Impact of Acknowledgements using IETF QUIC on
Satellite Performance

Ana Custura
University of Aberdeen

Abstract—This paper explores the performance of IETF QUIC
using a GEO satellite service. It first examines how TCP
acknowledgements are adapted on paths with high asymmetry
and then discusses the implications on the way ACKs are used
by a QUIC connection. It then presents experimental results for
satellite scenario using two QUIC implementations with different
ACK policies. The results show that reducing the number of
ACKs sent per packet can allow QUIC to achieve acceptable
performance, while also reducing the impact on the satellite
return link subsystem. We finally present our results and discuss
the benefits of our proposed change.

Index Terms—QUIC, asymmetry, satellite

I. INTRODUCTION

Two main characteristics shape the characteristics of an
Internet path using a Geostationary Earth Orbit (GEO) satellite
with a transport protocol: path delay and path asymmetry. Both
of these impact performance of transport protocols.

Transmission Control Protocol (TCP) is the most commonly
used transport protocol in the Internet today. It offers a bidi-
rectional service, using Acknowledgements (ACKSs) to confirm
which packets have been received by the remote endpoint
and to receive feedback about connection progress. ACKs are
used to estimate the path round trip time (RTT) and inform
congestion control mechanisms. A transport has to use an
appropriate ACK rate. Receivers need to send enough ACKs
to avoid stalls in flow control or loss of ACKs, where too too
infrequently ACKSs can limit throughput, although too high an
ACK rate can consumes excessive transmission resource [16].

Like many access technologies, an Internet path that in-
cludes a satellite access network can exhibit path asymme-
try [9]. Capacity provisioned in the forward direction (gateway
to a terminal) is often significantly larger than in the return
direction (terminal to gateway). If the return path becomes
filled with TCP acknowledgements, this can limit the rate that
can be achieved on the forward path.

Capacity is not the only asymmetric path constraint. In many
Bandwidth-on-Demand (BoD) broadband satellite systems,
transmission on the return path also consumes resource and
has cost to the user/operator of a satellite segment (controlled
by the Radio Resource Management - RRM [10]). Even when
the forward throughput is not constrained, consumption of
return link resources can impact other applications that share
the link or are allocated capacity from the same resource
pool [10] [23].

Most current satellite systems use split-TCP Performance
Enhancing Proxies (PEPs) [4]. These operate at the transport

Tom Jones
University of Aberdeen

Gorry Fairhurst
University of Aberdeen

layer and rely upon being able to observe TCP headers to
mitigate the effects of delay and asymmetry. PEPs historically
improved TCP performance and also application performance
acceleration for HTTP, the main protocol for the web, which
uses TCP as its underlying transport. In combination with
HTTP/2, the TLS protocol provides application layer security
by encrypting the otherwise plaintext HTTP payloads. With the
emergence of HTTP/2 and TLS, the main contribution of PEPs
changed to providing transport acceleration. This remains
effective, because the design of HTTP/2 already brings benefits
for a satellite user [5] [22].

A successor to HTTP/2 is emerging in HTTP/3. This uses
a new transport, QUIC, to replace TCP - see Figure 1.
Google QUIC (gQUIC) [15] was announced in 2012, and was
designed to improve user experience for web applications by
reducing transport and connection overhead.

A recent activity within the IETF has built upon gQUIC
to define the IETF QUIC transport protocol. This is to be
standardised in a series of RFCs [13] [11] [25]. QUIC [13]
that promise improvements on TCP. The protocol is still under
active development, with the working group starting the last
call standards process in June 2020. It is important to analyse
IETF QUIC, since rapid deployment can be expected soon
after publication of the specification, resulting in a fast rise of
encrypted traffic.

QUIC provides encryption and authentication for all packets
it sends, including ACKSs. The security features of QUIC pre-
vent use of split-transport PEPs. This paper aims to understand
whether QUIC is disadvantaged in satellite networks compared
to other transport protocols. To make a fair assessment of
QUIC performance we chose two mature implementations that
tracked the emerging standards, and had the required tooling
to run our satellite experiments: Chromium QUIC and Quicly.

The paper starts with an analysis of the need and benefit
of using a PEP with TCP, presenting baseline measurement
data for QUIC, TCP and TCP in the absence of a PEP.
It then examines the impact of using QUIC, to determine
whether the advances in IETF QUIC benefit users of a satellite
system, and whether this compensates for the inability to use
a split-transport PEP. In doing so, we evaluate the traffic to
consider the impact on the satellite return link. Finally, the
paper proposes a change to the QUIC protocol that is expected
to benefit broadband satellite systems and other networks with
appreciable path asymmetry.

[HTTP/2] [HTTP/3 J
| TLS] [quic |
[TCP] [UDP J
[IP] [IP]

Fig. 1: Comparison between the current traditional web stacks,
which use HTTP2 over TCP, and HTTP3 over QUIC. En-
cryption, streams, CC and recovery are built into the QUIC
transport, which is delivered on top of UDP.

II. PERFORMANCE OVER SATELLITE

PEPs provide acceleration for HTTP1 stacks, which require
opening a new TCP connection for every request made.
HTTP2 allows requests to be multiplexed over the same TCP
connection (using streams), removing the main performance
issues with HTTP1. However, HTTP2 is affected by head-of-
line blocking: a packet loss in the underlying TCP connection
affects all HTTP2 streams equally.

TLS 1.3 was released in 2019 [20]. Its main improvement
over its predecessor (TLS 1.2) is a reduction in the connec-
tion setup by one RTT. For a GEO satellite, this means an
improvement of more than 600 milliseconds per connection.

HTTP3 is supported by QUIC, which also provides stream
support to eliminate head-of-line blocking, promising to
improve performance over traditional HTTP2/TCP stacks.
TLS1.3 has been built into QUIC rather than forming a
separate layer.

Figure 2 presents the median time to transfer 100KB of
data from a client in a satellite network using HTTP/TCP
with TLS1.2 and TLS1.3, with and without PEP acceleration.
This data was collected on the satellite testbed described in
Section VI-A. The figure shows that the PEP accelerates TCP
connections by several seconds, and, as expected, TLS1.3
further accelerates this by roughly one RTT. IETF QUIC
performs better compared to TCP without a PEP, and worse
that TCP with a PEP. This confirms previous findings in [7].

The split-TCP PEP works by replacing the TCP protocol
with one tailored to the satellite characteristics. This tunes the
way loss recovery, congestion control and flow control operate.
It also effectively adapts the pattern and rate of ACKs sent
over the satellite return link, “thinning” the rate of ACKs.
This thinning is not visible to an external observer, but does
impact return link performance, and can impact forward link
throughput. PEPs also implement two transport stacks and a
flow-control/buffer management mechanism between the two,
which brings down computational and buffering costs.

III. TCP RECEIVER ACKNOWLEDGEMENT

TCP uses ACKs for connection establishment, reliable
delivery of data, congestion control and as a clock mech-
anism [6]. The TCP receiver acknowledges the segments it
receives using a cumulative acknowledgement number.

12

10
8
w °
©
o °
$ ° R o
] : =
===
—
2
2 3 WC 2 2
<crt™ <cer Q ‘?Ev\ﬁ\’ ?g?\fW
1(5’\“0 WO

Fig. 2: Download Time for 100KB (n=50) of data using TCP
and QUIC over a broadband satellite IPOS service. Although
average performance is predictable, resource sharing of the
return link does result in outliers, represented by circles at
times of peak load.

A TCP sender is permitted to send new data when it receives
an ACK for previously unacknowledged data. In this way, the
sending rate is controlled by the rate of reception of ACKs,
known as ACK-Clocking. A TCP receiver does not need to
ACK every data segment it receives [3], instead an ACK can
be held so it covers the equivalent of two times the MSS
(Maximum Segment Size) of data. These are called “delayed
ACKSs”. The limit of two MSS is a recommendation [3] that
results in a ratio of ACK to data packets of 1:2, which is
commonly implemented in TCP receivers. TCP also specifies
that an ACK "MUST be generated within 500 ms of the arrival
of the first unacknowledged packet.” Many current receivers
use an ack_delay value less than 500ms, e.g. 200ms or 40ms.

While a TCP connection is establishing the capacity of a
path, it goes through a period of exponential growth called
slow-start. During slow-start the delayed ACK behaviour can
be suspended to speed up the growth rate of the cwnd, using
Delayed ACKs After Slow Start (DAASS) [1].

DAASS also mitigates Stretch ACKs (ACKs for more than 2
packets), commonly encountered in the return traffic received
by a TCP sender. Stretch ACKs were found to be common
in the Internet [8], with ACKs covering 3 or 4 TCP segments
being common in about 10% of cases. Since the introduction
of Appropriate Byte Counting (ABC) [2], ACK-Clocking
operates on each cumulatively acknowledged segments of data,
not on individual received ACKSs. This eliminates the need
for implementing DAASS to grow the congestion window or
mitigate stretch ACKs, although a benefit remains for paths
with RTTs shorter than the TCP ACK Delay timer, where it
reduces the time to open the congestion window.

TCP suspends delayed ACKs when it detects reordering,
and sends an ACK for each received packet (ACK Ratio of
1:1) during loss recovery. RFC 2018 [18] added a selective ac-
knowledgement (SACK) option to TCP. This improves forward

path recovery efficiency after loss/reordering by including
SACK blocks in each ACK that describe gaps in the window
of received data.

IV. ACKNOWLEDGMENT FOR A SATELLITE RETURN PATH

Like TCP, QUIC is a connection-oriented transport protocol.
The ACK policy used in TCP is the basis for the ACK
policy for QUIC. While TCP uses ACK sequence numbers
to identify bytes received and to signal the sender when data
needs to be retransmitted, QUIC uses packet numbers. These
monotonically increase with every packet sent, including re-
transmissions.

Successful transmission is indicated by receiving acknowl-
edgements, send in ACK frames. The current QUIC specifica-
tion [13] recommends sending an ACK for each alternate
ACK-eliciting QUIC packet (i.e. one not purely made of
ACK frames). This mimics the recommended policy used by
TCP [3] and corresponds to an ACK Ratio of 1:2.

QUIC also implements an ACK Delay timeout in a manner
similar to TCP [3]. The sender also communicates the
maximum ACK Delay in milliseconds, with a recommended
default of 25 milliseconds. This value used by both Chromium
QUIC and Quicly. The receiver’s ACK Delay value is shared
with the peer to inform RTT calculations.

A. QUIC and Satellite

QUIC packets have a non-encrypted header [24] that allows
a packet to be identified. The encrypted body contains multiple
frames. Frames carry control information or data. A QUIC
endpoint authenticates all headers to prevent modification. In
contrast to TCP, all ACKs are encrypted, preventing use of any
split-transport PEP that does not have access to the end-to-end
encryption keys.

Avoiding PEPs has advantages for satellite systems. It elimi-
nates per-flow computation costs, and the need to update a PEP
as transports evolve. However, the end to end performance
becomes directly reliant on the performance of QUIC itself.

Some simple ACK-thinning methods could be applied to
QUIC. For example, Decimation [9], which removes small
packets for a flow when a router queue builds without knowing
their content. However, this does not come without potential
issues, since the traffic from multiple application flows can
be aggregated into a single QUIC connection and a queue of
QUIC packets carries an assortment of frame types used for a
variety of purposes. Hence, this method’s final impact on the
application using QUIC is hard to predict.

As seen in Figure 2, QUIC performs worse than TCP
accelerated by a PEP. It also expects the return link to carry
all unmodified QUIC ACKs. In the following subsection, we
examine this ACK traffic generated by a QUIC session.

V. UNDERSTANDING ACK OVERHEAD

This section compares the efficiency of using QUIC and
TCP by calculating the overhead in bytes for sending an ACK
using each protocol.

A. TCP Acknowledgement Traffic

The transport layer size of a TCP ACK (without SACK
blocks or other TCP options) is 20 B. The total IP and transport
overhead (assuming IPv4) for a TCP delayed ACK is therefore
40 B/2*MSS (or 20 B per packet). This represents 1.33% of a
1500 B packet) [6]. The TCP Timstamp Option (TSOpt) [14]
is often used to protect against TCP sequence space sequence
wrap-arounds over long fat paths. This increases the TCP ACK
size by 12 B (a 10 B option, plus 2 B to align to the 32 B
option space), increasing the overhead to 1.7%.

After reordering is detected, most TCP receivers will gen-
erate SACK ranges (see Section III), increasing the size of
ACKs. The final size depends on the pattern of loss, but will
often extend to fill the option space, resulting in up to 20 B
of TCP option until the loss recovery completes.

Table I presents the calculated overhead for IPv4. IPv6
would increase the size of the IP header by 20 B. Many
receivers disable ACK Delay at the start of a connection using
a form of (DAASS, see Section III). This results in more
frequent ACKs at the start of a connection, increasing the
overhead [6].

1) Analysing TCP Acknowledgement Traffic over Satellite:
ACK Thinning is widely deployed in WiFi drivers as well
as cable, satellite and other access technologies [6]. This
intentionally removes ACKs to form Stretch-ACKs, reducing
ACK rate and the corresponding volume of return path traffic.
The reduction depends on the thinning policy. If it reduces
ACKs to one ACK per 4 received data packets, this would
reduce the total volume of ACK traffic by a factor of 2, a
reduction from 1.7% to 0.9% of the total volume of traffic
received. An equivalent reduction in return traffic can be
provided for a satellite system using a split-TCP PEP.

B. QUIC Acknowledgement Traffic

QUIC packets sent on the forward and return paths can
and will carry a variety of different types of frames to update
the state of the connection making the size of return traffic
vary in size. All QUIC packets have an encryption overhead,
dependent on the ciphersuite used. All QUIC ciphersuites use
an authentication tag that produces an output 16 B larger than
their input [13].

When a QUIC receiver receives packet in order, ACK
Frames will typically remain small, under 10 B, resulting
in 2.4% total byte overhead per packet (assuming a QUIC
packet size of 1280 B). QUIC uses a Variable-Length Integer
Encoding for fields [13]. This causes the size of a QUIC ACK
to grow after the first 16,384 packets have been sent, adding
2 B to encode a Packet Number to the ACK overhead. This
is illustrated in Figure 3.

Following re-ordering/loss, a QUIC receiver sends ACKs
with an ACK Range vector [13], similar to a TCP SACK
block. Unlike TCP, the size of the ACK range can grow to fill
an entire QUIC frame. While TCP limits the size of the control
header to 40 B (the maximum option size), QUIC packets
are not subject to a similar limit, although QUIC permits an
implementation to limit this (e.g., to a few hundred bytes).

100

80

Bytes

40

20
B Chromium

0 20 40 60 80
Time(seconds)

100

Fig. 3: Packet sizes seen on the return path during a 100 MB
Chromium transfer on the satellite broadband network, after
the first RTT. The step-up in size at aroung 60 seconds in the
transfer corresponds to exceeding 16,000 packets sent.

TCP cumulative ACK TCP with loss
Min 40B/2MSS 40B+10B+2B/MSS
Max 40B+10B+2B/MSS 40B+40B+4B/MSS
Total 20B - 52B/ MSS 52B - 84B/MSS
% 1.33% - 3.46% 3.46% - 5.6%

TABLE I: Estimated overhead associated with a TCP ACK
using IPv4. The percentage is calculated based on a typical
header size and assuming a data packet of 1500 B, and
one ACK for every 2 received packets (ACK Ratio 1:2, no
DAASS).

Tables I and II summarise the estimated cost of sending
ACKs. The projected overhead for QUIC is larger than for
TCP. To understand the impact of QUIC traffic and ACK
policy on the satellite return link subsystem, the following
section examines the rate and volume of packets sent by both
TCP and QUIC sessions.

VI. EXPERIMENTS AND RESULTS

Experiments using a testbed were used to validate the
analytical numbers in the previous section and to examine the
role of ACKs as part of the total return path traffic.

QUIC cumulative ACK QUIC with loss
Min | 28B+3B+4B+16B/2MSS | 28B+3B+6B+16B/MSS
Max | 28B+12B+16B+16B/MSS | Unlimited
Total | 27B - 72B/MSS 53B - Unlimited/MSS
% 2.44% - 5.62% 4.14% - Unlimited

TABLE II: Estimated overhead associated with a QUIC ACK
using IPv4. The percentage is calculated based on typical
header size and assumes a data packet of 1280 B (ACK Ratio
1:2, no DAASS).

Bytes Chromium | Quicly TCP
Sent 10.7 MB 10.7 MB 10.7 MB
Return (1:2) 313 KB 343 KB 242 KB
3.1% 3.4% 2.4%
Return (1:10) | 76 KB 77 KB 121 KB
0.7% 0.7% 1.2%

TABLE III: Measured volume for two QUIC with an ACK
Ratio 1:2 and 1:10, and TCP using an ACK Ratio 1:2, with
no link loss. The projected volume of ACK bytes for TCP
assumes simple ACK-Thinning that removes every other ACK
(final ACK Ratio of 1:4).

A. Methodology

We analyzed the amount and composition of return traffic
when transferring data with TCP and QUIC. Transfers were
performed in both an emulated testbed and a satellite broad-
band service during February 2020, using the Quicly (commit
2f4321c¢ draft revision 27) and Chromium (commit 532426
draft revision 26) implementations of QUIC.

Both QUIC implementations provide a command line client
tool to run in server or client mode. quicly also has in-built
logging for packet numbers, timestamps, RTT and congestion
window information, which would otherwise be encrypted. To
this, we added support for logging frame types.

Equivalent information was collected for TCP sessions by
capturing packets at the client and server for the entire session
using tcpdump. The required information was subsequently
extracted from the TCP headers using curl and apache?2.

1) Emulated Satellite Testbed: Experiments used a testbed
to explore the detailed protocol behaviour. We emulated a
dumbbell network with a client, server and a testbed router.
Each host was a PC ENGINES APU?2 single board computer
with a 4 core 1GHz processor with 4GB of RAM and three
Intel Gigabit network interfaces. All hosts run FreeBSD 12.1,
the latest release at the time of the experiments.

A router emulated the network using queues configured in
dummynet to emulate an 8.5 Mbit/s forward direction path and
1.5 Mbit/s return path with a total end-to-end delay of 600ms.
This models the satellite broadband service described in the
following section, aiming to allow for comparable results
between the two. One Bandwidth Delay Product (BDP) of
buffering was assigned for the forward link. The RRM was
not modelled and and the return link used the default buffer
size (50 packets) A fixed random packet loss rate (PLR) of
1% on the forward link was configured for some experiments.

2) Satellite Broadband Experiments: HTTPS Requests
were made from a client running Debian Linux 10 connected
using a GEO satellite broadband service to a server using a
virtual machine at the University of Aberdeen. The RTT for the
satellite path was approximately 630 ms and the nominal rate
was 10/2 Mbps. We scheduled activities to avoid triggering
the satellite Service Level Agreement (SLA) enforcer.

1.0/
0.8
0.6
04 wmm Chromium
= TCP
0.2 Quicly
PicoQUIC
0.8y 55 60 65 70 75 80

Bytes

Fig. 4: CDF of packet sizes seen on the return path during a
10 MB transfer in our emulated long delay testbed, after the
first RTT

B. Comparing TCP and QUIC return traffic

While TCP and QUIC have similar ACK policies, there
are significant differences in the volume of data sent. Table
IIT presents the number bytes sent on the return path for a
10 MB transfer for TCP and QUIC on the emulated satellite
testbed described in Section VI-A, as well as the percentage
of the total 10 MB sent on the forward path. Overall, Quicly
sends more bytes than Chromium QUIC, which sends more
bytes than TCP for equal transfer sizes due to a difference in
the data packet size (1280 B vs 1352 B vs 1460 B).

We further investigate the size of packets sent on the return
path during a 10 MB transfer. TCP, Quicly and Chromium
QUIC data was obtained on the emulated testbed (Sec-
tion VI-A). The PicoQUIC data was collected on a similarly
configured emulated satellite testbed and provided to the
authors. Figure 4 presents a CDF of the return path packet
sizes for each transfer. The average TCP packet size was 52 B
(40 B of IP and TCP headers and 12 B TSO), while the QUIC
implementations sent packets that were 25% to 50% larger.
The smallest median value for any QUIC implementation was
63 B (Chromium), while PicoQUIC'’s is the largest, exceeding
70 B.

The smallest possible ACK we expect QUIC to send is 51
B: 20 B (IP header) + 8 B (UDP header) + 3 B (minimum size
of a short header) + 4 B (minimum size of an ACK frame) +
16 B (encryption overhead). These calculations are confirmed
by observing sizes of packets on the return path, where the
smallest packet size was around 60 B.

At the beginning of the transfer, QUIC exchanges a padded
frame for the initial cryptographic handshake. If this fails, an
initial PTO causes it to be resent after 200ms. For a satellite
path, the RTT is greater than the initial PTO. The initial packet
is therefore retransmitted before the handshake completes, at
0.2, 0.4, 0.6 and 0.8 seconds. We therefore omit from the CDF
the first 4 frames sent at the start of a transfer, which are each
1308 B - see Figure 5 A similar effect can be seen in Figure 5
when TCP uses a 200ms initial RTO. There overhead from

(o))
o
~
@

4.0KB

N
o
o
o

Kilobyte Sequence Number

o
o
~
o

0.4 0.6 0.8 1.0

Time(seconds)
Fig. 5: Data sent by a QUIC client during the first RTT of a
connection over an emulated satellite network. The plot shows
4 QUIC handshake packets, spaced 200 ms apart. Subsequent
packets carry control frames and smaller in size.

0.0 0.2

retransmitting the handshake is appreciable for small transfers:
consuming up to 7.3% in the case of a 100 KB transfer.

We used the extensible logging system of Quicly to further
investigate the composition of return traffic. Figure 6 presents
a breakdown of return traffic by header and frame type,
separating ACKs from other frame types. Each header is
labeled with the percentage it represents from the total amount
of traffic sent on the forward path, in this case, 10 MB. TCP
data is obtained from a client in a satellite network. Because
the PEP sends ACKs to the client, we do not see the effect
of ACK Thinning, nor do we observe the TCP timestamps.
These ACKs are 40 B.

We observe that actual ACK frames only account for 0.5%
of forward traffic, but the total return volume is increased
due to QUIC and crypto overhead, resulting in upto 3% in
total. This is almost twice that for TCP, motivating a need
to reconsider QUIC ACKs. Reducing the ACK volume could
be achieved by using a different ACK Ratio. The effect of a
1:10 ACK Ratio is also presented in Figure 6, showing traffic
volume reduced by 4 times, for a total of under 1% in a no-
loss scenario. A benefit can be observed when 1% packet loss
is emulated in the network.

Figure 7 presents ACK size data over time for TCP and
three QUIC implementations. This data is observed at a TCP
client in a satellite network, while QUIC data was collected
in emulated satellite testbeds.

Using a satellite path, TCP ACKs are all 40 B (a result of a
split-TCP PEP). QUIC return traffic size and pattern depends
on implement choices. Chromium packets start at 60 B in size
(7 B larger than the smallest ACK) and maintain their size
throughout the transfer, interleaved with other larger packets
(ACKs combined with other frames), seen as two parallel
grey lines in the figure. Quicly’s return traffic constantly
varies in size (this may be due to reordering sensitivity in
this implementation), while PicoQUIC’s return packets are
constant size (perhaps to avoid differentiation between ACKs
and other types of frames).

. P
300 s TCP/UDP
mm ACK FRAME
250

B QUIC/CRYPTO

Kilobytes

100

50

S S S S o s
o\ \0° “0\05 oW° “0\05 ® \0°
o Q\>\C\‘ N Wwe> <C® <
W\ Wwe o a

Fig. 6: Breakdown of measured return path overhead for 10
MB Quicly QUIC and TCP transfers on an emulated satellite
testbed, in No Loss and 1% Loss scenarios (ACK Ratios 1:2
and 1:10 for QUIC.

100

80

60 e V' - -

Bytes

40
s Chromium
mm TCP
Quicly
[PicoQUIC

20

2 4 6 8 10 12 14 16
Time(seconds)

Fig. 7: Size of return packets over time seen for a 10 MB

transfer, for TCP over a satellite network and three QUIC

implementations in an emulated satellite testbed.

10.65

10.60

Time(seconds)
= = =
© o o
H (6,1 (6,1
(9,] o (9]

10.40

10.35 120 2 10
. Rl . [\l Rl
cmom“““ cmom‘“m Q\)\CV‘ R QU
Fig. 8: Measured time to download 10 MB using Chromium
and Quicly (ACK Ratiol:2 and 1:10) using an emulated short-

RTT path.

\C\—\(AP(L.?_

—+— TCP h
*— QUIC AR1:2
QUIC AR1:10 /
Chromium 1:2 /

400/ -+ Chromium1:10 ' N
- TCPw/Thinning ~ » | N N S
v \ . —w -—

Number of ACKs
w
o
o

/
: 7“*———37**——4:p——47——44»f —.——
[/

= 7 e

—

o —F—%

0 2 4 6 8 10 12 14
Time(seconds)
Fig. 9: Number of return packets for Quicly and Chromium
using ACK Ratios of 1:2 and 1:10, measured each second.
Results are shown for TCP and the estimated effect of using
TCP ACK Thinning (final ACK Ratio 1:4).

C. Evaluating QUIC ACK Policy for Satellite

To study the impact of choosing a different ACK Ratio, we
modified the source code of Quicly. This defined the ACK
Ratio as a constant (NUM_PACKETS_BEFORE_ACK=2),
which we changed to 10 for our experiments. Since the 10th of
April, Quicly can also update the ACK frequency ratio using
a transport frame, but changing the default still only requires
modification to one line in the code.

Figure 10 presents the forward path data rate when us-
ing different ACK Ratios on a non-constrained and a very
constrained satellite return path. The path asymmetry was
1:5.6 (matching the satellite service previously used). This
resulted in a maximum forward packet rate of 771 pps using
1358 B QUIC packets, which filled the forward path with
8.37 Mbps of traffic (8.26 Mbps QUIC throughout). ACK
congestion was observed when the capacity asymmetry was
changed to 1%, causing the forward rate to be throttled to 5
Mbps. An ACK Ratio of 1:10 restored the throughput. The
results shown explore Chromium, which used BBR which
is a rate based congestion controller. This may need fewer
ACKS/RTT [21]. The default congestion controller specified
in QUIC is however not rate-based, but instead uses Reno,
based on the TCP standard. Figure 9 shows the number of
ACKSs per second Quicly sends with comparison to Linux
TCP configured to use Reno, and Chromium. For an ACK
Ratio of 1:2, all transports send over 400 packets per second.
The figure shows that an ACK Ratio of 1:10 results in less
than 100 packets per second for both QUIC implementations,
efficiently reducing not just volume, but also ACK rate. For
for comparison, we again estimate performance for a simple
TCP ACK Thinning mechanism.

The first packet sent by the client is a full-size padded frame,
of 1308 B (Figure 5). This is larger than for initial traffic
using TCP during the first RTT of a connection, but similar
to performance using TCP Fast Open (TFO). For QUIC, the
volume of data includes retransmissions. This increase in data

8.00
6.00
- A e }‘\
§4.00 \:L
2.00 —+— Chromium, AR1:2
Chromium, AR1:2, 100Kbit/s return path
0.00 —— Chromium, AR1:10, 100Kbit/s return path

0 5 10 15 20 25 30 35
Time(seconds)
Fig. 10: Measured forward path data rate using Chromium
(ACK Ratios 1:2 and 1:10), for an unconstrained return path
and a path limited to 100 kbps. Rate measured each second.

volume could impact satellite return RRM, since a new QUIC
flow can send much more than a typical TCP session within
the first RTT. Figure 8 presents time to download 10 MB using
Quicly and Chromium QUIC with an ACK Ratio of 1:2.

D. Analysis of a Modified QUIC ACK Policy

Section VI-B suggests that while the currently specified
QUIC ACK policy mimics the ACK pattern of TCP, the final
result is significantly poorer performance when used with
GEO satellite systems. This is because the design failed to
consider the implication of widely deployed PEPs that modify
TCP ACK policy. This section therefore evaluates a proposal
to modify QUIC’s currently specified ACK policy, which is
expected to benefit satellite paths.

Using an ACK Ratio of 1:10 (Figure 8) mitigates the impact
of the restricted return path. The analysis in Section VI-C
indicates that QUIC’s operation is not negatively impacted
when using an ACK Ratio of 1:10. We also evaluated the effect
of this change on congestion window growth for Quicly and
found no significant difference to the default ACK Ratio [6].
We therefore argue this is a safe mechanism that offers
significant benefit on satellite paths.

An efficient ACK policy needs to balance the need for grow-
ing the congestion window effectively at the beginning of a
transmission with the desire to ensure efficient use of the return
path. In slow start, QUIC citel-D.ietf-quic-recovery increases
the congestion window by the number of bytes acknowledged
when each acknowledgment is processed. This mechanism is
similar to ABC. While sending more ACKs in the beginning
of the transfer would mean the congestion window is increased
more gradually, a DAASS-like mechanism is only beneficial
for low RTT paths, where ACK Delay appreciably delays
each RTT of growth. In our proposal, the ACK Delay timer
ensures a minimum number of ACKs (e.g. 8) per RTT to
mitigate this effect of ACK loss on RTT estimation, and aids
performance for low-rate interactive applications. For a GEO
path, the default value of max_ack_delay already satisfies this
constraint.

The recommendation is that f slow start is a part of the
congestion control method, an ACK frame should be sent for
every received ack-eliciting packet for the first 100 received
packets if max_ack_delay (default 25 ms) has passed since the
oldest unacknowledged data was received. This ensures Stretch
ACKs do not impact the initial rate of congestion window
growth, and could particularly benefit paths with an RTT less
than the default ACK Delay.

VII. DISCUSSION

Our results show that the performance of QUIC is similar
to that of TCP using HTTP2 across a satellite path when using
a well-tuned PEP, however, there are critical areas in which
performance can be better. The focus of this paper has been on
the ACK traffic generated by QUIC when used for downloads
over a forward satellite path.

Section VI-B observed an increase in the size of initial
packets compared to TCP, and a significant increase in the
volume and number of packets sent in the first 2 RTTs of
a connection. This will have implications on RRM design,
because this control data is sent before a BoD system has had
time to adjust to starting a new connection. Simple solutions,
such as pre-allocating a small return link timeslot to each
active terminal, are less efficient for a larger volume of traffic.

As currently specified, QUIC generates slightly more ACK
packets than TCP, but consumes significantly more return
link capacity. This can increase resource usage of the return
channel, and may constrain forward throughput. This can
impact the performance of other sessions sharing an RRM-
controlled return link.

We argue that for encrypted transports such as QUIC,
a suitable ACK Ratio has to be set by the endpoints im-
plementing the protocol. A change to the default is vital
because the sender and receiver have no information about
the “cost” of sending an ACK over a path including a satellite
system. We showed that satellite systems operating at 10 Mbps
benefit from an ACK Ratio of 1:10. Even in next generation
5G systems [17] there is still a significant cost for uplink
transmission compared to downlink, and a high ACK rate
impacts either the user itself, or others users that share the
same capacity pool. Implementing this change would also dis-
incentivise mitigations such as ACK Decimation [9].

Higher rates of transmission or greater asymmetry may
benefit from even less frequent ACKs (e.g. an ACK Ratio of
1:100). Such scenarios may be common to other technologies,
not just satellite systems, and could present opportunities for
negotiating a more asymmetric ACK Ratio. For example, to
reduce the processing cost at endpoints [12] (important as
packet rates increase: an aggregate data rate of 1 Gbps results
in 5000 ACK/sec using an ACK Ratio of 1:2.) This can also
be used to adjust to ACK Policy following congestion on the
return path [12]. Although QUIC has mechanisms that could
be used by the sender to detect ACK congestion, there is no
currently no specified mechanism to tell the receiver to adapt
the ACK rate !). Although this suggests it may be attractive to

Uhttps://github.com/quicwg/base-drafts/issues/1978

use a ratio more asymmetric than 1:10, this raises additional
questions. Whilst a choice of 1:10 is balanced by the existing
need for QUIC to pace traffic (and an IW of 10 requires such
pacing to be appropriate for bursts of the order of 10 packets),
using a more asymmetric value could negatively interact with
congestion control and loss recovery.

One method to permit a sender to influence the ACK
policy used by a receiver is to use a protocol mechanism that
dynamically updates the QUIC transport parameters [13]. This
could control the number of ACK-eliciting packets accumu-
lated into an ACK [12] over the lifetime of a connection. The
negotiation of the mechanisms and the tuning of parameters
for satellite and non-satellite scenarios are an area for future
experimentation.

VIII. QUIC FLow CONTROL

Protocols also need to provide mechanisms to prevent a
receiver being overwhelmed with data when a sender and path
support a higher rate than can be sustained at the receiver.
In TCP, this is known as the receiver window mechanism. In
QUIC this is known as flow control. QUIC uses a credit-based
mechanism rather than the window based mechanism in TCP.

QUIC as a multi-streaming protocol has two levels that flow
control credits are issued, in total for the connection and per
stream flow credits. Connection flow control is intended to
stop a sender from exhausting a receivers buffer, while stream
flow control is intended to limit the amount of the connection
a single stream can use.

The larger RTT for a satellite path increases the time taken
to respond to any control message, and hence can place
additional demand on these methods. When using a satellite
system, the large RTT results in a need for buffering that can
significantly impact the top speed. This is one motivation for a
more detailed analysis of application performance using QUIC
with actual web workloads [19].

IX. CONCLUSION

This paper has analysed the performance of the latest
specification of the QUIC protocol, with an emphasis on how
QUIC return traffic interacts with a satellite system. It has
evaluated the design choices of QUIC ACK generation and
proposed an alternate ACK policy to benefit asymmetric paths.
We argue that using a more suitable ACK Ratio value would
benefit the satellite use-case and other paths with appreciable
asymmetry (cable networks, mobile cellular, WiFi). We plan
continue to evaluate other aspects of the QUIC protocol with
further experimentation across a range of satellite scenarios.

The IETF QUIC specifications are set to be published in
2020. A small number of players (Google, Cloudflare etc) who
control a very large share of web traffic have already deployed
QUIC. With the expected growth in the volume of encrypted
QUIC traffic, satellite systems will have to adapt to support a
mixture of both TCP applications (which will continue to need
PEP infrastructure), as well as an increasing amount of QUIC
web traffic. The transition to QUIC will likely be accompanied
by an increased range of applications supported using QUIC.

The change to a fully-encrypted transport will also dictate
changes to operational practice for satellite systems.

ACKNOWLEDGEMENTS

The MTAILS CCN project has received funding from the
European Space Agency under Contract No. 4000122992. the
authors thank Nicholas Kuhn for discussion and data relating
to the performance of PicoQUIC over an emulated satellite
link.

REFERENCES

[1] M. Allman. On the generation and use of TCP acknowledgments. ACM
SIGCOMM CCR, 28(5), 1998.

[2] M. Allman. TCP Congestion Control with Appropriate Byte Counting
(ABC). RFC 3465 (Experimental), Feb. 2003.

[3] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
5681, Sept. 2009.

[4] C. Caini, R. Firrincieli, and D. Lacamera. PEPsal: a Performance
Enhancing Proxy designed for TCP satellite connections. In IEEE 63rd
Vehicular Technology Conference, 2006.

[5] L. Caviglione et al. A deep analysis on future web technologies and
protocols over broadband GEO satellite networks. [Int. J. Satellite
Communications and Networking, 33(5), 2015.

[6] A. Custura, T. Jones, and G. Fairhurst. Rethinking ACKs at the transport
layer. In FIT, June 2020.

[7] J. Deutschmann, K. Hielscher, and R. German.
Performance Measurements. In NetSys, 2019.

[8] H. Ding and M. Rabinovich. TCP stretch acknowledgements and
timestamps: findings and implications for passive RTT measurement.
ACM SIGCOMM CCR, 45(3), 2015.

[9] H.B. etal. TCP Performance Implications of Network Path Asymmetry.
RFC 3449, Dec. 2002.

[10] G. Fairhurst and A. Yun. Design of the DVB-RCS2 higher layer satellite
architecture. Int. J. Satellite Communications and Networking, 31(5),
2013.

[11] J. Iyengar and I. Swett. QUIC Loss Detection and Congestion Control,
July 2019. IETF Work in Progress.

[12] J. Iyengar and I. Swett. Sender Control of Acknowledgement Delays in
QUIC, 2020. IETF Work in Progress.

[13] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and
Secure Transport, Jan. 2017. IETF Work in Progress.

[14] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High
Performance. RFC 1323, May 1992.

[15] A. Langley et al. The quic transport protocol: Design and internet-scale
deployment. In ACM SIGGCOMM, 2017.

[16] F. Lawas-Grodek et al. SCPS-TP, TCP and rate-based protocol evalua-
tion for high delay, error prone links. In SpaceOps Conference, 2002.

[17] K. Liolis et al. Use cases and scenarios of 5G integrated satellite-
terrestrial networks for enhanced mobile broadband: The SaT5G ap-
proach. Int. J. Satellite Communications and Networking, 37(2), 2019.

[18] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgment Options. RFC 2018, Oct. 1996.

[19] A. Mohideen et al. Evaluating the impact of transport mechanisms on
web performance for effective web access. Journal of Network and
Computer Applications, 137, 2019.

[20] E. Rescorla. The transport layer security (tls) protocol version 1.3.
Internet Requests for Comments, Aug. 2018.

[21] D. Scholz et al. Towards a Deeper Understanding of TCP BBR
Congestion Control. In IFIP, 2018.

[22] R. Secchi, A. C. Mohideen, and G. Fairhurst. Performance analysis of
next generation web access via satellite. Int. J. Satellite Communications
and Networking, 36(1), 2018.

[23] M. Sooriyabandara and G. Fairhurst. Dynamics of TCP over BoD
satellite networks. Int. J. Satellite Communications and Networking,
21(4-5), 2003.

[24] M. Thomson. Version-Independent Properties of QUIC, June 2020. IETF
Work in Progress.

[25] M. Thomson and S. Turner. Using TLS to Secure QUIC, Jul. 2019.
IETF Work in Progress.

Satellite Internet

