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Abstract—Existing consensus models focus on improving the

group consensus level, but ignore whether a higher group
consensus level means higher mutual acceptance of decision
makers. In the field of opinion dynamics, the bounded confidence
model asserts that the decision makers will accept the preferences
of others within a neighborhood of theirs with width a certain
confidence level. Inspired by this research methodology, this
paper develops a consensus model to address the acceptance issue
based on individual bounded confidences. Specifically, a bounded
confidence-based consensus measure is designed to measure the
level of group mutual acceptance, and a multi-stage optimization
feedback mechanism based on individual bounded confidences is
proposed to maximize the group mutual acceptance and minimize
the amount of preference adjustment. A numerical example and a
simulation analysis are included to illustrate the use of the model
and to justify its effectiveness, respectively.

Index Terms—Group decision making; Consensus; Bounded
confidence; Multi-Stage Optimization

I. INTRODUCTION

O obtain a solution with agreement in group decision
making (GDM), it is necessary to include a consensus
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process within the resolution procedure [1]-[5], with tools to
support the enhancement of consensus level among the group
via an iterative process of preference adjustment. Consensus
measurement and feedback mechanism are two key phases
normally included in consensus process. The first phase is to
measure and quantify the consensus level among the group,
while the second phase is often embodied in the form of
consensus rules that generate preference adjustment
recommendations to increase the group consensus level.

Currently, measurement of consensus is mainly based on the
use of a distance function in two main methods: (1)
Measurement based on the distances between the individual
decision makers' preferences and the collective preference.
Spillman et al.'s research on consensus within the fuzzy sets
framework [6] being one of the earliest approaches to develop a
distance based consensus measure; other notable examples of
developing distance based consensus measures are Herrera et
al.'s linguistic preferences consensus measures [7] and
Ben-Arieh and Chen's order based consensus measure and
mean based consensus measure [8]. (2) Measurement based on
pairwise distances between decision makers' preferences.
Kacprzyk and Fedrizzi et al. [9] developed the consensus
measurement to capture the similarity between decision
makers' preferences from the perspective of "soft"; Herrera et al.
[10] proposed consensus measurement for linguistic
preferences based on the concept of coincidence of linguistic
values; while Chen et al. [11] investigated consensus
measurement based on deviation and overlap degrees in GDM
with uncertain linguistic terms.

Feedback mechanism is mainly expressed in the form of
consensus rules and includes two types: (1) The first type of
rule is known as the identification rule and direction rule
(IR-DR) [12]-[14], where IR identifies the decision makers in
unacceptable states of consensus levels who are advised by DR
to adjust their preferences in the appropriate direction.
Herrera-Viedma et al. [13] studied the feedback mechanism in
the form of IR-DR for pursuing higher consensus level in a
multigranular linguistic preference relation framework; Zhang
et al. [15] used IR-DR within the uncertain 2-tuple linguistic
preference relations framework; while Dong et al. [16] and Wu
et al. [17] proposed trust relationships consensus models with
IR-DR. (2) The second type of rule is known as the
optimization-based consensus rule [18]-[20], because it aims to
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minimize the adjustments/costs. Zhang et al. [53] stuided
minimum cost consensus models and their economic
significance; while Ben-Arieh and Easton [22] investigated the
minimum cost issue with multiple attributes; Zhang et al. [21]
developed the minimum adjustments in a 2-rank context; while
Wu et al. [23] studied this issue in GDM with trust
relationships.

In the existing consensus models, the willingness to accept
the feedback recommendations has been studied in the form of
bounded confidence in recent years. In opinion dynamics, the
bounded confidence model defines this psychological behavior,
that is, decision maker will only accept the preferences within
their bounded confidence [24]-[26]. Zhang et al. [27]
developed a two-stage consensus model with bounded
confidence; Liang et al. [28] studied this issue in minimum
adjustments consensus model with time constraints; Zha et al.
[29] proposed a bounded confidence learning mechanism in
GDM; Zhang et al. [56] studied GDM with bounded confidence
within linguistic preference context; Zhang et al. [57]
considered leadership and bounded confidence in social
network GDM; while Dong et al. [54] proposed a hybrid GDM
framework using bounded confidence to obtain stable opinions.
However, there are still some limitations in the existing studies:

(1) In the existing consensus models, the measurement of
consensus are based on a distance function as described above,
which may not ensure that decision makers will accept the final
decision result. Indeed, even if the preferences of two decision
makers are similar, there is still a certain distance between their
preferences that may be larger than their respective bounded
confidence levels leading to their disagreement. On the other
hand, even if the preferences of two decision makers are not
similar, the two may agree with each other because of their
larger psychological bottom line.

(2) In a consensus process, the feedback mechanism
improves the similarities of the preferences of decision makers
without considering the improvement of decision makers'
mutual acceptance. However, the mutual acceptance among
decision makers is one of the characteristics describing
consensus, since it affects decision makers' satisfaction on the
final decision results. In other words, the existing feedback
mechanisms can effectively enhance the similarity of group
preferences but not the mutual acceptance among decision
makers.

To overcome the above limitations, this paper proposes a
bounded confidence based consensus model with multi-stage
optimization feedback mechanism (MOFMCM) for multiple
attribute GDM (MAGDM) problems, aiming at helping
promote the level of group mutual acceptance improvement.
The specific contributions of this paper are:

(1) A consensus measurement methodology to quantify the
level of group mutual acceptance based on the bounded
confidence model in opinion dynamics;

(2) A multi-stage optimization feedback mechanism based
on bounded confidence: (i) maximizing the level of mutual
acceptance, (ii) minimizing the preference adjustments after
maximizing acceptance, (iii) maximizing the similarity of the
group when mutual acceptance cannot be improved, and (iv)
minimizing preference adjustments after maximizing
similarity;

(3) Simulation and comparison analysis methodology to

justify the effectiveness of MOFMCM in improving group
mutual acceptance.

The rest of this article is arranged as follows. In Section II,
the general consensus process framework, the minimum
adjustment consensus model, and the bounded confidence
model are presented. The resolution process for the MAGDM
problem with bounded confidence is described in Section III.
Section IV illustrates the use of the MOFMCM and analyzes its
effectiveness in increasing mutual acceptance. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES

This section reviews briefly the main architecture of a
general consensus process in MAGDM (Section II-A), the
minimum adjustment consensus model (Section II-B), and the
bounded confidence model (Section II-C).

A. A General Consensus Process in MAGDM
The main objective of an MAGDM problem is to arrive at

a consensus-based solution from multiple alternatives on
multiple attributes. The typical elements of an MAGDM
problem are:

(1) A group of decision makers )2}(,,,{ 21  rdddD r
with associated weights },,,{ 21 r  subject to

constraints: ),,2,1(0 rkk  ;  
r

k k1 1 .
(2) A finite set of alternatives )2}(,,,{ 21  mxxxX m ,

which are the potential solutions of the MAGDM problem;
(3) A set of attributes )2}(,,,{ 21  naaaA n with

associated weights )2}(,,,{ 21  nwwww n subject to the

constraints: ),,2,1(0 njw j  ;  
n

j jw1 1 .

Fig.1. A general consensus process framework
A consensus process is an iterative process of preference

adjustment with the purpose of improving the group consensus
level. Fig.1 shows its most general basic process, which
consists of two fundamental phases:

(1) Consensus measurement: This phase quantifies the group
consensus level by the first method as described before [14],
[31], [39], [48]. Let nm

k
ij

k vV  )( be the multiple attribute
decision matrix expressed by decision maker Dd k  , where

]1,0[kijv denotes the evaluation value for the alternative
Xxi  with respect to the attribute Aa j  . Without loss of

generality, this paper uses the weighted average (WA)
operator [32] (different aggregation operators are applicable)
to compute the collective decision matrix nm

c
ij
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Applying the Manhattan distance, the individual consensus
level of Dd k  is:

mn
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The weighted average of the individual consensus levels is
the group consensus level:

 


r

k kk dclCL
1

)( (3)

The larger ]1,0[CL , the higher the group consensus level.
Let ]1,0[ be ‘the group consensus threshold’ (closer to 1).
If CL , then the next consensus fundamental phase is
activated because of the unacceptable or unsatisfactory current
group consensus level. Otherwise, the current collective
decision matrix is considered as the final one.

(2) Feedback mechanism: This phase provides feedback
recommendations for increasing the group consensus level. IR
and DR are two classical consensus rules employed in this
phase [12], [13]. IR is employed for identifying the decision
maker(s) with unsatisfactory consensus level(s). DR provides
feedback recommendations of preference adjustment,

nm
k
ij

k vV  )( , to the identified decision makers Dd k  with
the goal of increasing their consensus levels:

)],max(),,[min( c
ij

k
ij

c
ij

k
ij

k
ij vvvvv  (4)

When an satisfactory group consensus level is achieved, via
the iterative application of the above two consensus phases, a
selection process is activated to derive a final ranking of the
alternatives ( ix ) based on their corresponding dominance
values ( iQ ) [33], [34]:


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1
21 ),,,(  (5)

B. The Minimum Adjustment Consensus Model
As described in section II-A, the general consensus model

uses the IR-DR to promote the group to achieve a consensus.
However, IR and DR based feedback mechanism may cause a
large amount of loss of the original preference information. To
improve the efficiency of group consensus, Dong et al. [18]
proposed an original minimum adjustment consensus model.
To simplify the illustration here, this model is illustrated in
the form of a multiple attribute decision matrix as the
preference of decision maker.

This model retains the original preferences of decision
makers as much as possible. If nm

k
ij

k vV  )( and nm
k
ij

k vV  )(
are the original and adjusted multiple attribute decision matrix
mentioned in Section II-A, then the objective function to
optimize is the distance between kV and kV , ( , )k kD V V , i.e.

1
min ( , )

r
k k

k
D V V


 (6)

Meanwhile, the individual consensus level should be at an
acceptable level, i.e.

( )kcl d   (7)

where
1 1

( )= | |m n k c
k ij iji j

cl d v v mn
 

   ; cV is the collective

decision matrix obtained from the adjusted multiple attribute
decision matrices via the aggregation function 1( , , )rf V V  ;
and [0,1]  (closer to 0) is the consensus threshold. Thus, the
optimal adjusted preferences, 1{ , , }rV V , which are the
feedback recommendations, are obtained by solving the below
optimization model:
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(8)

So far, the minimum adjustment consensus model has been
widely studied in the following scenarios [46]: (1) using
linguistic preferences (Dong et al. [18]; Wu et al. [40]); (2)
using preference relations (Zhang et al. [41]; Wu et al. [42];
Zhang et al. [43]); (3) using heterogeneous preference
representation structures (Chen et al. [44]; Zhang et al. [45]); (4)
in MAGDM (Zha et al. [30]; Yu et al. [47]); (5) using a
multi-stage optimization strategy (Zhang et al. [19]; Wu et al.
[50]); (6) in classification-based GDM (Zhang et al. [21]; Chen
et al. [49]); (7) in social network GDM (Wu et al. [23]; Cheng
et al. [51]); (8) in large-scale GDM (Zha et al. [30]; Xiao et al.
[52]); and (9) in opinion dynamic GDM (Liang et al. [28]; Chen
et al. [39]; Dong et al. [53]).

C. Bounded Confidence Model
In opinion dynamics, Hegselmann-Krause (HK) model [35]

and Deffuant-Weisbuch (DW) model [36], [37], are two
widespread bounded confidence models. Both models study
individual willingness of accepting opinions, and argue that
decision makers will only be influenced by the
recommendations similar to their own opinions. Specifically,
the bounded confidence of a decision maker is the critical value
to judge whether a recommendation is acceptable to the
decision maker.

Let nm
R
ij

R vV  )( be the feedback recommendation for

adjusting decision matrix nm
k
ij

k vV  )( of decision maker kd in

a consensus process. Let },,,{ 21
k
n

kk bbbB  be the bounded
confidence set of decision maker kd associated with the
attributes )2}(,,,{ 21  naaaA n . According to the bounded
confidence model, decision maker kd will accept the feedback

recommendation R
ijv when the distance between R

ijv and k
ijv ,

),( k
ij

R
ij vvD , is less than or equal to k

jb , i.e.
k
j

k
ij

R
ij bvv  || (9)

In both HK and DW models, the bounded confidence
influences the convergence time and the distribution of final
opinions [35]-[37]. The larger the bounded confidence value,
the smaller the number of opinion clusters and the larger the
opinion cluster size. When the bounded confidence takes a
sufficiently large value, an opinion cluster is formed between
the decision makers, that is, consensus is reached. In GDM
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problems, consensus model has begun to pay attention to the
bounded confidence model [27], [29], [30], [54]. Zha et al. [29]
provided a learning algorithm to find out the unknown bounded
confidence. However, in most existing studies, the research
paradigm of GDM with bounded confidence assumes that the
bounded confidences are given or known. Therefore, in this
paper, we follow the research line of the GDM with bounded
confidence and assume that the bounded confidences are
known.

III. CONSENSUS MODEL WITH MULTI-STAGE OPTIMIZATION
FEEDBACK MECHANISM

This section proposes a consensus model with individual
bounded confidences based on a multi-stage optimization
feedback mechanism.

A. Framework of the MOFMCM Model
In a consensus process under bounded confidence context,

decision makers will accept or reject feedback
recommendations according to their own bounded confidences
[29], [30]. However, the existing bounded confidence based
consensus models ignore the mutual acceptance among
decision makers. Even if the distance-based consensus is at a
high level, decision makers may be unsatisfied with the final
solution since other decision makers' preferences may be
unacceptable for them based on their own bounded confidences.
Therefore, it is meaningful to measure the consensus level
taking into account the mutual acceptance of decision makers.
Thus, this section develops a consensus-based solution for
MAGDM problem with individual bounded confidences,
where the consensus level and the multi-stage optimization
feedback mechanism are both designed based on the level of
mutual acceptance among decision makers.

Fig. 2. Framework of the MOFMCM model

The MOFMCM model framework shown in Fig. 2 includes
two key phases: (1) Consensus measure based on bounded
confidence, and (2) multi-stage optimization feedback
mechanism. In the first phase group consensus level is
measured based on the mutual acceptance level among the
group. The second phase is divided into two parts: (1) A
two-stage optimization based on mutual acceptance to improve
the mutual acceptance between decision makers, and (2) a
two-stage optimization based on similarity which is activated
when the first part cannot be improved, to improve the
similarity between decision makers.

B. Consensus Measure based on Bounded Confidence
As mentioned in the introduction, two main methods for

measuring group consensus level aim to narrow the preference
distance between decision makers. However, they ignored
whether decision makers agreed to the current level of
consensus at each round. In other words, the decision makers'
preferences may be relatively similar but with a context of
mutual rejection among them; on the contrary, the decision
makers' preferences may not be similar but within a context of
mutual acceptance of them. This is illustrated with the
following example.

Example 1: Let }6.0,05.0,1.0{1 B and }56.0,04.0,41.0{2 B
be the bounded confidences of decision makers 1d and 2d ,
respectively. And their decision matrices are as follows:


















51.039.018.0
35.053.007.0
09.063.052.0

1V ，

















63.045.014.0
08.046.024.0

58.056.076.0
2V .

Based on Eq. (6), we draw the following observations:
(1) Decision makers 1d and 2d are far away from each other

with respect to their evaluations with respect to attribute 1a ,
and each one of them consider the other's opinions are
unacceptable as suggestions.

(2) Decision makers 1d and 2d have close evaluations with
respect to attribute 2a , but each one of them consider the
other's opinions unacceptable as suggestions.

(3) Decision makers 1d and 2d are still far apart in their
evaluations with respect to attribute 3a , but they are mutually
acceptable.

In what follows, the group consensus level is derived from
the measurements of the levels of mutual acceptance among
decision makers based on individual bounded confidences.

Let },,,{ 21
k
n

kk bbbB  be the bounded confidence set of
decision maker kd associated with the set of attributes

},,,{ 21 naaaA  )2( n . Let ( )lk lk
ij m nAD ad 

( , 1, 2, , ; )k l r k l  be a 0-1 matrix to represent the decision
maker ld acceptance of decision maker kd : =1lk

ijad denotes
decision maker ld accepts decision maker kd evaluation value
for alternative Xxi  with respect to the attribute Aa j  ;

otherwise, =0lk
ijad . According to the bounded confidence

model, we have
1 if | |
0 if | |

k l l
ij ij jlk

ij k l l
ij ij j

v v b
ad

v v b
     

(10)

The following acceptance levels are defined:
(1) The acceptance level from decision maker ld to decision

maker kd :

1 1

m n lk
iji jlk

ad
AL

mn
 

 
(11)

(2) The group's acceptance level of decision maker kd :
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1,( )
1

r lk
l l k

k

AL
AL d

r
 



(12)

(3) The group mutual acceptance level:

1
( )r

kk
AL d

AL
r

  (13)

Obviously, [0,1]AL . And larger AL values indicate
higher mutual acceptance levels. It can be seen from Eqs.
(10)-(13) that under the same preference, the greater the
boundary trust, the greater the degree of mutual acceptance. In
this paper, we use the group mutual acceptance level to measure
consensus instead of the traditional method described by Eq.
(3). For notation simplicity, we still use ]1,0[ to denote the
mutual acceptance threshold. If AL , then group mutual
acceptance is unsatisfactory, and the feedback phase is
activated. Otherwise, Eq. (5) will be used to obtain the
dominance values of alternatives and the final solution to the
MAGDM problem.

C. Multi-stage Optimization Feedback Mechanism
Existing feedback mechanisms aim to increase the distance

based group consensus level by improving the similarity
between decision makers without considering the decision
makers' recognition of the consensus level improvement. This
section proposes a multi-stage optimization feedback
mechanism based on bounded confidence, which includes two
parts: (1) a two-stage optimization based on mutual acceptance,
and (2) a two-stage optimization based on similarity.

As shown in Example 1, the mutual acceptance of attribute
1a between the two decision makers cannot be improved. This

situation may happen for the entire group. When the two-stage
optimization based on mutual acceptance cannot improve the
group mutual acceptance, the MOFMCM model will activate
the two-stage optimization based on similarity to enhance the
similarity of the decision makers' decision matrices and lay the
foundation for increasing the mutual acceptance among
decision makers in next round.

(1) A two-stage optimization based on mutual acceptance.
This consists of two consecutive stages: Stage (i) to maximize
the mutual acceptance, and Stage (ii) to minimize the
preference adjustments based on Stage (i).
Stage (i) aims to maximize the group mutual acceptance, i.e.,

the feedback decision matrices kV and lV should maximize
the number of 1 elements in ( )lk lk

ij m nAD ad 

( , 1, 2, , ; )k l r k l  :

1, 1 1 1

1max  max
( 1)

r r m n
lk
ij

l l k k i j
AL ad

mnr r       （or ） (14)

1 if | |
0 if | |

k l l
ij ij jlk

ij k l l
ij ij j

v v b
ad

v v b
     

(15)

In order to make the feedback decision matrix kV within the
acceptable range of the decision maker kd , the feedback
decision matrix kV and the decision matrix kV need to meet
the following constraint:

| |k k k
ij ij jv v b  (16)

Based on Eqs. (14)-(16), the mutual acceptance
maximization model becomes:

1, 1 1 1

1min
( 1)

1,2, , ; 1,2, , ;
. . | |

1,2, ,

1  if | | 1,2, , ; 1,2, , ;
0  if | | , 1,2, , ;

1,2, , ;
0 1

r r m n
lk
ij

l l k k i j

k k k
ij ij j

k l l
ij ij jlk

ij k l l
ij ij j

k
ij

ad
mnr r

i m j n
s t v v b

k r

v v b i m j n
ad

v v b l k r l k

i m j
v

    




 
 



         
 

 

 
 


 


 1,2, , ;
1,2, ,

n
k r









 




(17)

The optimal solution for AL denoted by *AL , is the
solution of model (17), which stands the highest level of mutual
acceptance that the group can reach. Nevertheless, multiple
solutions for kV ( 1, 2, , )k r  may exist in model (17).
Therefore, we further optimize the optimal solution of the
feedback decision matrices through Stage (ii).
Stage (ii) aims to minimize the group preference adjustments

on the basis of the optimal solution *AL , i.e., the distances
between the feedback decision matrix kV and the decision
matrix kV needs to be minimized:

1 1 1

1min | |
r m n

k k
ij ij

k i j
v v

rmn   

 (18)

where lk
ijad is computed by Eq. (15), while constraint (16)

being still valid at Stage (ii). To achieve the highest level of
mutual acceptance, the following constraint is to be met:

1, 1 1 1

1 *
( 1)

r r m n
lk
ij

l l k k i j
ad AL

mnr r     


   (19)

According to Eqs. (15)-(19), the preference adjustment
minimization model becomes:

1 1 1

1 1 1

1min | |

1, 2, , ; 1, 2, , ;
. . | |

1, 2, ,

1  if | | 1, 2, , ; 1, 2, , ;
0  if | | , 1, 2, , ;

1
( 1)

r m n
k k
ij ij

k i j

k k k
ij ij j

k l l
ij ij jlk

ij k l l
ij ij j

r m n
lk
ij

k i j

v v
rmn

i m j n
s t v v b

k r

v v b i m j n
ad

v v b l k r l k

ad
mnr r

  

  



 
 



         







 


 


1,

*

1,2, , ; 1, 2, , ;
0 1

1,2, ,

r

l l k

k
ij

AL

i m j n
v

k r

 








 

  

 



 


(20)

The optimal value for kV ( 1, 2, , )k r  denoted *kV , is
the solution of model (20). Model (20) has a closed bounded
non-empty feasible region. Therefore, it can be known from the
Weierstrass theorem that the optimal solution(s) of model (20)
exists. However, model (20) may still have multiple optimal
solutions. For this kind of issues, it can be further optimized
based on these optimal solutions. For example, Chandran et al.
[58] developed a two-stage approach to pursue a unique
optimal solution; Dong and Herrera-Viedma [59] also agreed
with this solution approach. Specifically, let *V be the optimal
solution set of model (20), and then the unique optimal solution
can be obtain based on model (20'):
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* *
min max ( *, )
k

k k

kV V
D V V


(20')

Model (20') further minimizes the maximal distances
between *kV and kV , and can be similarly solved. This paper
does not focus on the uniqueness issue, so we do not discuss
this issue in detail here.

To improve the group mutual acceptance, it is recommended
that the adjusted decision matrix value k

ijv  of decision maker

kd follows the rule below:

[min( , *),max( , *)]k k k k k
ij ij ij ij ijv v v v v  (21)

(2) A two-stage optimization based on similarity. This part
also includes two stages of optimization: Stage (i) to maximize
the similarity of the group, and stage (ii) to minimize preference
adjustments.
Stage (i) aims to increase the proximity of the decision

makers' decision matrices by minimizing the distance between
the individual feedback decision matrices ( 1, 2, , )kV k r 
and their corresponding collective decision matrix cV ,

1 1
( , ) | |m nk c k c

ij iji j
D V V v v m n

 
    , i.e.,

1
min ( , )

r
k c

k
D V V


 (22)

Constraint (16) is used here to ensure that the adjusted
decision matrix is within the bounded confidence range of the
decision maker. Based on Eq. (1), we have

1

rc k
ij k ijk
v v


 .

Then, the model similarity maximization model becomes:

1

1

min ( , )

. . | | 1, 2, , ; 1, 2, ,

1, 2, , ; 1, 2, ,

0 1 1,2, , ; 1, 2, ,

r
k c

k

k k k
ij ij j

r
c k
ij k ij

k
k
ij

D V V

s t v v b i m j n

v v i m j n

v i m j n







    

   

    





 

 

 

(23)

The optimal values for kV and cV , denoted as **kV and
**cV , are the solution for model (23). Based on Eqs. (2) and

(3), the highest level of group similarity (i.e., group consensus
level) *CL is:

1 1 1
| ** ** |

* 1
r m n k c

ij ijk i j
v v

CL
rmn

  


 
  

(24)

However, model (23) may multiple solutions for kV
( 1, 2, , )k r  . Therefore, Stage (ii) further minimizes the
preference adjustments based on the highest group similarity to
optimize the optimal solution for kV ( 1, 2, , )k r  . To
achieve this, Eq. (19) is employed with the group similarity
subject to the following constraint:

1 1 1

11 | | *
r m n

k c
ij ij

k i j
v v CL

rmn   

   (25)

According to Eqs. (16) and (25), the preference adjustment
minimization model based on the highest group similarity
become:

1 1 1

1

1 1 1

1min | |

1,2, , ; 1,2, , ;
. . | |

1,2, ,
1,2, , ; 1,2, , ;
1,2, ,

11 | | *

1,2, , ; 1,2, , ;
0 1

1,2, ,

r m n
k k
ij ij

k i j

k k k
ij ij j

r
c k
ij k ij

k

r m n
k c
ij ij

k i j

k
ij

v v
rmn

i m j n
s t v v b

k r
i m j n

v v
k r

v v CL
rmn

i m j n
v

k r



  



  



 
 


 




  

 
 









 

 


 














(26)

The optimal value for kV ( 1, 2, , )k r  , namely **kV  , is
the solution of model (23). To improve the group similarity, it
is recommended that the adjusted decision matrix value k

ijv  of
decision maker kd follows the rule below:

[min( , ** ),max( , ** )]k k k k k
ij ij ij ij ijv v v v v   (27)

D. Mixed 0-1 Linear Programming Associated with the
MOFMCM Model

To facilitate solving model (17), this is transformed into a
mixed 0-1 linear programming model. Lemma 1 is the theoretical
basis for equivalent transformation.
Lemma 1: Let M be a large enough number. When k

ijv and
l
ijv satisfy constraint (28), we have

1 if | |
0 if | |

k l l
ij ij jlk

ij k l l
ij ij j

v v b
ad

v v b
     

.

1,2, , ; 1,2, , ;
( 1)

, 1,2, , ;
1,2, , ; 1,2, , ;

, 1,2, , ;
1,2, , ; 1,2, , ;

(2 )
, 1,2, , ;

(1

k l lk
ij ij ij

k l lk
ij ij ij

k l l lk lk
ij ij j ij ij

k l l lk l
ij ij j ij ij

i m j n
v v y M

l k r l k
i m j n

v v y M
l k r l k
i m j n

v v b y ad M
l k r l k

v v b y ad

 
  

 
 

 
 

 
    

 

    

 


 


 


1,2, , ; 1,2, , ;
)

, 1,2, , ;
1,2, , ; 1,2, , ;

( 1 )
, 1,2, , ;

1,2, , ; 1,2, , ;
( )

, 1,2, , ;
1,2, , ;

, {0,1}

k

k l l lk lk
ij ij j ij ij

k l l lk lk
ij ij j ij ij

lk lk
ij ij

i m j n
M

l k r l k
i m j n

v v b y ad M
l k r l k
i m j n

v v b y ad M
l k r l k
i m j

y rd

 
 

 
     

 
 

    
 

 


 


 


 


 1,2, , ;
, 1,2, , ;

n
l k r l k






















  




(28)

Proof: From (1 )k l lk
ij ij jiv v y M   and k l lk

ij ij jiv v y M  , we

obtain that: (1) 1lk
ijy  implies 0k l

ij ijv v  ; (2) while 0lk
ijy 

implies 0k l
ij ijv v  .

Furthermore, from (2 )k l l lk lk
ij ij j ji ijv v b y ad M     and

(1 )k l l lk lk
ij ij j ji ijv v b y ad M     , we have: (3) When 1lk

ijy  ,

from (1) we have 0k l
ij ijv v  . Then, 1lk

ijad  can obtain

0 k l l
ij ij jv v b   and 0k l l

ij ij jv v b M    ; while 0lk
ijad 

implies 0 k l
ij ijv v M   and 0k l l

ij ij jv v b   ; (4) When
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0lk
ijy  , 0k l

ij ijv v  can be obtained from (2). Then, 1lk
ijad 

implies 0k l l
ij ij jv v b M    and 0 2k l l

ij ij jv v b M    ;

while 0lk
ijad  can obtain 0 2k l l

ij ij jv v b M    and

0 k l l
ij ij jv v b M    .

Then, it is
1 if 0
0 if 0

k l l
ij ij jlk

ij k l l
ij ij j

v v b
ad

v v b
       

.

Subsequently, from (1 )k l l lk lk
ij ij j ji ijv v b y ad M      and

( )k l l lk lk
ij ij j ji ijv v b y ad M     , we have that: (5) When 1lk

ijy  ,

based on (1), 0k l
ij ijv v  . Furthermore, 1lk

ijad  implies

0k l l
ij ij jv v b M     and 2 0l k l

j ij ijb M v v     ; by

0lk
ijad  , it can be guaranteed that 0 2k l l

ij ij jv v b M     and

0l k l
j ij ijb M v v     ; (6) When 0lk

ijy  , based on (2),

0k l
ij ijv v   . Then, 1lk

ijad  guarantees 0 k l l
ij ij jv v b   

and 0l k l
j ij ijb M v v     ; while 0lk

ijad  guarantees

0 k l l
ij ij jv v b M     and 0 l k l

j ij ijb v v    .

Therefore, we have
1 if 0
0 if 0

k l l
ij ij jlk

ij k l l
ij ij j

v v b
ad

v v b
         

.

Then, constraint (25) implies
1 if | |
0 if | |

k l l
ij ij jlk

ij k l l
ij ij j

v v b
ad

v v b
     

.

This completes the Proof of Lemma 1.
Proposition 1: Let M be a large enough number. The model

(17) can be transformed into the below 0-1 mixed linear
programming model (29).

1, 1 1 1

1min
( 1)

1,2, , ; 1, 2, , ;
. .

1, 2, ,
1, 2, , ; 1, 2, , ;
1, 2, ,

1, 2, , ; 1, 2, , ;
( 1)

, 1, 2, , ;

r r m n
lk
ij

l l k k i j

k k k
ij ij j

k k k
ij ij j

k l lk
ij ij ij

k l
ij ij ij

rd
mnr r

i m j n
s t v v b

k r
i m j n

v v b
k r
i m j n

v v y M
l k r l k

v v y

    




 
 


 

  

 

  
 

 

 
 

 

 


1,2, , ; 1, 2, , ;
, 1, 2, , ;

1, 2, , ; 1, 2, , ;
(2 )

, 1, 2, , ;
1, 2, , ; 1, 2, , ;

(1 )
, 1, 2, , ;

( 1

lk

k l l lk lk
ij ij j ij ij

k l l lk lk
ij ij j ij ij

k l l lk lk
ij ij j ij ij

i m j n
M

l k r l k
i m j n

v v b y ad M
l k r l k
i m j n

v v b y ad M
l k r l k

v v b y ad

 
 

 
    

 
 

    
 

     

 


 


 


1,2, , ; 1, 2, , ;
)

, 1, 2, , ;
1, 2, , ; 1, 2, , ;

( )
, 1, 2, , ;

1, 2, , ; 1, 2, , ;
0 1

1,2, ,
1, 2, , ; 1, 2, , ;

, {0,1}
, 1,2, , ;

k l l lk lk
ij ij j ij ij

k
ij

lk lk
ij ij

i m j n
M

l k r l k
i m j n

v v b y ad M
l k r l k
i m j n

v
k r
i m j n

y ad
l k r l k











 
 

 
    

 
 

 

 


 

 


 


 

 



























(29)

Proposition 2: Let k k k
ij ij ijf v v  , | |k k

ij iju f , and M be a
large enough number. Then model (20) can be transformed into
the below 0-1 mixed linear programming model (30).

1 1 1

1min

1,2, , ; 1, 2, , ;
. .

1, 2, ,
1, 2, , ; 1, 2, , ;
1, 2, ,

1, 2, , ; 1, 2, , ;
1, 2, ,

1, 2, , ; 1, 2, , ;
1, 2,

r m n
k
ij

k i j

k k k
ij ij ij

k k k
ij ij ij

k k k
ij ij j

k k k
ij ij j

u
rmn

i m j n
s t v v u

k r
i m j n

v v u
k r
i m j n

v v b
k r
i m j n

v v b
k

  

 
 


 

  

 

 

 

  



 

 

 

 
,

1, 2, , ; 1, 2, , ;
( 1)

, 1, 2, , ;
1, 2, , ; 1, 2, , ;

, 1, 2, , ;
1, 2, , ; 1, 2, , ;

(2 )
, 1, 2, , ;

(1

k l lk
ij ij ij

k l lk
ij ij ij

k l l lk lk
ij ij j ij ij

k l l lk
ij ij j ij i

r
i m j n

v v y M
l k r l k
i m j n

v v y M
l k r l k
i m j n

v v b y ad M
l k r l k

v v b y ad

 
  

 
 

 
 

 
    

 

    

 


 


 


1 1 1

1,2, , ; 1, 2, , ;
)

, 1, 2, , ;
1, 2, , ; 1, 2, , ;

( 1 )
, 1, 2, , ;

1, 2, , ; 1, 2, , ;
( )

, 1, 2, , ;
1
( 1)

lk
j

k l l lk lk
ij ij j ij ij

k l l lk lk
ij ij j ij ij

m n
lk
ij

k i j

i m j n
M

l k r l k
i m j n

v v b y ad M
l k r l k
i m j n

v v b y ad M
l k r l k

ad
mnr r   

 
 

 
     

 
 

    
 

 

 


 


 


1,
*

1,2, , ; 1, 2, , ;
0 1

1,2, ,
1, 2, , ; 1, 2, , ;

, {0,1}
, 1,2, , ;

r r

l l k

k
ij

lk lk
ij ij

AL

i m j n
v

k r
i m j n

y ad
l k r l k

 

































 

  

 


  
 

 

 
 

 


(30)

Proof: The main part of the proof of Propositions 1 and 2 can
be obtained from the proof of Lemma 1, so the detailed
description is omitted.

E. Algorithm for the MOFMCM Model
Based on the above descriptions, the framework of

MOFMCM model is detailed in Algorithm I. Due to the time
limitation in the actual consensus process, the maximum
number of iterations of Algorithm I usually does not exceed 5
rounds [27], [30]. Therefore, the key to solving the
computational complexity of Algorithm I depends on its linear
programming models. Dantzig [55] pointed out that the average
time complexity of the simplex algorithm to solve linear
programming model is O(n), which shows that the average time
complexity of our linear programming models using Dantzig's
method is also O(n).

Algorithm 1: MOFMCM model

Input: Initial decision matrices 1 2{ , , , }rV V V , individual bounded

confidences 1 2{ , , , }rB B B , mutual acceptance threshold  , decision
makers' weights 1 2{ , , , }m   , attributes' weights 1 2{ , , , }nw w w .

Output: The ranking of alternatives.
Step 1: Let 0t  and , ,( ) ( )k t k t k

ij m n ij m nV v v   ( 1, 2, , )k r  .

Step 2: Using Eqs.(10)-(12), obtain the group acceptance level of decision
make kd ( 1, 2, , )k r  at round t ,

1,
( ) 1rt lk t

k l l k
AL d AL r

 
  （ ）,

where
,

1 1,

m n lk t
iji jlk t

ad
AL

mn
 

 
and

, ,
,

, ,

1 if | |
0 if | |

k t l t l
ij ij jlk t

ij k t l t l
ij ij j

v v b
ad

v v b
     

.

Step 3: Apply Eq. (10) to compute the group mutual acceptance at round t :
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1
( )rt t

kk
AL AL d r


 .

Step 4: If tAL  , i.e., tAL at round t is unacceptable, then go to Step 5;
otherwise, go to Step 9.

Step 5: Solve model (17) and obtain *tAL . If *=t tAL AL , then go to Step 7;
otherwise, continue Step 6.

Step 6: Solve model (20) and obtain , *k tV ( 1, 2, , )k r  . The recommended

adjusted decision matrix , 1 , 1( )k t k t
ij m nV v 

 follow the rule:
, 1 , , , ,[min( , *),max( , *)]k t k t k t k t k t

ij ij ij ij ijv v v v v  . Go to Step 8.

Step 7: Solve model (23) to obtain , **k tV and , **c tV . Compute *tCL based
on Eq. (24). Solve model (26) to obtain , **k tV  ( 1, 2, , )k r  . The

recommended adjusted decision matrices , 1 , 1( )k t k t
ij m nV v 

 follow the

rule: , 1 , , , ,[min( , ** ),max( , ** )]k t k t k t k t k t
ij ij ij ij ijv v v v v   .

Step 8: Let 1t t  ; and go back to Step 2.
Step 9: Apply Eq. (1) to aggregate 1, 2, ,{ , , , }t t r tV V V into , ,( )c t c t

ij m nV v  ,

where , ,
1

rc t k t
ij k ijk
v v


 . Then, output the ranking of alternatives

derived from the dominance value ,
1

n c t
i j ijj

Q w v


 .

IV. EXPERIMENTAL ANALYSIS

A numerical analysis is included first in this section to
illustrate the usage of the MOFMCM model. Then, simulation
analysis I is proposed to study the influence of the bounded
confidence on the MOFMCM model, while simulation analysis
II is designed to compare the consensus effectiveness of the
MOFMCM model and the general consensus reaching model
(abbreviated as the GCR).

A. Numerical Analysis
A gearbox manufacturing enterprise needs EPM software to

be supplied by one of four software suppliers
1 2 3 4{ , , , }X x x x x . A manager and five experts from different

departments (information; project management; financial;
planning; collaborators) use four qualitative attributes to
evaluate and compare the four suppliers: after-sales service and
training ( 1a ), core function ( 2a ), technical support level ( 3a )
and software cost ( 4a ). The weights associated with the experts
and attributes are {1/ 4,1/ 4, ,1/ 4}   and

{0.15,0.25,0.2,0.4}w  , respectively. In this MAGDM
problem, the mutual acceptance threshold is set as 0.8  ,
while the individual bounded confidences and initial decision
matrices are listed in Tables 1 and 2, respectively. Using Eq. (1),
the collective decision matrix of initial decision matrices, ,0cV ,
is obtained as shown in Table 3. Applying Eq. (5), we can
obtain the dominance values of alternatives: 1 0.513Q  ,

2 0.464Q  , 3 0.512Q  , 4 0.475Q  . Then, the corresponding
initial alternative ordering is: 1 3 4 2x x x x   .

Table 1. individual bounded confidences ( 1,2, , 4)kB k  

1a 2a 3a 4a

B1 0.36 0.35 0.30 0.32
B2 0.35 0.40 0.43 0.45
B3 0.30 0.34 0.28 0.27
B4 0.05 0.20 0.15 0.13

Table 2. initial decision matrices ( 1,2, , 4)kV k  

1a 2a 3a 4a 1a 2a 3a 4a

1d 2d

1x 0.45 0.90 0.70 0.75 0.65 0.20 0.20 0.60

2x 0.65 0.50 0.45 0.80 0.10 0.30 0.50 0.55

3x 0.80 0.25 0.20 0.80 0.20 0.60 0.25 0.20

4x 0.90 0.15 0.90 0.65 0.30 0.50 0.85 0.45

3d 4d

1x 0.50 0.55 0.40 0.45 0.30 0.50 0.65 0.30

2x 0.30 0.15 0.30 0.55 0.50 0.70 0.10 0.45

3x 0.70 0.65 0.55 0.75 0.35 0.70 0.75 0.35

4x 0.65 0.40 0.55 0.45 0.95 0.15 0.30 0.10

Table 3. The collective decision matrix ,0cV

1a 2a 3a 4a

1x 0.48 0.54 0.49 0.53
2x 0.39 0.41 0.34 0.59
3x 0.51 0.55 0.44 0.53
4x 0.70 0.30 0.65 0.41

(1) First round: Using Eqs. (10)-(13), the group mutual
acceptance is obtained: 1 0.57AL  . The experts are advised to
adjust decision matrices since 1AL  . Solving model (17),
we have 1 1*=0.98>AL AL . Then, the feedback decision matrices

,1*kV listed in Table 4 are obtained by solving model (20).

Table 4. The feedback decision matrices ,1*kV at first round

1a 2a 3a 4a 1a 2a 3a 4a

1d 2d

1x 0.45 0.65 0.65 0.60 0.55 0.35 0.45 0.60

2x 0.50 0.50 0.30 0.75 0.25 0.40 0.30 0.55

3x 0.60 0.50 0.35 0.65 0.35 0.60 0.55 0.33

4x 0.90 0.15 0.70 0.33 0.65 0.15 0.73 0.45

3d 4d

1x 0.50 0.55 0.45 0.45 0.30 0.50 0.55 0.30

2x 0.30 0.40 0.30 0.55 0.50 0.55 0.20 0.45

3x 0.60 0.65 0.55 0.65 0.35 0.65 0.65 0.35

4x 0.65 0.30 0.50 0.45 0.90 0.15 0.40 0.33

(2) Second round: Based on the feedback recommendation,
the decision matrices are adjusted to the ones of Table 5. The
mutual acceptance at this round is still below the threshold:

2 0.75AL   . Maximum mutual acceptance 2 2*=1>AL AL is
obtained by solving model (17). Solving model (23), we have
the optimal solution ,2*kV of Table 6.

(3) Third round: At this round, the adjusted decision matrices
,3kV are obtained and listed in Table 7 leading to a satisfactory

mutual acceptance: 3 0.802 0.8AL    . Applying Eq. (1),

the collective decision matrix ,3cV is obtained (Table 8), from
which the dominance values of alternatives are obtained
applying Eq. (5): 1 0.497Q  , 2 0.460Q  , 3 0.543Q  ,
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4 0.412Q  . Then, we have the alternative ordering

3 1 2 4x x x x   , and the gearbox manufacturing enterprise
ultimately choose 3x as its software supplier.

Table 5. The adjusted decision matrices ,2kV

1a 2a 3a 4a 1a 2a 3a 4a

1d 2d

1x 0.45 0.70 0.66 0.63 0.57 0.32 0.40 0.60

2x 0.53 0.50 0.33 0.76 0.22 0.38 0.34 0.55

3x 0.64 0.45 0.32 0.68 0.32 0.60 0.49 0.30

4x 0.90 0.15 0.74 0.39 0.58 0.22 0.75 0.45

3d 4d

1x 0.50 0.55 0.43 0.45 0.30 0.50 0.63 0.30

2x 0.30 0.31 0.30 0.55 0.50 0.67 0.12 0.45

3x 0.64 0.65 0.55 0.69 0.35 0.69 0.73 0.35

4x 0.65 0.34 0.52 0.45 0.94 0.15 0.32 0.15

Table 6. The feedback decision matrices ,2*kV at second round

1a 2a 3a 4a 1a 2a 3a 4a

1d 2d

1x 0.45 0.65 0.63 0.60 0.55 0.35 0.43 0.60

2x 0.50 0.50 0.32 0.75 0.25 0.38 0.32 0.55

3x 0.63 0.45 0.53 0.68 0.38 0.60 0.53 0.36

4x 0.90 0.15 0.52 0.39 0.65 0.22 0.52 0.45

3d 4d

1x 0.50 0.55 0.43 0.45 0.30 0.50 0.53 0.30

2x 0.30 0.38 0.30 0.55 0.50 0.53 0.22 0.45

3x 0.64 0.65 0.55 0.68 0.38 0.60 0.63 0.38

4x 0.65 0.30 0.52 0.45 0.90 0.15 0.42 0.15

Table 7. The adjusted decision matrices ,3kV

1a 2a 3a 4a 1a 2a 3a 4a

1d 2d

1x 0.45 0.66 0.64 0.61 0.55 0.34 0.43 0.60

2x 0.51 0.50 0.32 0.75 0.24 0.38 0.32 0.55

3x 0.64 0.45 0.49 0.68 0.37 0.60 0.52 0.35

4x 0.90 0.15 0.56 0.39 0.64 0.22 0.57 0.45

3d 4d

1x 0.50 0.55 0.43 0.45 0.30 0.50 0.61 0.30

2x 0.30 0.36 0.30 0.55 0.50 0.64 0.14 0.45

3x 0.64 0.65 0.55 0.68 0.36 0.67 0.71 0.36

4x 0.65 0.31 0.52 0.45 0.93 0.15 0.34 0.15

Table 8. The collective decision matrix ,3cV

1a 2a 3a 4a

1x 0.45 0.51 0.53 0.49
2x 0.39 0.47 0.27 0.58
3x 0.50 0.59 0.57 0.52
4x 0.78 0.21 0.50 0.36

B. Simulation Analysis I
Simulation analysis I is designed to study the influence of the

bounded confidence on the consensus effectiveness of the
MOFMCM model. In this simulation, the decision matrices are
randomly generated with initial values. Specifically, the
settings and issues involved in Simulation analysis I are as
follows:

(1) The bounded confidences are set within min max[ , ]  ,
namely min max[ , ]k

jb   , with the aim of studying the influence
of different levels of bounded confidence on consensus
reaching.

(2) To automatically obtain the adjusted decision matrices
without changing the essence of the MOFMCM model, Eqs.
(21) and (27) are replaced with Eqs. (31) and (32), respectively.

(1 ) * ( 1, , ; 1, , )k k k
ij k ij k ijv v v i m j n        (31)

(1 ) **  ( 1, , ; 1, , )k k k
ij k ij k ijv v v i m j n        (32)

where [0,1]k  is a randomly generated parameter to derive
feedback decision matrices.

Let 5r  , and 5T  . We run Simulation analysis I 1000
times to obtain the mutual acceptance average value, tAL ,
under different levels of min max[ , ]  . The obtained results are
shown in Fig. 3, from where it is observed that the values of

tAL increase when the values of interval min max[ , ]  increase
(The same is true at 0t  ). This indicates that the group will
achieve a higher mutual acceptance level when the decision
makers are more acceptable on the attributes.

Fig. 3. The mutual acceptance tAL under different levels of interval

min max[ , ] 

Simulation analysis I: The influence of bounded confidence on the
MOFMCM model
Input: the number of decision makers r ，the number of alternative m，the

number of attributes n ， the maximum number of rounds T , the
bounded confidence interval min max[ , ]  .

Output: the mutual acceptance in each round ( 0,1, 2 )tAL t   .
Steps 2, 3, 5 and 8 are the same as those of Algorithm 1, and the other steps

are described below.
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Step 1: Uniformly and randomly generate k
ijv of ( )k k

ij m nV v  ( 1,2, , )k r 

from [0,1] and ( 1, 2, , )k
jb j n  from min max[ , ]  . Let 0t  and

, ,( ) ( )k t k t k
ij m n ij m nV v v   .

Step 4: If t T , run Step 5; otherwise, run Step 9.
Step 6: Solve model (17) to derive optimal solution , *k tV . Based on Eq. (31),

generate the adjusted decision matrices , 1 , 1( )k t k t
ij m nV v 

 , where
, 1 , ,(1 ) *k t k t k t

ij k ij k ijv v v     . Go to Step 8.

Step 7: Solve model (23) to obtain , **k tV and , **c tV . Obtain *tCL using Eq.
(24). Solve model (26) to obtain , **k tV  . Use Eq. (31) to generate the
adjusted decision matrix , 1 , 1( )k t k t

ij m nV v 
 , where

, 1 , ,(1 ) **k t k t k t
ij k ij k ijv v v     .

Step 9: Output the mutual acceptance ( 0,1, 2 )tAL t   .

C. Simulation Analysis II
Simulation analysis II is used to compare the consensus

effectiveness of the MOFMCM model and the GCR model, in
which the initial decision matrices are still randomly generated.
And the effectiveness is represented by the following two
indicators:

(1) The mutual acceptance level tAL at each round;
(2) The preference adjustment tPA at each round, as per the

following expression: , , 1

1 1 1
| |

r m n
t k t k t

ij ij
k i j

PA v v 

  

  .

Simulation analysis II is a modified version of Simulation
analysis I to obtain the preference adjustment tPA , with
modifications being:

(1) Add computation of the preference adjustment tPA at
Steps 6 and 7.

(2) Step 9 is modified to: Output the mutual acceptance tAL
and the preference adjustment tPA .

Simulation experiment II' is used to analyze the effectiveness
of the GCR model, which follows the framework of the general
consensus process shown of Fig. 1. To align the GCR model
with the MOFMCM model, IR of the GCR model identifies all
decision makers. Simulation experiment II' is also a modified
version of Simulation analysis I, by replacing Steps 4-9 with
Steps 4'-6' below.
Steps 4': If t T , continue Step 5'; otherwise, go to Step 6'.

Steps 5': Using Eq. (1) compute ,c tV , where , ,
1

rc t k t
ij k ijk
v v


 . Obtain the

adjusted decision matrices , 1 , 1( )k t k t
ij m nV v 

 , where
, 1 , , , c,

, 1 , , c,

= (1 ) if | |
= if | |

k t k t c t k k t t
ij k ij k ij j ij ij
k t k t k k t t
ij ij j ij ij

v v v b v v
v v b v v

 



    
  

.

Compute +1 , +1 ,

1 1 1
| |

r m n
t k t k t

ij ij
k i j

PA v v
  

  . Let 1t t  ; and go to

Step 2.
Steps 6': Output the mutual acceptance tAL and the preference adjustment

tPA .
Let 5r  , 5m  , 4n  , and 5T  . We run simulation

analyses II and II' 1000 times to obtain the average values of the
mutual acceptance tAL and the preference adjustment tPA
under different bounded confidence intervals min max[ , ]  . The
simulation results are shown in Figs. 4 and 5, from which the
following observations are drawn:

(1) From Figs. 4(1), 4(2), 4(4), 5(1), 5(2), and 5(4), the
average values for tAL and tPA of the GCR model are lower
than those of the MOFMCM model. This is because that the
feedback recommendations generated by the GCR model are
unacceptable for decision makers with low bounded confidence
levels. And this resulted in them not changing their preferences,
and the level of group mutual acceptance hardly increased. On
the contrary, the feedback recommendations of the MOFMCM
model are accepted by the decision makers, thereby adjusting
their preferences and increasing the level of group mutual
acceptance.

(2) For a large bounded confidence interval min max[ , ]  (see
Fig. 4(3) and Fig. 5(3)), the average values for tAL of the GCR
model are lower than those of the MOFMCM model, while the
average values for tPA of the GCR model are greater than
those of the MOFMCM model. Therefore, compared with the
GCR, the MOFMCM can reach a higher level of mutual
acceptance more efficiently.

Fig. 4. Average tAL values in MOFMCM and GCR models under different
bounded confidence intervals min max[ , ] 

Fig. 5. Average tPA values in MOFMCM and GCR models under different
bounded confidence intervals min max[ , ] 

T is the number of iterations in simulation analysis, usually
no more than 5 rounds in practical consensus processes. Based
on the description of computational complexity before, we have
that the average time complexity of our linear programming
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models in Simulation analyses I and II is O(n) by the Dantzig's
method [55]. Furthermore, computational complexity is
generally considered in the worst case, in which, the GCR
model can not converge to consensus, while the MOFMCM
model can achieve. The reason is that the GCP model may
always produces unacceptable feedback recommendations as
shown in Fig .4(1), and the MOFMCM model produces
acceptable feedback recommendations based on bounded
confidence. In summary, the feedback recommendations of the
MOFMCM model are easier to be accepted to promote the
group mutual acceptance improvement.

V. CONCLUSION

This paper proposed a multi-stage optimization feedback
mechanism based consensus model in MAGDM that aims to
help decision makers improve the level of group mutual
acceptance based on their individual bounded confidences. The
MOFMCM model is based on the group consensus level being
related to the level of mutual acceptance, and measures the
consensus level from the perspective of the mutual acceptance
based on individual bounded confidences. The multi-stage
optimization feedback mechanism of MOFMCM considers the
willingness of decision makers to accept recommendations
from the perspective of bounded confidence. In comparison
with the similarity based feedback mechanisms, the priority
here is given to a two-stage optimization from the perspective
of mutual acceptance. Furthermore, the effectiveness of the
MOFMCM model is verified through simulation and
comparison analyses.

The social network has been studied widely in GDM in
recent years [1], [16], [17], [23], [25], [26], [39]. However,
these studies rarely combine social networks with individual
bounded confidences for research. Our future work will focus
on investigating the evolution of the preferences in GDM,
based not only on the bounded confidences of the decision
makers, but also on the existence of social relationships
between decision makers.
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