xi−1, a, xi+1, . . . , xn) 6= p(x1, . . . , xi−1, b, xi+1, . . . , xn).

The number of arguments on which p depends is called the essential arity of p.
For n ∈ N and θ ∈ A we call a polynomial p ∈ PolnA a θ-polynomial if for each
i ∈ {1, . . . , n} at least one of the following two conditions holds:

(1) p does not depend on its ith argument,
(2) p(x1, . . . , xi−1, θ, xi+1, . . . , xn) = p(θ, . . . , θ) for all (x1, . . . , xn) ∈ An.

Let A be a Mal’cev algebra with a Mal’cev term m and let θ ∈ A. Then,
for every k ≥ 0, P(A, k,m, θ) := (PolkA,m, θ) is an algebra of type (3, 0) with
Mal’cev operation m and a constant polynomial θ ∈ PolkA. For a nonempty set
P of polynomials of A, we denote the subuniverse of P(A, k, m, θ) generated by

P by SgP(A,k,m,θ)(P ).

Proposition 2.18. Let A be a Mal’cev algebra with a Mal’cev term m, let
θ ∈ A, n ∈ N, α ∈ ConA and p ∈ PolnA. If [α, α] = 0 and p(An) ⊆ θ/α

then p ∈ SgP(A,n,m,θ)(P ), where P := {f ∈ PolnA | f is a θ-polynomial and the
essential arity of f is at most the essential arity of p}.
Proof: Let k ∈ N be the essential arity of the polynomial p. Then there exists a
polynomial q ∈ PolkA such that the essential arity of q is k and p(x0, . . . , xn−1) =
q(xi0 , . . . , xik−1

) for all (x0, . . . , xn−1) ∈ An. To simplify the notation let us denote
the arguments of q by x0, . . . , xk−1. We prove the statement of the proposition
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by induction on k. For k = 1 the statement is obvious because every unary
polynomial function is a θ-polynomial function of essential arity at most 1. Now
let k ≥ 2. Since [α, α] = 0 and q(Ak) ⊆ θ/α, Lemma 2.17 yields a bijective
mapping ϕk : {1, . . . , 2k} → P({0, . . . , k − 1}) such that

(2.3) q = D
(k)
θ,(θ,...,θ)(q) +θ (−θ

(
θ

2k∑
i=2

(−1)k−|ϕk(i)| ·H(k)
ϕk(i),θ(q)

)
).

To prove (2.3), we observe that ϕk(1) = {0, . . . , k − 1} and

(−1)k−|ϕk(1)| ·H(k)
ϕk(1),θ(q)(x0, . . . , xk−1) = q(x0, . . . , xk−1).

Therefore q ∈ SgP(A,k,m,θ)({D(k)
θ,(θ,...,θ)(q)} ∪ {H(k)

ϕk(i),θ(q) |2 ≤ i ≤ 2k}). Now, by

Lemma 2.11, we know that D
(k)
θ,(θ,...,θ)(q) is a k-ary θ-polynomial. Obviously, its

essential arity is at most k. Furthermore, for every i ∈ {2, 3, . . . , 2k−1}, the

polynomials H
(k)
ϕk(i),θ(q) depend on at most k − 1 arguments and, by Proposition

2.16, H
(k)
ϕk(i),θ(q)(A

k) ⊆ θ/α. Hence by the induction hypothesis H
(k)
ϕk(i),θ(q) ∈

SgP(A,k−1,m,θ)(P ) for i ∈ {2, 3, . . . , 2k−1}, where P is the set of θ-polynomials of
essential arities at most k − 1. Therefore,

q ∈ SgP(A,k,m,θ)({D(k)
θ,(θ,...,θ)(q)} ∪ P ).

This completes the induction step.2

Lemma 2.19. Let A be a Mal’cev algebra with a Mal’cev term m and let k ≥ 1.
Let q ∈ Polk+1A, (a0, . . . , ak−1) ∈ Ak, θ, u ∈ A. Let f ∈ Polk+1A be defined by

f(x0, . . . , xk) := D
(k)
θ,(a0,...,ak−1)(E

(k)
xk

(Fθ,u(q)))(x0, . . . , xk−1)

for all x0, . . . , xk ∈ A. Then f is absorbing at (a0, . . . , ak−1, u) with value θ.

Proof: Let (x0, . . . , xk) ∈ Ak+1 such that xi = ai for an i ∈ {0, 1, . . . , k − 1} or
xk = u. We first consider the case xk = u. By the definitions of the operators

E and F we know that E
(k)
u (Fθ,u(q))(y0, . . . , yk−1) = θ for all (y0, . . . , yk−1) ∈ Ak.

Then, f(x0, . . . , xk) = θ because the operator D, acting on a constant function,
produces the constant function with value θ. In the case that there is an i with
ai = xi, the assertion follows from Lemma 2.11. 2

Example 2.20. In this example we start with a ternary polynomial p of
an expanded group (V, +,−, 0, F ). Since we have already computed F0,u(p) in
Example 2.7, we have

D
(2)
0,(a0,a1)

(
E(2)

x2
(F0,u(p))

)
(x0, x1) =

= D
(1)
0,a0

(
E(1)

x1
(E(2)

x2
(F0,u(p)))

)
(x0)− D

(1)
0,a0

(
E(1)

a1
(E(2)

x2
(F0,u(p)))

)
(x0)

=
(
E(1)

x1
(E(2)

x2
(F0,u(p)))

)
(x0)−

(
E(1)

x1
(E(2)

x2
(F0,u(p)))

)
(a0)
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−
( (

E(1)
a1

(E(2)
x2

(F0,u(p)))
)
(x0)−

(
E(1)

a1
(E(2)

x2
(F0,u(p)))

)
(a0)

)

= (p(x0, x1, x2)− p(x0, x1, u))− (p(a0, x1, x2)− p(a0, x1, u))

−(
(p(x0, a1, x2)− p(x0, a1, u))− (p(a0, a1, x2)− p(a0, a1, u)))

= p(x0, x1, x2)− p(x0, x1, u) + p(a0, x1, u)− p(a0, x1, x2)

+p(a0, a1, x2)− p(a0, a1, u) + p(x0, a1, u)− p(x0, a1, x2).

Clearly, D
(2)
0,(a0,a1)

(
E

(2)
u (F0,u(p))

)
(x0, x1) = D

(2)
0,(a0,a1)

(
E

(2)
x2 (F0,u(p))

)
(a0, x1)

= D
(2)
0,(a0,a1)

(
E(2)

x2
(F0,u(p))

)
(x0, a1) = 0.

Lemma 2.21. Let A be a Mal’cev algebra with a Mal’cev term m, let θ ∈ A
and let η ∈ ConA. If k ≥ 1, (a0, . . . , ak−1), (b0, . . . , bk−1) ∈ Ak, u, v ∈ A and
q ∈ Polk+1A such that

q(α0, . . . , αk−1, u) ≡η q(α0, . . . , αk−1, v)

for every (α0, . . . , αk−1) ∈ {a0, b0} × · · · × {ak−1, bk−1}, then

D
(k)
θ,(a0,...,ak−1)(E

(k)
v (Fθ,u(q)))(b0, . . . , bk−1) ≡η θ.

Proof: We prove the statement by induction on k. For k = 1, we have

D
(1)
θ,a0

(
E(1)

v (Fθ,u(q)
)
(b0) =

= m(m(q(b0, v), q(b0, u), θ),m(q(a0, v), q(a0, u), θ), θ) ≡η θ,

using the assumptions on q. For k ≥ 2 let q ∈ Polk+2A such that

q(α0, . . . , αk, u) ≡η q(α0, . . . , αk, v)

for every (α0, . . . , αk) ∈ {a0, b0}×· · ·×{ak, bk}. Now we divide all possible choices
of (α0, . . . , αk) in two groups: {(α0, . . . , αk) ∈ {a0, b0} × · · · × {ak, bk} |αk = ak}
and {(α0, . . . , αk) ∈ {a0, b0} × · · · × {ak, bk} |αk = bk}. Hence we have

E(k)
ak

(q)(α0, . . . , αk−1, u) ≡η E(k)
ak

(q)(α0, . . . , αk−1, v)

and
E

(k)
bk

(q)(α0, . . . , αk−1, u) ≡η E
(k)
bk

(q)(α0, . . . , αk−1, v)

for every (α0, . . . , αk−1) ∈ {a0, b0}× · · · × {ak−1, bk−1}. By the induction hypoth-
esis we obtain

D
(k)
θ,(a0,...,ak−1)

(
E(k)

v (Fθ,u(E
(k)
ak

(q)))
)
(b0, . . . , bk−1) ≡η θ,

and then by Lemma 2.8 we have

(2.4) D
(k)
θ,(a0,...,ak−1)

(
E(k)

ak
(E(k+1)

v (Fθ,u(q)))
)
(b0, . . . , bk−1) ≡η θ,

and in the same way we have

(2.5) D
(k)
θ,(a0,...,ak−1)

(
E

(k)
bk

(E(k+1)
v (Fθ,u(q)))

)
(b0, . . . , bk−1) ≡η θ.
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Now, using equations (2.4) and (2.5) and the definition of the operator D for

p = E
(k+1)
v (Fθ,u(q)), we obtain:

D
(k+1)
θ,(a0,...,ak)(E

(k+1)
v (Fθ,u(q)))(b0, . . . , bk) =

m




D
(k)
θ,(a0,...,ak−1)

(
E

(k)
bk

(E
(k+1)
v (Fθ,u(p)))

)
(b0, . . . , bk−1)

D
(k)
θ,(a0,...,ak−1)

(
E

(k)
ak (E

(k+1)
v (Fθ,u(p)))

)
(b0, . . . , bk−1)

θ


 ≡η θ.

2

Example 2.22. Let V = (V, +,−, 0, F ) be an expanded group and choose
a0, a1, u, b0, b1, v ∈ V , θ = 0. The relation η is the equality relation on V . Now,
let p be a polynomial of V such that p(a0, a1, u) = p(a0, a1, v), p(a0, b1, u) =
p(a0, b1, v), p(b0, a1, u) = p(b0, a1, v), p(b0, b1, u) = p(b0, b1, v). In Example 2.20,

we have already calculated D
(2)
0,(a0,a1)

(
E

(2)
x2 (F0,u(p))

)
(x0, x1), and thus

D
(2)
0,(a0,a1)

(
E

(2)
v (F0,u(p))

)
(b0, b1) = 0.

Lemma 2.23. Let A be a Mal’cev algebra with a Mal’cev term m, let η ∈ ConA
and let k ≥ 1. If (a0, . . . , ak−1), (b0, . . . , bk−1) are vectors in A, u, v ∈ A and
q ∈ Polk+1A such that

q(α0, . . . , αk−1, u) ≡η q(α0, . . . , αk−1, v)

for every (α0, . . . , αk−1) ∈ {a0, b0} × · · · × {ak−1, bk−1}\{(b0, . . . , bk−1)}, then for
θ = q(b0, . . . , bk−1, u) we have

D
(k)
θ,(a0,...,ak−1)

(E(k)
v (Fθ,u(q)))(b0, . . . , bk−1) ≡η q(b0, . . . , bk−1, v).

Proof: By induction on k. For k = 1, by the assumption q(a0, u) ≡η q(a0, v), we
have

D
(1)
q(b0,u),a0

(
E(1)

v (Fq(b0,u),u(q)
)
(b0) =

= m
(
m(q(b0, v), q(b0, u), q(b0, u)),m(q(a0, v), q(a0, u), q(b0, u)), q(b0, u)

)

= m
(
q(b0, v),m

(
q(a0, v), q(a0, u), q(b0, u)

)
, q(b0, u)

) ≡η q(b0, v).

For the induction step we let k ≥ 2. We will now compute

D
(k+1)
q(b0,...,bk,u),(a0,...,ak)

(
E

(k+1)
v (Fq(b0,...,bk,u),u(q))

)
(b0, . . . , bk). According to Definition

2.3 we have to compute D
(k)
q(b0,...,bk,u),(a0,...,ak−1)

(
E

(k)
ak (E

(k+1)
v (Fq(b0,...,bk,u),u(q))

)
(b0, . . . , bk−1)

and D
(k)
q(b0,...,bk,u),(a0,...,ak−1)

(
E

(k)
bk

(E
(k+1)
v (Fq(b0,...,bk,u),u(q))

)
(b0, . . . , bk−1). We assume

that
q(α0, . . . , αk, u) ≡η q(α0, . . . , αk, v),

for every (α0, . . . , αk) ∈ {a0, b0} × · · · × {ak, bk}\{(b0, . . . , bk)}. Using Defi-

nition 2.1 we obtain E
(k)
ak (q)(α0, . . . , αk−1, u) ≡η E

(k)
ak (q)(α0, . . . , αk−1, v) for all
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(α0, . . . , αk−1) ∈ {a0, b0} × · · · × {ak−1, bk−1}. Thus, by Lemma 2.8 and Lemma

2.21, for θ = q(b0, . . . , bk, u) and E
(k)
ak (q), we have

(2.6) D
(k)
q(b0,...,bk,u),(a0,...,ak−1)

(
E(k)

ak
(E(k+1)

v (Fq(b0,...,bk,u),u(q))
)
(b0, . . . , bk−1)

= D
(k)
q(b0,...,bk,u),(a0,...,ak−1)

(
E(k)

v (Fq(b0,...,bk,u),u(E
(k)
ak

(q)))
)
(b0, . . . , bk−1)

≡η q(b0, . . . , bk, u).

From the assumptions we know that

E
(k)
bk

(q)(α0, . . . , αk−1, u) ≡η E
(k)
bk

(q)(α0, . . . , αk−1, v)

for all (α0, . . . , αk−1) ∈ {a0, b0} × · · · × {ak−1, bk−1}\{(b0, . . . , bk−1)}. By Lemma

2.8 and the induction hypothesis for E
(k)
bk

(q) and θ = E
(k)
bk

(q)(b0, . . . , bk−1, u) we
obtain

(2.7) D
(k)
q(b0,...,bk,u),(a0,...,ak−1)

(
E

(k)
bk

(E(k+1)
v (Fq(b0,...,bk,u),u(q))

)
(b0, . . . , bk−1)

= D
(k)

E
(k)
bk

(q)(b0,...,bk−1,u),(a0,...,ak−1)

(
E(k)

v (F
E

(k)
bk

(q)(b0,...,bk−1,u),u
(E

(k)
bk

(q)))

)
(b0, . . . , bk−1)

≡η E
(k)
bk

(q)(b0, . . . , bk−1, v)

= q(b0, . . . , bk, v).

Now using Definition 2.3 and the congruences (2.6) and (2.7), we compute

D
(k+1)
q(b0,...,bk,u),(a0,...,ak)

(
E(k+1)

v (Fq(b0,...,bk,u),u(q))
)
(b0, . . . , bk)

≡η m




q(b0, . . . , bk, v)
q(b0, . . . , bk, u)
q(b0, . . . , bk, u)




= q(b0, . . . , bk, v).

2

Example 2.24. Let V = (V, +,−, 0, F ) be an expanded group and choose
a0, a1, u, b0, b1, v ∈ V , θ = 0. The relation η is the equality relation on V . Now
let p be a polynomial of V such that p(a0, a1, u) = p(a0, a1, v), p(a0, b1, u) =
p(a0, b1, v), p(b0, a1, u) = p(b0, a1, v) and p(b0, b1, u) = 0. In Example 2.20, we

have already calculated D
(2)
0,(a0,a1)

(
E

(2)
x2 (F0,u(p))

)
(x0, x1), and thus obtain

D
(2)
0,(a0,a1)

(
E

(2)
v (F0,u(p))

)
(b0, b1) = p(b0, b1, v).

Remark: Definitions 2.1, 2.3, 2.6 and Lemmas 2.11, 2.19 and 2.23 can be
formulated and proved analogously for arbitrary vectors, not just elements of the
algebra. As an illustration we give the analogon of Lemma 2.19:



44 2. HIGHER COMMUTATORS

Let A be a Mal’cev algebra with a Mal’cev term m, let k ≥ 1,
and let n0, . . . , nk ∈ N. Let q ∈ Poln0+···+nk

A, let ai ∈ Ani for
each i ∈ {0, 1, . . . , k − 1}, let u ∈ Ank , and let θ ∈ A. Let
f ∈ Poln0+···+nk

A be defined by

f(x0, . . . ,xk) := D
(k)
θ,(a0,...,ak−1)(E

(k)
xk

(Fθ,u(q)))(x0, . . . ,xk−1)

for all x0 ∈ An0 , . . . ,xk ∈ Ank . Then f is absorbing at (a0, . . . , ak−1,u)
with value θ.

3. Some Properties of the Centralizing Relation

In Bulatov’s definition of the n-ary commutator operation [•, •, . . . , •], poly-
nomials of arbitrary arity are used. We will now show that in Mal’cev algebras,
n-ary polynomials are enough. For the binary case, this has been proved in [3,
Proposition 2.3].

Definition 3.1. Let A be an algebra, n0, . . . , nk ∈ N, k ≥ 0 and let
α0, . . . , αk, η be arbitrary congruences of A. Then we say that C(n0, . . . , nk; α0, . . . , αk; η)
holds if for all polynomials p ∈ Poln0+···+nk

A and vectors a0,b0 ∈ An0 , . . . , ak−1,bk−1 ∈
Ank−1 ,u,v ∈ Ank that satisfy

(1) ai ≡αi
bi, for all i ∈ {0, 1, . . . , k − 1},

(2) u ≡αk
v,

(3) p(x0, . . . ,xk−1,u) ≡η p(x0, . . . ,xk−1,v), for all (x0, . . . ,xk−1) ∈ {a0,b0}×
· · · × {ak−1,bk−1}\{(b0, . . . ,bk−1)},

we have
p(b0, . . . ,bk−1,u) ≡η p(b0, . . . ,bk−1,v).

Lemma 3.2. Let A be a Mal’cev algebra with a Mal’cev term m, let k ≥ 0,
let n0, . . . , nk, n

′
0, . . . , n

′
k ∈ N and let α0, α1, . . . , αk, η be arbitrary congruences of

A. Then

(a) if C(n0, . . . , nk; α0, . . . , αk; η) and
n′0 ≤ n0, . . . , n

′
k ≤ nk, then C(n′0, . . . , n

′
k; α0, . . . , αk; η);

(b) if C(1, n1, . . . , nk; α0, . . . , αk; η) and
n0 ≥ 1, then C(n0, n1, . . . , nk; α0, . . . , αk; η).

Proof: (a) follows from the fact that every (n′0 + · · ·+n′k)-ary polynomial function
can be seen as a (n0 + · · ·+ nk)-ary polynomial function in a natural way.

In order to prove (b), we assume that C(1, n1, . . . , nk; α0, . . . , αk; η) holds and
we show by induction that C(n0, n1, . . . , nk; α0, . . . , αk; η) holds for all n0 ≥ 1. Let
p ∈ Pol(n0+1)+n1+···+nk

A. Furthermore, take any a, c ∈ A, b,d ∈ An0 , ei, fi ∈ Ani ,
i ∈ {1, . . . , k − 1}, and u,v ∈ Ank such that

(1) a ≡α0 c,
(2) b ≡α0 d,
(3) ei ≡αi

fi, for all i ∈ {1, . . . , k − 1},
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(4) u ≡αk
v

(5) p(x0, . . . ,xk−1,u) ≡η p(x0, . . . ,xk−1,v), for all (x0, . . . ,xk−1) ∈ {(a,b), (c,d)}×
{e1, f1} × · · · × {ek−1, fk−1} and (x0, . . . ,xk−1) 6= {((c,d), f1, . . . , fk−1)}.

We want to show that

p((c,d), f1, . . . , fk−1,u) ≡η p((c,d), f1, . . . , fk−1,v).

Now we define the polynomial h ∈ Pol(n0+1)+n1+···+nk
A such that

h(x0, . . . ,xk) :=

D
(k)
p((c,d),f1,...,fk−1,u),((a,b),e1,...,ek−1)

(
E(k)

xk
(Fp((c,d),f1,...,fk−1,u),u(p))

)
(x0, . . . ,xk−1).

We have
(3.1)
h((a,b),x1, . . . ,xk−1,u) = p((c,d), f1, . . . , fk−1,u) = h((a,b),x1, . . . ,xk−1,v),

for all (x1, . . . ,xk−1) ∈ {e1, f1} × · · · × {ek−1, fk−1}. This can be obtained from
the analogon of Lemma 2.19 for vectors, by setting θ = p((c,d), f1, . . . , fk−1,u),
ai = ei, bi = fi, for i ∈ {1, . . . , k − 1}, a0 = (a,b) and b0 = (c,d). In the same
way we obtain

(3.2) h((a,d),x1, . . . ,xk−1,u) = p((c,d), f1, . . . , fk−1,u)

= h((a,d),x1, . . . ,xk−1,v),

and
(3.3)

h((c,d),x1, . . . ,xk−1,u) = p((c,d), f1, . . . , fk−1,u) = h((c,d),x1, . . . ,xk−1,v),

for all (x1, . . . ,xk−1) ∈ {e1, f1} × · · · × {ek−1, fk−1}\{(f1, . . . , fk−1)}. Now, we
define a polynomial q ∈ Poln0+n1+···+nk

A by

q(y,x1, . . . ,xk) := h((a,y),x1, . . . ,xk).

Obviously, by (3.1) and (3.2) we have

q(y,x1, . . . ,xk−1,u) ≡η q(y,x1, . . . ,xk−1,v)

for all (y,x1, . . . ,xk−1) ∈ {b,d} × {e1, f1} × · · · × {ek−1, fk−1} and
(y,x1, . . . ,xk−1) 6= (d, f1, . . . , fk−1). From the induction hypothesis we obtain

q(d, f1, . . . , fk−1,u) ≡η q(d, f1, . . . , fk−1,v),

or in other words

(3.4) h((a,d), f1, . . . , fk−1,u) ≡η h((a,d), f1, . . . , fk−1,v).

If we introduce

s(x,x1, . . . ,xk) := h((x,d),x1, . . . ,xk),

where s ∈ Pol1+n1+···+nk
A then (3.2), (3.3) and (3.4) yield

s(x,x1, . . . ,xk−1,u) ≡η s(x,x1, . . . ,xk−1,v),
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for all (x,x1, . . . ,xk−1) ∈ {a, c} × {e1, f1} × · · · × {ek−1, fk−1}\{(c, f1, . . . , fk−1)}.
Using the assumption C(1, n0, . . . , nk; α0, . . . , αk; η) we conclude

s(c, f1, . . . , fk−1,u) ≡η s(c, f1, . . . , fk−1,v),

or in other words

h((c,d), f1, . . . , fk−1,u) ≡η h((c,d), f1, . . . , fk−1,v).

We know from the analogon of Lemma 2.19 for vectors, where ai = ei, bi = fi,
1 ≤ i ≤ k − 1, a0 = (a,b), b0 = (c,d) and θ = p((c,d), f1, . . . , fk−1,u), that

h((c,d), f1, . . . , fk−1,u) = p((c,d), f1, . . . , fk−1,u)

and, for the same parameters, from Lemma 2.23 that

h((c,d), f1, . . . , fk−1,v) ≡η p((c,d), f1, . . . , fk−1,v).

This completes the induction step. 2

Lemma 3.3. Let A be a Mal’cev algebra with a Mal’cev term m, α0, . . . , αk, η ∈
ConA, k ≥ 0, n0, . . . , nk ∈ N, and let π be a permutation of {0, . . . , k}. Then if
C(n0, . . . , nk; α0, . . . , αk; η), we have

C(nπ(0), . . . , nπ(k); απ(0), . . . , απ(k); η).

Proof: Since every permutation of {0, . . . , k} is generated by the transpositions,
it suffices to consider the following two cases:

(i) π = (i j), where i, j 6= k. Without loss of generality we can assume that
π = (0 1). Choose p ∈ Poln1+n0+n2···+nk

A, a0,b0 ∈ An1 , a1,b1 ∈ An0 , ai,bi ∈ Ani ,
i ∈ {2, . . . , k − 1}, and u,v ∈ Ank so that

(1) a0 ≡α1 b0,
(2) a1 ≡α0 b1,
(3) ai ≡αi

bi for i ∈ {2, . . . , k − 1},
(4) u ≡αk

v,
(5) p(x0, . . . ,xk−1,u) ≡η p(x0, . . . ,xk−1,v) for all (x0, . . . ,xk−1) ∈ {a0,b0}×

· · · × {ak−1,bk−1}\{(b0, . . . ,bk−1)}.
Next, consider the polynomial q ∈ Poln0+···+nk

A defined as follows:

q(x0,x1,x2, . . . ,xk−1, t) := p(x1,x0,x2, . . . ,xk−1, t).

Now, we have

q(x0, . . . ,xk−1,u) ≡η q(x0, . . . ,xk−1,v)

for all (x0, . . . ,xk−1) ∈ {a1,b1} × {a0,b0} × {a2,b2} × · · · × {ak−1,bk−1} and
(x0, . . . ,xk−1) 6= (b1,b0,b2, . . . ,bk−1). From the assumption C(n0, . . . , nk; α0, . . . , αk; η)
we conclude that

q(b1,b0,b2, . . . ,bk−1,u) ≡η q(b1,b0,b2, . . . ,bk−1,v)

and hence, we have p(b0, . . . ,bk−1,u) ≡η p(b0, . . . ,bk−1,v).
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(ii) π = (i j), where i = k or j = k. Without loss of generality we can
assume that π = (0 k). Let p ∈ Polnk+n1+···+nk−1+n0A, a0,b0 ∈ Ank , a0 ≡αk

b0,
ai,bi ∈ Ani , ai ≡αi

bi, i ∈ {1, . . . , k − 1}, and u,v ∈ An0 such that u ≡α0 v and

p(x0, . . . ,xk−1,u) ≡η p(x0, . . . ,xk−1,v)

for all (x0, . . . ,xk−1) ∈ {a0,b0} × · · · × {ak−1,bk−1}\{(b0, . . . ,bk−1)}. Next, we
define the polynomial q ∈ Poln0+···+nk

A as follows:

q(x0,x1, . . . ,xk−1, t) := m




p(t,x1, . . . ,xk−1,u)
p(t,x1, . . . ,xk−1,x0)
p(b0,x1, . . . ,xk−1,x0)


 .

Then we calculate

(3.5) q(u,x1, . . . ,xk−1, a0) = p(b0,x1, . . . ,xk−1,u) = q(u,x1, . . . ,xk−1,b0),

(3.6) q(v,x1, . . . ,xk−1,b0) = p(b0,x1, . . . ,xk−1,u),

and by the assumption

(3.7) p(a0,x1, . . . ,xk−1,v) ≡η p(a0,x1, . . . ,xk−1,u)

for all (x1, . . . ,xk−1) ∈ {a1,b1} × · · · × {ak−1,bk−1}. Finally, if (x1, . . . ,xk−1) 6=
(b1, . . . ,bk−1) then we have

(3.8) p(b0,x1, . . . ,xk−1,v) ≡η p(b0,x1, . . . ,xk−1,u),

by the assumption. Thus, using (3.7), (3.8) and (3.6) we obtain

q(v,x1, . . . ,xk−1, a0) = m




p(a0,x1, . . . ,xk−1,u)
p(a0,x1, . . . ,xk−1,v)
p(b0,x1, . . . ,xk−1,v)


 ≡η

p(b0,x1, . . . ,xk−1,v) ≡η p(b0,x1, . . . ,xk−1,u) = q(v,x1, . . . ,xk−1,b0)

for all (x1, . . . ,xk−1) ∈ {a1,b1} × · · · × {ak−1,bk−1}\{(b1, . . . ,bk−1)}. Together
with (3.5) we have

q(x0,x1, . . . ,xk−1, a0) ≡η q(x0,x1, . . . ,xk−1,b0),

for all (x0, . . . ,xk−1) ∈ {u,v}× {a1,b1}× · · · × {ak−1,bk−1}\{(v,b1, . . . ,bk−1)}
and we can conclude

(3.9) q(v,b1, . . . ,bk−1, a0) ≡η q(v,b1, . . . ,bk−1,b0),

by the assumption C(n0, . . . , nk; α0, . . . , αk; η). Finally, using (3.6), (3.9) and
(3.7) we obtain

p(b0,b1, . . . ,bk−1,u) = q(v,b1, . . . ,bk−1,b0) ≡η q(v,b1, . . . ,bk−1, a0) =

= m




p(a0,b1, . . . ,bk−1,u)
p(a0,b1, . . . ,bk−1,v)
p(b0,b1, . . . ,bk−1,v)


 ≡η p(b0,b1, . . . ,bk−1,v).

This proves the statement. 2
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Proposition 3.4. Let A be a Mal’cev algebra with a Mal’cev term m, let
α0, . . . , αk and η be congruences of A and k ≥ 0. Then C(α0, . . . , αk; η) if and
only if C(1, . . . , 1; α0, . . . , αk; η).

Proof: If C(α0, . . . , αk; η) then clearly from Definition 1.1 we have
C(n0, . . . , nk; α0, . . . , αk; η) for all n0, . . . , nk ∈ N, thus for n0 = · · · = nk = 1 we
obtain C(1, . . . , 1; α0, . . . , αk; η). To prove the opposite direction suppose that
C(1, . . . , 1; α0, . . . , αk; η). Let n0, . . . , nk ≥ 1. Then by Lemma 3.3 for π = (0 k)
we obtain C(1, . . . , 1; αk, α1, . . . , αk−1, α0; η) and by Lemma 3.2 (2), we obtain
C(nk, 1, . . . , 1; αk, α1, . . . , αk−1, α0; η). When we apply Lemma 3.3 one more time
for π = (0 k) we obtain

C(1, . . . , 1, nk; α0, . . . , αk; η).

We can repeat the same procedure for each of the places from k − 1 to 0 and
obtain C(n0, . . . , nk; α0, . . . , αk; η). Thus we have C(α0, . . . , αk; η). 2

4. Properties and Characterizations of Higher Commutators

Let n ∈ N, n ≥ 2. The aim of this section is to give a necessary and sufficient
condition for [ 1, . . . , 1︸ ︷︷ ︸

n

] 6= 0 in Mal’cev algebras (Proposition 4.15) and to prove

that a polynomial Mal’cev clone on a finite set is finitely generated whenever
there exists an n ∈ N such that [ 1, . . . , 1︸ ︷︷ ︸

n

] = 0 (Proposition 4.17). Both results

will be essential for proving Theorems §3.1.18, §3.2.3 and §3.3.22.

Proposition 4.1 (HC4). Let A be a Mal’cev algebra with a Mal’cev term m,
α0, . . . , αk congruences of A, k ≥ 0 and π a permutation of {0, . . . , k}. Then

[α0, . . . , αk] = [απ(0), . . . , απ(k)].

Proof: From Definition 1.2 we know that C(α0, . . . , αk; [α0, . . . , αk]) holds and
thus C(1, . . . , 1; α0, . . . , αk; [α0, . . . , αk]) holds by Proposition 3.4. Now, from
Lemma 3.3 we obtain C(1, . . . , 1; απ(0), . . . , απ(k); [α0, . . . , αk]) and therefore C(απ(0),
. . . , απ(k); [α0, . . . , αk]), again by Proposition 3.4. Now, by Definition 1.2 we have
[απ(0), . . . , απ(k)] ≤ [α0, . . . , αk]. In order to prove the other inequality we start
with απ(0), . . . , απ(k) and the permutation π−1, and reason in the same way. 2

Lemma 4.2 (HC5). Let A be a Mal’cev algebra with a Mal’cev term m. Let
α0, . . . , αk and η be arbitrary congruences of A (k ≥ 0). Then [α0, . . . , αk] ≤ η if
and only if C(α0, . . . , αk; η).

Proof: If C(α0, . . . , αk; η) then by Definition 1.2, we have [α0, . . . , αk] ≤ η.
Now, suppose that [α0, . . . , αk] ≤ η for α0, . . . , αk ∈ ConA. We will show that
C(1, . . . , 1; α0, . . . , αk; η) by Definition 3.1. Choose p ∈ Polk+1A and a0, . . . , ak−1,
u, b0, . . . , bk−1, v ∈ A so that:

(1) ai ≡αi
bi for i ∈ {0, . . . , k − 1},
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(2) u ≡αk
v

(3) p(x0, . . . , xk−1, u) ≡η p(x0, . . . , xk−1, v), for all (x0, . . . , xk−1) ∈ {a0, b0}×
· · · × {ak−1, bk−1}\{(b0, . . . , bk−1)}.

We want to show that p(b0, . . . , bk−1, u) ≡η p(b0, . . . , bk−1, v). We start by intro-
ducing a polynomial s ∈ Polk+1A by

s(x0, . . . , xk) :=

D
(k)
p(b0,...,bk−1,u),(a0,...,ak−1)

(
E(k)

xk
(Fp(b0,...,bk−1,u),u(p))

)
(x0, . . . , xk−1)

where (x0, . . . , xk) ∈ Ak+1. Then we observe the following:

s(x0, . . . , xk−1, u) = p(b0, . . . , bk−1, u) = s(x0, . . . , xk−1, v),

for all (x0, . . . , xk−1) ∈ {a0, b0} × · · · × {ak−1, bk−1}\{(b0, . . . , bk−1)}, by Lemma
2.19 and thus

s(x0, . . . , xk−1, u) ≡[α0,...,αk] s(x0, . . . , xk−1, v),

for all (x0, . . . , xk−1) ∈ {a0, b0}× · · ·×{ak−1, bk−1}\{(b0, . . . , bk−1)}. Now, we can
conclude

s(b0, . . . , bk−1, u) ≡[α0,...,αk] s(b0, . . . , bk−1, v),

and by the assumption we have

s(b0, . . . , bk−1, u) ≡η s(b0, . . . , bk−1, v).

The left side of the last congruence is equal to p(b0, . . . , bk−1, u) by Lemma 2.19
and the right side is congruent modulo η to p(b0, . . . , bk−1, v) by Lemma 2.23.
Now, by Proposition 3.4 we obtain C(α0, . . . , αk; η). 2

Recall that for an algebra A and α, β ∈ ConA such that α ≥ β, α/β denotes
the congruence of the factor algebra A/β which corresponds to α in A.

Corollary 4.3 (HC6). Let A be a Mal’cev algebra with a Mal’cev term m
and choose α1, . . . , αn, η ∈ ConA such that η ≤ α1, . . . , αn. Then

[α1/η, . . . , αn/η] = ([α1, . . . , αn] ∨ η)/η.

Proof: We will show that ([α1, . . . , αn]∨η)/η is the smallest congruence θ/η with
the property

C(α1/η, . . . , αn/η; θ/η).

Directly using Definition 1.2 we can check that for every η ∈ ConA, η ≤
α1, . . . , αn, θ, we have

(4.1) C(α1, . . . , αn; θ) ⇔ C(α1/η, . . . , αn/η; θ/η).

Since [α1, . . . , αn] ≤ [α1, . . . , αn] ∨ η we have C(α1, . . . , αn; [α1, . . . , αn] ∨ η) by
Lemma 4.2, and thus C(α1/η, . . . , αn/η; ([α1, . . . , αn] ∨ η)/η) using (4.1) for θ =
[α1, . . . , αn] ∨ η. Let us assume now

C(α1/η, . . . , αn/η; θ/η),
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for a θ ∈ ConA such that η ≤ θ. Then by (4.1) we have C(α1, . . . , αn; θ) and
thus [α1, . . . , αn] ≤ θ by Lemma 4.2, whence [α1, . . . , αn] ∨ η ≤ θ. Using the
Correspondence Theorem we have ([α1, . . . , αn] ∨ η)/η ≤ θ/η. 2

Lemma 4.4. Let A be a Mal’cev algebra with a Mal’cev term m, let ρ1, . . . , ρn,
α1, . . . , αk and η be arbitrary congruences of A and k, n ≥ 1. If C(ρi, α1, . . . , αk; η)
for every i ∈ {1, . . . , n}, then C(

∨
1≤i≤n ρi, α1, . . . , αk; η).

Proof: We know that
∨

1≤i≤n ρi = ρ1 ◦ · · · ◦ρn, since A is congruence permutable.
We will prove the statement by induction. For n = 1 the statement is obvious.
Let n ≥ 2. We put θ1 = ρ1 ◦ · · · ◦ ρn−1 and θ2 = ρn. Now

∨
1≤i≤n ρi = θ1 ◦ θ2. We

will prove that C(1, . . . , 1; θ1◦θ2, α1, . . . , αk; η) by Definition 3.1. Let p ∈ Polk+1A
and choose a0, . . . , ak−1, u, b0, . . . , bk−1, v ∈ A so that a0 ≡θ1◦θ2 b0, ai ≡αi

bi for
i ∈ {1, . . . , k − 1}, u ≡αk

v and

p(x0, . . . , xk−1, u) ≡η p(x0, . . . , xk−1, v),

for all (x0, . . . , xk−1) ∈ {a0, b0} × · · · × {ak−1, bk−1}\{(b0, . . . , bk−1)}. We have to
show p(b0, . . . , bk−1, u) ≡η p(b0, . . . , bk−1, v). From the assumption a0 ≡θ1◦θ2 b0 we
know that there exists a c ∈ A such that a0 ≡θ1 c and c ≡θ2 b0. We introduce a
polynomial s ∈ Polk+1A as follows:

s(x0, . . . , xk) :=

D
(k)
p(b0,...,bk−1,u),(a0,...,ak−1)

(
E(k)

xk
(Fp(b0,...,bk−1,u),u(p))

)
(x0, . . . , xk−1)

and observe that by Lemma 2.19:

s(x0, . . . , xk−1, u) = p(b0, . . . , bk−1, u) = s(x0, . . . , xk−1, v),

for all (x0, x1, . . . , xk−1) ∈ {a0, c} × {a1, b1} × · · · × {ak−1, bk−1} and
(x0, x1, . . . , xk−1) 6= (c, b1, . . . , bk−1) whence

s(x0, . . . , xk−1, u) ≡η s(x0, . . . , xk−1, v),

for all (x0, x1, . . . , xk−1) ∈ {a0, c} × {a1, b1} × · · · × {ak−1, bk−1} and
(x0, x1, . . . , xk−1) 6= (c, b1, . . . , bk−1). Using the induction hypothesis we know
that C(θ1, α1, . . . , αk; η) and therefore we obtain

(4.2) s(c, b1, . . . , bk−1, u) ≡η s(c, b1, . . . , bk−1, v).

Also, by Lemma 2.19 we have

s(x0, . . . , xk−1, u) = p(b0, . . . , bk−1, u) = s(x0, . . . , xk−1, v),

for all (x0, x1, . . . , xk−1) ∈ {c, b0} × {a1, b1} × · · · × {ak−1, bk−1} and
(x0, x1, . . . , xk−1) 6∈ {(c, b1, . . . , bk−1), (b0, b1, . . . , bk−1)}, and thus

(4.3) s(x0, . . . , xk−1, u) ≡η s(x0, . . . , xk−1, v),

for all (x0, x1, . . . , xk−1) ∈ {c, b0} × {a1, b1} × · · · × {ak−1, bk−1} and
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(x0, x1, . . . , xk−1) 6∈ {(c, b1, . . . , bk−1), (b0, b1, . . . , bk−1)}. From (4.2) and (4.3) we
have

s(x0, . . . , xk−1, u) ≡η s(x0, . . . , xk−1, v),

for all (x0, x1, . . . , xk−1) ∈ {c, b0} × {a1, b1} × · · · × {ak−1, bk−1} and
(x0, x1, . . . , xk−1) 6= (b0, b1, . . . , bk−1). Using assumption C(θ2, α1, . . . , αk; η) we
obtain

s(b0, . . . , bk−1, u) ≡η s(b0, . . . , bk−1, v).

The left side of the last congruence is equal to p(b0, . . . , bk−1, u) by Lemma 2.19
and the right side is congruent modulo η to p(b0, . . . , bk−1, v) by Lemma 2.23.
Now, by Proposition 3.4, we have C(θ1 ◦ θ2, α1, . . . , αk; η). 2

Proposition 4.5. Let A be a Mal’cev algebra with a Mal’cev term m, and
let ρ1, . . . , ρn, α1, . . . , αk be congruences of A, k, n ≥ 1. Then:

∨
1≤i≤n

[ρi, α1, . . . , αk] = [
∨

1≤i≤n

ρi, α1, . . . , αk].

Proof: Since ρj ≤
∨

1≤i≤n ρi we know from (HC2) that

[ρj, α1, . . . , αk] ≤ [
∨

1≤i≤n

ρi, α1, . . . , αk],

for every j ∈ {1, . . . , n}. Thus,
∨

1≤i≤n

[ρi, α1, . . . , αk] ≤ [
∨

1≤i≤n

ρi, α1, . . . , αk].

Let us show the other inequality. By Definition 1.2 we know that

C(ρj, α1, . . . , αk; [ρj, α1, . . . , αk]),

for every j ∈ {1, . . . , n}, and thus using the inequality

[ρj, α1, . . . , αk] ≤
∨

1≤i≤n

[ρi, α1, . . . , αk]

and Lemma 4.2 we have

C(ρj, α1, . . . , αk;
∨

1≤i≤n

[ρi, α1, . . . , αk]),

for every j ∈ {1, . . . , n}. By Lemma 4.4 we obtain

C(
∨

1≤i≤n

ρi, α1, . . . , αk;
∨

1≤i≤n

[ρi, α1, . . . , αk]).

Finally, by Definition 1.2 we have

[
∨

1≤i≤n

ρi, α1, . . . , αk] ≤
∨

1≤i≤n

[ρi, α1, . . . , αk].

2



52 2. HIGHER COMMUTATORS

Corollary 4.6. Let A be a Mal’cev algebra with a Mal’cev term m, and let
ρ1, . . . , ρn, α0, . . . , αj−1, αj+1, . . . , αk be congruences of A, j, k, n ≥ 1. Then:

∨
1≤i≤n

[α0, . . . , αj−1, ρi, αj+1, . . . , αk] = [α0, . . . , αj−1,
∨

1≤i≤n

ρi, αj+1, . . . , αk].

Proof: We obtain the statement directly from Proposition 4.1 and Proposition
4.5. 2

As a consequence we immediately obtain the following lemma which claims
that distributivity holds for higher commutators in Mal’cev algebras.

Lemma 4.7 (HC7). Let A be a Mal’cev algebra with a Mal’cev term m. Let
j, k ≥ 1, let I 6= ∅ be a set and {α0, . . . , αj−1, αj+1, . . . , αk}∪{ρi | i ∈ I} ⊆ ConA.
Then

∨
i∈I

[α0, . . . , αj−1, ρi, αj+1, . . . , αk] = [α0, . . . , αj−1,
∨
i∈I

ρi, αj+1, . . . , αk].

Proof: Obviously, ρi ≤
∨

i∈I ρi, for every i ∈ I and thus we have

[α0, . . . , αj−1, ρi, αj+1, . . . , αk] ≤ [α0, . . . , αj−1,
∨
i∈I

ρi, αj+1, . . . , αk],

for every i ∈ I, by (HC2). Then
∨
i∈I

[α0, . . . , αj−1, ρi, αj+1, . . . , αk] ≤ [α0, . . . , αj−1,
∨
i∈I

ρi, αj+1, . . . , αk].

To show the other inequality we put η =
∨

i∈I [α0, . . . , αj−1, ρi, αj+1, . . . , αk]. Let
us show that

(4.4) C(α0, . . . , αj−1,
∨
i∈I

ρi, αj+1, . . . , αk; η).

We use Proposition 3.4 to show (4.4). Thus, take (a0, . . . , ak−1), (b0, . . . , bk−1) ∈
Ak, u, v ∈ A and p ∈ Polk+1A such that

(1) ai ≡αi
bi, for every i ∈ {0, . . . , j − 1, j + 1, . . . , k − 1},

(2) aj ≡Wi∈I ρi
bj,

(3) u ≡αk
v

(4) p(x0, . . . , xk−1, u) ≡η p(x0, . . . , xk−1, v), for all (x0, . . . , xk−1) ∈ {a0, b0}×
· · · × {ak−1, bk−1}\{(b0, . . . , bk−1)}.

We have to show p(b0, . . . , bk−1, u) ≡η p(b0, . . . , bk−1, v). It is well known that
the join of an arbitrary set of congruences is the union of joins of its finite sub-
sets. Condition (4) actually consists of 2k − 1 formulas, one for each choice
of (x0, . . . , xk−1). If we number all 2k − 1 choices of the vector (x0, . . . , xk−1)
with 1, . . . , 2k − 1, then for the `−th choice there is a finite subset J` of I such
that the congruence (4) is true for

∨
i∈J`

[α0, . . . , αj−1, ρi, αj+1, . . . , αk] instead of
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η. Also there exists a finite set J0, J0 ⊆ I such that aj ≡Wi∈J0
ρi

bj. We take

J =
⋃

0≤`≤2k−1 J`. The set J is a finite subset of I. By Corollary 4.6 we know

∨
i∈J

[α0, . . . , αj−1, ρi, αj+1, . . . , αk] = [α0, . . . , αj−1,
∨
i∈J

ρi, αj+1, . . . , αk]

and since J` ⊆ J for all ` ≥ 1 we obtain

(4.5)
∨
i∈J`

[α0, . . . , αj−1, ρi, αj+1, . . . , αk] ≤ [α0, . . . , αj−1,
∨
i∈J

ρi, αj+1, . . . , αk],

for all ` ≥ 1. Now, we have

(1) ai ≡αi
bi, for every i ∈ {0, . . . , j − 1, j + 1, . . . , k − 1},

(2) aj ≡Wi∈J ρi
bj, (we know

∨
i∈J0

ρi ⊆
∨

i∈J ρi),
(3) u ≡αk

v,
(4) p(x0, . . . , xk−1, u) ≡θ p(x0, . . . , xk−1, v), for all (x0, . . . , xk−1) ∈ {a0, b0}×

· · ·×{ak−1, bk−1}\{(b0, . . . , bk−1)} where θ = [α0, . . . , αj−1,
∨

i∈J ρi, αj+1, . . . , αk],
because of inequality (4.5).

Thus, we obtain

p(b0, . . . , bk−1, u) ≡θ p(b0, . . . , bk−1, v),

because C(α0, . . . , αj−1,
∨

i∈J ρi, αj+1, . . . , αk; [α0, . . . , αj−1,
∨

i∈J ρi, αj+1, . . . , αk]).
Since

[α0, . . . , αj−1,
∨
i∈J

ρi, αj+1, . . . , αk] =
∨
i∈J

[α0, . . . , αj−1, ρi, αj+1, . . . , αk] ≤ η,

we have

p(b0, . . . , bk−1, u) ≡η p(b0, . . . , bk−1, v).

This proves C(1, . . . , 1; α0, . . . , αj−1,
∨

i∈I ρi, αj+1, . . . , αk; η), and hence concludes
the proof of (4.4). 2

Corollary 4.8. Let A be a Mal’cev algebra, let α be a congruence of A and
let n ∈ N. If [ 1, . . . , [1︸ ︷︷ ︸

n

, 1]] ≤ α then A/α is nilpotent of class at most n.

Proof: We prove

(4.6) [ 1/α, . . . , [1/α︸ ︷︷ ︸
k

, 1/α]] ≤ ([ 1, . . . , [1︸ ︷︷ ︸
k

, 1]] ∨ α)/α for all k ∈ N

by induction on k. For k = 1 the statement is a consequence of (HC6). Let
k > 1. By the induction hypothesis we have

[1/α, [ 1/α, . . . , [1/α︸ ︷︷ ︸
k−1

, 1/α]]] ≤ [1/α, ([ 1, . . . , [1︸ ︷︷ ︸
k−1

, 1]] ∨ α)/α].
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We now compute the righthand side of the last inequality. Applying (HC6), we
obtain

[1/α, ([ 1, . . . , [1︸ ︷︷ ︸
k−1

, 1]] ∨ α)/α] = ([1, [ 1, . . . , [1︸ ︷︷ ︸
k−1

, 1]] ∨ α] ∨ α)/α.

Using the distributivity of higher commutators (HC7), the last expression is equal
to

([1, [ 1, . . . , [1︸ ︷︷ ︸
k−1

, 1]]] ∨ [1, α] ∨ α)/α.

Since [1, α] ≤ α, this is equal to

([ 1, . . . , [1︸ ︷︷ ︸
k

, 1]] ∨ α)/α.

This completes the induction step. From (4.6), we obtain [ 1/α, . . . , [1/α︸ ︷︷ ︸
n

, 1/α]]A/α =

0A/α and hence A/α is nilpotent of class at most n. 2

Lemma 4.9. Let A be a Mal’cev algebra with a Mal’cev term m, α0, . . . , αn

congruences of A and n ≥ 0. Then [α0, . . . , αn] is generated as a congruence by
the set

(4.7) R = {(c(b0, . . . , bn), c(a0, . . . , an)
) | b0, . . . , bn, a0 . . . , an ∈ A, ∀i : ai ≡αi

bi,

c ∈ Poln+1A and c is absorbing at (a0, . . . , an)}.
Proof: To prove the statement we will first show R ⊆ [α0, . . . , αn]. Let n ≥ 0,
b0, . . . , bn, a0, . . . , an ∈ A such that bi ≡αi

ai, i ∈ {0, . . . , n}, and let c ∈ Poln+1A
be absorbing at (a0, . . . , an). Now it is clear that

c(x0, . . . , xn−1, an) = c(a0, . . . , an) = c(x0, . . . , xn−1, bn)

for all (x0, . . . , xn−1) ∈ {a0, b0} × · · · × {an−1, bn−1}\{(b0, . . . , bn−1)} and thus we
have

c(x0, . . . , xn−1, an) ≡[α0,...,αn] c(x0, . . . , xn−1, bn)

for all (x0, . . . , xn−1) ∈ {a0, b0}×· · ·×{an−1, bn−1}\{(b0, . . . , bn−1)}. Thus c(b0, . . . ,
bn−1, an) ≡[α0,...,αn] c(b0, . . . , bn). Since c is absorbing at (a0, . . . , an), we obtain

(c(b0, . . . , bn), c(a0, . . . , an)) ∈ [α0, . . . , αn].

This proves that every element of R is contained in [α0, . . . , αn].
Now, let γ be a congruence of A such that R ⊆ γ. To finish the proof it will

be enough to prove [α0, . . . , αn] ≤ γ, which is equivalent to C(α0, . . . , αn; γ) by
Lemma 4.2. To this end, we take b0, . . . , bn, a0, . . . , an ∈ A such that ai ≡αi

bi for
all i ∈ {0, . . . , n} and p ∈ Poln+1A such that

p(x0, . . . , xn−1, an) ≡γ p(x0, . . . , xn−1, bn)
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for all (x0, . . . , xn−1) ∈ {a0, b0}×· · ·×{an−1, bn−1}\{(b0, . . . , bn−1)}. We will show
p(b0, . . . , bn−1, an) ≡γ p(b0, . . . , bn−1, bn). We define a polynomial t ∈ Poln+1A as
follows:

t(x0, . . . , xn) :=

D
(n)
p(b0,...,bn−1,an),(a0,...,an−1)

(
E(n)

xn
(Fp(b0,...,bn−1,an),an(p))

)
(x0, . . . , xn−1).

We can observe that by Lemma 2.19, t is absorbing at (a0, . . . , an), and hence

(4.8) t(x0, . . . , xn) = p(b0, . . . , bn−1, an) = t(a0, . . . , an)

for every (x0, . . . , xn) ∈ {a0, b0}× · · ·× {an, bn}\{(b0, . . . , bn)}. So, (t(b0, . . . , bn),
t(a0, . . . , an)) ∈ R and thus (t(b0, . . . , bn), t(a0, . . . , an)) ∈ γ. By Lemma 2.23 we
know that t(b0, . . . , bn) ≡γ p(b0, . . . , bn), so we obtain

(p(b0, . . . , bn), t(a0, . . . , an)) ∈ γ.

Therefore, using (4.8) we have p(b0, . . . , bn−1, an) ≡γ p(b0, . . . , bn). 2

Corollary 4.10. Let n ≥ 2. Let A and B be Mal’cev algebras, on the same
set (with possibly different Mal’cev terms). If PolnA = PolnB, then A and B
have the same n-ary commutator operation.

Proof: If PolnA = PolnB then ConA = ConB. Hence every n-ary commutator
is generated by the same set on both A and B. Since ConA = ConB, this set
generates the same congruence on both A and B. 2

As another consequence of Lemma 4.9, we obtain a description of the com-
mutator operation for expanded groups. Actually, for expanded groups, this
description can be taken for a definition of the higher commutator operations.

Corollary 4.11. Let V be an expanded group, let n ∈ N, let α0, . . . , αn ∈
ConV, and let γ := [α0, . . . , αn]. For i ∈ {0, . . . , n}, let Ai be the class 0/αi, and
let C := 0/γ. Then C is the subgroup of (V, +,−, 0) that is generated by

S := {c(a0, . . . , an) | a0 ∈ A0, . . . , an ∈ An, c ∈ Poln+1V,

and c is absorbing at (0, . . . , 0) with value 0}.
Proof: Let S ′ be the subgroup of (V, +,−, 0) that is generated by S. Since

for all p ∈ Pol1V with p(0) = 0, we have p(S) ⊆ S, it is easy to show that for
all p ∈ Pol1V with p(0) = 0, we have p(S ′) ⊆ S ′. By Proposition §1.2.6, S ′ is an
ideal of V, and thus the relation σ′ defined by

σ′ := {(v0, v1) ∈ V × V | v0 − v1 ∈ S ′}
is a congruence of V.

We will now prove S ′ = C. For proving C ⊆ S ′, it is sufficient to prove γ ⊆ σ′.
To prove this inclusion, we show that all of the generators of γ that are given in
Lemma 4.9 lie in σ′. To this end, let c ∈ Poln+1V, a = (a0, . . . , an) ∈ V n+1, and
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b = (b0, . . . , bn) ∈ V n+1 be such that c is absorbing at a and for all i ∈ {0, . . . , n},
we have (ai, bi) ∈ αi. We define d ∈ Poln+1V by

d(x) := c(a + x)− c(a) for all x ∈ V n+1.

Then d is absorbing at 0 with value 0, hence d(−a+b) ∈ S. Hence (0, d(−a+b)) ∈
σ′, and thus, since σ′ is a congruence of V, (0 + c(a), d(−a + b) + c(a)) =
(c(a), c(b)) ∈ σ′. This completes the proof of γ ⊆ σ′.

For proving S ′ ⊆ C, we first prove S ⊆ C. Let s ∈ S. Then there is a c ∈
Poln+1V such that c is absorbing at 0 with value 0, and there are a0 ∈ A0, . . . , an ∈
An such that c(a0, . . . , an) = s. Lemma 4.9 yields (0, c(a0, . . . , an)) ∈ γ, and hence
s ∈ 0/γ = C. Since C is a subgroup of (V, +,−, 0), we have S ′ ⊆ C. 2

For the commutator of principal congruences we can avoid the congruence
generation involved in Lemma 4.9.

Lemma 4.12. Let A be a Mal’cev algebra with a Mal’cev term m, let n ≥ 0,
let (u0, . . . , un), (v0, . . . , vn) ∈ An+1 and for all i ∈ {0, . . . , n} let αi = ΘA(ui, vi).
Then

[α0, . . . , αn] = {(c(v0, . . . , vn), c(u0, . . . , un)
) | c ∈ Poln+1A, c is absorbing at

(u0, . . . , un)}.
Proof: We denote the set on the right side of the equality by S. By Proposition
§1.2.2 we have

(4.9) ΘA(u, v) = {(p(u), p(v)) | p ∈ Pol1A},
u, v ∈ A. First, we prove that the set of generators of [α0, . . . , αn] from Lemma
4.9 is a subset of S. Take a0, . . . , an, b0, . . . , bn ∈ A, n ≥ 0, so that ai ≡αi

bi,
i ∈ {0, . . . , n}, and c ∈ Poln+1A so that c is absorbing at (a0, . . . , an). Using
statement (4.9) for αi = ΘA(ui, vi) we know that there exist polynomials pi ∈
Pol1A such that ai = pi(ui) and bi = pi(vi), for every i ∈ {0, . . . , n}. Thus

(c(b0, . . . , bn), c(a0, . . . , an)) =

(
c
(
p0(v0), . . . , pn(vn)

)
, c

(
p0(u0), . . . , pn(un)

))
.

Since c is absorbing at (a0, . . . , an−1), c(p0(x0), . . . , pn(xn)) is absorbing at (u0, . . . , un).
Then we know that

(c(b0, . . . , bn), c(a0, . . . , an)) =

(
c
(
p0(v0), . . . , pn(vn)

)
, c

(
p0(u0), . . . , pn(un)

))

belongs to S. Since S is obviously a subset of the generating set of [α0, . . . , αn]
from Lemma 4.9, we conclude that S generates [α0, . . . , αn]. We will now show
that S is a congruence relation of A. Clearly, S is reflexive, since we can substitute
constant functions for c. To prove the symmetry of S let (c(v0, . . . , vn), c(u0, . . . , un)) ∈
S for a polynomial c ∈ Poln+1A absorbing at (u0, . . . , un). Now, we define the
polynomial e ∈ Poln+1A as follows

e(x0, . . . , xn) := m
(
c(u0, . . . , un), c(x0, . . . , xn), c(v0, . . . , vn)

)
.
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We have that (e(v0, . . . , vn), e(u0, . . . , un)) ∈ S, by the definition of S. Therefore
(c(u0, . . . , un), c(v0, . . . , vn)) ∈ S. To prove the transitivity of S we assume that
c, d ∈ Poln+1A are such that (c(v0, . . . , vn), c(u0, . . . , un)) ∈ S, (d(v0, . . . , vn), d(u0, . . . , un)) ∈
S and c(u0, . . . , un) = d(v0, . . . , vn) for c and d absorbing at (u0, . . . , un), and we
show

(c(v0, . . . , vn), d(u0, . . . , un)) ∈ S.

We introduce the polynomial e ∈ Poln+1A as follows

e(x0, . . . , xn) := m
(
c(x0, . . . , xn), c(u0, . . . , un), d(x0, . . . , xn)

)
.

It is not hard to see that e is absorbing at (u0, . . . , un). Thus, we conclude
that (e(v0, . . . , vn), e(u0, . . . , un)) ∈ S. Since e(v0, . . . , vn) = c(v0, . . . , vn) and
e(u0, . . . , un) = d(u0, . . . , un), we have (c(v0, . . . , vn), d(u0, . . . , un)) ∈ S. It re-
mains to prove the compatibility property for S. As it is mentioned in [19, p.
9] it is enough to check the compatibility for unary polynomials. Let f ∈ Pol1A
and (c(v0, . . . , vn), c(u0, . . . , un)) ∈ S for a polynomial c ∈ Poln+1A absorbing at
(u0, . . . , un). Then for a polynomial t ∈ Poln+1A, defined by

t(x0, . . . , xn) := f
(
c(x0, . . . , xn)

)
,

we have that t is absorbing at (u0, . . . , un). Now we conclude that (t(v0, . . . , vn),
t(u0, . . . , un)) ∈ S or, in other words, (f

(
c(v0, . . . , vn)

)
, f

(
c(u0, . . . , un)

)
) ∈ S.

This completes the proof. 2

Proposition 4.13. Let A be a Mal’cev algebra with a Mal’cev term m, let
n, k ∈ N be such that k < n, and let α0, . . . , αn be congruences of A. Then

[α0, . . . , αk−1, [αk, . . . , αn]] ≤ [α0, . . . , αn].

Proof: Since we know that every congruence is a join of principal congruences, it
suffices to consider the case where αk, . . . , αn are principal congruences. The gen-
eral inequality then follows from Lemma 4.7. We will prove that each of the gen-
erators of [α0, . . . , αk−1, [αk, . . . , αn]] given in Lemma 4.9 belongs to [α0, . . . , αn].
Assume that αi = ΘA(ai, bi), where (ai, bi) ∈ A2, i ∈ {k, . . . , n}. Let
(c(v0, . . . , vk), c(u0, . . . , uk)) be an element in the generating set of
[α0, . . . , αk−1, [αk, . . . , αn]] as in Lemma 4.9. Then vi ≡αi

ui for all i ∈ {0, . . . , k−
1}, vk ≡[αk,...,αn] uk, and c is a k-ary polynomial of A that is absorbing at
(u0, . . . , uk). From Lemma 4.12 we know that there exists a d ∈ Poln−k+1A such
that vk = d(bk, . . . , bn) and uk = d(ak, . . . , an) and d is absorbing at (ak, . . . , an).
Now, we observe that the polynomial e ∈ Poln+1A defined by

e(x0, . . . , xn) := c(x0, . . . , xk−1, d(xk, . . . , xn))

is absorbing at (u0, . . . , uk−1, ak, . . . , an). Thus, from Lemma 4.9 we obtain that
(e(v0, . . . , vk−1, bk, . . . , bn), e(u0, . . . , uk−1, ak, . . . , an)) belongs to the generating
set of the commutator [α0, . . . , αn] or, in other words,

(c(v0, . . . , vk), c(u0, . . . , uk)) ∈ [α0, . . . , αn].



58 2. HIGHER COMMUTATORS

This completes the proof. 2

Corollary 4.14 (HC8). Let A be a Mal’cev algebra with a Mal’cev term m,
let n ∈ N, and let α0, . . . , αn, be congruences of A. Then

[α0, [α1, . . . , αn]] ≤ [α0, α1, . . . , αn].

Proof: We obtain the inequality directly from Proposition 4.13 if we choose k = 1.
2

Proposition 4.15. Let A be a Mal’cev algebra with a Mal’cev term m and
let n ≥ 2. Then

[ 1, . . . , 1︸ ︷︷ ︸
n

] > 0

if and only if there exists a c ∈ PolnA and θ, θ0, . . . , θn−1 ∈ A such that

(1) c is absorbing at (θ0, . . . , θn−1) with value θ, and
(2) there exists a vector (a0, . . . , an−1) ∈ An such that c(a0, . . . , an−1) 6= θ.

Proof: (⇒) Let [ 1, . . . , 1︸ ︷︷ ︸
n

] > 0. Then C( 1, . . . , 1︸ ︷︷ ︸
n

; 0) is not true. By Proposition

3.4 and Definition 3.1 there exist θ0, . . . , θn−1, a0, . . . , an−1 ∈ A and a p ∈ PolnA
such that

p(x0, . . . , xn−2, θn−1) = p(x0, . . . , xn−2, an−1),

for all (x0, . . . , xn−2) ∈ {θ0, a0} × · · · × {θn−2, an−2}\{(a0, . . . , an−2)} and

p(a0, . . . , an−2, θn−1) 6= p(a0, . . . , an−2, an−1).

Now, we put θ = p(a0, . . . , an−2, θn−1) and define c ∈ PolnA as follows:

c(x0, . . . , xn−1) :=

D
(n−1)
p(a0,...,an−2,θn−1),(θ0,...,θn−2)(E

(n−1)
xn−1

(Fp(a0,...,an−2,θn−1),θn−1(p)))(x0, . . . , xn−2).

By Lemma 2.19 we have that c is absorbing at (θ0, . . . , θn−1) with value θ,
and by Lemma 2.23 we know that c(a0, . . . , an−1) = p(a0, . . . , an−1) and thus
c(a0, . . . , an−1) 6= θ.

(⇐) Since
c(x0, . . . , xn−2, θn−1) = c(x0, . . . , xn−2, an−1),

for all (x0, . . . , xn−2) ∈ {θ0, a0} × · · · × {θn−2, an−2}\{(a0, . . . , an−2)} and

c(a0, . . . , an−2, θn−1) = θ 6= c(a0, . . . , an−1),

the condition C( 1, . . . , 1︸ ︷︷ ︸
n

; 0 ) is false by Definition 1.1. Thus [ 1, . . . , 1︸ ︷︷ ︸
n

] = 0 does

not hold, by Definition 1.2. 2

Note that the polynomial that satisfies the conditions (1) and (2) of Proposi-
tion 4.15 depends on each of its arguments, or, in other words, its essential arity
equals its arity. In the sequel we will need θ-polynomials, which we have defined
on page 39.
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Corollary 4.16. Let A be a Mal’cev algebra with a Mal’cev term m and
n ≥ 2. If [ 1, . . . , 1︸ ︷︷ ︸

n

] = 0 then for every θ ∈ A, every θ-polynomial p of A has

essential arity at most n− 1.

Proof: Let θ ∈ A, and let p ∈ PolkA be a θ-polynomial with essential arity k.
Then p satisfies (1) from Proposition 4.15 for (θ′, θ′0, . . . , θ

′
k−1) := (p(θ, . . . , θ), θ, . . . , θ).

Since p depends on xk−1, there exist (a0, . . . , ak−1), (a0, . . . , ak−2, bk−1) ∈ Ak such
that p(a0, . . . , ak−1) 6= p(a0, . . . , ak−2, bk−1). Clearly, p(a0, . . . , ak−1) 6= p(θ, . . . , θ)
or p(a0, . . . , ak−2, bk−1) 6= p(θ, . . . , θ). Thus, p satisfies also (2) from Proposition
4.15. Thus we have [ 1, . . . , 1︸ ︷︷ ︸

k

] > 0, and hence k ≤ n− 1. 2

Proposition 4.17. Let A be a Mal’cev algebra with a Mal’cev term m and
n ≥ 2. If [ 1, . . . , 1︸ ︷︷ ︸

n

] = 0 then Clo(
⋃n−1

i=0 Poli A ∪ {m}) = PolA.

Proof: By (HC8) A is nilpotent. We proceed by induction on the nilpotency class
of A.

In the case that A is abelian, Proposition §1.3.11 yields that the clone of all
polynomials of A is generated by m and all the unary polynomials of A.

For the induction step, we let r ∈ N such that A is of nilpotency class r + 1.
Then, we have [ 1, . . . , [1︸ ︷︷ ︸

r+1

, 1]] = 0, and for α := [ 1, . . . , [1︸ ︷︷ ︸
r

, 1]], we have α > 0.

Hence

(4.10) [1, α] = 0.

By Corollary 4.8, Con(A/α) is nilpotent of class at most r. Furthermore, by
(HC6) we have [ 1, . . . , 1︸ ︷︷ ︸

n

]A/α = 0A/α. We fix p ∈ PolkA, k ≥ n, and let pα be the

corresponding polynomial from Pol(A/α) such that pα(x/α) = p(x)/α for all x ∈
Ak. Thus, by the induction hypothesis we know that pα ∈ Clo(

⋃n−1
i=0 Poli(A/α)∪

{m}). In other words, there exists a p′ ∈ Clo(
⋃n−1

i=0 PoliA ∪ {m}) such that
pα(x/α) = p′(x)/α. Now, we obtain p(x) ≡α p′(x), for every x ∈ Ak. We choose
θ ∈ A, and define t ∈ PolkA as follows:

t(x) := m(p(x), p′(x), θ) for every x ∈ Ak.

We want to show t ∈ Clo(
⋃n−1

i=0 PoliA ∪ {m}). First, we observe that t(x) ∈
θ/α, for all x ∈ Ak. From (4.10) we have [α, α] = 0 and thus we can apply

Proposition 2.18 and obtain that t ∈ SgP(A,k,m,θ)(P ), where P is a set of θ-
polynomial functions of essential arities at most the essential arity of t. Using
the assumption [ 1, . . . , 1︸ ︷︷ ︸

n

] = 0 in A and Corollary 4.16 we conclude that all such

θ-polynomial functions are of essential arities at most n − 1 and thus we have
t ∈ Clo(

⋃n−1
i=0 PoliA ∪ {m}). Since p(x) ≡α p′(x) and [α, 1] = 0, Lemma §1.3.5



60 2. HIGHER COMMUTATORS

yields p(x) = m(t(x), θ, p′(x)). Since t, p′ ∈ Clo(
⋃n−1

i=0 PoliA ∪ {m}), we have

p ∈ Clo(
⋃n−1

i=0 PoliA ∪ {m}). 2



CHAPTER 3

On Polynomials in Various Types of Mal’cev Algebras

The main results of the dissertation are formulated and proved in this chapter
which is divided in three sections: about affine completeness, about polynomial
equivalence problem and about number of Mal’cev clones on a finite set. We
present a characterization of affine complete expanded groups whose congruence
lattice has the (APMI) property (Theorem §3.1.10). For a finite nilpotent algebra
of finite type that is a product of algebras of prime power order and generates
a congruence modular variety (studied by K. Kearnes in [25]), we are able to
show that the property of affine completeness is decidable (Theorem §3.1.18).
Moreover, the polynomial equivalence problem has polynomial complexity in the
length of the input polynomials (Theorem §3.2.3). As the final contribution of this
dissertation, we prove that the polynomial functions of a finite Mal’cev algebra
whose congruence lattice is of height at most 2 can be described by a finite set
of relations (Theorem §3.3.22).

1. Affine Completeness

In the first subsection we present the statements that lead to the characteri-
zation of affine complete expanded groups that satisfy the (APMI) property. The
second subsection is devoted to the proof of the results about decidability of affine
completeness for a subclass of Mal’cev algebras.

1.1. Congruence Preserving Functions in Expanded Groups and
(APMI) Property. In this section, we will produce certain functions on V
that preserve the extended types of an expanded group. We say that an ideal
U of V is a homogeneous ideal if U is a homogeneous element of the lattice
IdV. Our constructions of functions will work for those expanded groups that
have a homogeneous ideal U such that every ideal of V is either above U or
below U ∨ U∗. By Propositions 6.16 and 6.17, each finite expanded group whose
congruence lattice satisfies (APMI) has such an ideal.

For an expanded group V and an ideal I of V, we say that S is a transversal
of V through the cosets of I if S ⊆ V and |S ∩ (v + I)| = 1 for all v ∈ V .

Proposition 1.1 (Lifting of type preserving functions). Let k ∈ N, let V be
a finite expanded group, and let U be a homogeneous ideal of V such that for all
ideals A of V, we have A ≥ U or A ≤ U ∨U∗. Let g : (V/U)k → V/U , let T be a
transversal of V through the cosets of U ∨ U∗, and let sT : V → T , sU : V → U ,

61
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sU∗ : V → U∗ be mappings such that

v = sT (v) + sU(v) + sU∗(v) for all v ∈ V.

Now let h be a function from V k to V such that

h(v) ∈ g(v + Uk) for all v ∈ V k.

We define a function f : V k → V by

f(v) := sT (h(v)) + sU∗(h(v)) for all v ∈ V k.

Then we have:

(1) The function f is a lifting of g, i.e., f(v) ∈ g(v + Uk) for all v ∈ V k.
(2) The function f is constant on each coset of Uk.
(3) If g is a congruence preserving function of V/U , then f is a congruence

preserving function of V.

Proof: See [8, Proposition 9.2 (1)-(3)]. 2

Proposition 1.2. (cf. [5, p. 90]) Let U be a homogeneous ideal of the finite
expanded group V. We assume that we have Φ(U) = 0 and [U,U ] = 0. We take
R to be an algebra with the universe

R := {p|U | p ∈ P0(V)}
and the operations given by pointwise addition of functions and their composition.
Then R is a ring. Furthermore, we take U to be an R-module (U, +,−, 0, R).
Then there exist a field D, natural numbers k, n, a ring isomorphism εR : R →
Mk(D), and a group isomorphism εU : (U, +) → (D(k×n), +) such that for r ∈ R
and u ∈ U we have

εU(r(u)) = εR(r)εU(u).

Proof: See [5, Proposition 8.1]. 2

Proposition 1.3 (Extension of congrence preserving functions). Let V be
a finite expanded group, let U be a homogeneous ideal of V such that for all
ideals A of V, we have A ≥ U or A ≤ U ∨ U∗. Let U be the P0(V)-module
(U, +,−, 0, {fp ||| p ∈ P0(V)}), where

fp(u) := p(u) for all u ∈ U.

Let k ∈ N, and let g : Uk → U be a function that preserves the congruences of
U. We define a function e : V k → V by

e(u + u∗) = g(u) for all u ∈ Uk, u∗ ∈ (U∗)k,

and e(v) = 0 for all v ∈ V k \ (U ∨ U∗)k.

Then, the function e preserves the congruences of V.

Proof: See [8, Proposition 9.3(1)]. 2
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Proposition 1.4. Let V be a finite expanded group, and let U be a homoge-
neous ideal of V such that for all ideals A of V, we have A ≥ U or A ≤ U ∨U∗.
If V is 1-affine complete, then the centralizer CV (Φ(U) : U) of U modulo Φ(U)
satisfies CV (Φ(U) : U) ≤ U ∨ U∗.

Proof: Since every weakly 1-polynomially rich algebra is 1-affine complete
algebra the statment can be obtained from Proposition 9.5 in [8]. ¤

We will need the following description of the centralizer CV (Φ(U) : U) that
appeared in Proposition 1.4.

Proposition 1.5. Let V be a finite expanded group, let U be a homogeneous
ideal of V, and let A,B be ideals of V with A ≺ B ≤ U .

(1) If [B, B]V 6≤ A, then A = 0, B = U , and hence U is an atom of IdV.
Furthermore, in this case we have CV (0 : U) = U∗.

(2) If [B, B]V ≤ A, then we have CV (A : B) = CV (Φ(U) : U) ≥ U ∨ U∗.
(3) Every atom C of IdV with [C, C]V = C is a homogeneous ideal of V.

Proof: See [8, Proposition 9.6]. 2

Lemma 1.6. (cf. [8, Lemma 9.7]) Let V be a finite expanded group whose
congruence lattice satisfies (APMI). We assume that V is 1-affine complete.
Then V satisfies the condition (SC1).

If the expanded group V satisfies (SC1), homogeneous ideals have several
helpful properties.

Proposition 1.7. Let V be a finite expanded group with (SC1), and let U be
a homogeneous element of V. Then we have:

(1) Φ(U) = 0.
(2) CV (Φ(U) : U) ≤ U ∨ U∗.
(3) If V is finite, then U is the range of a unary idempotent polynomial

function.

Proof: See [8, Proposition 10.1]. 2

In Section 7 of [5], one finds information on those unary polynomial functions
whose range is contained in a homogeneous ideal. We will use straightforward
generalizations of these results to k-ary functions.

Proposition 1.8 (cf. [5, Proposition 7.16]). Let k ∈ N, let V be a finite
expanded group, and let U be a homogeneous ideal of V with CV (Φ(U) : U) ≤
U ∨ U∗. Let f be a partial function on V with domain T ⊆ V k. We assume
f(T ) ⊆ U . Then the following are equivalent.

(1) There is a polynomial p ∈ PolkV with p(V k) ⊆ U and p(t) = f(t) for all
t ∈ T .
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(2) For each coset C := v + (CV (Φ(U) : U))k with v ∈ V k there is a poly-
nomial pC ∈ PolkV such that pC(t) = f(t) for all t ∈ T ∩ C.

The proof of this proposition is identical with the proof of Proposition 7.16
in [5] except that k-ary polynomial functions have to be used instead of unary
polynomial functions.

Proposition 1.9. Let k ∈ N, let V be a finite expanded group, and let U be
an atom of IdV. We assume [U,U ]V = U . Then

(1.1) {p|Uk ||| p ∈ Polk(V), p(V k) ⊆ U} = U (Uk).

Proof: See [8, Proposition 10.3] ¤

For an expanded group V and a homogeneous ideal U of V with Φ(U) = 0,
the structure of the P0(V)-module U has been described in Theorem §1.7.1 and
Proposition 1.2. Thus, if (U0, U1, . . . , Un) is a homogeneous series of V, and
if i is such that [Ui+1, Ui+1]V ≤ Ui, the P0(V)-module Ui+1/Ui is polynomially
equivalent to a module that is isomorphic to the Mn(D)-module D(n×m), where
D, n and m can be recovered as follows: for an ideal A of V with Ui ≺ A ≤
Ui+1, D is the field of P0(V)-endomorphisms of the module A/Ui, and n is the
dimension of A/Ui over D. The number m is the height of the lattice I[Ui, Ui+1].

Now, we can describe affine complete members of the class of finite expanded
groups whose congruence lattice satisfies the condition (APMI).

Theorem 1.10. (cf. [8, Theorem 11.2]) Let V be a finite expanded group
whose congruence lattice satisfies the condition (APMI), let (U0, U1, . . . , Un) be
a homogeneous series of the lattice IdV, and let k ∈ N. Then the following are
equivalent:

(1) V is k-affine complete.
(2) V satisfies (SC1), and for all i ∈ {0, . . . , n− 1} with [Ui+1, Ui+1]V ≤ Ui,

the P0(V)-module Ui+1/Ui is k-affine complete.

1.2. Supernilpotent Algebras. In this section we investigate a class of
Mal’cev algebras located between the class of abelian and the class of nilpotent
Mal’cev algebras. The main result of this section we obtain when the class coin-
cides with the class of nilpotent Mal’cev algebras.

Definition 1.11. Let k ∈ N. An algebra is called k-supernilpotent if

[ 1, . . . , 1︸ ︷︷ ︸
k+1

] = 0.

An algebra A is called supernilpotent if there exists a k ∈ N such that A is
k-supernilpotent.

Definition 1.12. (cf. [25, p.179]) Let A be an algebra, and let k ∈ N.
The function c ∈ Polk+1A is a commutator polynomial of rank k if the following
conditions hold:
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(1) For all x0, . . . , xk−1, z ∈ A: if z ∈ {x0, . . . , xk−1}, then

c(x0, . . . , xk−1, z) = z.

(2) There exist y0, . . . , yk−1, u ∈ A such that

c(y0, . . . , yk−1, u) 6= u.

We can define commutator terms using term functions instead of polynomials
in the previous definition. The following proposition will be used in Lemma 1.17.

Proposition 1.13. (cf.[25, Theorem 3.14(3),(4)]) Let A be a finite nilpotent
algebra of finite type that generates a congruence modular variety. The following
conditions are equivalent:

(1) A factors as a direct product of algebras of prime power cardinality.
(2) A has a finite bound on the rank of nontrivial commutator terms.

Proposition 1.14. Let k ∈ N and let A be a k-supernilpotent Mal’cev alge-
bra. If A is (k + 1)-affine complete, then A is affine complete.

Proof: We define an algebra B by B = (A, C) where C is the set of all functions
on A that preserve all congruences of A. We want to show that PolB = PolA.
Since A is (k +1)-affine complete by the assumptions we have PolsB = PolsA for
every s ≤ k + 1. It is not hard to see that ConA = ConB. Then, from Corollary
§2.4.10 we know that [ 1, . . . , 1︸ ︷︷ ︸

k+1

] = 0 is true in B. Finally, from Proposition §2.4.17

we have

PolB = Clo(
k⋃

i=0

Poli B ∪ {m}) = Clo(
k⋃

i=0

Poli A ∪ {m}) = PolA.2

Corollary 1.15. There is an algorithm that decides whether a supernilpo-
tent finite Mal’cev algebra of finite type, given by its operation tables, is affine
complete.

Proof: From Proposition §2.4.15, we obtain a way to compute a k ∈ N such that
A is k-supernilpotent. Once such a k is known, it remains to check whether every
(k + 1)-ary congruence preserving function is a polynomial function. 2

Lemma 1.16. Let A be an algebra that generates a congruence permutable
variety and let k ∈ N. Then the following are equivalent:

(1) [ 1, . . . , 1︸ ︷︷ ︸
k+1

] = 0;

(2) A is nilpotent and all commutator polynomials have rank at most k.
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Proof: (1) ⇒ (2) Let c be a commutator polynomial of rank t ≥ k + 1. From
[ 1, . . . , 1︸ ︷︷ ︸

k+1

] = 0 we have [ 1, . . . , 1︸ ︷︷ ︸
t

] = 0 by (HC3), and thus

(1.2) C(1, 1, . . . , 1︸ ︷︷ ︸
t

; 0),

by Definition §2.1.2. Let (y0, . . . , yt−1, u) ∈ At+1. We want to show that c(y0, . . . , yt−1, u) =
u. For every (x0, . . . , xt−2) ∈ {u, y0} × · · · × {u, yt−2} and (x0, . . . , xt−2) 6=
(y0, . . . , yt−2) we have c(x0, . . . , xt−2, yt−1, u) = c(x0, . . . , xt−2, u, u), by Definition
1.12. Thus, by Definition §2.1.1, we have c(y0, . . . , yt−1, u) = c(y0, . . . , yt−2, u, u) =
u because of (1.2). This contradicts the fact that c is a commutator polynomial.
Clearly, by (HC8) A is nilpotent.

(2) ⇒ (1) Let c ∈ PolnA, θ, θ0, . . . , θn−1 ∈ A and (a0, . . . , an−1) ∈ An be such
that the following is satisfied:

(i) c is absorbing at (θ0, . . . , θn−1) with value θ
(ii) there exists a vector (a0, . . . , an−1) ∈ An such that c(a0, . . . , an−1) 6= θ.

By the assumptions of the lemma, A has a Mal’cev term. Let us denote this
term by m. By Lemma §1.3.14, since A is nilpotent we know that the functions
fi : A → A defined by

fi(x) := m(x, θ, θi),

for every i ∈ {0, . . . , n − 1} are bijections. Thus there exist b0, . . . , bn−1 ∈ A
such that fi(bi) = ai, for every i ∈ {0, . . . , n − 1}. Let us define a polynomial
d ∈ Poln+1A by

d(x0, . . . , xn−1, z) := m(c(m(x0, z, θ0), . . . , m(xn−1, z, θn−1)), θ, z).

Clearly, we have d(x0, . . . ,

i−th
↓
z , . . . , xn−1, z) = z, for every i ∈ {0, . . . , n−1}. Also,

d(x0, . . . , xn−1, θ) = c(f0(x0), . . . , fn−1(xn−1)).

Therefore d(b0, . . . , bn−1, θ) = c(a0, . . . , an−1) 6= θ. Now, the conditions (1) and
(2) of Definition 1.12 are satisfied. Thus, d is a commutator polynomial of rank n.
By the assumptions n ≤ k, and thus by Proposition §2.4.15 we obtain [ 1, . . . , 1︸ ︷︷ ︸

k+1

] =

0. 2

Lemma 1.17. Let A be a finite nilpotent algebra of finite type that generates a
congruence modular variety. If A factors as a direct product of algebras of prime
power cardinality then A is a supernilpotent Mal’cev algebra.

Proof: We define a new algebra A? in the following way: for each c ∈ A, we add
a nullary operation cA

?
defined by c() := c. Since A is finite we have that A?

is a finite algebra of finite type. Furthermore Gumm’s terms from Proposition
§1.2.3 for A are also terms in A? and thus A? generates a congruence modular
variety. By [3, Lemma 2.2] we know that the binary commutator in A and A?
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is the same. Thus we have that A? is nilpotent. By assumption we know that
there is a natural number n such that A = A1 × · · · × An, where |Ai| = pαi

i for
some primes pi and some αi ∈ N, i ∈ {1, . . . , n}. We define an algebra A?

i in
the following way: for each c ∈ A, we add a nullary operation cAi

?
defined by

c() := πi(c) for every i ∈ {1, . . . , n}. Now, A? = A?
1 × · · · × A?

n and A?
i has

prime power cardinality. By Proposition 1.13 we have an m ∈ N such that the
rank of every nontrivial commutator term of A? is at most m. Since these terms
are precisely the commutator polynomials of A, and since by Lemma §1.3.15 the
algebra A generates a congruence permutable variety, Lemma 1.16 yields that A
is m-supernilpotent. 2

Theorem 1.18. There is an algorithm that decides whether a finite nilpo-
tent algebra of finite type that is a product of algebras of prime power order and
generates a congruence modular variety is affine complete.

Proof: From Lemma 1.17 we know that a finite nilpotent algebra A of finite type
which is a product of algebras of prime power order and generates a congruence
modular variety is supernilpotent and generates a congruence permutable variety.
Therefore A has a Mal’cev term. Then by Corollary 1.15 we have that the
property of affine completeness for A is decidable. 2

2. The Polynomial Equivalence Problem

The polynomial equivalence problem explained in the foreword can be formu-
lated in the more appropriate way for nilpotent Mal’cev algebras. Again, when
the nilpotent class of Mal’cev algebras coincides with the class of supernilpotent
Mal’cev algebras, we obtain the result given in Theorem 2.3.

In a Mal’cev algebra A, for (x0, . . . , xk−1) ∈ Ak and θ ∈ A we introduce the
following notation:

ωθ(x0, . . . , xk−1) := |{i : xi 6= θ}|.
Proposition 2.1. Let n, k ∈ N, let A be a k-supernilpotent Mal’cev alge-

bra, and let θ ∈ A. Let p ∈ PolnA be such that for all (x0, . . . , xn−1) ∈ An

with ωθ(x0, . . . , xn−1) ≤ k, we have p(x0, . . . , xn−1) = θ. Then p is the constant
function with value θ.

Proof: Let p ∈ PolnA be a polynomial with this property and let (x0, . . . , xn−1) ∈
An. We prove p(x0, . . . , xn−1) = θ by induction on ωθ(x0, . . . , xn−1). If ωθ(x0, . . . , xn−1) <
k + 1 then the statement is true by the assumption. Let us suppose that
ωθ(x0, . . . , xn−1) = m ≥ k + 1. Let {i1, . . . , im} = {i |xi 6= θ}. We define a
new polynomial q by

q(y1, . . . , yk+1, zk+2, . . . , zm) :=

p(θ, . . . , θ,

i1↓
y1, θ, . . . , θ,

ik+1
↓

yk+1, θ, . . . , θ,

ik+2
↓

zk+2, θ, . . . , θ,

im↓
zm, θ, . . . , θ)
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for y1, . . . , yk+1, zk+2, . . . , zm ∈ Am. By the induction hypothesis we have q(y1, . . . ,
yk+1, xik+2

, . . . , xim) = θ for every (y1, . . . , yk+1) ∈ {xi1 , θ}×· · ·×{xik+1
, θ}\{(xi1 ,

. . . , xik+1
)}. If we introduce a polynomial q′ in the following way

q′(y1, . . . , yk+1) := q(y1, . . . , yk+1, xik+2
, . . . , xim),

we have q′(y1, . . . , yk+1) = θ whenever there exists an i ∈ {1, . . . , k + 1}, such
that yi = θ. Therefore q′ is a θ-polynomial, and hence the essential arity of q′ is
0 or k + 1. Since A is k-supernilpotent we know that [ 1, . . . , 1︸ ︷︷ ︸

k+1

] = 0, and thus

the essential arity of q′ is at most k by Corollary §2.4.16. Thus q is constant, so
q(xi1 , . . . , xim) = θ and thus, p(x1, . . . , xn) = θ. 2

Lemma 2.2. Let A be a nilpotent Mal’cev algebra A with a Mal’cev term m
and let x, y, θ ∈ A. Then if m(x, y, θ) = θ, we have x = y.

Proof: Suppose m(x, y, θ) = θ. By Lemma §1.3.14 we know that the function
f : A → A defined by f(t) := m(t, y, θ) for t ∈ A is one to one. Therefore if x 6= y
then f(x) 6= f(y). Then we have m(x, y, θ) 6= m(y, y, θ) = θ. This contradicts
the assumption. 2

On supernilpotent Mal’cev algebras, these results provide a method to deter-
mine whether two polynomial terms induce the same function. In particular, we
can now prove the main result of the section.

Theorem 2.3. The polynomial equivalence problem for a finite nilpotent al-
gebra A of finite type that is a product of algebras of prime power order and
generates a congruence modular variety has polynomial time complexity in the
length of the input terms.

Proof: Suppose that s(x0, . . . , xn−1), t(x0, . . . , xn−1) are polynomial terms of A.
By Lemma 1.17, there is a k ∈ N such that A is k-supernilpotent, and A has a
Mal’cev term m. Since A is nilpotent, by Lemma 2.2, it suffices to check whether

m(s(x0, . . . , xn−1), t(x0, . . . , xn−1), θ) ≈ θ

holds in A. We define a polynomial term p of A by

p(x0, . . . , xn−1) := m(s(x0, . . . , xn−1), t(x0, . . . , xn−1), θ).

By Proposition 2.1 we have to check pA(a0, . . . , an−1) = θ only for those n-tuples
from An that satisfy ωθ(a0, . . . , an−1) < k + 1. There are precisely

1 + (|A| − 1)n + (|A| − 1)2

(
n

2

)
+ · · ·+ (|A| − 1)k

(
n

k

)

such n-tuples. Clearly, this expression is a polynomial in n. Since n is the number
of variables that occur in s and t, n is obviously bounded by the length of these
terms.

Therefore the polynomial equivalence problem has polynomial complexity in
the length of the input terms. 2



3. ON THE NUMBER OF MAL’CEV CLONES 69

3. On the Number of Mal’cev Clones

Here we will show that the assertion of Conjecture 1 in §1.7 is true for every
finite Mal’cev algebra whose congruence lattice is of height at most 2.

Distinguishing cases according to the isomorphism class of the congruence
lattice of the algebra and the commutator operation on this algebra, we will
see that in most cases, the result can be inferred from existing results on poly-
nomial completeness [18, 22, 3]. However, if the algebra is nilpotent and not
abelian, we need a new argument to show that its polynomials can be described
by finitely many relations. Actually, in this case (Subsection 3.3) we use higher
commutators.

3.1. Abelian Algebras.

Proposition 3.1. Let A be a finite abelian Mal’cev algebra. Then,

PolA = Comp(A, Invmax{|A|,4}(A, PolA)).

Proof: We denote Comp(A, Invmax{|A|,4}(A, PolA)) by C. Obviously, we have
PolA ⊆ C. We will show that C ⊆ PolA. To this end we introduce a new
algebra B = (A, C). Since Inv4(A, PolA) ⊆ Invmax{|A|,4}(A, PolA) we know that
every function from C is a commutator preserving function of A by Lemma §1.7.5.
Thus, [1, 1]B = [1, 1]A = 0 and B is also abelian. Now, let f ∈ C be a unary func-

tion. Since Inv|A|(A, PolA) ⊆ Invmax{|A|,4}(A, PolA) we know by Lemma §1.7.4
that f ∈ Pol1A. Let f ∈ C be of arbitrary arity k ≥ 2. To show that f ∈ PolkA
we proceed by induction on k. We have just proved the basis of the induction.
For the induction step, we choose an arbitrary element θ ∈ A. Then, we have

f(x1, . . . , xk) = f(m(x1, θ, θ), . . . , m(xk−1, θ, θ),m(θ, θ, xk))

= m(f(x1, . . . , xk−1, θ), f(θ, . . . , θ), f(θ, . . . , θ, xk))

by Lemma §1.3.4 because B is abelian. Clearly, all constant functions belong to
C and thus f(x1, . . . , xk−1, θ) and f(θ, . . . , θ, xk) can be seen as a (k− 1)-ary and
as a unary function from C, respectively, and thus they are polynomials of A by
the induction hypothesis. This proves the induction step. 2

Corollary 3.2. Let A be a finite Mal’cev algebra such that ConA ∼= Mi, i ≥
3. Then, there is a finite set of relations R on A such that PolA = Comp(A,R).

Proof: By the assumptions ConA has a sublattice consisting of permuting con-
gruences and isomorphic to M3. Hence, by Proposition §1.3.12 A is abelian and
the statement can be obtained from Proposition 3.1. 2

3.2. Non-nilpotent Algebras.

Proposition 3.3. Let A be a finite simple Mal’cev algebra. Then,

PolA = Comp(A, Invmax{|A|,4}(A, PolA)).
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Proof: If [1, 1] = 0 then A is abelian and we obtain the statement by Proposition
3.1. Thus we suppose [1, 1] = 1. Then A is TC-neutral and A has a Mal’cev term
by assumptions. So, we have that A is affine complete by Proposition §1.7.2. 2

Lemma 3.4. Let A be a finite weakly polynomially rich Mal’cev algebra. Then,

PolA = Comp(A, Invmax{|A|,4}(A, PolA)).

Proof: First, we observe that typ{A} ∈ {2, 3} by Corollary §1.5.14. Furthermore,
we know by Theorem §1.5.15 that a prime quotient of congruences α and β,
α ≺ β, denoted by 〈α, β〉 is of type 2 if and only if [β, β] ≤ α. As we can see
from Definition §1.5.2, UA(α, β) and thus MA(α, β) are completely determined
by Pol1A. For every prime quotient 〈α, β〉 of type 2, the extended type consists
of the type together with the corresponding finite field defined in the proof of
Theorem §1.5.4. As we can see from this proof, this field is completely determined
by unary polynomials of the induced algebra on U , U ∈ MA(α, β) and thus by
Pol1A. Now, we can conclude that the extended type of a given prime quotient
in ConA is completely determined by (binary) commutators and Pol1A.

Now, we denote Comp(A, Invmax{|A|,4}(A, PolA)) by C. If B = (A, C) then

Pol1B = Pol1A, by Lemma §1.7.4 because Inv|A|(A, PolA) ⊆ Invmax{|A|,4}(A, PolA).

Since Inv4(A, PolA) ⊆ Invmax{|A|,4}(A, PolA) the binary commutator is preserved
by Lemma §1.7.5. So, every f ∈ C preserves extended types. Since A is weakly
polynomially rich, every f ∈ C is a polynomial of A. Clearly, PolA ⊆ C. 2

Proposition 3.5. Let A be a finite Mal’cev algebra such that ConA ∼= M2.
Then,

PolA = Comp(A, Invmax{|A|,4}(A, PolA)).

Proof: We know that A and all subdirectly irreducible members of H(A), which
are simple algebras or isomorphic copies of A, satisfy the condition (SC1). Thus
by Proposition §1.7.3 we know that A is weakly polynomially rich. Now we
obtain the statement by Lemma 3.4. 2

We will now provide results that can be used for Mal’cev algebras whose
congruence lattice is a three-element chain.

Proposition 3.6. Let A be a finite Mal’cev algebra such that ConA =
{0, α, 1} and (0 : α)A ≤ α. Then,

PolA = Comp(A, Invmax{|A|,4}(A, PolA)).

Proof: Since (0 : α)A ≤ α, we know that A and all subdirectly irreducible
members of H(A), which are simple algebras or isomorphic copies of A, satisfy
the condition (SC1). Thus by Proposition §1.7.3 we know that A is weakly
polynomially rich. Now we obtain the statement by Lemma 3.4. 2
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Proposition 3.7. Let A be a finite central-by-simple-nonabelian Mal’cev al-
gebra with center γ and let θ ∈ A. Then there is a polynomial function e ∈ Pol1A
such that e(A) ⊆ θ/γ and e(x) = x for all x ∈ θ/γ.

Proof: See [3, Lemma 3.1]. 2

Proposition 3.8. Let k ∈ N, let A be a finite central-by-simple-nonabelian
Mal’cev algebra and let γ be its center. Let f : Ak → A be a function that satisfies
f(x) = f(y) for all x,y ∈ Ak with x ≡γ y. Then f ∈ PolkA.

Proof: See [3, Lemma 3.2]. 2

Lemma 3.9. Let A be a finite Mal’cev algebra such that ConA = {0, α, 1},
[1, 1] = 1, [1, α] = 0 and let θ ∈ A. Then there is a polynomial function e ∈ Pol1A
such that e(A) ⊆ θ/α and e(x) = x for all x ∈ θ/α.

Proof: Since ConA = {0, α, 1}, [1, 1] = 1 and [1, α] = 0, the algebra A is a finite
central-by-simple-nonabelian Mal’cev algebra with center α. The statement now
follows by Proposition 3.7. 2

Lemma 3.10. Let A be a finite Mal’cev algebra such that ConA = {0, α, 1},
[1, 1] = 1 and [1, α] = 0. Let f : Ak → A be a function that satisfies f(x) = f(y)
for all x,y ∈ Ak with x ≡α y. Then f ∈ PolkA.

Proof: Since ConA = {0, α, 1}, [1, 1] = 1 and [1, α] = 0, the algebra A is a finite
central-by-simple-nonabelian Mal’cev algebra with center α. The statement now
follows by Proposition 3.8. 2

Definition 3.11. Let n ∈ N, let A be an algebra and let θ ∈ A. For each
f : An → A and i ∈ {1, . . . , n}, we define a function fi,θ : A → A by

fi,θ(x) := f(θ, . . . , θ,

ith
↓
x, θ, . . . , θ)

for all x ∈ A.

Lemma 3.12. Let A be a finite Mal’cev algebra, let α ∈ ConA such that
[α, 1] = 0 and let us assume that there is a θ ∈ A such that

(1) there is a unary polynomial e such that e|θ/α = idθ/α and e(A) ⊆ θ/α,
(2) every function f : Ak → θ/α that is constant on every α-class is a

polynomial.

If k ≥ 0 and f : Ak → A is such that

f ∈ Comp(A, Invmax{|A|,4}(A, PolA)),

and if, furthermore, there is a polynomial p : Ak → A such that f(x) ≡α p(x) for
all x ∈ Ak, then f is a polynomial.
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Proof: Let k ≥ 0, let f : Ak → A be such that f ∈ Comp(A, Invmax{|A|,4}(A, PolA)),
and let p : Ak → A be a polynomial such that f(x) ≡α p(x), for all x ∈ Ak. We
define

B := (A, Comp(A, Invmax{|A|,4}(A, PolA))).

To simplify the notation we introduce a unary polynomial u on A by

(3.1) u(x) := m(x, e(x), θ) for x ∈ A,

and let

(3.2) g(x) := m(f(u(x(1)), . . . , u(x(k))), p(u(x(1)), . . . , u(x(k))), θ).

First, we notice that g ∈ PolB and g|θ/α = m(f(θ, . . . , θ), p(θ, . . . , θ), θ). Thus,
the function g′ defined by g′(x) := m(g(x), g(θ, . . . , θ), θ) for all x ∈ Ak satis-

fies g′|θ/α = θ. Since Inv4(A, PolA) ⊆ Invmax{|A|,4}(A, PolA), Lemma §1.7.5 tells

that all functions from Comp(A, Invmax{|A|,4}(A, PolA)) are commutator preserv-
ing functions and we obtain [1, α]B = 0. Therefore, by Lemma 3.6, g′ is constant
on each α-class. Since u(x) ≡α x we have

f(u(x(1)), . . . , u(x(k))) ≡α f(x) ≡α p(x) ≡α p(u(x(1)), . . . , u(x(k))).

Now from (3.2), we obtain g(Ak) ⊆ θ/α. Using Lemma §1.3.5 we obtain g(x) =
m(g′(x), θ, g(θ, . . . , θ)). Therefore g is constant on each α-class and thus, g ∈
PolkA, by condition (2). Furthermore,

f(u(x(1)), . . . , u(x(k))) = m(g(x), θ, p(u(x(1)), . . . , u(x(k))))

by Lemma §1.3.5 and thus we know that f(u(x(1)), . . . , u(x(k))) ∈ PolkA. Since
e(x) ≡α θ and [1, α]B = 0, by Lemma §1.3.4 we have

f(u(x(1)), . . . , u(x(k))) = m(f(x), f(e(x(1)), . . . , e(x(k))), f(θ, . . . , θ)).

Since f(e(x(1)), . . . , e(x(k))) ≡α f(θ, . . . , θ), by Lemma §1.3.5 we have that

f(x) = m(f(u(x(1)), . . . , u(x(k))), f(θ, . . . , θ), f(e(x(1)), . . . , e(x(k)))).

In order to finish the proof that f is a polynomial it remains to prove that
f(e(x(1)), . . . , e(x(k))) is a polynomial of A. We will accomplish this by showing
that f |θ/α is a polynomial of A. Since all constant operations lie in

Comp(A, Invmax{|A|,4}(A, PolA)), we know that {fi,θ | 1 ≤ i ≤ k} is a subset of

Comp(A, Invmax{|A|,4}(A, PolA)). Since Inv|A|(A, PolA) ⊆ Invmax{|A|,4}(A, PolA)

we have that all unary functions from Comp(A, Invmax{|A|,4}(A, PolA)) are polyno-
mials, by Lemma §1.7.4. Therefore {fi,θ | 1 ≤ i ≤ k} ⊆ Pol1A. If x1, . . . , xk ∈ θ/α
then we have

f(x1, . . . , xk) = m(f(θ, . . . , θ, xk), f(θ, . . . , θ), f(x1, . . . , xk−1, θ)) = · · · =
m(f(θ, . . . , θ, xk), f(θ, . . . , θ),m(. . .m(f(θ, x2, θ, . . . , θ), f(θ, . . . , θ), f(x1, θ, . . . , θ)) . . . ))

by Lemma §1.3.4, because [α, α]B ≤ [α, 1]B = 0. Now, we have that f |θ/α is a
polynomial. This completes the proof. 2
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Lemma 3.13. Let A be a finite Mal’cev algebra such that ConA = {0, α, 1}
and let k ∈ N. Then for every k-ary function f ∈ Comp(A, Invmax{|A|,4}(A, PolA)),
there exists a polynomial p ∈ PolkA such that f(x) ≡α p(x) for all x ∈ Ak.

Proof: Let f be a k-ary function from Comp(A, Invmax{|A|,4}(A, PolA)). It is clear
that A/α is simple. Define a function f ′ on A/α by: f ′(x/α) := f(x)/α for all

x ∈ Ak. Since ConA ⊆ Invmax{|A|,4}(A, PolA), f ′ is well defined. We will now

show that f ′ lies in Comp(A/α, Invmax{|A/α|,4}(A/α, Pol(A/α))). To this end, let

ρ be a t-ary relation in Invmax{|A/α|,4}(A/α, Pol(A/α)). We define a t-ary relation
σ on A by

σ := {(a1, . . . , at) | (a1/α, . . . , at/α) ∈ ρ}.
We have σ ∈ Invmax{|A|,4}(A, PolA). Hence, f preserves σ. Therefore, f ′ preserves

ρ. Now, we have proved that f ′ ∈ Comp(A/α, Invmax{|A/α|,4}(A/α, Pol(A/α))).
Then, f ′ ∈ Pol(A/α), by Proposition 3.3. Thus, there exists a p ∈ PolA such
that f ′(x/α) = p(x)/α, for all x ∈ Ak. Therefore we have f(x)/α = p(x)/α or
in other words f(x) ≡α p(x), for all x ∈ Ak. 2

Proposition 3.14. Let A be a finite Mal’cev algebra such that ConA =
{0, α, 1}, [1, 1] = 1 and [1, α] = 0. Then,

PolA = Comp(A, Invmax{|A|,4}(A, PolA)).

Proof: Let us denote Comp(A, Invmax{|A|,4}(A, PolA)) by C and B = (A, C). Ob-
viously, PolA ⊆ C. Now, take any k-ary function f ∈ C and let us show that
f ∈ PolkA. There exists a polynomial p ∈ PolkA such that f(x) ≡α p(x), for all
x ∈ Ak, by Lemma 3.13. Let θ ∈ A be arbitrary. We know that there exists an
e ∈ Pol1A such that e(A) ⊆ θ/α and e(x) = x for all x ∈ θ/α by Lemma 3.9.
Thus Condition (1) of Lemma 3.12 is satisfied. Condition (2) of Lemma 3.12 is
satisfied by Lemma 3.10. Therefore, we obtain f ∈ PolkA by Lemma 3.12. 2

3.3. Nilpotent Algebras. In this section we analyse nilpotent Mal’cev al-
gebras whose congruence lattice is a three element chain.

Definition 3.15. Let A be an algebra, let α ∈ ConA and let θ ∈ A. We
say that α is stable at θ if there exists a unary polynomial p of A such that
p(θ) = θ, p(A) ⊆ θ/α and p is not constant on θ/α.

Lemma 3.16. Let A be a finite Mal’cev algebra such that ConA = {0, α, 1}
where [1, α] = 0 and k ≥ 1. Let θ ∈ A be such that α is not stable at θ. If
p ∈ PolkA is such that p(Ak) ⊆ θ/α then p is constant on every α-class.

Proof: Choose x, t ∈ Ak so that x ≡α t and let J = {s ∈ {1, . . . , k} |x(s) 6= t(s)}.
We will prove that p(x) = p(t) by induction on |J |. For |J | = 0 the statement is
obvious. Suppose now that the statement is true for all J with |J | = `. Let us
consider |J | = `+1 and j ∈ J . By the assumptions we have x(j) ≡α t(j). In order
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to show that p(x) = p(t) we define a unary polynomial p′ on A in the following
way:

p′(x) := p(x(1), . . . ,x(j−1), x,x(j+1), . . . ,x(k)).

It is clear that p′(A) ⊆ θ/α. Therefore, p′′(A) ⊆ θ/α where p′′(x) = m(p′(x), p′(θ), θ)
and p′′(θ) = θ. Then p′′ equals θ on the whole of θ/α by the assumptions
of the lemma. Thus, p′′ is constant on each α-class by Lemma §1.3.6 since
[α, 1] = 0. Then we conclude that p′ is also constant on each α-class, because
p′(x) = m(p′′(x), θ, p′(θ)), by the condition [α, 1] = 0 and Lemma §1.3.5. This
proves p′(x(j)) = p′(t(j)). Now using the induction hypothesis we obtain

p(x) = p′(x(j)) = p′(t(j)) = p(x(1), . . . ,x(j−1), t(j),x(j+1), . . . ,x(k)) = p(t).

2

Lemma 3.17. Let A be a finite Mal’cev algebra with a Mal’cev term m. Let α
be an atom of ConA such that [α, α] = 0 and let θ ∈ A. Consider the following
algebra

R = ({p|θ/α | p ∈ Pol1A, p(θ) = θ}, +, ◦),
where (p + q)(x) := m (p(x), θ, q(x)) for every x ∈ A, and ◦ is the usual function
composition. Then R is a primitive ring. Moreover, if α is stable at θ, then there
exists a unary polynomial e such that e|θ/α = idθ/α and e(A) ⊆ θ/α.

Proof: We will denote θ/α by U . As in the proof of Proposition §1.3.11 we
have that R = ({p|U | p ∈ Pol1A, p(θ) = θ}, +, ◦) is a ring with unit idU . Since
[α, α] = 0, A|U is polynomially equivalent to the module (U, +) over the ring R,
where u1 + u2 := m(u1, θ, u2) for all u1, u2 ∈ U as in the proof of Proposition
§1.3.11. Since α is an atom of ConA, the module (U, +) satisfies R u = U for
every u 6= θ. Therefore the module (U, +) over the ring R is simple, and thus R
is a primitive ring.

Let us now assume that α is stable at θ. Then the ideal

I = {p|U | p ∈ Pol1A, p(θ) = θ, p(A) ⊆ θ/α}
of R contains more than one element. Since R is finite, we know that R is simple
by Proposition §1.2.5. Therefore I = R, and thus idU ∈ I. This yields a unary
polynomial e such that e|U = idU and e(A) ⊆ U . 2

Lemma 3.18. Let A be a Mal’cev algebra such that α is the unique coatom in
ConA, and let u,v ∈ Ak, k ≥ 1. If u 6≡α v then for every a, b ∈ A there exists a
p ∈ PolkA such that a = p(u) and b = p(v).

Proof: Since u 6≡α v and α is the unique coatom in ConA we have ΘA(u,v) = 1.
Also, we have ΘA(u,v) = {(p(u), p(v)) | p ∈ PolkA}, by Proposition §1.2.2.
Thus, we obtain the statement using the fact that (a, b) ∈ 1. 2

Lemma 3.19. Let A be a finite Mal’cev algebra such that ConA = {0, α, 1},
α 6= 0, α 6= 1, let θ ∈ A and k ∈ N. Assume that [ 1, . . . , 1︸ ︷︷ ︸

n

] = α for all n ≥ 2 and
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[1, α] = 0. Then every function f : Ak → θ/α which is constant on all α-classes
is a polynomial.

Proof: Let r := |A/α|k− 1. Since [ 1, . . . , 1︸ ︷︷ ︸
r+1

] > 0, we know by Proposition §2.4.15

that there exist a c′ ∈ Polr+1A, and ψ1, ψ2, a0, . . . , ar ∈ A with the property: c′

is absorbing at (a0, . . . , ar) with value ψ1 and there exists a vector (b0, . . . , br) ∈
Ar+1 such that c′(b0, . . . , br) = ψ2 6= ψ1.

We will now show that there is a ψ′ ∈ A with (ψ′, θ) ∈ α and ψ′ 6= θ. To show
this, let (x0, x1) ∈ α with x0 6= x1. Now m(x1, x0, θ) ∈ θ/α. If m(x1, x0, θ) = θ,
we have x1 = m(x1, x0, x0) = m(m(x1, x0, x0),m(x0, x0, x0),m(θ, θ, x0)). Since
[α, 1] = 0, this is equal to m(m(x1, x0, θ), θ, x0) = m(θ, θ, x0) = x0, a contradic-
tion. Hence m(x1, x0, θ) 6= θ. Therefore ψ′ := m(x1, x0, θ) satisfies ψ′ ∈ θ/α and
ψ′ 6= θ.

Since ψ1 6= ψ2, we have ΘA(ψ1, ψ2) ≥ α. Therefore there exists a p ∈ Pol1A
with p(ψ1) = θ and p(ψ2) = ψ′. We define c ∈ Polr+1A by c := p ◦ c′. We note
that c is absorbing at (a0, . . . , ar) with value θ, and therefore, from Lemma §2.4.9
and [1, 1] = α we obtain that the range of c is contained in θ/α.

Now, choose j ∈ {0, . . . , r}. We fix ψ ∈ A such that (ψ, θ) ∈ α and prove
that the function f : Ak → θ/α defined by

f(x) =

{
ψ if x ∈ tj/α,
θ otherwise

is a polynomial function. Since (ψ, θ) ∈ α ≤ ΘA(ψ′, θ) there exists an fψ ∈ Pol1A
such that fψ(ψ′) = ψ and fψ(θ) = θ. We denote by t0, . . . , tr a transversal of Ak

through the classes of α, where t0 := (θ, . . . , θ). There are two cases to consider.
− Case α is not stable at θ: Let i ∈ {0, . . . , r} with i 6= j. Then there is an

s ∈ {1, . . . , k} such that t
(s)
i 6≡α t

(s)
j . Therefore, there exists a pi ∈ PolkA such

that pi(ti) = ai, and pi(tj) = bi. We define pj to be the constant polynomial with
value bj. Now let

q(x) := fψ(c
(
p0(x), . . . , pr(x)

)
),

and note that q(ti) = fψ(c
(
p0(ti), . . . , pi−1(ti), ai, pi+1(ti), . . . , pr(ti)

)
) = fψ(θ)

= θ for every i ∈ {0, . . . , r}\{j}, and q(tj) = fψ(c(b0, . . . , br)) = fψ(ψ′) = ψ.
Since c(Ak+1) ⊆ θ/α, we have that q(Ak) ⊆ θ/α. By Lemma 3.16, q is constant
on each α-class. This proves f = q.

− Case α is stable at θ: Then we have a unary polynomial e such that
e|θ/α = idθ/α and e(A) ⊆ θ/α, by Lemma 3.17. If i 6= j then there exists an
s ∈ {1, . . . , k} such that

m(t
(s)
i , e(t

(s)
i ), θ) ≡α t

(s)
i 6≡α t

(s)
j ≡α m(t

(s)
j , e(t

(s)
j ), θ).

Let u be defined by u(x) := m(x, e(x), θ). Then, from Lemma 3.18, we ob-
tain that for each i ∈ {0, . . . , r}\{j}, there exists a pi ∈ PolkA such that
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pi(u(t
(1)
i ), . . . , u(t

(k)
i )) = ai and pi(u(t

(1)
j ), . . . , u(t

(k)
j )) = bi. The polynomial pj is

defined to be the constant polynomial with value bj. We define

q(x) := fψ(c
(
p0

(
u(x(1)), . . . , u(x(k))

)
, . . . , pr

(
u(x(1)), . . . , u(x(k))

))
)

and observe that q(tj) = ψ and q(ti) = θ, i ∈ {0, . . . , r}\{j}. Since e|θ/α(x) = x,
directly from the definition of q and u we obtain that q′|θ/α = θ, where q′(x) :=
m(q(x), q(t0), θ). By Lemma §1.3.6 and the assumption [α, 1] = 0 we have that q′

is constant on each α-class. By Lemma §1.3.5 we have q(x) = m(q′(x), θ, q(t0)).
Hence, q is constant on each α-class. Therefore, we have proved f = q.

Now, we will prove the statement for an arbitrary function F : Ak → θ/α
that is constant on each α-class. Define Fi : Ak → θ/α as follows:

Fi(x) =

{
F (ti) if x ∈ ti/α,

θ otherwise,

for i ∈ {0, . . . , r}. Since we know that Fi are polynomials for all i ∈ {0, . . . , r},
we can construct a polynomial function h : Ak → θ/α in the following way:

h(x) := m (. . . m(︸ ︷︷ ︸
r

F0(x), θ, F1(x)), θ, . . . ), θ, Fr(x)).

Obviously, F = h. 2

Proposition 3.20. Let A be a finite Mal’cev algebra such that ConA =
{0, α, 1}, [ 1, . . . , 1︸ ︷︷ ︸

n

] = α for all n ≥ 2, and [1, α] = 0. Then,

PolA = Comp(A, Invmax{|A|,4}(A, PolA)).

Proof: Let us denote Comp(A, Invmax{|A|,4}(A, PolA)) by C, and let B = (A, C).
Clearly, we have PolA ⊆ C. Let f be a k-ary function in C. We want to show
that f ∈ PolA. There exists a polynomial p ∈ PolkA such that f(x) ≡α p(x),
for all x ∈ Ak, by Lemma 3.13. Let θ ∈ A. There are two possibilities.

− Case α is not stable at θ: Then, the function g(x) = m(f(x), p(x), θ)
has the property g : Ak → θ/α, because f(x) ≡α p(x), for all x ∈ Ak. Now,
by Lemma 3.16, g is constant on each α-class. We conclude that g ∈ PolkA,
by Lemma 3.19. We also observe that [1, α]B = 0 by Lemma §1.7.5, because

Inv4(A, PolA) ⊆ Invmax{|A|,4}(A, PolA). By Lemma §1.3.5 using [1, α]B = 0 we
have f(x) = m(g(x), θ, p(x)), and thus we obtain that f ∈ PolkA.

− Case α is stable at θ: Then we have a unary polynomial e such that
e|θ/α = idθ/α and e(A) ⊆ θ/α by Lemma 3.17. Thus, Condition (1) of Lemma
3.12 is satisfied and also, by Lemma 3.19, Condition (2) of Lemma 3.12 is satisfied.
Thus f ∈ PolkA, by Lemma 3.12. 2
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Proposition 3.21. Let A be a finite Mal’cev algebra. If there exists an n ≥ 2
such that [ 1, . . . , 1︸ ︷︷ ︸

n

] = 0, then

PolA = Comp(A, Inv|A|
n

(A, PolA)).

Proof: Denote Comp(A, Inv|A|
n

(A, PolA)) by C. We will show that C = PolA. We
introduce a new algebra B = (A, C). Clearly, PolnA ⊆ PolnB. Let f be an n-ary
function from C. We know that f ∈ PolnA by Lemma §1.7.4. Thus, PolnB =
PolnA. Hence, [ 1, . . . , 1︸ ︷︷ ︸

n

]B = [ 1, . . . , 1︸ ︷︷ ︸
n

]A, by Lemma §2.4.10. Therefore, we know

[ 1, . . . , 1︸ ︷︷ ︸
n

]B = 0. Furthermore, PolnB = PolnA clearly entails PolkB = PolkA,

for every k ∈ {0, . . . , n − 1}. From Proposition §2.4.17 we have C = PolB =
Clo(

⋃n−1
k=0 Polk(B) ∪ {m}) = Clo(

⋃n−1
k=0 Polk(A) ∪ {m}) = PolA. 2

3.4. The Main Result About the Number of Mal’cev Clones.

Theorem 3.22. Let A be a finite Mal’cev algebra whose congruence lattice is
of height at most two. Then there is a finite set of relations R on A such that
PolA = Comp(A,R).

Proof: For simple algebras the statement follows from Proposition 3.3. If ConA ∼=
Mi, i ≥ 3, then the statement follows from Corollary 3.2. If ConA ∼= M2 then
the statement follows from Proposition 3.5. Now let ConA be isomorphic to the
three-element chain {0, α, 1}. In case of [1, 1] = 0 the statement follows directly
from Proposition 3.1. If [1, 1] > 0 the following cases are possible:

− Case [1, 1] = [1, α] = α: In this case we have (0 : α)A ≤ α and the
statement follows from Proposition 3.6.

− Case [1, 1] = α and [1, α] = 0: Since [1, . . . , 1] ≤ [1, 1] = α, by (HC3) we
have the following two possibilities.

(i) There exists an n ∈ N such that [ 1, . . . , 1︸ ︷︷ ︸
n

] = 0: Then the statement

follows from Proposition 3.21.
(ii) [ 1, . . . , 1︸ ︷︷ ︸

r

] = α, for all r ≥ 2: The statement follows from Proposition

3.20.
− Case [1, 1] = 1 and [1, α] = α: As in the first case we have (0 : α)A ≤ α

and the statement follows from Proposition 3.6.
−Case [1, 1] = 1 and [1, α] = 0: Then the statement follows from Proposition

3.14. 2
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Sažetak na srpskom jeziku

1. Motivacija

U ovoj disertaciji izučavaju se polinomi na konačnim Maljcevljevim alge-
brama. Maljcevljeve algebre su specijalna klasa univerzalnih algebri koja sadrži
mnoge poznate klase algebri kao što su grupe i prsteni.

Za unapred zadatu algebru nije lako okarakterisati funkcije koje su polinomi
na jeziku te algebre. Postoji čitava lista osobina koje zadovoljavaju polinomi
kao što su očuvavanje kongruencija i komutatora, na primer. U [22] postavljen
je sledeći problem: Za dati skup osobina, opisati sve algebre u kojima svaka
funkcija koja zadovoljava sve date osobine jeste polinom. U takve probleme spada
i karakterizacija afino kompletnih algebri. Algebra se naziva afino kompletna ako
je svaka funkcija koja očuvava sve njene kongruencije polinom (videti [24]). Mi
ćemo se baviti ovim konceptom u algebrama koje imaju grupni redukt (Ω-grupe)
i koje su stoga svakako Maljcevljeve algebre.

Odred̄ivanje potrebnih i dovoljnih uslova koje treba da zadovoljava neka za-
data algebra da bi bila afino kompletna je kompleksan problem. Do sada je ovaj
problem rešen samo za konačne Abelove grupe ([30]) i neke podvarijetete vari-
jeteta Abelovih grupa. Stoga je interesantno pitanje da li je osobina afine kom-
pletnosti odlučiva. Za neku osobinu algebre kažemo da je odlučiva ako postoji
efektivan algoritam koji za unapred datu algebru na ulazu daje na izlazu odgovor
na pitanje da li je ulazna algebra afino kompletna. Za konačne nilpotentne grupe
u [12] je dokazano da postoji algoritam koji odlučuje o afinoj kompletnosti. U
ovoj disertaciji dajemo jedno uopštenje ovog rezultata, odnosno dajemo odgovor
na pitanje odlučivosti afine kompletnosti za jednu širu potklasu Maljcevljevih
algebri.

Drugi aspekt izučavanja polinoma inspirisan je sledećom činjenicom. Kom-
pozicijom fundamentalnih operacija neke konačne Maljcevljeve algebre na ra-
zličite načine može se dobiti isti polinom. Problem je odrediti da li takve unapred
date kompozicije operacija odred̄uju isti polinom. Ovaj problem je poznat pod
imenom problem polinomijalne ekvivalentnosti. U slučaju nilpotentnih grupa i
prstena pokazano je u [15, 12] da se u polinomnom vremenu može utvrditi da li
dva unapred zadata polinomijalna terma indukuju isti polinom. U ovoj disertaciji
dajemo isti rezultat za širu klasu algebri.

81
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Treći problem kojim se bavimo u ovoj disertaciji je sledeći. Koliko različitih
skupova polinoma, zatvorenih za kompoziciju i koji sadrže konstante i projek-
cije, se može dobiti menjajući skup fundamentalnih operacija konačne Maljcev-
ljeve algebre? Takav skup funkcija se naziva polinomijalni (ili konstantivni)
Maljcevljev klon. Zato nas ovde zanima koliko ima med̄usobno neekvivalentnih
polinomijalnih Maljcevljevih klonova na konačnom skupu. U [21] je pokazano
da postoji beskonačno mnogo takvih klonova ako je posmatrani skup najmanje
četvoroelementni. U slučaju specijalnih podklasa Maljcevljevih algebri kao što su
ciklične grupe poznato je sledeće. Ako je ciklična grupa prostog reda onda postoje
tačno dva konstativna klona koji sadrže ternarnu funkciju (x, y, z) → x−y+z. E.
Aichinger i P. Mayr su u [6] pokazali da ako su p i q različiti prosti brojevi onda
postoji tačno 17 različitih polinomijalnih klonova na cikličnoj grupi reda pq. Za
slučaj direktnog proizvoda dve ciklične grupe istog prostog reda i cikličnu grupu
čiji je red kvadrat prostog broja u [10] je pokazano da postoji prebrojivo mnogo
polinomijalnih Maljcevljevih klonova koji sadrže odgovarajuću grupnu operaciju.
Nije poznato da li postoji konačan skup A sa neprebrojivo mnogo polinomijalnih
Maljcevljevih klonova na A.

2. Osnovni pojmovi i definicije

U disertaciji se pozivamo na notaciju i pojmove (univerzalne algebre, homo-
morfizmi, izomorfizmi, podalgebre, kongruencije, direktni i podirektni proizvodi i
varijeteti) koji se pretežno uvode u [13, 29]. Radi bolje preciznosti u formulisanju
glavnih rezultata navodimo definicije nekih pojmova kao i njihova osnovna svo-
jstva.

Pre svega, polinomom neke algebre A nazivamo polinomijalnu funkciju koja
je indukovana odgovarajućim polinomijalnim termom na jeziku uočene algebre A.
Skup svih polinoma neke algebre A označavaćemo sa PolA. Za dve algebre A i B
(sa različitim skupovima fundamentalnih operacija) kažemo da su polinomijalno
ekvivalentne ako imaju isti skup polinoma.

Ternarnu operaciju m na skupu A zovemo Maljcevljevom operacijom ako za
sve x, y ∈ A važi:

m(x, x, y) = y = m(y, x, x).

Algebru A zovemo Maljcevljeva algebra ako ima Maljcevljevu term operaciju.
Proširena grupa (Ω-grupa) je algebra koja ima grupni redukt, odnosno med̄u

svojim fundamentalnim operacijama ima grupnu operaciju. U takve algebre
spadaju svakako prsteni i moduli, ali i skoro-prsteni. Skoro-prsten (engl. near-
ring, vidi [31]) je algebra R = (R, +, ·) takva da je (R, +) (ne obavezno Abelova)
grupa, a (R, ·) polugrupa sa jedinicom i za sve x, y, z ∈ R važi:

(x + y) · z = x · z + y · z.
Glavni primer ovakve strukture, koji se i u disertaciji intenzivno koristi je skup
svih unarnih polinoma p neke Ω-grupe V za koje važi p(0) = 0, gde je sa 0



2. OSNOVNI POJMOVI I DEFINICIJE 83

označen neutralni element odgovarajuće grupne operacije u V, sabiranje poli-
noma definisano je po tačkama, a množenje kao kompozicija funkcija. Slično kao
u slučaju prstena definǐse se skoro-prstenski modul (near-ring module) kao struk-
tura M = (M, +,−, 0, {fr : M → M | r ∈ R}) u kojoj je (M, +,−, 0) grupa i za
sve x ∈ M i r, s ∈ R važi:

(1) fr◦s(x) = fr(fs(x));
(2) fr+s(x) = fr(x) + fs(x).

Za funkciju f : Ak → A, gde je A neka algebra i k ∈ N0 kažemo da očuvava
kongruencije ako za svaku kongruenciju α algebre A i sve vektore a,b ∈ Ak

kojima su odgovarajuće komponente u istoj klasi kongruencije α (što pǐsemo
a ≡α b) važi f(a) ≡α f(b). Ako je za neko k ∈ N, svaka k-arna funkcija na
A koja očuvava sve kongruencije algebre A polinom, kažemo da je A k-afino
kompletna. Algebra je afino kompletna ako je k-afino kompletna za sve k ∈ N.

U Maljceveljevim algebrama koristi se sledeća karakterizacija kongruencije
ΘA(a,b) generisane dvama vektorima a i b:

Propozicija §1.2.2 Neka je k ≥ 1 i A Maljcevljeva algebra. Ako a,b ∈ Ak,
onda

ΘA(a,b) = {(p(a), p(b)) | p ∈ PolkA}.

Komutatori predstavljaju ključno tehničko sredstvo za dobijanje glavnih rezul-
tata ove disertacije. Njihove definicije i osnovne osobine koje ovde navodimo
mogu se naći u [19, 29].

Definicija §1.3.1 Neka su α, β, η kongruencije algebre A. Kažemo da α
centralizuje β modulo η, i pǐsemo

C(α, β; η),

ako za sve n ≥ 1 i sve p ∈ Poln+1A, a, b ∈ A takve da a ≡α b i c,d ∈ An takve
da c ≡β d imamo

p(a, c) ≡η p(a,d) povlači p(b, c) ≡η p(b,d).

Definicija §1.3.2 Neka je A neka algebra. Za kongruencije α i β algebre
A definǐsemo komutator, u oznaci [α, β], kao najmanju kongruenciju η algebre A
za koju važi da α centralizuje β modulo η. Centralizator kongruencije β modulo
α, u oznaci (α : β)A, je najveća kongruencija γ takva da γ centralizuje β modulo
α.

Može se pokazati da u modulima važi [1, 1] = 0. Takve algebre nazivamo
Abelovim.
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Neka su α, β i η kongruencije algebre A. Sledeće osobine slede direktno iz
definicije centralizatora i komutatora:

(BC1) [α, β] ≤ α ∧ β;
(BC2) za sve kongruencije γ, δ algebre A takve da α ≤ γ, β ≤ δ, imamo

[α, β] ≤ [γ, δ];

U [3, Proposition 2.4, Proposition 2.5] je dokazano da ako A generǐse kongruen-
cijski permutabilan varijetet, onda važi:

(BC4) [α, β] = [β, α];
(BC5) [α, β] ≤ η ako i samo ako C(α, β; η);
(BC6) Ako η ≤ α, β, onda u A/η, imamo [α/η, β/η] = ([α, β] ∨ η)/η;
(BC7) Ako je I 6= ∅ i {ρi | i ∈ I} ⊆ ConA, onda:

∨
i∈ I [α, ρi] = [α,

∨
i∈I ρi] i

slično
∨

i∈ I [ρi, β] = [
∨

i∈I ρi, β].

Osobine (BC4), (BC5), (BC6) i (BC7) su zapravo posledice resultata (HC4),
(HC5), (HC6) i (HC7), redom, dobijenih u delu 2 ove disertacije.

Definicija §1.3.13(vidi [14]) Neka je A algebra. Kažemo da je A nilpo-
tentna u k koraka ili nilpotentna klase k ako važi:

[ 1, . . . , [1︸ ︷︷ ︸
k

, 1]] = 0.

Kažemo da je A nilpotentna ako je nilpotentna klase k za neko k ∈ N.

Jasno, algebra koja je nilpotentna u jednom koraku je Abelova.
U disertaciji koristimo i osnove teorije pitomih kongruencija (Tame Congru-

ence Theory), [19]. Ovde se parovima kongruencija koje čine prost interval u
mreži kongruencija neke konačne algebre dodeljuje takozvani tip (broj) u za-
visnosti od lokalnog ponašanja indukovane polinomijalne strukture. Teorija je
zasnovana na teoremi P.P.Pálfy [19, Theorem 4.7] prema kojoj postoji samo pet
polinomijalno neekvivalentnih indukovanih lokalnih struktura. Interesantno je da
su u slučaju Maljcevljevih algebri zastupljeni samo tipovi 2 i 3 (Teorema §.1.5.13).
Šta vǐse tip zavisi od binarnog komutatora na sledeći način. Ako su α i β dve
kongruencije konačne Maljcevljeve algebre A takve da je interval [α, β] prost (β
”pokriva” α u mreži kongruencija algebre A) onda je tip tog intervala 2 ako važi
[β, β] ≤ α, inače je tip 3.

3. Vǐsi komutatori

Mnoge osobine univerzalnih algebri se mogu videti iz mreže kongruencija
i binarnog komutatora. Med̄utim, već u kongruencijski permutabilnom vari-
jetetu (Maljcevljevim algebrama) algebra nije do na polinomijalnu ekvivalen-
ciju odred̄ena svojim unarnim polinomima, kongruencijama i komutatorom na
tim kongruencijama. U [9] A. Bulatov je uopštio binarni komutator uvod̄enjem
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n-arnog komutatora za sve n ∈ N i time omogućio bolje razlikovanje polinomi-
jalno neekvivalentnih algebri. U ovoj disertaciji n-arni komutatori predstavljaju
moćno sredstvo pomoću koga su dobijeni ključni rezulati (Teorema §3.1.18, Teo-
rema §3.2.3 i Teorema §3.3.22). Stoga je kompletna druga glava posvećena vǐsim
komutatorima i njihovim osobinama. To predstavlja takod̄e jedan od glavnih
originalnih doprinosa ove disertacije jer je A. Bulatov koristio samo osnovne os-
obine. Iako tvrd̄enja o vǐsim komutatorima izgledaju prirodno, dokazi zahtevaju
uvod̄enje nove tehnike kao što je operator razlike (Difference operator). Kao i u
slučaju binarnog komutatora vi ši komutator se definǐse pomoću relacije n-arne
centralizacije.

Definicija §2.1.1 (vidi [9]) Neka je A neka algebra, neka je n ∈ N i
α1, . . . , αn, β, δ kongruencije algebre A. Kažemo da α1, . . . , αn centralizuju β
modulo δ ako za sve polinome f(x1, . . . ,xn,y) i vektore a1,b1, . . . , an,bn, c,d iz
A koji zadovoljavaju:

(1) ai ≡αi
bi za sve i ∈ {1, 2, . . . , n},

(2) c ≡β d i
(3) f(x1, . . . ,xn, c) ≡δ f(x1, . . . ,xn,d) za sve (x1, . . . ,xn) ∈ {a1,b1}×· · ·×

{an,bn}\{(b1, . . . ,bn)}
važi:

f(b1, . . . ,bn, c) ≡δ f(b1, . . . ,bn,d).

Ovo kraće zapisujemo kao C(α1, . . . , αn, β; δ).

Definicija §2.1.2(vidi [9]) Neka je A neka algebra, n ≥ 2 i neka su α1, . . . , αn

kongruencije algebre A. Najmanja kongruencija δ takva da važi C(α1, . . . . . . , αn−1, αn; δ)
naziva se (n-arni) komutator kongruencija α1, . . . , αn. Tu kongruenciju označavamo
sa [α1, . . . , αn].

Uočimo da za n = 1 u definiciji §2.1.1 dobijamo definiciju (binarne) relacije
centralizacije koja se koristi u [14]. Za n = 2, definicija §2.1.2 daje binarni
komutator ([29, Definition 4.150]).

Propozicija §2.6.1(vidi [9, Proposition 1]) Neka je k ≥ 1 i neka su α0, . . . , αk

kongruencije algebre A. Tada važi:

(HC1) [α0, . . . , αk] ≤
∧

0≤i≤k αi;
(HC2) za sve β0, . . . , βk ∈ ConA takve da je α0 ≤ β0, . . . , αk ≤ βk, imamo

[α0, . . . , αk] ≤ [β0, . . . , βk];

(HC3) [α0, . . . , αk] ≤ [α1, . . . , αk].

Neka je k ≥ 1 i neka su α0, . . . , αk, η kongruencije algebre A koje generǐsu
kongruencijski permutabilan varijetet. Onda imamo:

(HC4) [α0, . . . , αk] = [απ(0), . . . , απ(k)] za sve permutacije π na skupu {0, . . . , k};
(HC5) [α0, . . . , αk] ≤ η ako i samo ako C(α0, . . . , αk; η);



86 SAŽETAK NA SRPSKOM JEZIKU

(HC6) Ako η ≤ α0, . . . , αk, onda u A/η važi:
[α0/η, . . . , αk/η] = ([α0, . . . , αk] ∨ η)/η;

(HC7) Ako je I neprazan skup, j ∈ {0, . . . , k} i {ρi | i ∈ I} ⊆ ConA onda:∨
i∈ I [α0, . . . , αj−1, ρi, αj+1, . . . , αk] = [α0, . . . , αj−1,

∨
i∈I ρi, αj+1, . . . , αk];

(HC8) [α0, [α1, . . . , αk]] ≤ [α0, α1, . . . , αk], ali i opštije:
[α0, . . . , αi−1, [αi, . . . , αk]] ≤ [α0, . . . , αk] za sve i ∈ {1, . . . , k}.

Vǐsi komutator na kongruencijama neke algebre nije odred̄en binarnim ko-
mutatorom. Primer se može naći u Ω-grupi ciklične grupe (Z4, +), [10]. Za
n ≥ 2, neka je An algebra (Z4, +, fn), gde je fn n-arna operacija definisana sa
fn(x1, . . . , xn) := 2x1 · · · xn. An ima tačno tri kongruencije; označimo ih sa 0,
α i 1. Tada iz Leme 2.4 u [6], možemo lako dobiti da za n ≥ 2, An zadovo-
ljava [1, 1] = α i [1, α] = 0. Dalje, u A2 imamo [1, 1, 1] = 0, ali u A3, imamo
[1, 1, 1] = α. Dakle, [1, 1, 1]A3 = α 6= 0 = [1, [1, 1]]A3 . Generalno za k ≥ 2 i n ≥ 2,
se može dobiti [1, [1, 1]]An = 0, [ 1, . . . , 1︸ ︷︷ ︸

k

]An = α ako je k ≤ n i [ 1, . . . , 1︸ ︷︷ ︸
k

]An = 0

ako je k > n. Odatle je [ 1, . . . , [1︸ ︷︷ ︸
k

, 1]]An = 0 6= α = [ 1, . . . , 1︸ ︷︷ ︸
k

]An , za k ≤ n.

Vǐsi komutatori za Ω-grupe opisani su u posledici §2.4.11. Naime, u slučaju
Ω-grupa govorimo o komutator idealima, jer se mreži kongruencija obostrano
jednoznačno pridružuje mreža ideala i to pridruživanje je izomorfizam. Med̄utim
ne samo da se očuvavaju mrežne operacije nego i vǐsi komutatori. Komutator
ideal dužine k je ideal generisan skupom vrednosti svih polinoma koji se anuliraju
kad god je jednom od argumenata pridružena 0 posmatrane Ω-grupe. Ovakvi
polinomi igraju važnu ulogu uopšte u svim Maljcevljevim algebrama kada radimo
sa komutatorima.

Definicija §2.2.9 Neka je A neka algebra, k ∈ N, neka je dato preslikavanje
p : Ak → A, (a0, . . . , ak−1) ∈ Ak, i neka θ ∈ A. Tada za p kažemo da se apsorbuje
u (a0, . . . , ak−1) sa vrednošću θ ako za sve (x0, . . . , xk−1) ∈ Ak važi: ako postoji
i ∈ {0, 1, . . . , k − 1} tako da je xi = ai, onda p(x0, . . . , xk−1) = θ. Primetimo,
p(a0, . . . , ak−1) = θ.

Koristeći apsorbujuće polinome dobijamo drugačiju karakterizaciju vǐsih ko-
mutatora. Iz sledeće karakterizacije odmah sledi da polinomijalno ekvivalentne
algebre imaju iste vǐse komutatore (Posledica §2.4.10).

Lema §2.4.9 Neka je A Maljcevljeva algebra sa Maljcevljevim termom m,
α0, . . . , αn kongruencije od A i n ≥ 0. Tada je [α0, . . . , αn] kongruencija gener-
isana sa

(3.1) R = {(c(b0, . . . , bn), c(a0, . . . , an)
) | b0, . . . , bn, a0 . . . , an ∈ A, ∀i : ai ≡αi

bi,

c ∈ Poln+1A i c se apsorbuje u (a0, . . . , an)}.
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Apsorbujući polinomi daju takod̄e i kriterijum kada se vǐsi komutator anulira.

Propozicija §2.4.15 Neka je A Maljcevljeva algebra sa Maljcevljevim ter-
mom m i n ≥ 2. Tada je

[ 1, . . . , 1︸ ︷︷ ︸
n

] > 0

ako i samo ako postoji c ∈ PolnA i θ, θ0, . . . , θn−1 ∈ A tako da

(1) c se apsorbuje u (θ0, . . . , θn−1) sa vrednošću θ i
(2) postoji vektor (a0, . . . , an−1) ∈ An takav da je c(a0, . . . , an−1) 6= θ.

Klon generisan skupom operacija F označavaćemo sa Clo(F ). U slučaju
anuliranja vǐseg komutatora polinomijalni klon je generisan skupom polinoma
ograničene arnosti.

Propozicija §2.4.17 Neka je A Maljcevljeva algebra sa Maljcevljevim ter-
mom m i n ≥ 2. Ako je [ 1, . . . , 1︸ ︷︷ ︸

n

] = 0 onda Clo(
⋃n−1

i=0 Poli A ∪ {m}) = PolA.

4. Glavni rezultati

Prethodne propozicije sugerǐsu da klasa algebri kod kojih se vǐsi komutator
anulira ima posebna svojstva. Te algebre nazivamo supernilpotentne algebre.
Preciznije, ako je k ∈ N, algebra se naziva k-supernilpotentna ako je

[ 1, . . . , 1︸ ︷︷ ︸
k+1

] = 0.

Algebra A se naziva supernilpotentna ako je k-supernilpotentna za neko k ∈ N.
Jasno, na osnovu (HC8) sledi da je svaka supernilpotentna algebra i nilpotentna,
a da su Abelove algebre 1-supernilpotentne, ali i k-supernilpotentne za sve k ≥ 1
na osnovu nejednakosti (HC3). Dakle, klasa supernilpotentnih algebri je potklasa
nilpotentnih algebri koja u sebi sadrži potklasu Abelovih algebri.

Propozicija §3.1.14 Neka k ∈ N i neka je A k-supernilpotentna Maljcev-
ljeva algebra. Ako je A (k + 1)-afino kompletna, onda je A afino kompletna.

Kao posledicu ove tvrdnje dobijamo da je afina kompletnost odlučiva osobina
za supernilpotentne Maljcevljeve algebre. Pokazuje se da je neki polinom u k-
supernilpotentnoj Maljcevljevoj algebri A jednak konstanti θ ∈ A ako i samo ako
uzima vrednost θ za sve vektore koji se od θ razlikuju na najvǐse k mesta.

Lema §3.1.17 Neka je A konačna nilpotentna algebra konačnog tipa koja
generǐse kongruencijski modularan varijetet. Ako je A direktan proizvod algebri
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čiji su redovi stepeni prostih brojeva onda je A supernilpotentna Maljcevljeva
algebra.

Prethodno tvrd̄enje razmatra jednu specijalnu klasu Maljcevljevih algebri koja
je izučavana u [25] kod koje dolazi do poklapanja klase nilpotentnih Maljcevljevih
algebri sa klasom supernilpotentnih Maljcevljevih algebri. Tako dobijamo sledeće
rezultate.

Teorema §3.1.18 Postoji algoritam koji odlučuje da li je konačna nilpo-
tentna algebra konačnog tipa koja je direktan proizvod algebri čiji su redovi ste-
peni prostih brojeva i koja generǐse kongruencijski modularan varijetet afino kom-
pletna.

Teorema §3.2.3 Problem polinomijalne ekvivalentnosti za konačnu nilpo-
tentnu algebru konačnog tipa koja je direktan proizvod algebri čiji su redovi stepeni
prostih brojeva i koja generǐse kongruencijski modularan varijetet ima polinomi-
jalnu složenost u zavisnosti od dužine unetih polinomijalnih termova.

Finalni doprinos ove disertacije je vezan za pitanje broja polinomijalno neek-
vivalentnih Maljcevljevih klonova na konačnom skupu.

Za k ≥ 1 pǐsemo Invk(A, PolA) za skup svih najvǐse k-arnih relacija na skupu
A invarijantnih u odnosu na sve polinome iz A. Dalje, neka je Inv(A, PolA) :=
∪k≥1Invk(A, PolA) skup svih konačnih relacija koje su invarijantne u odnosu na
sve polinome iz A. Ako je R skup relacija na A, označimo skup svih operacija na
A koje očuvavaju sve relacije iz skupa R sa Comp(A, R). Kao posledicu od [32,
Satz 1.2.1, p. 53], ako je A konačan, imamo:

PolA = Comp (A, Inv(A, PolA)).

Prema tome skup polinoma na A je kompletno odred̄en beskonačnim skupom
Inv(A, PolA) relacija na A. Za mnoge Maljcevljeve algebre možemo tačno navesti
konačan podskup R od Inv(A, PolA) koji opisuje polinome. Ipak nije poznato da
li je sledeća hipoteza tačna.

Hipoteza. Za svaku konačnu Maljcevljevu algebru A postoji konačan skup
R relacija na A takav da važi: PolA = Comp(A,R).

Prema [32, p. 50] znamo da za svaki konačan skup R relacija na A, postoji
jedna konačna relacija ρ na A takva da je Comp(A,R) = Comp(A, {ρ}). Pa se
navedena hipoteza može formulisati na sledeći način. U svakoj konačnoj Maljcev-
ljevoj algebri, polinomi se mogu opisati pomoću samo jedne relacije. Ako je ova
hipoteza tačna onda ona ima sledeće posledice:
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(1) Na konačnom skupu A, postoji najvǐse prebrojivo mnogo polinomijalnih
Maljcevljevih klonova. Stoga, postoji prebrojiva lista konačnih Maljcev-
ljevih algebri takvih da je svaka konačna Maljcevljeva algebra polinomi-
jalno ekvivalentna izomorfnoj kopiji neke od algebri sa liste.

(2) Ne postoji beskonačan opadajući niz polinomijalnih Maljcevljevih klonova
na konačnom skupu.

Koristeći [32, Folgerung 1.1.18, p.49] znamo da je dovoljno proveriti da li
n-arna funkcija očuvava sve relacije arnosti najvǐse |A|n, da bi utvrdili da li je f
sadržana u Comp(A, Inv(A, PolA)). To i jeste glavna ideja za pokazivanje sledećeg
parcijalnog rezultata ove hipoteze.

Teorema §3.3.22 Neka je A konačna Maljcevljeva algebra kod koje je mreža
kongruencija visine najvǐse dva. Tada postoji konačan skup relacija R na A takav
da je PolA = Comp(A,R).
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Scientific field: Mathematics
SF
Scientific discipline: Algebra
Key words: Polynomials, clones, Mal’cev algebra, commutators
Holding data:
HD Note:
Abstract: We establish several properties of higher commutators, which were

introduced by A. Bulatov, in congruence permutable varieties. We use these
commutators to prove that the clone of polynomial functions of a finite Mal’cev
algebra whose congruence lattice is of height at most 2, can be described by a
finite set of relations. For a finite nilpotent algebra of finite type that is a product
of algebras of prime power order and generates congruence modular variety, we
are able to show that the property of affine completeness is decidable. Moreover,
polynomial equivalence problem has polynomial complexity in the length of the
input polynomials.

AB
Accepted by the Scientific Board on: 15th January 2009
Defended:
Thesis defend board:
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