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Department of Computer Science,
University of Illinois at Urbana-Champaign.

{tserban2,grosu}@cs.uiuc.edu

Abstract. Conditional rewrite rules are notorious for being difficult to
implement in rewrite engines. This is because, like in the case of function
calls in programming language implementations, rewrite engines need to
”freeze” the current rewriting environment and to create a new one in
which the condition is reduced. Stacking these rewriting environments
efficiently can easily become a nontrivial task, which can have a direct
impact on the efficiency of rewriting. Continuation-passing-style (CPS)
transformations are used as a front-end in many programming languages
to transform the programs to compile into a convenient and highly op-
timizable form, in which functions never need to return their values:
they just pass their computed values to the current data-context, which
”knows” how to continue the computation. We argue that a similar trans-
formation technique can be applied to conditional rewrite systems, to
transform them into computationally equivalent unconditional rewrite
systems. In this paper we present the first steps towards such a transfor-
mation. No special support is needed from the underlying unconditional
rewrite engine, so the presented technique can be used as a front-end to
any of the current rewrite engines. Since unconditional rewriting is more
amenable to parallelization, our transformation is expected to lead to
efficient concurrent implementations of rewriting.

1 Introduction

Conditional term rewriting is a crucial paradigm in the algebraic specification of
abstract data types, since it provides a natural means for executing equational
specifications. Many specification languages today, including Maude [4], ELAN
[3], OBJ [9], CafeOBJ [7], provide conditional rewrite engines to allow users to
execute and reason about specifications. Conditional rewriting also plays a foun-
dational role in functional logic programming [10]. Additionally, there are many
researchers, including ourselves, considering rewriting a powerful programming
paradigm by itself, who are often frustrated that conditional rewrite “programs”
are significantly slower than unconditional ones doing the same thing.

Conditional rewriting is, however, rather inconvenient to implement directly.
To reduce a term, a rewrite engine needs to maintain a control context for each
conditional rule that is tried. Due to the potential nesting of rewrite rule applica-
tions, such a control context may grow arbitrarily. Our technique automatically
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translates conditional rewrite rules into unconditional rules, by encoding the nec-
essary control context into data context. The obtained rules can be then executed
on any unconditional rewrite engine, whose single task is to match-and-apply
unconditional rules. Such a simplified engine can be seen as a rewrite virtual
machine, which can be even implemented in hardware for increased efficiency,
and our transformation technique can be seen as a compiler.

Experiments performed on two fast rewrite engines, Maude and Elan, show
that significant speedups can be obtained right now if one uses our transforma-
tion technique as a front-end. However, since these rewrite engines are optimized
for conditional rewriting, we expect significant further increases in efficiency if
one just focuses on the much simpler problem of developing optimized uncondi-
tional rewrite engines and use our technique as a front-end. Moreover, one can
now develop parallel rewrite machines without worrying about conditions which
somehow obstruct the potential for high parallelism.

On the theoretical side, we show that our transformation is sound, i.e., any
reduction in the original rewriting system has a corresponding reduction in the
transformed one; we show that if the original system is confluent then our trans-
formation is also complete, i.e., any relevant reduction in the generated system
corresponds to some reduction in the original one. However, soundness and com-
pleteness of the transformation does not immediately imply the computational
equivalence of the two rewriting systems. In order to achieve this, backed by sev-
eral examples and strong intuitions, we conjecture a natural result that hopefully
will be rigorously proved in the near future. This is the reason for which we used
the word ”towards” in the title.

2 Preliminaries

We recall some basic notions of conditional rewriting, referring the interested
reader to [14] for more details. An (unsorted) signature Σ is a finite set of
operational symbols, each having zero or more arguments. We let Σn ⊆ Σ denote
the set of operations of n arguments. Operations of zero arguments in Σ0 are
called constants. We assume an infinite set of variables X . Given a signature
Σ and a set of variables X ⊆ X , we let TΣ(X) denote the algebra of Σ-terms
over variables in X. We let TΣ denote the algebra TΣ(∅) of ground terms. A
map θ : X → TΣ(X ) can be uniquely extended to a morphism of algebras
θ : TΣ(X ) → TΣ(X ) replacing each x ∈ X by a term θ(x). A conditional Σ-
rewrite rule has the form l → r if cl → cr, where l, r, cl and cr, are Σ-terms in
TΣ(X ). The term l is called the left-hand-side (lhs), r is called the right-hand-
side (rhs), and cl → cr is called the condition of the rule. We disallow rewriting
rules whose lhs is a variable and assume that the lhs contains all the variables
that occur in the rule. Following the terminology in [13], our rules are of type 1.
An unconditional rewrite rule has the form l → r.

A conditional (unconditional) Σ-term rewrite system R = (Σ, R), abbre-
viated CTRS (TRS), consists of a finite set R of conditional (unconditional)
Σ-rewrite rules. We here use only normal CTRSs (see [6]), i.e., ones whose rhs
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of the condition is a ground normal form for the unconditional system obtained
by disregarding all the conditions. Such systems are called of type II [2]. Any
Σ-rewrite system R = (Σ, R) generates a relation →R on TΣ(X ), defined as fol-
lows. For any θ : X → TΣ(X ), γ[θ(l)] →R γ[θ(r)] whenever θ(cl) →�

R cr, where
γ is context, i.e., a term having one occurrence of a special variable ∗, γ[θ(l)] is
the term obtained by substituting ∗ with θ(l) in γ, and →�

R is the reflexive and
transitive closure of →R. Note that →∗R is the least relation on TΣ(X ) closed
under reflexivity, transitivity, congruence and R-substitution.

Positions are strings of numbers describing paths to subterms: the subterm
at position iα in a term σ(t1, . . . , ti, . . . , tn) is the subterm at position α in ti
. A rewrite step occurred at position α in a term t when γ is obtained from t
by replacing its subterm at position α by �. We may let tα←s denote the term
obtained by substituting the subterm at position α in t by s.
On termination. Terms which cannot be reduced any further in a rewriting
system are called normal forms for that system. Rewriting of a given term may
not terminate for two reasons [16]: the reduction of the condition of a rule does
not terminate, or there are some rules that can be applied infinitely often on
the given term. In rewrite engines, e.g., Maude [4] or ELAN [3], the effect in
both situations is the same: the system loops forever or crashes running out of
memory. For this reason, we do not make any distinction between the two cases,
and simply call a Σ-rewriting system strongly terminating, or simply terminating,
iff it always reduces any Σ-term to a normal form regardless of the order of rules
appliance. Note that this notion is slightly different from the effective termination
introduced in [12], as shown by the following example.

Example 1. Consider the following three-rule rewrite system: a → b, a → c if
a → b and c → b The system Maude crashes when asked to search whether
a →∗R c. This is a good example of a system that is confluent and effectively
terminating but not strongly terminating. Strong termination is based on the
belief that, in general, one cannot expect a rewrite engine to be ”smart” enough
to pick the right rewrite sequence to satisfy a condition.

2.1 Related Work

Stimulated by the benefits of transforming CTRSs into equivalent TRSs, there
has been much research on this topic. Despite the apparent simplicity of most
transformations, they typically work for restricted CTRSs and their correctness,
when true, is quite involved. Significant efforts have been dedicated to transfor-
mations preserving only certain properties, e.g., termination and/or confluence.
We do not discuss these here; the interested reader is referred to Ohlebusch [14].

We focus on transformations that generate TRSs computationally equivalent
to CTRSs. The obtained TRSs are intended to be transparently and efficiently
used to reduce terms or test reachability in the original CTRSs. The first attempt
in this category is due to Bergstra and Klop [2] for a restricted class of CTRSs;
the transformation in [2] was shown unsound by Dershowitz and Okada [5]. The
transformation in Giovannetti and Moiso [8] works only under severe restrictions
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on the original CTRS: no superposition, simply terminating (requires a simplifi-
cation ordering), and non-overlapping of conditions with lhs terms. Hintermeier
[11] proposes a technique where an “interpreter” for CTRS is defined as a TRS,
providing explicit rewrite definitions for matching and applications of rewrite
rules. The resulting TRS is too inefficient to be usable in practice.

The idea of our transformation comes from the use of continuations [15] in
the implementation of programming languages, as a mean to pass control con-
text into data context, and builds on two other techniques: that of Viry [17] and
that of Roşu [16]. Like in [17, 16], our technique is based on decorations of terms:
as many auxiliary arguments are added to each operation σ as conditional rules
in the original CTRS having σ at the top of their lhs. The procedure in [17]
encodes the condition of each rule within a special data-structure that occurs
as the corresponding auxiliary argument associated to the operation occurring
at the top of its lhs. Two unconditional rules are added in the generated TRS
for each conditional rule in the original CTRS, one for initializing the special
data-structure and the other for continuing the rewriting process when the con-
dition was evaluated. For example, the left CTRS (taken from [17]) below is
transformed into the right TRS:

⎧⎨
⎩

f(g(x)) → p(x) if c(x) →∗ true
f(h(x)) → q(x) if d(x) →∗ true
c(a) → true

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(g(x) | ⊥, z) → f(g(x) | [c(x), (x)], z)
f(x | [true, (y)], z) → p(y)
f(h(x) | z,⊥) → f(h(x) | z, [d(x), (x)])
f(x | z, [true, (y)]) → q(y)
c(a) → true

where “|” is syntactic sugar for “,”, separating the normal arguments from the
auxiliary ones; “⊥” is a special constant whose occurrence states that the cor-
responding conditional rule has not been tried yet on the current position. A
structure [u,

→
s ] occurring in a rewriting sequence as an auxiliary argument of

an operation means that u is the current reduction status of the corresponding
condition that started to be evaluated at some previous moment, and that

→
s was

the substitution at that point that allowed the lhs of that rule to match. The sub-
stitution is needed by the second unconditional rule associated to a conditional
rule, to correctly initiate the reduction of the rhs of the original conditional rule.

Despite being proved sound and complete by Viry [17], the procedure above,
unfortunately, cannot be used as is to interpret any CTRS on top of a TRS.
That is because it destroys the confluence of the original CTRS, thus leading to
normal forms in the TRS which can be further reduced in the CTRS. Indeed, let
us consider the following CTRS R, from Antoy, Brassel and Hanus [1], together
with Viry’s transformation R′:
Example 2.

(R)

{
f(g(x)) → x if x →∗ 0
g(g(x)) → g(x)

(R′)

⎧⎨
⎩

f(g(x) | ⊥) → f(g(x) | [x, (x)])
f(x | [0, (y)]) → y
g(g(x)) → g(x)

R is confluent but R′ is not: f(g(g(0)) | ⊥) can be reduced to both 0 and
f(g(0) | [g(0), (g(0))]); the latter occurs because the “conditional” rule is first
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tried and “failed”, then the “unconditional” one is applied successfully thus
changing the context so that the “conditional” rule becomes applicable, but it
fails to apply since it was already marked as “tried”. To solve this problem,
Viry [17] proposes a reduction strategy within the generated TRS, called con-
ditional eagerness, stating that t1, ..., tn must be already in normal form before
a “conditional” rule can be applied on a term f(t1, ..., tn | ⊥, ...,⊥). This way,
in the example above, g(g(0)) is enforced to be first evaluated to g(0) and only
then f(g(0) | ⊥) is applied the “conditional” rule and eventually reduced to 0.
However, conditional eagerness does not seem to be trivial to enforce in an uncon-
ditional rewrite engine, unless that is internally modified. One simple, but very
restrictive, way to ensure conditional eagerness is to enforce innermost rewriting
both in the original CTRS and in the resulting TRS.

A different fix to Viry’s technique was proposed by Antoy, Brassel and Hanus
[1], namely to restrict the input CTRSs to constructor-based ones, i.e., ones in
which the operations are split into constructors and defined, and the lhs of each
rule is a term of the form f(t1, ..., tn), where f is defined and t1, ..., tn are all
constructor terms. Note that the problematic CTRS above is not constructor-
based. While constructor-baseness is an easy to check and automatic correctness
criterion, we believe that it is an unnecessary strong restriction on the input
CTRS, which may make the translation useless in many situations of practical
interest. The transformation proposed by Roşu in [16] does not require condi-
tional eagerness but instead requires the rewrite engine to support contextual
rewriting strategies making it less friendly w.r.t parallelism.

3 The Transformation

Auxiliary arguments are added to some operators to keep the necessary control
context information. This way, terms store information about the conditional
rules that can be potentially applied on them. Let R = (Σ, E) be any Σ-CTRS.
A σ-conditional rule [17] is a conditional rule with σ as the top symbol of its
lhs, that is, a rule of the form σ(t1, . . . , tn) → r if cl → cr.
Let kσ be the total number of σ-conditional rules. and let ρσ,i denote the i-th
σ-conditional rule in R.

3.1 The Signature Transformation

Let Σ be the signature containing:

– a fresh constant ⊥;
– a fresh unary operator { } (first defined in [16]);
– for any σ ∈ Σn, an operator of n+kσ arguments, σ ∈ Σn+kσ

; the additional
kσ arguments are written to the right of the other n arguments.

An important step in our transformation is to replace Σ-terms by corre-
sponding Σ-terms. The intuition for the additional arguments comes from the
idea of passing the control context (due to conditional rules) into data context:
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the additional i-th argument of σ at some position in a term to rewrite maintains
the status of appliance of ρσ,i; if ⊥ then that rule was not tried, otherwise the
condition is being under evaluation (it may also be already evaluated). Thus,
the corresponding Σ-term of a Σ-term is obtained by replacing each operator σ
by σ with the kσ additional arguments all ⊥. Formally, let · : TΣ(X ) → TΣ(X )
be a map defined inductively:

x = x for any variable x ∈ X , and
σ(t1, . . . , tn) = σ(t1, . . . , tn,⊥, . . . ,⊥) for any operation σ ∈ Σn and any
terms t1, . . . , tn ∈ TΣ(X ).

Let us define another map, ·̃X : TΣ(X) → TΣ(X ), this time indexed by a finite

set of variable X ⊆ X , as: x̃X = x for any variable x ∈ X, and ˜σ(t1, . . . , tn)
X

=
σ(t̃1

X
, . . . , t̃n

X
, b1, . . . , bkσ

) for any σ ∈ Σn and any terms t1, . . . , tn ∈ TΣ(X),
where b1, . . . , bkσ

∈ X − X are some arbitrary but fixed different fresh variables
that do not occur neither in X nor in t̃1

X
, . . . , t̃n

X
. Therefore, t̃X transforms the

Σ-term t into a Σ-term by replacing each operation σ ∈ Σ by σ ∈ Σ and adding
some distinct fresh variables for the additional arguments, chosen arbitrarily but
deterministically.

Given a Σ-term t of the form σ(t1, . . . , tn, C1, . . . , Ckσ
) for some σ ∈ Σn, a

natural number i between 1 and kσ, and a Σ term u, we let ti/u denote the
Σ-term σ(t1, . . . , tn, C1, . . . , Ci−1, u, Ci+1, . . . , Ckσ

), that replaces Ci by u.

3.2 The Rewrite Rules Transformation

Given a Σ-CTRS R, let R be the Σ-TRS obtained as follows.For each conditional
rule ρσ,i: l → r if cl → cr over variables X in R, add to R two rules, namely
ρσ,i : l̃Xi/⊥ → l̃X

i/{cl} and ρ′σ,i : l̃Xi/{cr} → {r}.
For each unconditional rewrite rule l → r in R, add to R rule l̃X → {r}.
For each σ ∈ Σn and each 1 ≤ i ≤ n, add to R

σ(x1, ..., xi−1, {xi}, xi+1, ..., xn, b1, ..., bkσ
) →

→ {σ(x1, ..., xi−1, xi, xi+1, ..., xn,⊥, ...,⊥)} ,

stating that a condition tried and potentially failed in the past at some position
may hold once an immediate subterm changes; the operation { }, symbolizing the
change, also needs to be propagated bottom-up. The applicability information of
an operation can be updated from several of its subterms; to keep this operation
idempotent, we add {{x}} → {x}. to R.

The size of R is 1 + u + 2 × c +
∑

n≥0 n × |Σn|, where u is the number of
unconditional rewrite rules and c is the number of conditional rewrite rules.

3.3 Examples

We next illustrate our transformation on several examples.
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Confluence is preserved. Consider the system presented in Example 2 to-
gether with its transformation using our technique:
{

f(g(x)) → x if x →∗ 0
g(g(x)) → g(x)

⎧⎨
⎩

f(g(x),⊥) → f(g(x), {x})
f(g(x), {0}) → {x}
g(g(x)) → {g(x)}

g({x}) = {g(x)}
f({x}, b) = {f(x,⊥)}
{{x}} = {x}

The problem that required conditional eagerness in Viry’s transformation is
avoided in our transformation by the rules of {·}, which allow the evaluation of
a condition to be restarted at the top of a term once a modification occurs in a
subterm.

Thus, given the Σ-term {f(g(g(0)),⊥)}, even if a rewrite engine first tries
to evaluate the condition at the top, a ”correct” rewriting sequence resembling
this is eventually obtained:

{f(g(g(0)),⊥)} →R {f(g(g(0)), {g(0)})} →R {f({g(0)}, {g(0)})} →R {{f(g(0),⊥)}},
and now the condition can be tried again and this time will succeed.

Odd / Even (taken from [16]). Let us consider natural numbers with 0 and
successor s, constants true and false and the following on purpose inefficient
conditional rules defining odd and even operators on natural numbers:

o(0) → false
o(s(x)) → false if e(x) → false
o(s(x)) → true if e(x) → true

e(0) → true
e(s(x)) → false if o(x) → false
e(s(x)) → true if o(x) → true.

In order to check whether a natural number n, i.e., a term consisting of n suc-
cessor operations applied to 0, is odd, a rewrite engine may need O(2n) rewrites
in the worst case. Indeed, if n > 0 then either the second or the third rule of odd
can be applied at the first step; however, in order to apply any of those rules one
needs to reduce the even of the predecessor of n, twice. Iteratively, the evaluation
of each even involves the reduction of two odds, and so on. Moreover, the rewrite
engine needs to maintain a control context data-structure, storing the status of
the application of each (nested) rule that is being tried in a reduction. It is the
information stored in this control context that allows the rewriting engine to
backtrack and find an appropriate rewriting sequence.

Let us apply it our transformation. Since there are two odd-conditional rules
and two even-conditional rules, each of these operators will be enriched with
two arguments. The new TRS is (for aesthetical reasons we overline only those
operations that change):

o(0, c1, c2) → {false},
o(s(x), {false}, c2) → {false}
o(s(x), c1, {true}) → {true}
o(s(x),⊥, c2) → o(s(x), {e(x,⊥,⊥)}, c2)
o(s(x), c1,⊥) → o(s(x), c1, {e(x,⊥,⊥)})

e(0, c1, c2) → {false},
e(s(x), {false}, c2) → {false}
e(s(x), c1, {true}) → {true}
e(s(x),⊥, c2) → e(s(x), {o(x,⊥,⊥)}, c2)
e(s(x), c1,⊥) → e(s(x), c1, {o(x,⊥,⊥)})

s({x}) → {s(x)} o({x}, c1, c2) → {o(x, c1, c2)}
{{x}} → {x} e({x}, c1, c2) → {e(x, c1, c2)}
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The unconditional rule for o says that 0 is not an odd number, regardless
of the control context. The first conditional rule for o has the constant ⊥ as
the first auxiliary argument of its lhs, telling that if the condition is not cur-
rently under evaluation, then one can enable its evaluation process by plugging
its appropriately modified lhs into the auxiliary position. Next, if the condition’s
lhs reaches the desired rhs, then 0 is returned. The argument c2 is just a fresh
variable, stating that the status of evaluating the condition of the second con-
ditional rule for odd has no influence on the evaluation of the condition of the
first conditional rule for odd. Note, however that the evaluation of both condi-
tions is attempted concurrently. If one wants to test whether a number n, i.e.,
n consecutive applications of successor on 0, is odd, one should reduce the term
{odd(n,⊥,⊥)}, under the resulting TRS.

Quotient/Reminder (inspired from [14]). Consider the following CTRS
for computing the quotient and reminder of two numbers.

x < 0 → false
0 < s(x) → true
s(x) < s(y) → x < y
0 − s(y) → 0
x − 0 → x
s(x) − s(y) → x − y

s′(〈x, y〉) → 〈s(x), y〉
%(0, s(y)) → 〈0, 0〉
%(s(x), s(y)) → 〈0, s(x)〉 if x < y → true
%(s(x), s(y)) → s′(%(x − y, s(y))) if x < y → false

The corresponding TRS is the following:

x < 0 → {false}
0 < s(x) → {true}
s(x) < s(y) → {x < y}
0 − s(y) → {0}
x − 0 → {x}
s(x) − s(y) → {x − y}

%(0, s(y), c1, c2) → {〈0, 0〉}
%(s(x), s(y),⊥, c2) → %(s(x), s(y), {x < y}, c2)

%(s(x), s(y), {true}, c2) → {< 0, s(x) >}
%(s(x), s(y), c1,⊥) → %(s(x), s(y), c1, {x < y})
%(s(x), s(y), c1, {false}) → {s′(%(x − y, s(y),⊥,⊥))}
s′(〈x, y〉) → {〈s(x), y〉}

{{x}} → {x}
s({x}) → {s(x)}
{x} < y → {x < y}
x < {y} → {x < y}
{x} − y → {x − y}
x − {y} → {x − y}

s′({x}) → {s′(x)}
〈{x}, y〉 → {〈x, y〉}
〈x, {y}〉 → {〈x, y〉}
%({x}, y, c1, c2) → {%(x, y,⊥,⊥)}
%(x, {y}, c1, c2) → {%(x, y,⊥,⊥)}

3.4 An Improved Transformation

Notice that in the previous two examples there were several pairs of conditional
rewrite rules having their lhs’s and their left sides of the condition identical. In
such cases, one can reduce the number of arguments added to the top operation
and the number of rewrite rules. For example, the transformation of

(R)

{
%(s(x), s(y)) → 〈0, s(x)〉 if x < y → true
%(s(x), s(y)) → s′(%(x − y, s(y))) if x < y → false
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can be:

(R)

⎧⎨
⎩

%(s(x), s(y),⊥) → %(s(x), s(y), {x < y})
%(s(x), s(y), {true}) → {〈0, s(x)〉}
%(s(x), s(y), {false}) → {s′(%(x − y, s(y),⊥))}

This leads leads to more efficient generated TRSs, e.g., the Odd/Even CTRS is
translated into a TRS that computes odd/even in linear time. We only mention
this possible improvement here, without proofs.

4 Theoretical aspects

4.1 Σ-terms

Σ-terms are more complex than the Σ-terms. There can even be some Σ-terms
that do not resemble any Σ-term. We next define and discuss several classes of
Σ-terms that will be used in the sequel.

Definition 1. A Σ-term t′ is structural iff t′ = x where x is a variable, or
t′ = {t′′} where t′′ is structural, or t′ = σ(t′1, . . . , t′n, C1, . . . , Ckσ

) where σ ∈ Σn

and t′i is structural for each 1 ≤ i ≤ n. We say that a position α is structural
for t′, where t′ is a structural term, iff α is empty, or t′ = {t′′} and α = 1α′

with α′ being structural for t′′, or t′ = σ(t′1, . . . , t
′
n, C1, . . . , Ckσ

) with σ ∈ Σn

and α = iα′ where 1 ≤ i ≤ n and α′ is structural for t′i. A ground Σ-term t′ is
reachable iff there is some ground Σ-term t such that {t} →∗R {t′}.

Note that the lhs and rhs of any (unconditional) rule in R are structural.

Proposition 1. The following properties hold:

1. Any subterm of a structural term on a structural position is also structural;
2. If t′ is structural with variables on structural positions and θ is a substitution

taking variables of t′ to structural terms, then θ(t′) is also structural;
3. Structural terms are closed under R;
4. Any reachable term is structural;
5. Reachable terms are closed under R.

Before we formalize the relationship between CTRSs and their unconditional
variants, let us define a partial map on terms, ·̂ : TΣ(X) → TΣ(X) only defined
for Σ-structural terms:

– x̂ = x for any variable x.
– {̂t′} = t̂′

– ̂σ(t′1, . . . , t′n, C1, . . . , Ckσ
) = σ(t̂′1, . . . t̂′n)

Therefore, t̂′ forgets all the auxiliary arguments of each operation occurring in
t′. Note in particular that t̂ = t for any t ∈ TΣ .
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4.2 Soundness

Soundness means that rewriting that can be executed in the original CTRS can
also be simulated on the corresponding TRS. In other words, ”everything that
can be done on a term s in R can also be done on the term {s} in R”.

Proposition 2. Soundness. If s, t ∈ TΣ and s →∗R t then {s} →∗R {t}. In
particular, if fn(t) is a normal form of t in R then {t} →�

R {fn(t)}.

Although it may not seem so, the converse of the above proposition is a hard
problem and does not hold in general as shown by the following example from
[12] (see also [14]).

Example 3. Consider the following conditional rewriting system R
a → c b → c c → e
a → d b → d c → l
k → l k → m d → m

A → h(f(a), f(b)) h(x, x) → g(x, x, f(k))
g(d, x, x) → A f(x) → x if x → e

and its unconditional transformation R
a → {c} b → {c} c → {e}
a → {d} b → {d} c → {l}
k → {l} k → {m} d → {m}

A → {h(f(a,⊥), f(b,⊥))} f({x}, y) → {f(x,⊥)}
h(x, x) → {g(x, x, f(k,⊥))} h({x}, y) → {h(x, y)}
g(d, x, x) → {A} h(x, {y}) → {h(x, y)}
f(x,⊥) → f(x, {x}) g({x}, y, z) → {g(x, y, z)}
f(x, {e}) → {x} g(x, {y}, z) → {g(x, y, z)}
{{x}} → {x} g(x, y, {z}) → {g(x, y, z)}

Then the following rewrite sequence can be obtained in R
{A} →+

R {h(f(a,⊥), f(b,⊥)} →+

R {h(f({d}, {c}), f(b,⊥))}
→+

R {h(f({d}, {c}), f({d}, {c}))} →+

R {g(f({d}, {c}), f({d}, {c}), f(k,⊥))}
→+

R {g(f({d}, {e}), f({d}, {c}), f(k,⊥))} →+

R {g(d, f({d}, {c}), f(k,⊥))}
→+

R {g(d, f({m}, {l}), f(k,⊥))} →+

R {g(d, f({m}, {l}), f({m}, {l}))} →+

R {A},

but is not the case that A →+
R A.

Even though Proposition 2 is too weak to give us a procedure in R to test
reachability in R, it still gives us a technique to test whether a term t is not
reachable from a term s in R: if is not true that {s} →�

R {t} then it is also not
true that s →∗R t. Of course, in order for this to work, the set of terms reachable
from {s} must be finite. This does not give us much, but it is the most we can
get without additional restrictions on R.
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4.3 Completeness

Completeness, in this context, means that any rewrite in R of a Σ-term {s}
corresponding to a Σ-term s, corresponds to a rewrite of s in R. Unfortunately,
this result does not hold without restricting R. We next show that confluence
of R suffices.

Theorem 1. Suppose that R is ground confluent. If s′ and t′ are reachable terms
such that s′ →�

R t′. then ŝ′ →∗R t̂′. In particular, our transformation is sound
and complete, i.e., s →∗R t iff {s} →�

R {t} for any s, t ∈ TΣ.

This theorem establishes a procedure for semi-deciding the reachability prob-
lem for a confluent CTRS:

Consider a ground confluent CTRS R and a reachability problem s →�
R t.

1. Transform R to the TRS R;
2. Do a breadth-first search in R starting with {s};
3. If {t} is reached then return true

The breadth-first search may loop forever if there is no solution for the original
problem. However, it will return true iff the original problem has a solution.

The importance of this reachability result is given by the fact that searching
is very difficult when using conditional rewrite rules and it can sometimes lead
to defectuous implementations.

Example 4. Recall Example 1. There Maude crashes trying to solve a reachabil-
ity problem that has a solution. That system is transformed to:

a(⊥) → a({a(⊥)}) c → {b}
a({b}) → {c} a(x) → {b} {{x}} → {x}

Although the above system doesn’t terminate either, we can use any rewrite
engine which supports breadth-first searching, including Maude, to verify any
reachability problem which has solutions in the original system.

Unfortunately, the former claim in Theorem 1 may not hold if the original
system is not confluent:

Example 5. Consider the following CTRS and its unconditional transformation:

(R)

⎧⎨
⎩

a → true
a → false
f(x) → true if x → true

(R)

⎧⎨
⎩

a → {true} a → {false}
f(x,⊥) → f(x, {x}) f(x, {true}) → {true}
f({x}, y) → {f(x,⊥)} {{x}} → {x}

Note that f({false}, {true}) →∗R {true} satisfies the hypothesis of Theorem
1 as shown by the following rewriting sequence:

{f(a,⊥)} →R {f(a, {a})} →R {f({false}, {a})} →R {f({false}, {true})} →+

R {true}
However, it is not the case that f(false) →R true.

One may argue that confluence is needed because we tried to prove a stronger
result than just the completeness. However, Example 3 shows clearly that com-
pleteness may not hold if R is not confluent.
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4.4 Normal Forms

We say that a term t is a strong normal form if the process of verifying that
it is a normal form (meaning trying and failing all the rules at any positions)
terminates regardless of the order in which the rules are applied. It is obvious
that if a CTRS is strongly terminating then all its normal forms are strong.

Proposition 3. Let t be a Σ-term which is a strong normal form w.r.t R. Then
there exists a normal form fn(t) w.r.t. R such that

1. t →∗R fn(t)
2. fn(t) has no brackets at top.
3. ̂fn(t) = t, meaning that the structure of the normal form is the same.

The fn(t) in the proposition above is the decorated variant of t showing
explicitly all the failed application of conditional rewrite rules.

Note that Proposition 3 does not say that normal forms in R correspond to
normal forms in R.

Example 6. Consider the following CTRS and its unconditional transformation:

(R)

⎧⎨
⎩

g(a) → true
g(a) → false
f(x) → x if g(x) → false

(R)

⎧⎪⎪⎨
⎪⎪⎩

g(a) → {true} f({x}, c) → {f(x,⊥)}
g(a) → {false} g({x}) → {g(x)}
f(x,⊥) → f(x, {g(x)}) {{x}} → {x}
f(x, {false}) → {x}

One can notice that f(a, {true}) is a reachable normal form in R; it can be
reached by the following rewriting sequence:

{f(a,⊥)} →R {f(a, {g(a)})} →R {f(a, {{true}})} →R {f(a, {true})}

But f(a) is not a normal form in R since f(a) →R a.

5 Conjecture

The original motivation of our work was to obtain a simple an effective transla-
tion of a CTRS into a computationally equivalent TRS. While a general purpose
transformation would be highly desirable, we believe that there is enough evi-
dence that such a transformation would be highly non-trivial. However, thinking
in terms of (deterministic) ”computation”, one can take the liberty to first focus
just on confluent and terminating CTRS’s.

Despite proving our transformation sound and complete, and despite show-
ing that it can be used as a semi-decision procedure for the reachability problem
for the input CTRS, unfortunately we still do not have a solution to our origi-
nal problem. Theorem 1 and the various non-confluent counter-examples suggest
that confluence of the input CTRS is a key requirement in order for our trans-
lation to yield a computationally equivalent TRS.

It is worthwhile noticing that the confluence of R does not imply the conflu-
ence of R, as the following (counter-)example shows.
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Example 7. Consider the CTRS R consisting of one conditional rule, f(x) →
x if g(x) → false and its corresponding TRS R:

f(x,⊥) → f(x, {g(x)}) f({x}, y) → {f(x,⊥)}
f(x, {false}) → {x} {{x}} → {x}

We can see that R is trivially confluent. However, f({false}, {false}) rewrites
in one step to {false}, which is in normal form, and

f({false}, {false}) →R {f(false,⊥)} →R {f(false, {g(false)})}

which is also in normal form. Therefore, R is not confluent.

In fact, for computational equivalence purposes, R does not really need to
be confluent. What is needed is its confluence on reachable terms. Counting on
intuitions gathered while developing the transformation in this paper and the
one in [16], as well as their associate proofs and (counter-)examples, we strongly
claim the following important result. Despite being quite intuitive, its rigorous
proof must be very difficult:

Conjecture 1. If R is ground confluent then

1. R is also confluent on reachable terms (reachable terms are ground);
2. R is (strongly) terminating iff R is terminating for reachable terms.

Proposition 4. If Conjecture 1 holds then t ∈ TΣ has a normal form fn(t) in

R iff {t} has a normal form fn({t}) in R and ̂fn({t}) = fn(t).

Then one can simulate reduction in a confluent and terminating CTRS R
using the transformed TRS R. Reducing a Σ-term t to its normal form in R can
be done as follows: reduce its corresponding Σ-term {t} to its (unique) normal

form fn({t}) in R and return ̂fn({t}) the (unique) normal form of t in R .

6 Experiments

The major reason for which we wanted to translate a CTRS into a computation-
ally equivalent TRS that can run on any unrestricted (unconditional) rewrite en-
gine was essentially the potential to device highly parallelizable rewrite engines.
Like in [16], it was again a pleasant surprise to note that our transformation
can actually bring immediate benefits if implemented as a front-end to exist-
ing rewrite engines. Note, however, that current rewrite engines are optimized
for both conditional and unconditional rewriting; an engine optimized for just
unconditional rewriting could probably be more efficient.

We next give some numbers regarding the speed of the generated TRS. We
used Maude and Elan as rewrite engines and the examples Odd/Even and
Quotient/Reminder. We have tested how long it took for a term to be rewrit-
ten to a normal form. In the table below, Cond shows the results using the
original system, Ucond those using the presented transformation and Ucond*
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those using the transformation described in section 3.4. Times presented in the
table were obtained on a computer equipped with a single 2 GHz Pentium 4
CPU and 512MB RAM.

Odd/Even
reducing odd(22)

Maude Elan
Cond Uncond Uncond*
20 sec 6 sec ∼0 sec

Cond Uncond Uncond*
1286 sec 151 sec ∼0 sec

Quotient/Reminder
1275000/130

Maude Elan
Cond Uncond Uncond*
5.9 sec 7.5 sec 5 sec

Cond Uncond Uncond*
5.8 sec 3.1 sec 3 sec

For technical reasons, we used several built-in arithmetic operators in Elan when
defining quotient/reminder.

A relatively good computation speed-up is obtained for the odd/even ex-
ample. The compact transformation, overcame the speed of computation of the
original CTRS in all our experiments. Both Maude and Elan are sequential; we
actually expect our transformation to be significantly better on parallel rewrite
engines.

7 Discussion and Future Work

We have presented a sound transformation of a CTRS into a TRS, which is also
complete when the original CTRS is confluent. A conjecture is stated which, if
true, would allow one to use the TRS as a computationally equivalent variant of
the original CTRS. Since unconditional rewriting is much easier to implement
efficiently and can take immediate full advantage of parallel computer architec-
tures, the presented transformation is expected to lead to very efficient imple-
mentations of conditional rewriting. We showed experimentally that significant
increases in speed can be achieved even on the current rewrite engines if our
transformation is used as a front-end.

One should not use our transformation for equational theorem proving, be-
cause it is not sound for this purpose. Indeed, consider the equational variant of
Example 7. Then one can deduce {false} = f({false}, {false}) = {f(false,⊥)}
in the transformed specification, which has no counterpart in the original spec-
ification. However, if the original equational specification is terminating and
confluent as a rewrite system, then one can use the transformed system to prove
equalities in the original system by reducing them to their normal forms.

We have not considered here rewrite systems modulo equations, such as as-
sociativity, commutativity and/or idempotency; extending our transformation
to such CTRSs is expected to be a non-trivial task. To keep the presentation
simple, we only considered normal 1-CTRSs. Nevertheless, we believe that our
transformation can be easily accommodated to other types of CTRS, by appro-
priately transforming the CTRS. Techniques to compact the generated TRS are
also worthwhile investigating in detail (see the discussion at the end of Section
3.3). Finally, one may have noticed that the rules for up-propagating { } can
destroy useful partial reductions. It would be very useful to adapt our transfor-
mation to restart only the conditions that are invalidated when a rewrite step
occurred.
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We added this appendix for reviewers’ convenience. If the paper is accepted,
the appendix will be removed and an extended technical report will be made
available and cited from the 15-page proceedings paper.

A Selected Proofs

In proofs, we will denote by t the linear variant of t̃X , that is the one also
replacing the variables of t with fresh ones, giving distinct variables for distinct
occurrences of the same variable.

We will also use the notion of multi-context rewriting, which allows a con-
text γ to have more that one occurrence of �. We let ⇒R denote the relation
associated with multi-context rewriting. Note that →∗R=⇒∗R.

Proposition 1. 1. Any subterm of a structural term on a structural position
is also structural.

2. If t′ is a structural term with variables on structural positions and θ is a
substitution giving structural terms for variables of t′ then θ(t′) is also struc-
tural.

3. Structural terms are closed under R.
4. Any reachable term is also structural.
5. Reachable terms are closed under R.
6. Let t′ be a reachable term and s be a Σ-term such that {s} ⇒k

R {t′}. Let tt

be a Σ-term with variables and θt a Σ-substitution giving for any variable
in tt a subterm of t′ on a structural position. Then there exists a Σ-term st

such that {st} ⇒k′

R {θt(tt)} with k′ ≤ k.
7. Let t′ be a reachable term and t be a Σ-term such that {t} ⇒k

R {t′}. Let s′

be a subterm of t′ in a structural position. Then there exists a Σ-term s such
that {s} ⇒k′

R {s′} and k′ ≤ k.

Proof. 1. We will prove that for all Σ-terms t′ and all structural positions α in
t′, the subterm s′ at position α is also structural by induction over the length
of α. If α is empty, then s′ = t′ and thus it is structural. Now suppose that
α = iα′. If t′ = {t′′} then i is 1; since t′′ is structural we apply the induction
hypothesis for t′′ and α′ getting that s′ is structural. Otherwise, assume that
t′ = σ(t′1, . . . , t′n, C1, . . . , Ckσ

) with σ ∈ Σn and t′1, . . . , t
′
n structural, then

apply the induction hypothesis for t′i and α′ getting that s′ is structural.
2. Let X be a set of variables, t′ a structural term with variables from X

and θ a substitution from X to structural terms. We’ll prove that θ(t) is
structural by induction on the structure of t′. If t′ is a variable then it’s
obvious, since θ′ substitutes variables by structural terms. Now suppose that
t′ = σ(t′1, . . . , t′n, C1, . . . , Ckσ

). Applying the induction hypothesis for each t′i,
1 ≤ i ≤ n. we get that θ′(t′i) is structural. Then θ(t′) must also be structural
since

θ(t′) = θ(σ(t′1, . . . , t
′
n, C1, . . . , Ckσ

)) = σ(θ′(t′1), . . . , θ
′(t′n), C1, . . . , Ckσ

)
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and the latter is obviously structural. Finally, if t′ = {t′1} we can apply
induction hypothesis for t′1 and get that θ′(t′1) is structural. Then obviously
θ({t′1}) must also be structural.

3. Let s′ be a structural term, let t′ a Σ-term such that s′ →R t′ and let α be
the position of s′ where the rewriting step occurred. If α is a non-structural
position then t′ must also be structural, since the definition of structural
terms is done using only structural positions. Let us now prove that for
any structural s′ and any Σ-term t′ such that s′ →R t′ the rewriting step
occurring at the structural position α we have that t′ is also structural. We
do that by induction on the length of α. If α = iα′ then either s′ = {s′1},
i = 1 and t′ = {t′1} or s′ = σ(s′1, . . . , s′n, C1, . . . , Ckσ

), 1 ≤ i ≤ n and
t′ = σ(s′1, . . . , s

′
i−1, t

′
i, s
′
i+1, . . . , s

′
n, C1, . . . , Ckσ

). Also, we must have that s′i
is structural and s′i →R t′i using the same rule and the same substitution a
position α′. Applying the induction hypothesis for we get that t′i is structural,
whence t′ is structural. If α is the empty word, then let l′ → r′ be the rule
used and θ′ be the substitution used. If l′ → r′ is of form:
– {{x}} → {x} then since structural terms are closed under SS, θ′(x) is

structural, whence t′ = {θ′(x)} is also structural;
– σ(x1, . . . , xi−1, {xi}, xi+1, . . . , xn, C1, · · · , Ckσ

) →
→ {σ(x1, . . . , xi−1, xi, xi+1, . . . , xn,⊥, · · · ,⊥)} then since variables xj ,
1 ≤ j ≤ n are in structural positions, θ′(xj) is structural and we apply
that structural terms are closed under CΣ for σ(x1, . . . , xn);

– l̃i/⊥ → l̃i/{{cl}, then we don’t have anything to prove since nothing
changes on structural positions;

– l̃i/{cr} → {r} or l̃ → {r}, then since all variables in l are on structural
positions in l̃ we have that θ′(x) is structural for each variable x occurring
in l then we can apply that structural terms are closed under CΣ for r.

4. s is structural and structural terms are closed under R.
5. Obvious from the definition of reachable terms.
6. We prove the affirmation by well founded induction on k. Let tt be a Σ-term

with variables from Xt = {x1, . . . , xn} and θt a Σ-substitution with variables
from Xt such that θt(xi) = t′i for each 1 ≤ i ≤ n. Then there exists a Σ-term
st such that {st} ⇒k′

R {θt(tt)} with k′ ≤ k.
Let s′ be a Σ-term such that {s} ⇒k−1

R {s′} ⇒R {t′}. We will show that
there exist a Σ-term ts with variables from Xs and a Σ-substitution θs

giving for each variable in Xs a subterm of s′ on a structural position and
that θs(ts) = θt(tt) or θs(ts) ⇒R θt(tt).
Let c be a Σ multi-context, l′ → r′ be a rule in R with variables in a set
X and θ be a Σ-substitution such that s′ = c[θ(l′)] and t′ = c[θ(r′)]. Let us
build the set Xs, a substitution θ′ giving for any variable in Xt a Σ-term
with variables form X∪Xt and a set of positions P. For any x ∈ Xt, perform
the following operation. Let β be the position of θt(x) in t′.
– If β is a position in c then

• if c/β doesn’t contain any variables, then s′/β = t′/β. Add x to Xs

and let θ′(x) = x.
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• otherwise, we have that s′/β = c/β[θ(l′)] and t′/β = c/β[θ(r′)]. Add
then x to Xs, let θ′(x) = x and for each position γ of x in tt and
each position δ of a variable in c/β add to P the position γδ.

– If β is not a position in c then
• If β = αγδ where α is a position of a variable in c and γ is a position

of a variable y in r′, then let γ′ be a position of y in l′. We have that
s′/αγ′δ = t′/αγδ. Add x to Xs and let θ′(x) = x.

• If β = αγ where α is a position of a variable in c and γ is a non-empty
non-variable position in r′, then let’s analyze the possible cases for
l′ → r′:
(a) {{x}} → {x}
(b) σ(x1, . . . , xi−1, {xi}, xi+1, . . . , xn, C1, . . . , Ckσ

) →
→ {σ(x1, . . . , xi−1, xi, xi+1, . . . , xn,⊥, . . . ,⊥)}

(c) l̃i/⊥ → l̃i/C , where C is a condition
(d) l̃i/{cr} → {r}
(e) l̃ → {r}
(a) is impossible since the only position in {x} are the one of x and
the empty one. Since (c) changes only an auxiliary parameter of the
operation on the top of l̃ we will have that s′β = t′β . Then add x to
Xs and let θ′(x) = x.
For (b), (d), and (e) we will have that r′β = u for some Σ-term u
with variables form X. Add then var(u) to Xs and let θ′(x) = u.

Let ts = θ′(tt) and let θs be defined as follows:

θs(x) =
{

θt(x) if x ∈ Xt

θ(x) if x ∈ X

We then have that for any x ∈ Xs, θs(x) is a subterm of s′ on a structural
position. Also if P is empty then θs(ts) = θt(tt); otherwise θs(ts) ⇒R θt(tt)
using rule and substitution θ at any position in P.
Applying the induction hypothesis, the proposition is proved.

7. Apply 6 for tt = x and θt(x) = s′.

Proposition 2. Soundness. If s, t ∈ TΣ and s →∗R t then {s} →∗R {t}. In
particular, if fn(t) is a normal form of t in R then {t} →�

R {fn(t)}.
Proof. Rewriting relation can be defined as the least relation closed under R
(reflexivity), T (transitivity), CΣ (compatibility with the operations) and SubR
(R-substitution). We will show that the relation:

D = {(s, t) ∈ TΣ × TΣ | {s} →∗R {t}}
is closed under the above rules whence it contains →∗R. Closure under reflexiv-
ity and transitivity is obvious. For proving the closure under SubR let us first
formally describe it:

For any rule l → r if cl = cr ∈ R and any Σ-substitution θ such that
(θ(cl), cr) ∈ D we have that (θ(l), θ(r)) ∈ D.
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Let ρσ,i : l → r if cl = cr be a rule in R , θ be a Σ-substitution such that
(θ(cl), cr) ∈ D. Consider the Σ-substitution θ′ defined as θ′(x) = θ(x). for any
variable x occurring in ρσ,i and θ′(x) = ⊥ for any new variable occurring in ρσ,i.
We then have that θ′(t) = θ(t) for t ∈ {l, r, cl}. We then can apply rule ρσ,i on
{θ(l)} using the substitution θ′ and the context {·}, getting {θ(l)i/{cl}}. Now we

use that (θ(cl), cr) ∈ D which means that {θ(cl)} →∗R {cr}, whence

{θ(l)i/{θ(cl)}} →∗R {θ(l)i/{cr}} →∗R {θ(r)}

Finally let us prove that D is closed under CΣ, that is: if (s, t) ∈ D then for
any operation σ ∈ Σn, for any Σ-terms tj , 1 ≤ j ≤ n and for any 1 ≤ i ≤ n
we have that: (σ(t1, . . . , ti−1, s, ti+1, . . . , tn), σ(t1, . . . , ti−1, t, ti+1, . . . , tn)) ∈ D.
In order to prove it we first have to observe that for any Σ-terms s′ and t′, if
{s′} →∗R {t′}, then s′ →∗R t′ or s′ →∗R {t′}. This is obvious since the only rule
containing {·} which has effect on the term in the brackets is that dissolving
another bracket.

Since σ(t1, . . . , ti−1, s, ti+1, . . . , tn) = σ(t1, . . . , ti−1, s, ti+1, . . . , tn,⊥, . . . ,⊥),
it follows that one can rewrite {σ(t1, . . . , ti−1, t, ti+1, . . . , tn)} to one of this two:
{σ(t1, . . . , ti−1, t, ti+1, . . . , tn,⊥, . . . ,⊥)} or {σ(t1, . . . , ti−1, {t}, ti+1, . . . , tn,⊥, . . . ,⊥)}.
In the first case our proof is complete, in the second we just need to apply the
rule for propagating {·} up and then the one for dissolving one {·} at the top.

Theorem 1. Suppose that R is ground confluent. If s′ and t′ are reachable terms
such that s′ →�

R t′. then ŝ′ →∗R t̂′. In particular, our transformation is sound
and complete, i.e., s →∗R t iff {s} →�

R {t} for any s, t ∈ TΣ.

Proof. Since →∗R=⇒∗R and →∗R=⇒∗R we can change the affirmation in the
proposition the following way:

Let s′, t′ be reachable terms such that s′ ⇒∗R t′. Then ŝ′ ⇒∗R t̂′.

Since s′ is reachable there is some Σ-term s such that {s} →∗R {s′} equivalent
to {s} ⇒∗R {s′}. We will prove that for any Σ-term s and any Σ terms s′ and
t′ such that {s} ⇒p

R {s′} ⇒k
R {t′} we have that ŝ′ ⇒∗R t̂′, by well founded

induction over m = p + k.
If k = 0 then s′ = t′ and there is nothing more to prove. If k 
= 0 let s′t be a

Σ-term such that s′ ⇒k−1

R s′t ⇒R t′. We then can apply the induction hypothesis

for s, s′ and s′t and get that ŝ′ ⇒∗R ŝ′t. It suffices now to show that ŝ′t ⇒∗R t̂′.
If ŝ′t = t̂′ then our proof is done.If ŝ′t 
= t̂′ then it must be the case that was

applied either a rule of the form l̃ → {r} or one of the form ρ′σ,i : l̃i/cr → {r}
using a substitution θ and a multi-context c having at least one variable in a
structural position. If a rule of the first type was applied, l → r can also be
applied to ŝ′t using the context ĉ and substitution θ̂ to obtain t̂′.

In order to prove the affirmation in the latter case, we will use the following
lemma
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Lemma 1. Let s′t be a reachable term and s be a Σ-term such that {s} ⇒k
R {s′t}.

Let βt be a structural position in s′t, ρσ,i : l → r if cl = cr a rule in R and θt a
Σ substitution such that s′t/βt

= θt(l̃i/{cr}).
Then there exists a reachable term s′⊥ such that {s} ⇒ks

R {s′⊥} ⇒k−ks

R {s′t}
and a substitution θ⊥ such that θ⊥(l̃i/⊥) is a subterm of s′⊥ on a structural
position and θ⊥(l̃i/⊥) ⇒k′

R θt(l̃i/{cr}) with k′ ≤ k − ks and all terms in the
rewriting sequence matching l but only the first matching li/⊥.

Proof. Let us first show the following:

Let s′ and t′ be two structural terms such that s′ ⇒R t′ using the rule
l′ → r′ ∈ R, the multi-context c and the substitution θ. Let β be a
structural position in t′, ρσ,i : l → r if cl = cr a rule in R and θ′′

a Σ substitution such that t′/β = θ′′(li/C) where C is a variable and
θ′′(C) 
= ⊥.
Then there exists a structural position α of s′ and a Σ-substitution θ′

such that s′/α = θ′(l) and θ′(l) = θ′′(l) or θ′(l) ⇒R θ′′(l).

If β is a position in c then if c/β doesn’t contain any variables, we can consider
α = β, θ′ = θ′′; otherwise, for any variable x of l on a structural position γx we
must have that βγx is also a position in c (otherwise the structure of l would
have changed). We can then take α = β and θ′(x) = θ′′(c/βγx

).
If β is not a position in c, then β = β′γ where β′ is a position of a variable

in c. Then γ must be of the form γ = δε where δ is a position of a variable x in
r′ (because otherwise we couldn’t have θ′′(C) 
= ⊥). Let then δ′ be a position in
l′ of the same variable x, and take α = β′δ′ε and θ′ = θ′′.

We can now apply the statement above repeatedly as long as its hypothesis
is satisfied, meaning as long as θ′′(C) 
= ⊥. We know that it must reach an ⊥ in
at most k steps, since s has nothing but ⊥s on any non-structural position. Let
s′⊥ be the term where the above proposition cannot be applied anymore and ks

its position in the rewriting sequence s ⇒k
R t′. We have thus obtained a sequence

of terms l′1 ⇒R l′2 ⇒R . . . ⇒R l′k′ with k′ ≤ k − ks and all terms matching l.
Furthermore, l′k′ = θt(l̃i/{cr}) and l′1 is the only one in sequence matching li/⊥.
Since also l′1 ⇒R l′2 we must have that l′1 matches l̃i/⊥ since this is the only way
to change the ith auxiliary variable of σ from ⊥ to something different from ⊥
- by applying the ρσ,i rule.

Applying the lemma we get a Σ-term s′⊥ such that {s} ⇒ks

R {s′⊥} ⇒k−ks

R {t′}
and substitution θ⊥ such that θ⊥(l̃i/⊥) is a subterm of s′ on a structural position
and θ⊥(l̃i/⊥) ⇒k′

R θt(l̃i/{cr}) with k′ ≤ k − ks and all terms in the rewriting
sequence matching l but only the first matching li/⊥.

Since θ⊥(l̃i/⊥) ⇒k′

R θt(l̃i/{cr}) it must be that θ⊥({cl}) ⇒{R k′′}{cr} with
k′′ ≤ k′. Since all variables of the rule are replaced by θ⊥ with subterms of
θ⊥(l̃i/⊥) on structural positions we can use Proposition 1.6 to verify the the
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induction hypothesis for θ⊥(cl), thus obtaining that

̂θ⊥(cl) ⇒∗R cr (1)

Since the lemma assures us that all the rewriting steps from θ⊥(l̃i/⊥) to θt(l̃i/{cr})
which occur on structural positions don’t occur on non-variable positions of
l, we also have that for each variable x occurring in l θ⊥(x) ⇒kx

R θt(x) with
kx ≤ k′. Also, we can use Proposition 1.7 to verify the induction hypothesis
and get ̂θ⊥(x) ⇒∗R ̂θt(x). Define now θ̂⊥ and θ̂t to be Σ-substitutions such that
θ̂⊥(x) = ̂θ⊥(x) and θ̂t(x) = ̂θt(x) for each variable x occurring in l. We then
have that: θ̂⊥(cl) ⇒∗R θ̂t(cl). and using Equation (1) and the confluence of R we
get that θ̂t(cl) →∗R cr. Since ŝ′n = ĉ[θ̂t(l)] we can apply rule ρσ,i and get ĉ[θ̂t(r)]
which is exactly t̂′.

Proposition 3. Let t be a Σ-term which is a strong normal form w.r.t R. Then
there exists a normal form fn(t) w.r.t. R such that

1. t →∗R fn(t)
2. fn(t) has no brackets at top.

3. ̂fn(t) = t, meaning that the structure of the normal form is the same.

Proof. We prove the statement by induction on the number of operations (match-
ing and rewriting steps) needed to verify that t is in the normal form, that means
the steps required for trying and failing all conditional rules for t.

One can observe that there exists a Σ-term s with variables, X = var(s),
Σ-substitution θ such that t = θ(s) and for any x ∈ X , θ(x) matches at least
one lhs of a conditional rule and all matches of any lhs on any conditional rule
don’t occur in any position of t being a non-variable position of s.

First, if X = ∅ then none of the lhs terms of the rules in R matches any
subterm of t whence it is also the case that none of the rules in R can be applied
on t and this means exactly that t is in normal form and we can take fn(t) to
be exactly t, satisfying all the requirements.

If X has more than one element then let x1, . . . , xn be the elements of X
(n ≥ 2), Then, since any θ(xi) needs at least one less matching than t we can
apply the induction hypothesis for them; define a Σ-substitution θ′ such that
θ′(xi) = fn(θ(xi)) for each 1 ≤ i ≤ n. Also consider Σ-substitution θ(xi) =
(θ(xi)). we the have that θ(xi) →∗R θ′(xi), and since t = θ(s) = θ(s) we get that
t →∗R θ′(s) which is in normal form since there are no brackets on top of any
fn(si) and also the structure of their normal form stays the same and we know
that we had no match in t above their top position.

Finally, X has exactly one element x then we must have a subterm s of t
such that we have a matching of a lhs at top of s and any matching of a lhs
in t occurs in s. Let then ρσ,i : l → r if cl = cr be a rule in R and θ be a
substitution such that θ(l) = s. Then, as in proof of Proposition 2 we will obtain
that s →R s

i/{θ(cl)}. Also, from Corollary 2 we deduce that this can be further
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rewritten to si/{fn(θ(cl))} Now, in order to show that t is in normal form we have
to verify that rule ρσ,i fails on top of s, that meaning reducing θ(cl) its normal
form including trying and failing all rules for its normal form. Thus we need less
operations to prove θ(cl) is in the normal form and we can apply the induction
hypothesis for it, leading us to si/{fn(fn(cl))}. Since fn(cl) 
= cr the rule ρσ,i

′

cannot be applied.
After applying the above steps for all matching lhs at top of s we get s →∗R

σ(s1, . . . , sn, C1, . . . , Ckσ
) where all of the Cjs are in a normal form different

form their corresponding {cr} and there is no rule that can be applied at the
top of the expression anymore. Now we apply the induction hypothesis for all sis
getting to σ(fn(s1), . . . , fn(sn), C1, . . . , Ckσ

) which is in normal form,and using
the reasoning above for t = c[s] we get

fn(t) = c[σ(fn(s1), . . . , fn(sn), C1, . . . , Ckσ
)].
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B Maude sources

In the following maude-sources, � denotes ⊥.

Odd/Even

Conditional

fmod ODD-ECOND is
sort S .
ops 0 true false : -> S .
op s : S -> S .
ops odd even : S -> S .
var x : S .
eq odd(0) = false .
ceq odd(s(x)) = true if even(x) = true .
ceq odd(s(x)) = false if even(x) = false .
eq even(0) = true .
ceq even(s(x)) = true if odd(x) = true .
ceq even(s(x)) = false if odd(x) = false .
endfm

red odd(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))))))))))) .
---here are indeed 22s successors

Unconditional

fmod ODD-EUCOND is
sort S .
ops 0 true false * : -> S .
op s : S -> S .
op {_} : S -> S .
ops odd even : S S S -> S .
var x c1 c2 : S .
eq odd(0,c1,c2) = {false} .
eq odd(s(x),*,c2) = odd(s(x),{even(x,*,*)},c2) .
eq odd(s(x),{true},c2) = {true} .
eq odd(s(x),c1,*) = odd(s(x),c1,{even(x,*,*)}) .
eq odd(s(x),c1,{false}) = {false} .
eq even(0,c1,c2) = {true} .
eq even(s(x),*,c2) = even(s(x),{odd(x,*,*)},c2) .
eq even(s(x),{true},c2) = {true} .
eq even(s(x),c1,*) = even(s(x),c1,{odd(x,*,*)}) .
eq even(s(x),c1,{false}) = {false} .

eq {{x}} = {x} .

23



eq s({x}) = {s(x)} .
eq odd({x},c1,c2) = {odd(x,*,*)} .
eq even({x},c1,c2) = {even(x,*,*)} .
endfm

red {odd(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))))))))),*,*)} .

Compact Unconditional

fmod ODD-EUCOND1 is
protecting NAT .
sort S .
ops 0 true false * : -> S .
op s : S -> S .
op {_} : S -> S .
ops odd even : S S -> S .
var x c1 : S .
eq odd(0,c1) = {false} .
eq odd(s(x),*) = odd(s(x),{even(x,*)}) .
eq odd(s(x),{true}) = {true} .
eq odd(s(x),{false}) = {false} .
eq even(0,c1) = {true} .
eq even(s(x),*) = even(s(x),{odd(x,*)}) .
eq even(s(x),{true}) = {true} .
eq even(s(x),{false}) = {false} .

eq {{x}} = {x} .
eq s({x}) = {s(x)} .
eq odd({x},c1) = {odd(x,*)} .
eq even({x},c1) = {even(x,*)} .
endfm

red {odd(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))))))))),*)} .

Quotient/Reminder

Here we have used Maude’s internal built natural numbers in order perform
testing for bigger numbers. Nevertheless, we implemented the difference and the
less predicate. Therefore we have given them different notations (· − −· and
·less·) to avoid clashing with built-in ones

Conditional

fmod QUOREM-ECOND is
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including NAT .
sort S .
subsort Nat < S .
ops true false : -> S .
op quorem : S S -> S .
op <_,_> : S S -> S .
op _--_ : S S -> S .
op _less_ : S S -> S .
op s’ : S -> S .
vars x y q r : S .
eq x less 0 = false .
eq 0 less s(x) = true .
eq s(x) less s(y) = x less y .

eq 0 -- s(y) = 0 .
eq x -- 0 = x .
eq s(x) -- s(y) = x -- y .

eq s’(< x,y >) = < s(x),y > .

eq quorem(0,s(y)) = < 0,0 > .
ceq quorem(s(x),s(y)) = < 0,s(x) >
if x less y = true .

ceq quorem(s(x),s(y)) = s’(quorem(x -- y,s(y)))
if x less y = false .

endfm

red quorem(1275000,130) .

Unconditional

fmod QUOREM-EUCOND is
including NAT .
sort S .
subsort Nat < S .
ops true false * : -> S .
op quorem : S S S S -> S .
op <_,_> : S S -> S .
op {_} : S -> S .
op _--_ : S S -> S .
op _less_ : S S -> S .
op s’ : S -> S .
vars x y q r : S .
eq x less 0 = {false} .
eq 0 less s(x) = {true} .
eq s(x) less s(y) = {x less y} .
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vars c1 c2 : S .
eq 0 -- s(y) = {0} .
eq x -- 0 = {x} .
eq s(x) -- s(y) = {x -- y} .
eq s’(< x,y >) = {< s(x),y >} .
eq quorem(0,s(y),c1,c2) = {< 0,0 >} .
eq quorem(s(x),s(y),*,c2) = quorem(s(x),s(y),{x less y},c2) .
eq quorem(s(x),s(y),c1,*) = quorem(s(x),s(y),c1,{x less y}) .
eq quorem(s(x),s(y),{true},c2) = {< 0,s(x) >} .
eq quorem(s(x),s(y),c2,{false}) = {s’(quorem(x -- y,s(y),*,*))} .

eq {x} -- y = {x -- y} .
eq x -- {y} = {x -- y} .
eq {x} less y = {x less y} .
eq x less {y} = {x less y} .
eq < {x},y > = {< x,y >} .
eq < x,{y} > = {< x,y >} .
eq s’({x}) = {s’(x)} .
eq s({x}) = {s(x)} .
eq quorem({x},y,c1,c2) = {quorem(x,y,*,*)} .
eq quorem(x,{y},c1,c2) = {quorem(x,y,*,*)} .
eq {{x}} = {x} .
endfm

red quorem(1275000,130,*,*) .

Compact Unconditional

fmod QUOREM-EUCOND1 is
including NAT .
sort S .
subsort Nat < S .
ops true false * : -> S .
op quorem : S S S -> S .
op <_,_> : S S -> S .
op {_} : S -> S .
op _--_ : S S -> S .
op _less_ : S S -> S .
op s’ : S -> S .
vars x y q r : S .
eq x less 0 = {false} .
eq 0 less s(x) = {true} .
eq s(x) less s(y) = {x less y} .
vars c1 c2 : S .
eq 0 -- s(y) = {0} .
eq x -- 0 = {x} .
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eq s(x) -- s(y) = {x -- y} .
eq s’(< x,y >) = {< s(x),y >} .
eq quorem(0,s(y),c1) = {< 0,0 >} .
eq quorem(s(x),s(y),*) = quorem(s(x),s(y),{x less y}) .
eq quorem(s(x),s(y),{true}) = {< 0,s(x) >} .
eq quorem(s(x),s(y),{false}) = {s’(quorem(x -- y,s(y),*))} .

eq {x} -- y = {x -- y} .
eq x -- {y} = {x -- y} .
eq {x} less y = {x less y} .
eq x less {y} = {x less y} .
eq < {x},y > = {< x,y >} .
eq < x,{y} > = {< x,y >} .
eq s’({x}) = {s’(x)} .
eq s({x}) = {s(x)} .
eq quorem({x},y,c1) = {quorem(x,y,*)} .
eq quorem(x,{y},c1) = {quorem(x,y,*)} .
eq {{x}} = {x} .
endfm

red quorem(1275000,130,*) .

C Elan sources

In the following Elan-sources, � denotes ⊥.

Odd/Even

Note: We have used b(·) instead of {·} for parsing reasons.

Conditional

module oddc
import global bool;
end
sort S;
end
operators global
0 : S;
s(@) : (S) S;
odd(@) : (S) bool;
even(@) : (S) bool;
end

rules for bool
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x : S;
global
[] odd(0) => false end
[] odd(s(x)) => true if even(x) end
[] odd(s(x)) => false if not even(x) end
[] even(0) => true end
[] even(s(x)) => true if odd(x) end
[] even(s(x)) => false if not odd(x) end
end
end

Unconditional

module oddu
sort S;
end
operators global
0 : S;
* : S;
true : S;
false : S;
s(@) : (S) S;
odd(@,@,@) : (S S S) S;
even(@,@,@) : (S S S) S;
b(@) : (S) S;
end

rules for S
x,c1,c2 : S;

global
[] odd(0,c1,c2) => b(false) end
[] odd(s(x),*,c2) => odd(s(x),b(even(x,*,*)),c2) end
[] odd(s(x),b(true),c2) => b(true) end
[] odd(s(x),c1,*) => odd(s(x),c1,b(even(x,*,*))) end
[] odd(s(x),c1,b(false)) => b(false) end
[] even(0,c1,c2) => b(true) end
[] even(s(x),*,c2) => even(s(x),b(odd(x,*,*)),c2) end
[] even(s(x),b(true),c2) => b(true) end
[] even(s(x),c1,*) => even(s(x),c1,b(odd(x,*,*))) end
[] even(s(x),c1,b(false)) => b(false) end
[] b(b(x)) => b(x) end
[] s(b(x)) => b(s(x)) end
[] odd(b(x),c1,c2) => b(odd(x,*,*)) end
[] even(b(x),c1,c2) => b(even(x,*,*)) end
end
end
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Compact Unconditional

module oddu1
sort S;
end
operators global
0 : S;
* : S;
true : S;
false : S;
s(@) : (S) S;
odd(@,@) : (S S) S;
even(@,@) : (S S) S;
b(@) : (S) S;
end

rules for S
x,c1 : S;

global
[] odd(0,c1) => b(false) end
[] odd(s(x),*) => odd(s(x),b(even(x,*))) end
[] odd(s(x),b(true)) => b(true) end
[] odd(s(x),b(false)) => b(false) end
[] even(0,c1) => b(true) end
[] even(s(x),*) => even(s(x),b(odd(x,*))) end
[] even(s(x),b(true)) => b(true) end
[] even(s(x),b(false)) => b(false) end
[] b(b(x)) => b(x) end
[] s(b(x)) => b(s(x)) end
[] odd(b(x),c1) => b(odd(x,*)) end
[] even(b(x),c1) => b(even(x,*)) end
end
end

Quotient/Reminder

We have used b(·) instead of {·}, pair(·, ·) instead of 〈·, ·〉 and ss(·) instead of
s′(·) for parsing reasons.

Conditional

module quoremc
import global int;
end
sort S;
end
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operators global
quorem(@,@) : (int int) S;
pair(@,@) : (int int) S;
ss(@) : (S) S;
end

rules for S
x,y : int;

global
[] ss(pair(x,y)) => pair(x+1,y) end
[] quorem(x,y) => pair(0,x) if x<y end
[] quorem(x,y) => ss(quorem(x-y,y)) if not x<y end
end
end

Unconditional

module quoremu
import global int bool;
end
sort S;
end
operators global
b(@) : (bool) S;
b(@) : (S) S;
quorem(@,@,@,@) : (int int S S) S;
pair(@,@) : (int int) S;
ss(@) : (S) S;
* : S;
end

rules for S
x,y : int;
c1,c2 : S;

global
[] ss(pair(x,y)) => b(pair(x+1,y)) end
[] quorem(x,y,*,c2) => quorem(x,y,b(x<y),c2) end
[] quorem(x,y,b(true),c2) => b(pair(0,x)) end
[] quorem(x,y,c1,*) => quorem(x,y,c1,b(x<y)) end
[] quorem(x,y,c1,b(false)) => b(ss(quorem(x-y,y,*,*))) end
[] b(b(c1)) => b(c1) end
[] ss(b(c1)) => b(ss(c1)) end
end
end

Compact Unconditional
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module quoremu1
import global int bool;
end
sort S;
end
operators global
b(@) : (bool) S;
b(@) : (S) S;
quorem(@,@,@) : (int int S) S;
pair(@,@) : (int int) S;
ss(@) : (S) S;
* : S;
end

rules for S
x,y : int;
c1 : S;

global
[] ss(pair(x,y)) => b(pair(x+1,y)) end
[] quorem(x,y,*) => quorem(x,y,b(x<y)) end
[] quorem(x,y,b(true)) => b(pair(0,x)) end
[] quorem(x,y,b(false)) => b(ss(quorem(x-y,y,*))) end
[] b(b(c1)) => b(c1) end
[] ss(b(c1)) => b(ss(c1)) end
end
end
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