
c© Copyright by Hwangnam Kim, 2004



ENABLING THEORETICAL MODEL BASED TECHNIQUES FOR SIMULATING
LARGE SCALE NETWORKS

BY

HWANGNAM KIM

B.E., Pusan National University, 1992
M.S., Seoul National University, 1994

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2004

Urbana, Illinois



Abstract

Modern data communication networks are extremely complex and do not lend well to theoretical

analysis. It is not unusual that network analysis can be rigorously made after leaving out several

subtle details that cannot be easily captured in the analysis. As a result, packet mode, event driven

simulation studies are usually resorted to better study the performance of network components,

protocols, and their interaction. The major obstacle in packet mode simulation is, however, the

vast number of packets that have to be simulated in order to produce accurate results, especially

in large scale networks. What seems to be a reasonable solution is really to incorporate theoretical

modeling into packet mode simulation.

The notion of fluid model based simulation is recently proposed to alleviate the computational

overhead in packet mode simulation. Conceptually, a fluid model is developed and incorporated

into the simulation engine. In the course of simulation, a sequence of closely-spaced packets are

abstracted into a fluid information, and the fluid model is used to determine its behavior. As

the first theme, we investigate whether or not the fluid model based simulation is effective in

simulating IEEE 802.11-operated wireless LANs, and to develop a fast simulation framework to

expedite simulation, while not compromising the fidelity of simulation results.

In spite of its effectiveness in terms of reducing the execution time, fluid model based simulation

is not well-suited for studying the network behavior under light and/or sporadic traffic, as it is

built upon the assumption of a large number of active flows in the network. To address the issue,

we contrive network calculus based simulation as another main theme in the thesis. We firstly

characterize how TCP congestion control interacts with AQM strategies with network calculus

theory, and then determine a set of scheduling rules to regulate TCP traffic, and finally incorporate

the rules into a network simulation engine to improve simulation performance.

Although both fluid model based simulation and network calculus based simulation indeed give
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encouraging results, they cannot provide the packet level dynamics, such as the instantaneous

queue length and packet dropping probability, due to the use of abstract simulation units, i.e., fluid

rate and traffic amount. In order to address this issue, we propose hybrid simulation techniques,

called mixed mode simulation, to discover packet level details of one packet mode, foreground flow,

approximating all the other flows with theoretical model based, background flows. In the mixed

mode framework, packet mode simulation co-exists with theoretical model based simulation within

one simulation framework, and therefore analytical models of specifying the interactions should be

devised.

Lastly, we also contrive a new rescaling simulation methodology (RSM) to simulate large scale IP

networks with TCP and/or UDP traffic. Even though mixed mode simulation can produce packet

level details, there exist the cases that all the network behaviors, inclusive of all the flows and all

the networking points, should be inspected. The underlying idea of RSM based simulation is to

reduce the computational cost by scaling down the network to tractable one that can be simulated

for a short time interval to produce sufficient results at packet mode, and then to extrapolate the

results expected from the original network with the obtained those. In order to give a guideline

for both down- and up-scaling or to explain how to preserve the network properties unique in the

original network within the down-scaled network, a rescaling model is contrived and presented.
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Chapter 1

Introduction

Modern data communication networks are extremely complex and do not lend well to theoretical

analysis. With computer/network entities and techniques interacting and interfering with one

another, optimization problems do not have a simple and regular structure that allows us to neatly

fit it into the framework of established optimization theories. As a result, it may be more feasible to

carry out simulation to study and evaluate the performance of network entities and protocols, and

interaction among them. The major obstacle in packet mode network simulation is, however, the

vast number of packets that have to be simulated in order to produce accurate results, especially

in large scale networks. Each packet will generate a number of events (e.g., arrival of a packet

at the router, its departure, and its queuing, just to name a few) on the path from the source

to the destination and each event has to be executed at some specified time point. As the CPU

time required is roughly proportional to the number of events that have to be executed, packet

mode simulation easily becomes computationally expensive, if not infeasible, when the network size

and/or the traffic amount is extremely large.

What seems to be reasonable is to combine theoretical modeling with packet mode simulation

so as to take advantage of both simulation, while not suffering significantly from their individual

drawbacks. The main intent in this thesis is thus to investigate the feasibility of leveraging theoret-

ical models in simulating large scale networks. As the specific domain to which theoretical models

are applied, we choose IEEE 802.11-compliant wireless LANs (WLANs) and TCP and/or UDP

traffic over IP-operated, packet-switched networks. We also investigate the performance achieved

as well as the error incurred, for each developed theoretical model based technique in order to

evaluate it. As for the error evaluation, we compare the results obtained from each technique to
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those obtained from its corresponding packet mode simulation. As for the performance evaluation,

we adopt the execution time since (i) it encompasses the loading time of simulation objects as well

as the execution time necessary for simulating given networks for a given simulation time, and (ii)

it alleviates the additional overhead necessary to define other measures and to implement the mea-

suring scheme within simulation engine. Specifically, we carried out research along the following

research thrusts.

Fluid model based simulation for IEEE 802.11-compliant WLANs: As the first empirical

trial, we investigate how applicable and feasible fluid model based simulation is for WLANs. In fluid

model based simulation, a cluster of closely-spaced packets is modeled as a fluid chunk at a specific

time point or a flow rate during a time interval, and mathematical models (fluid models) are used

to specify the behaviors for the abstract units [22, 28, 31, 35, 45, 47]. Network simulator equipped

with fluid models then keeps track of fluid chunks and their rate changes at each network component

on the communication path from the source to the destination. As a large number of packets are

abstracted as a single fluid chunk, the computational overhead is expected to be lessoned. The

fluid model based simulation currently has been used to study the throughput behavior of TCP

and congestion control algorithms [21, 32, 37, 39, 42] in the steady state, but it is not clear whether

or not the same technique can be applied to analyze system behaviors in IEEE 802.11-compliant

WLANs.

To conduct this experiment, we first derive the analytical model that characterizes data trans-

mission activities in IEEE 802.11-compliant WLANs with/without the RTS/CTS mechanism. All

the control overhead incurred in the physical and MAC layers, as well as system parameters spec-

ified in the IEEE 802.11 standard [24] are faithfully figured in. In the model, all the analytical

components are described with the attempt rate that is the rate to place the frames on the wireless

medium, and the system throughput is also defined as a function of the rate. The attempt rate is a

function of the number of active nodes and their respective backoff window sizes. We validate the

model with simulation in the cases in which the network is and is not saturated. We then imple-

ment, with the use of the time stepping technique [45], fluid model based simulation for WLANs

in ns-2 [4], and conduct a simulation study to evaluate the framework in terms of speed-up and
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errors incurred under a variety of network configurations and traffic types.

Network calculus based simulation for TCP networks: One drawback of utilizing fluid

models in network simulation is that fluid models may not be well-suited to model light, sporadic

traffic [37, 42]. To address this issue, we contrive network calculus based simulation, in which

analytical models built upon network calculus are used as an alternative to fluid models. Specifically,

we examine the feasibility of incorporating network calculus based models in simulating TCP/IP

networks. Network calculus is grounded on the mathematical theory of Min-Plus (or Max-Plus

algebra) [1, 9, 13]. By exploiting properties in the network calculus, we characterize how TCP

congestion control, additive increase and multiplicative decrease (AIMD) and slow start, regulates

TCP flows within the simulation engine, without the assumption of existence of a large number of

flows which is usually made in fluid model based simulation.

Following the same line of approaches as in fluid model based simulation, we first divide the time

axis into intervals, each of which consists of multiple round-trip times, and derive a TCP throughput

model which derives the attainable throughput for a TCP flow, given the number of losses in an

interval. Then based on the derived throughput model, we define a set of network calculus based

theorems that give upper and lower bounds on the attainable TCP throughput in each interval.

Finally, we implement network calculus based simulation in ns-2, conduct a simulation study to

evaluate the network calculus based simulation, and present the performance gain in terms of the

execution time thus reduced and the error discrepancy in terms of the discrepancy between the

simulation results and corresponding ones in packet mode simulation.

Mixed mode simulation for IEEE 802.11-compliant WLANs and TCP networks: Al-

though both fluid model based and network calculus based simulation indeed give encouraging

results, they cannot provide packet level dynamics, such as the instantaneous queue length and

the packet dropping probability. In some sense, such the theoretical model based simulation trades

some degree of accuracy and packet level dynamics for simulation performance. If packet level de-

tails are of concern to users, the best approach seems to simulate foreground traffic (whose packet

dynamics are of interest) in the packet mode, and model the background traffic (that comprise of

possibly hundreds of flows) with a model based simulation.
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For the purpose, we propose the notion of mixed mode simulation to combine the performance

gain of theoretical model based simulation with the accuracy afforded by packet mode simulation.

The important problem in mixed mode simulation is to specify how one foreground flow in packet

mode simulation interacts with other flows in theoretical model based simulation at the point of

interaction, such as the wireless medium in a WLAN or the routing buffer in a bottleneck link.

We develop two models of interaction: the one is for IEEE 802.11-operated WLAN and the other

for TCP-operated networks. According to each developed model of interaction, we implement two

mixed mode simulations in ns-2. We then conduct comprehensive simulation studies to evaluate

each mixed mode simulation with respect to accuracy, which is error discrepancy in simulation

results from both packet mode and theoretical model based simulation, and efficiency, which is the

performance scale-up in conducting simulation.

Rescaling simulation model based simulation: Even though the mixed mode simulation

can produce packet level details for one foreground flow, we cannot approximate some or all flows

into background flows with theoretical models when all the details for all the flows are of concern.

For example, we might have to investigate all the effects of the flows passing through one point

of interest. In order to deal with such the cases, we take a dramatic departure from the above

approaches and contrive a new rescaling simulation methodology (RSM) for simulating large scale

IP networks, inclusive of UDP and TCP traffics.

In packet mode simulation, the computational cost increases accordingly due to a vast number

of packet events as the number of events increases with the network size and the amount of traffic.

Therefore, if we can scale down the network to one that can be simulated at the packet mode in

a short time interval to produce sufficient results, and then extrapolate, without loss of accuracy,

results for the original network, we can significantly reduce the computational cost and yet preserve

the network dynamics. The key issue is how to preserve the properties that characterize the original

network in the downscaled network so that accurate results can be easily extrapolated after the

packet mode simulation in the smaller networks. In particular, the network property of interest

should remain invariant in the process of scaling down and up the network. As for the invariant,

we use the bandwidth-delay product as the network property to be preserved, since it represents the
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capacity of the “pipe,” i.e., the amount of data packets that can be transmitted without waiting for

the acknowledgment. By preserving this product invariant during the down/up scaling operations,

the network capacity as perceived by each TCP connection is preserved, and we can formally prove

that the queue dynamics, the RTT dynamics, the TCP window size dynamics, and even the effect

of TCP-friendly flows remain unchanged in the operations.

Contributions: The major contribution of this research is a rigorous, in-depth investigation of

whether or not, and to what extent, fluid models, network calculus models, mixed mode models,

and rescaling models may be leveraged to facilitate large scale network simulation. In summary,

we are the first to carry out and validate the use of fluid model based simulation for simulating

IEEE 802.11-operated WLANs. We are also the first to apply network calculus theory to large

scale network simulations, in which we present that the network calculus theory can be employed

to improve network simulation in addition to its existing application area in the traffic regulation.

We then contrive how to integrate packet mode and theoretical model based simulation within one

simulation framework. The proposed mixed mode simulations provide packet level details for one

foreground flow of concern and interest while it keeps the performance improvement by approxi-

mating other flows with theoretical models. Finally, we contrive rescaling simulation methodology

to keep the packet level details for all the flows in large scale IP networks and at the same time

to improve simulation performance by simulating down-scaled networks and estimating the results

for the original networks.

Road-map: The thesis is organized as follows. In Chapter 2, we give a succinct summary of

related work in three perspectives: the one pertains to existing techniques developed to speed

up network simulations, such as fluid model based simulation and simulation technique based on

down-scaling; another one introduces existing analytical models for both IEEE 802.11 DCF and

TCP congestion control; and the other looks over the development in network calculus system

theory (that Chapter 4 exploits). In Chapter 3, we derive the analytical model that characterizes

the data transmission activities in IEEE 802.11-operated WLANs, discuss how we implement fluid

model based simulation, and evaluate the simulation in comparison with packet mode simulation.

In Chapter 4, we establish a set of regulation rules, i.e. a set of theorems, to schedule TCP
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traffic in a simulation engine, based on network calculus theory. We then explain the structure

of network calculus based simulation and its performance gain and error discrepancy. Following

that, we derive two interaction models between one foreground, packet mode flow and the other

background, theoretical model based flows at the point of wireless medium and congested link. With

the models, in Chapter 5, we implement mixed mode simulation for IEEE 802.11-compliant WLANs

and evaluate it, compared to both packet mode simulation and fluid model based simulation. We

also develop mixed mode simulation for TCP-operated networks in Chapter 6 in the same procedure

of Chapter 5. In Chapter 7, we propose the rescaling simulation methodology for large scale IP

networks with TCP and/or UDP traffic. With the methodology, we prove that the property of the

original network is preserved in down-scaled network, and we therefore exploit the latter network to

estimate the results expected from the former network. Finally, we make conclusions in Chapter 8.
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Chapter 2

Related Work

In this Chapter, we summarize existing research efforts that pertain to the study, and categorize

them into five thrusts:

Fluid model based simulation: Several research efforts have focused on fluid model based

simulation. Liu et al. [31] demonstrated the fundamental performance gain in fluid model based

simulation over, rather than a realistic network with detailed network protocols, simple network

components. Milidrag et al. [35] presented various sets of differential equations that describe the

behaviors of network components in the continuous time domain. They showed that as long as the

behavioral characteristics in the continuous time domain can be exactly specified, fluid simulation

gives results with reasonable error bounds. Wu et al. [45] studied the error behavior that simulation

results exhibit in a simple M/D/1 network configuration.

Fluid models have also been used to study the throughput behavior of TCP and congestion

control algorithms, together with active queue management in the steady state [37, 39, 42]. Liu

et.al. [32] and Gu et al. [21] solve fluid models with the numerical Runge-Kutta method, and

incorporate numeric results in the simulation of large scale IP networks. As indicated in Chapter 1,

fluid model based simulation may not render satisfactory performance (in terms of the discrepancy

between results obtained in packet level simulation and fluid model based simulation) in the case of

light and/or sporadic traffic, as it relies on the assumption of existence of a large number of flows

[32, 37, 42]. It is also limited to show kinetic transient behaviors of the network.
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Simulation based on scaling down the network: Pan et al. [40] introduce two SHRiNK

methods to sample, simulate, and predict the network behavior. The first method deals with IP

networks with long-lived flows and the other with a mixture of long-lived and short-lived flows. A

proportion of the traffic flows are independently sampled and collected. The original network is

reduced to a downscaled one and fed with the sampled traffic. In the first method, the downscaling

operation is performed by reducing the number of flows, the link capacity, the maximum buffer

sizes, and AQM parameters, while keeping the end-to-end delay invariant. In order to keep the end-

to-end delay invariant, the queue dynamics has to be approximated (by certain linear functions)

and may respond differently to each TCP connection. As a result, the network capacity as perceived

by each TCP connection during its interaction with the network is changed. Moreover, in cases

where the queue dynamics cannot be adequately approximated with linear functions, e.g., when

Drop Tail is used as the AQM strategy, SHRiNK cannot operate correctly. Although similar to

RSM, the second SHRiNK method was presented without theoretical reasoning. In addition, both

SHRiNK methods rely heavily on the assumption that each input flow is a Poisson process, and

moreover, they assume that all the traffic are TCP flows. Compared with SHRiNK, RSM can be

universally applied to long-lived, shorted-lived, and the mixture of long-lived and short-lived TCP

connection; deal with the interference of TCP friendly and unresponsive UDP flows; the down/up

scaling operations in RSM do not change the queue dynamics (which will be rigorously proved);

and its correctness does not rely on any assumption about input traffic. The detailed comparison

is referred to Chapter 7.

Analytical models for the IEEE 802.11 MAC DCF protocol: Bianchi [6] models the

behavior of the binary backoff counter at one tagged station as a discrete Markov chain model.

It determines the transmission probability (τ) and analyzes the saturation throughput under the

assumption that in each transmission attempt, regardless of the number of retransmissions, each

packet collides with constant and independent probability p. It is intuitive that this assumption is

more accurate when W and n get larger. Although the model does not consider the case in which

the backoff counter stays at the current value when the medium is sensed busy due to the data

transmission activities (initiated by other stations), it motivates a significant amount of subsequent
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analysis work.

Caĺi et al. [11] derive a theoretical throughput bound by approximating IEEE 802.11 with a

p-persistent model of IEEE 802.11. Based on the analytical model, they observe that the system

throughput only relies on the value of p and the number of active stations, N . They also show that

with the current parameter settings of IEEE 802.11, it can hardly achieve the theoretical capacity

bound. As such, they suggest to incorporate a parameter tuning method in IEEE 802.11 so as

to achieve the capacity bound. They only deal with IEEE 802.11 DCF without the RTS/CTS

mechanism under the assumptions that the length of data frame follows a geometric distribution,

and that all the stations always have packets ready for transmission (i.e., under the asymptotic

condition).

Carvalho et al. [12] propose an analytical model which computes the average service time and

jitter per frame in a saturated IEEE 802.11 ad-hoc network. They show that the existing binary

backoff scheme is not appropriate for supporting delay constraints, and that use of a large and

constant contention window size is more efficient than binary backing off the window size. This

suggests that the initial contention window size CWmin should be set to a large enough value to

avoid excessive backoff.

Foh and Zukerman [18] analyze, by leveraging the throughput analysis by Bianchi [6], the

saturation throughput with a Markov chain with a single server. They assume that the number

of active stations increases according to a Poisson process and decreases according to the state

dependent service process. Wu et al. [44] also exploit the analysis by Bianchi to modify IEEE

802.11 DCF for reliable transport protocol over IEEE 802.11 WLANs. They extend the Markov

chain model in [6] to incorporate the frame retransmission limit, and hence the revised model

achieves better accuracy in characterizing the transmission activities of IEEE 802.11 DCF.

Xiao [46] extends Bianchi’s Markov chain model [6] to accommodate the case of multi traffic

classes, and incorporate three tunable parameters into the model: the initial contention window

size, the retry limit, and the backoff window-increasing factor. However, the author does not figure

in the effect of AIFS values. With the use of the model, the performance of IEEE 802.11e in terms

of saturation throughput, saturation delay and frame dropping probability is analytically derived.

Ge and Hou [19], on the other hand, extend the work by Caĺi et al., devise an analytical
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model for a multi-class, p-persistent version of IEEE 802.11 DCF, and derive the optimal values of

the probability, pi, that a class-i frame attempts for transmission in a slot under the asymptotic

condition. As the analysis in [7] indicates, there is an one-on-one correspondence between the value

of p in the p-persistent version of IEEE 802.11 DCF and the contention window size, CW , in the

legacy IEEE 802.11 DCF. Hence the results derived in [19] can be readily applied to tune the

contention window size in the legacy IEEE 802.11 DCF, so as to optimize the protocol capacity in

the case of multiple traffic classes.

Analytical models for TCP congestion control: Kelly [25, 27, 26] analyzes the relationship

between network rate control and user payment, and proposes an analytic model to optimize both

the user utility and the network price in a distributed manner. The model assumes that network

traffic can adjust its rate and provide constraints and prices for users, while each user attempts to

maximize his utility function at his current rate. After the author formulate the model, he divides

the principal optimization problem into two subproblems of optimization: network side and user

side optimization, and exploits the standard optimization techniques to solve them. This work is

referred as a milestone in many fluid model based analysis for TCP congestion control interacting

with networks.

Based on duality theory, Low [33, 34] also proposes an optimization network model, in which

the source rate can be adjusted in response to congestion notification and the network determines

the level of congestion with respect to source rates. The overall analytic model is to determine

source rates to maximize the aggregate benefit with the current set of source rates, subject to the

network capacity constraints or the congestion indication.

Misra et al.[37, 36] analyze the TCP throughput behavior based on TCP feedback, such as

retransmission timeout and triple duplicated ACKs, and a stochastic loss process model [37]. The

authors approximate the TCP window size and the loss behavior with a set of stochastic differen-

tial equations, and then show how to employ the derived equations to predict the TCP throughput

in steady state. Their subsequent work [36] extends the previous work to include the interaction

between TCP flows and network routers equipped with active queue management (AQM) strategy.

In addition to the previous set of stochastic differential equations, the authors derive several differ-
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ential equations to describe AQM policy. With all the equations, the authors estimate the network

behavior as well as the TCP behavior within a unified framework.

Shakkotai and Srikant [42] focus on justification of the use of deterministic differential equations

in order to model TCP congestion control. They prove that the delay differential equations for TCP

congestion control can produce an appropriate throughput limit of real TCP traffic, as far as a large

number of flows exist in the network. They also show that the difference between simulation results

and analytical results comes from the packet discretization effect, i.e., the real congestion control

system (or the corresponding simulation) does not operate continuously but handle packets in

discrete time.

Network calculus: Based on that data streams that enter the network and satisfy ”burstiness

constraints”, Cruz analyzes network delays [15, 16]. Such an analysis lays its base on Min-Plus

algebra [1, 9, 13] and has been recognized as constrained traffic regulation problems. The fun-

damental components developed in the system theory are shaper (or regulator, or buffered leaky

bucket controller) for traffic regulation and service curve (or f-server) for provisioning of service

guarantees. The results derived in the theory enable one to understand fundamental properties of,

and hence better deploy, flow control, multimedia smoothing, delay control, and integrated service

provisioning. In addition, by extending the time invariant theory to the time varying case, dynamic

traffic regulation or service guarantee can be considered in the same framework [9, 14]. Finally,

by introducing packetizers, the effect of variable length packets can be analyzed using the theory

developed under network calculus [8, 13]. The interested readers are referred to [1, 9, 13] for a

detailed account of network calculus.

Although network calculus has been mainly used in the context of QoS provisioning, it has been

recently applied to other domains. In particular, Baccelli and Hong [2] show that key feature of

TCP operated networks can be expressed via a linear dynamical system in the max-plus algebra

(max-plus algebra is the dual form of min-plus algebra).

11



Chapter 3

Fluid Model Based Simulation for
IEEE 802.11-operated WLANs

In this chapter, we derive a mathematical model that fully characterizes the data transmission

activities in IEEE 802.11-operated WLANs. Then, we incorporate the model in network simulation,

and carry out the so-called fluid model based simulation[22, 31, 35, 45, 47]. We investigate to what

extent (in terms of practicality and feasibility), fluid model based simulation can be used to simulate

IEEE 802.11-operated WLANs.

3.1 Operations of IEEE 802.11

As the standard medium access control (MAC) and physical layer, IEEE 802.11 [24] provides two

access methods: (i) the Distributed Coordination Function (DCF), also known as the basic access

method, is a carrier sense multiple access with collision avoidance (CSMA/CA) protocol; and (ii)

the Point Coordination Function (PCF) is an access method similar to a polling system and uses a

point coordinator to arbitrate the access right among stations. In addition, the standard includes a

floor acquisition mechanism, called request to send/clear to send (RTS/CTS), to partially resolve

the hidden terminal problem or to decrease the overhead caused by collisions. As DCF is the basic

access method in both wireless infrastructure and infrastructure-less environments and is directly

related to the work, we look over DCF in the IEEE 802.11 protocol, neglecting PCF.

Distributed Coordination Function: DCF operates as follows (Figure. 3.1). Before the data

transmission takes place, a station senses the channel to determine whether or not another station

is transmitting. If the medium is sensed idle for a specified time interval, called the distributed
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inter-frame space (DIFS), the station is allowed to transmit. If the medium is sensed busy, the

transmission is deferred until the ongoing transmission terminates. A slotted binary exponential

backoff technique is used to arbitrate the access: a random backoff interval value is uniformly

chosen in [0, ĈW − 1] and used to initialize the backoff timer, where ĈW is the current maximum

contention window. The backoff timer is decreased as long as the channel is sensed idle, stopped

when data transmission (initiated by other stations) is in progress, and reactivated when the channel

is sensed idle again for more than DIFS. The time immediately following an idle DIFS is slotted,

with each slot equal to the time needed for any station to detect the transmission of a packet

(in the IEEE 802.11 term, MAC Service Data Unit (MSDU)) from any other station. When the

backoff timer expires, the station attempts for frame transmission at the beginning of the next slot

time. Finally, if the data frame is successfully received, the receiver transmits an acknowledgment

frame after a specified interval, called the short inter-frame space (SIFS), that is less than DIFS.1

If an acknowledgment is not received, the data frame is presumed to be lost, and a retransmission

is scheduled. The value of ĈW is set to CWmin(= 32) in the first transmission attempt, and is

doubled at each retransmission up to a pre-determined value CWmax(= 1024). According to the

standard, a maximum number of retransmissions (=7 as default) are allowed before the frame is

dropped.

In the case that the floor acquisition RTS/CTS mechanism is used, the same procedure is con-

ducted except that RTS/CTS handshake operations proceeds the data/acknowledgment exchange

(Figure 3.1(a)). A station sends a RTS frame to the destination before transmitting any MSDU.

The destination then responds with a CTS once it has correctly received a RTS. The source can

then send the MSDU after receiving the corresponding CTS response. Both the RTS and CTS

frames contain the information on the duration of the MSDU/ACK transmission. Based on this

information all the surrounding stations can update their internal timers called Network Alloca-

tion Vector (NAV) and defer any transmission until this timer expires. Even if a hidden station

cannot hear the RTS from the source station, it will be able to receive the CTS response from the

destination station and update its NAV accordingly. This mechanism guards transmission between

stations against unexpected transmission from hidden stations.
1The necessity of returning an acknowledgment is due to the inability of WLANs to listen while transmitting,

since usually only one antenna is available for both transmitting and receiving.
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Figure 3.1: The timing structure of a MAC fluid in IEEE 802.11.

3.2 Derivation of Analytical Model

3.2.1 An Overview of Analysis

We have two important analytical components: fluid chunk and MAC fluid. We define a fluid chunk

as a sequence of collision periods followed by a successfully transmission frame, where a collision

period is composed of (i) idle slots (due to binary exponential backoff) and (ii) a collided frame

or a RTS, depending on whether or not the floor acquisition mechanism is used. Figure 3.1 gives

the timing structure of a fluid chuck. In particular, Figure 3.1 (a) and (b) show, respectively, how

IEEE 802.11 DCF operates with and without the RTS/CTS mechanism. A MAC fluid consists of

a sequence of fluid chunks. Let Pt represent the probability with which a node sends a frame

(note that this probability depends on the backoff timer of the node), and M the number of active

nodes. The condition under which a frame can be successfully transmitted is that only one node

attempts to send its frame. Hence, the probability of successful transmission in the WLAN, Ps,
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Table 3.1: IEEE 802.11 system parameters.
Channel Bit Rate 1 Mb/s

Slot Time 20 µsec
SIFS 10 µsec
DIFS 50 µsec

CWmin 32
CWmax 1024

Phy preamble 144 bits
Phy header 48 bits

MAC header & FCS 224 bits
ACK 112 bits
RTS 160 bits
CTS 112 bits

can be expressed as

Ps = M · Pt · (1− Pt)M−1,

and the probability that there are no transmission activities (idle periods), Pi, is

Pi = (1− Pt)M .

If we assume that M is large enough, then by using the approximation (1− x)y ≈ e−xy, the time

till the next transmission attempt can be approximated as a random variable with the exponential

distribution. The parameter λ for the assumed exponential distribution is determined as follows.

The current backoff window size, Bi, determines the waiting time until which each node, i, should

delay its transmission. Each node employs the identical binary backoff mechanism specified in

the IEEE 802.11 standard, and independently chooses a random value of Bi from the uniform

distribution [0, ĈW i], where ĈW i is the current maximum contention window of node i. (Therefore,

the waiting time at each node is i.i.d.) Let b = E(Bi) denote average backoff window size (average

waiting time) for one node in a MAC fluid, and then average rate for one node is 1
b
. The average

waiting time in system wide therefore is

1
λ

=
1∑M

i=1
1
b

,
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and the average rate in system wide is

λ = M · 1
b
. (3.1)

As will be seen, we will express the analytic components — the fluid chunk and the MAC fluid

— as functions of the parameter, λ, which in turn is a function of the number of active nodes in

Eq. (3.1) (The details on how to derive the attempt rate, λ, will be given in Section 3.3.). Therefore,

the proposed fast simulation framework is devised in the way that it only keeps track of the current

number of active nodes (see Figure 3.5) since the information is sufficient to estimate the expected

throughput and delay in the proposed model.

3.2.2 Derivation of the Frame Service Time

As described in subsection 3.2.1, a MAC fluid is composed of a sequence of fluid chunks, each of

which in turns consists of zero or more collision periods followed by a successful frame transmission.

We define the length of a fluid chunk, i.e., the time it takes to successfully transmit a frame, as the

frame service time, Y . The frame service time plays an important role for the overall analysis, and

is depicted in Figure 3.2. To facilitate analysis of the frame service time Y , we define below several

random variables and express their relation in both cases in which the RTS/CTS mechanism is and

is not employed.

• F : the r.v. representing the total length of collision periods in a fluid chunk;

• N : the r.v. representing the number of collisions in a frame service time or a fluid chunk;

• N ′: the r.v. representing the total number of idle periods in a frame service time or a fluid

chunk; note that N ′ = N + 1;

• Ci: the r.v. representing the ith collision period;

• CWi: the r.v. representing the number of idle slots before the ith collision or the successful

transmission;

• CF : the r.v. representing the size of a collided frame;

• X: the r.v. representing the time it takes to successfully transmit a frame;
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• X ′: the r.v. representing the size of a frame (note that the distribution of CF is the same as

that of X ′);

• DIFS and SIFS: the system parameters whose values are obtained from Table 3.1.

• tack: another system parameter defined as tack = ACK/1(Mb/s).

In the case that DCF employs the RTS/CTS mechanism, we have

Y = F + X, (3.2)

F =
N∑

i=1

Ci, (3.3)

Ci = CWi + trts + DIFS, and (3.4)

X = CWN ′ + trts + SIFS + tcts + SIFS +

X ′ + SIFS + tack + DIFS, (3.5)
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where trts and tcts are obtained from system parameters specified in Table 3.1 as trts = RTS/1(Mb/s),

and tcts = CTS/1(Mb/s). In the case that RTS/CTS mechanism is not employed, all the above

equations remain valid except Eqs. (3.4)–(3.5) which should be modified as follows:

Ci = CWi + CF + DIFS, and (3.6)

X = CWN ′ + X ′ + SIFS + tack + DIFS. (3.7)

Note that we implicitly include the physical layer overhead (preamble and header) and MAC header

in the above equations (as indicated in Table 3.1).

Under both cases, we have (i) F and X are independent of each other, (ii) Ci, i ≥ 1, are

independent of each other, and (iii) CWi and X ′ are independent of each other. Let Y ∗(s), F ∗(s),

C∗(s), X∗(s), CW ∗(s), and X ′∗(s) denote, respectively, the Laplace transform of the probability

density function associated with Y , F , C, X, CW , and X ′. Then, we have

Y ∗(s) = F ∗(s) ·X∗(s), (3.8)

X∗(s) = CW ∗(s) ·X ′∗(s) ·

e−(trts+SIFS+tcts+SIFS+SIFS+tack+DIFS)s (3.9)

in the case that the RTS/CTS mechanism is used, or

X∗(s) = CW ∗(s) ·X ′∗(s) · e−(SIFS+tack+DIFS)s (3.10)

in the case that the RTS/CTS mechanism is not used, and

F ∗(s) = E[e−s
�N

i=1 Ci ] =
∞∑

n=0

E[e−sC1 ] · · ·E[e−sCn ] · P [N = n]

=
∞∑

n=0

[C∗(s)]n · P [N = n].

(3.11)

Note that the last equality of Eq. (3.11) results from the fact that Ci, i ≥ 1, are mutually indepen-

dently of one another. Since the z transform of N is N(z) =
∑∞

n=0 P [N = n] · zn, Eq. (3.11) can
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be rewritten as

F ∗(s) = N(C∗(s)). (3.12)

Now what is left is to derive C∗(s). By Eq. (3.4), we have

C∗(s) = CW ∗(s) · e−(trts+DIFS)s (3.13)

in the case that the RTS/CTS mechanism is used, or

C∗(s) = CW ∗(s) · CF ∗(s) · e−DIFSs (3.14)

in the case that the RTS/CTS mechanism is not used. Since ck = (−1)k · C∗(k)(s)|s=0, we have

c = −C∗(1)(s)|s=0 = cw + trts + DIFS (3.15)

in the case that the RTS/CTS mechanism is used, or

c = −C∗(1)(s)|s=0 = cw + cf + DIFS (3.16)

in the case that the RTS/CTS mechanism is not used, where cw and cf are, respectively, the

expectation of CW and CF . Note that the distribution of CF is the same as that of X ′ and is

given.

To derive the distribution of CW , we note that whether or not each node attempts to transmit

in a time slot is determined by its current backoff window size. Each slot is either idle or used, but

the number of consecutive idle slots is bounded by the maximum contention window size, CWmax

(Table 3.1) within each frame service time. In other words, the number, CW , of idle slots before

each collision or a successful transmission in a fluid chunk cannot exceed CWmax. We will derive

CW based on this observation.

Given that the number of slots till a transmission attempt is approximated as a random variable

with exponential distribution (whose rate is determined by Eq. (3.1)), the probability that there

is no transmission attempt in k slots is e−λk. Given that the maximum contention window size of
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CWmax = m, we can derive the expected number, cw, of idle slots before each collision or successful

transmission as

cw = E[P (CW ≤ y|CW ≤ m)]

=
1

1− e−λm
·
∫ m

0
yλe−λydy =

1− (mλ + 1)e−λm

λ(1− e−λm)
.

(3.17)

3.2.3 Derivation of the Length of a MAC Fluid

Recall that a fluid chunk is made up of zero or more collision periods followed by a successful frame

transmission, and a sequence of fluid chunks constitute a MAC fluid. Figure 3.3 gives the structure

of a MAC fluid.

Total number of idle slots in a fluid chunk

We first derive the total number, CWT
�
=
∑N ′

i=1 CWi, of idle slots in a frame service time. Since

the number, CWi, of idle slots before the ith collision or the successful frame transmission is

independently and identically distributed with each other, the Laplace transform, CW ∗
T (s), of the

probability density function associated with CWT can be expressed as

CW ∗
T (s) = E[e−s

�N′
i=1 CWi ]

=
∞∑

n=0

E[e−sCW1 ] · · ·E[e−sCWn ] · P [N ′ = n]

=
∞∑

n=0

[CW ∗(s)]n · P [N ′ = n].

(3.18)
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Additionally, since the z transform, N ′(z), of N ′ is
∑∞

n=0 P [N ′ = n] · zn, we have

CW ∗
T (s) = N ′(CW ∗(s)). (3.19)

The expected value of CWT can be obtained as follows.

cwt = (−1) · CW
∗(1)
T (s)|s=0

= (−1) ·N ′∗(1)(CW ∗(0)) · CW ∗(1)(0) = n′ · cw.

(3.20)

Length of a MAC fluid

Let D denote the random variable that represents the length of a MAC fluid, Yi the random variable

of the ith frame service time, CWT,1 the total number of idle slots in Y1, and K1 the total number of

transmission attempts in Y1. To derive E[e−sD], we first consider E[e−sD|Y1 = y,CWT,1 = �,K1 =

k]. The condition that totally K1 = k attempts for transmission in Y1 implies that there will be at

least K1 = k fluid chunks by the end of this MAC fluid. During the execution of a subsequent fluid

chunk, new attempts may be made, thus “spawning off” more fluid chunks.

Let the frame service time in which the jth packet (1 ≤ j ≤ k) is successfully transmitted be

denoted as Y(j), and the number of transmission attempts in Y(j) be denoted as K(j). The fact that

K(j) transmissions are attempted implies another K(j) fluid chunks are generated. Let the sum

of Y(j) and the frame service times that are spawned off as a result of K(j) transmission attempts

in Y(j) be denoted as Tj. It can be shown that Tj , j = 1, . . . , k has the same distribution of D.

Moreover, conditioned on Y1 = y, CWT,1 = �, and K1 = k, we have D = y + T1 + · · ·+ Tk. Hence,

E[e−sD|Y1 = y,CWT,1 = �,K1 = k]

= E[e−s(y+Tk+Tk−1+...+T1)]

= E[e−sy] · E[e−sTk ] · · ·E[e−sT1 ] = e−sy · (D∗(s))k.

(3.21)

Under the observation that the number of transmission attempts is Poisson distributed (see Eq. (3.1)
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and related explanation), we have

E[e−sD|Y1 = y,CWT,1 = �]

=
∞∑

k=0

E[e−sD|Y1 = y,CWT,1 = �,K1 = k] · P [K1 = k]

=
∞∑

k=0

e−sy · (D∗(s))k · (λ · �)
k

k!
· e−λ·�

= e−sye−�(λ−λD∗(s)).

(3.22)

Unconditioning on CWT,1 = �, we have

E[e−sD|Y1 = y] = e−sy ·
∫ ∞

0
e−�(λ−λD∗(s))dCWT (�)

= e−sy · CW ∗
T (λ− λD∗(s)).

(3.23)

Finally, unconditioning on Y1 = y, we have

D∗(s) = E[e−sD] =
∫ ∞

0
e−sy · CW ∗

T (λ− λD∗(s))dY (y)

= CW ∗
T (λ− λD∗(s)) · Y ∗(s).

(3.24)

Recall that Y ∗(s) = F ∗(s) ·X∗(s), and hence

D∗(s) = Y ∗(s) · CW ∗
T (λ− λD∗(s))

= F ∗(s) ·X∗(s) ·N(CW (λ− λD∗(s))).
(3.25)

As d(k) = (−1)k ·D∗(k)(0), we have

d = (−1) ·D∗(1)(0)

= (−1) ·
[
Y ∗(1)(s) · CW ∗

T (λ− λD∗(s))

+ Y ∗(s) · CW
∗(1)
T (λ− λD∗(s)) · (−λD∗(s))

]
s=0

,

(3.26)

where Y ∗(1)(0) = F ∗(1)(0) · X∗(0) + F ∗(0) · X∗(1)(0) = −(f + x) (the second equality results

from X∗(0) = 1 and F ∗(0) = 1), CW ∗
T (λ − λD∗(s))|s=0 = CW ∗

T (0) = N(CW ∗(0)) = 1, and
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CW
∗(1)
T (λ− λD∗(s))|s=0 = CW

∗(1)
T (0) · (−λD∗(1)(0)) = (−1) · cwt · λ · d.

Finally, we have

d = (f + x) + λ · d · cwt. (3.27)

Rearranging Eq. (3.27), we have

d =
f + x

1− λ · cwt
=

f + x

1− λ · cw · n′ . (3.28)

The terms needed in Eq. (3.28), i.e., the expected frame service time f , the expected total number

of idle slots in a frame service time n′, and the expected time to successfully transmit a packet x,

can be obtained as follows:

f = (−1) · F ∗(1)(0) = (−1)(N (1)(C∗(0))) · C∗(1)(0)

= n · c,
(3.29)

where c is given in Eqs. (3.15) or (3.16):

x = −X∗(1)(0)

= cw + trts + SIFS + tcts + SIFS + x′

+ SIFS + tack + DIFS,

(3.30)

in the case that the RTS/CTS mechanism is employed, or

x = −X∗(1)(0)

= cw + x′ + SIFS + tack + DIFS,

(3.31)

in the case that the RTS/CTS mechanism is not used, and

n′ = n + 1, (3.32)

where n = N (1)(1) = (1−e−λ−λe−λ)
λe−λ .

With all the expressions properly plugged in, the expected length of a MAC fluid can be
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expressed as

d =
n · c + x

1− λ · cw(n + 1)
. (3.33)

3.2.4 Length of an Idle Period

An idle period separates consecutive MAC fluids. Since each MAC fluid is triggered by one or more

transmission attempts and the time till a transmission attempt is exponentially distributed with

rate λ (Eq. (3.1)), we estimate an idle time between two consecutive MAC fluid as follows:

i =
1
λ

. (3.34)

3.2.5 Throughput

Let nf denote the number of frame service times in a MAC fluid. Then, the expected throughput,

T , can be expressed as

T =
nf × x′

d + i
, (3.35)

where nf can be approximated as

nf =
d

f + x
. (3.36)

We will elaborate in the next section on how we derive the attempt rate, λ, needed as the input to

the model.

3.3 Derivation of The Attempt Rate

To calculate the numerical results from the model derived in Section 3.2, we need to know the value

of the attempt rate λ. In this section, we explain how we determine the attempt rate, λ.

Recall that in Eq. (3.1), we express λ = M/b, where M is the number of nodes and b is the

average backoff window size. To determine λ, we take an iterative approach to determine b based

on M . Succinctly, in each iteration we calculate, based on the average backoff window size b

calculated from the previous iteration, the probability of collision p. This probability is then used

to calculate (along with M) the new average backoff window size to be used in the next iteration.

In what follows, we first derive the relationship between b and p. Then we describe in detail how
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the iterative algorithm operates.

3.3.1 Relationship between b, p and λ

Let C̃W i be the contention window after the ith collision occurs, ci the probability that the current

contention window size is C̃W i, and m the index for the maximum contention window size. Then,

given the probability, p, of collision, we have

ci =

⎧⎪⎨⎪⎩ c0 · pi 1 ≤ i ≤ m− 1,

c0 ·
∑∞

k=m pk = c0·pm

1−p i = m.
(3.37)

Since
∑m

k=0 ck = 1, we have

c0 · (1 + p + p2 + · · ·+ pm−1 +
pm

1− p
) = 1, or

c0 = 1− p.

(3.38)

Let bi be the average backoff window when the contention window is C̃W i. Then, bi =

1�CW i

∑�CW i−1
i=0 i = �CW i−1

2 . In addition, we have C̃W i = 2i · C̃W 0 for 1 ≤ i ≤ m. Thus, given

the probability of collision, p, the average backoff window size, b, can be expressed as

b = b0 · c0 + b1 · c1 + · · · + bm · cm

=
C̃W 0(1− p)

2
·
{

1 + 2p + · · · + (2p)(m−1) +
(2p)m

1− p

}
− 1

2
· {(1− p) + (1− p)p + · · ·+ pm}

=
C̃W 0

2(1 − 2p)
· (1− p− p · (2p)m)− 1

2
.

(3.39)

At the point, we have derived the expression of b as a function of p. Conversely, given the

value of b (and hence the aggregate attempt rate λ = M/b), the probability, p, of collision can be

determined to be

p = 1− e−λ − λ · e−λ. (3.40)
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3.3.2 The Iterative Algorithm

The iterative algorithm constructs the sequence { b
(i)

, i = 0, 1, 2, . . . } as follows. The initial

backoff window size b
(0) is set to E(�CW

(0)
)−1

2 , where the average contention window size E(ĈW
(0)

)

is determined by leveraging Goodman’s work [20]. Specifically, Goodman et al. proved that the

expected number of collisions in a binary backoff algorithm grows asymptotically with O(logM)

(Lemma 3 and Theorem 4 in [20]). Thus, the average contention window size, E(ĈW
(0)

), is bounded

by

E(ĈW
(0)

) < CWmin · 2K·logM , (3.41)

where CWmin(= CW0) is the initial window size (whose default value is 32 in IEEE 802.11) and

K is some arbitrary constant (K > 0) 2.

Given the value of b
(0) calculated above, the attempt rate λ(0) and the probability, of collision,

p(0), can be calculated using Eqs. (3.1) and (3.40), respectively. Then, the average backoff window

size, b
(1), for the next iteration can be calculated as the arithmetic mean of b

(0) and the result, b
(0)′ ,

calculated in Eq. (3.39). The rationale behind using the arithmetic mean is as follows; the input

b
(0) is the worst case backoff window size as we use the bound in Eq. (3.41) as the initial contention

window size. On the other hand, the result, b
(0)′ , is the best case backoff window size as the worst

case backoff window size, b
0, renders the smallest value of λ and p and as a result b

(0)′ is the best

case backoff window size. Hence, we use the arithmetic mean of both values. The iteration repeats

until the difference between the average backoff window sizes in two consecutive iterations satisfies

|b(i+1) − b
(i)| < ε, for some pre-determined value of ε, or there is no more convergence, which is

|b(i+1) − b
(i)| ≥ |b(i) − b

(i−1)|. We prove in Theorem 1 the iteration algorithm converges.

Theorem 1: The iterative algorithm always converges.

Proof: All the obtained backoff windows are bounded by both the minimum and maximum

contention windows, and hence the sequence of all computed backoff window sizes, { b
(i)

, i =

0, 1, 2, . . . }, does not diverge infinitely.

Suppose that the initial backoff window size at the beginning of the ith iteration is b
(i), the newly

generated backoff window size is b
(i)′ , and the backoff window size at the end of the ith iteration is

2In our extensive simulation study, we found that the value of K does not affect the performance of the iterative
algorithm considerably.

26



b
(i+1) = b

(i)
+b

(i)′

2 . If b
(i) is larger than b

(i)′ , b
(i+1) is less than b

(i) but larger than b
(i)′ . Otherwise,

b
(i+1) is less than b

(i)′ but larger than b
(i). Additionally, if b

(i) be less than b
(i+1), then, λ(i) is larger

than λ(i+1), and consequently p(i) is larger than p(i+1) and b
(i)′ is larger than b

(i+1)′ . This is because

the backoff window size is reversely proportional to the collision probability since the attempt rate

is reversely proportional to the backoff window size and the collision probability is proportional to

the rate (Eqs. (3.1), (3.39) and (3.40)). Additionally, when a smaller backoff window is given, the

iteration step produces a larger attempt rate and a larger collision probability, and consequently

computes a larger backoff window. Therefore, the difference between b
(i) and b

(i)′ is larger than the

difference between b
(i+1) and b

(i+1)′ , and moreover, the difference between b
(i) and b

(i)
+b

(i)′

2 (which

is equal to b
(i+1)) is also larger than the difference between b

(i+1) and b
(i+1)

+b
(i+1)′

2 (which is equal

to b
(i+2)). In the case that b

(i) is larger than b
(i+1), the same conclusion that the difference between

b
(i) and b

(i+1) is larger than the one between b
(i+1) and b

(i+2) can be reached via similar reasoning.

Therefore, the difference between b
(i) and b

(i+1) decreases at each iteration in the algorithm, and

the sequence of backoff windows generated in the algorithm, {b(i)
, i = 0, 1, 2, . . .}, converges to a

certain value. Additionally, the second termination condition, |b(i+1)−b
(i)| ≥ |b(i)−b

(i−1)|, supports

that the algorithm converges to a value range and then terminates.

To use the equations derived in Section 3.3.1 in the iterative algorithm, one modification has

to be made. Not all the nodes can send their frames in every time slot due to the binary backoff

algorithm. Hence, we modulate the number, M , of nodes to transmit frame in a slot time as

M ←M · (1− e−λ), as (1− e−λ) is the probability that at least one node attempts to transmit in

that slot.

3.4 Model Validation

We validated the analytical model presented in Section 3.2 and 3.3 with ns-2 simulation. Figure 3.4

(a) and (b) depicts the throughput versus the number of nodes under IEEE 802.11 with and without

the RTS/CTS mechanism, when the packet size is 25 bytes (10 time slots), 125 bytes (50 time slots),

250 bytes (100 slot times), and 1000 bytes (400 time slots). The numerical results calculated under

the derived model agree extremely well with the simulation results obtained in ns-2 simulation. We

will further validate our model in Section 3.5 when we discuss how we incorporate the model in the
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Figure 3.4: Comparison between analytical and simulation results under IEEE 802.11 with and
without RTS/CTS.

proposed fast simulation framework.

3.5 Simulation Study

In this section, we present the fluid model based, fast simulation framework for simulating IEEE

802.11-operated WLANs. All the packets between the successful transmission of two consecutive

frames are abstracted as a fluid chunk, and the simulation engine is instrumented to handle these

fluid chunks in the time stepping fashion [45], according to the analytic models derived in Sec-

tion 3.2. Figure 3.5 shows the blueprint of the proposed framework: the wireless channel provides

the simulation engine with the number, M , of nodes that attempt to send frames at each time step,

thus eliminating the simulation engine from the burden of simulating activities at the packet level,

e.g., packet sending, receiving, collision, and backoff. The simulation engine then determines the

values of λ and the system throughput using the results derived in Sections 3.3 and 3.2.

Modification to ns-2: To focus on the effect of data transmission related activities in the sim-

ulation study and to filter out other second-order effects, we deliberately leave out several protocol

operations in IEEE 802.11, e.g., power saving, beaconing, association and re-association between

wireless nodes and access points, and hidden terminal effects. In addition, several modifications

have been made in ns-2 [4] to accommodate fluid model based simulation for WLANs. First, we in-
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Figure 3.5: The blueprint on fast simulation framework for IEEE 802.11-operated WLANs.

troduce a virtual wireless LAN node.3 All the wireless nodes communicate with each other through

this virtual node. This wireless LAN node uses a static routing algorithm, rather than ad hoc

routing protocols (e.g., DSDV, TORA, AODV, and DSR), and also uses a static ARP table. Con-

sequently, the routing and ARP control overheads are not considered in this simulation study. The

control overhead is solely due to data transmission related activities and includes RTS/CTS/ACK

packets. Second, we introduce a new packet type, called the fluid rate packet that describes the

fluid chunk of a packet flow within a time period. We also include in ns-2 (i) several new protocol

modules that correspond to the fluid simulation version of existing link layer, MAC layer, physical

layer, and channel modules and (ii) a new module, called fluid module, that translates a cluster of

packets into a fluid rate packet or vice versa, or that just deliver fluid rate packets when applications

directly create them.

As shown in Figure 3.6, we include in ns-2 two network protocol stacks, one for packet level

simulation (Figure 3.6 (a)) and the other for the proposed simulation framework (Figure 3.6 (b)).

Except for the above differences, the two simulation models share several common modules: each

wireless node has (i) two UDP (or one TCP and one TCP Sink) modules, one as the sender and

the other as the receiver, and (ii) one CBR or FTP module that generates packets (destined for

the destination node specified by the node identifier). The number of UDP (TCP) flows is equal
3This corresponds to the existing virtual LAN node in ns-2, and virtually exists to construct a LAN among nodes

[4].
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Figure 3.6: The network protocol stacks for the packet level simulation and the proposed fluid
model based simulation framework.

to the number of wireless nodes.

Simulation study: We have conducted a performance study to evaluate the performance of the

proposed simulation framework against that of packet level simulation in IEEE 802.11-operated

WLANs with respect to the system throughput under a variety of network configurations. Addi-

tionally, we also examine how the time step value affects the performance in terms of simulation

speed-up and accuracy.

We carry out experiments under two different IEEE 802.11 operational modes: one with the

RTS/CTS mechanism and the other without, and with two types of traffic: UDP and TCP traffic.

All the simulations are conducted on Linux 2.4.18 on a Pentium 4-1.9 Ghz PC with 1 GBytes

memory memory and with 2 GBytes swap memory. We use ns-2.1b9a, but upgrade the code of

the IEEE 802.11 MAC layer with that available in ns-2.26, and carry out each simulation for 60

simulation seconds. We report simulation results with UDP traffic and TCP traffic in Sections 3.5.1

and 3.5.2, respectively.

30



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

R
el

at
iv

e 
pr

ot
oc

ol
 c

ap
ac

ity

Packet sizes

Fluid with Time-step 0.01
Fluid with Time-step 0.1
Fluid with Time-step 0.3
Fluid with Time-step 1.0
Fluid with Time-step 2.0

Packet
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

R
el

at
iv

e 
pr

ot
oc

ol
 c

ap
ac

ity

Packet sizes

Fluid with Time-step 0.01
Fluid with Time-step 0.1
Fluid with Time-step 0.3
Fluid with Time-step 1.0
Fluid with Time-step 2.0

Packet

(a) The number of nodes is 10 (b) The number of nodes is 100

Figure 3.7: Relative protocol capacity and relative errors versus packet sizes, when the number of
nodes is 10 and 100, respectively, with the RTS/CTS mechanism.

3.5.1 Performance under UDP Traffic

Performance in Terms of relative errors

As mentioned in Chapter 1, fluid model based simulation trades accuracy for performance efficiency.

Before we explore how scalable the proposed simulation framework is for WLANs equipped with

IEEE 802.11, we quantitatively evaluate the discrepancy between results obtained in packet level

simulation and in the proposed simulation framework. In both simulation modes, the throughput

attained by each receiver node is measured and summed up to give the system throughput.

Figure 3.7 gives relative protocol capacity versus packet sizes, when the number of nodes is fixed

at 10 ((a)) and 100 ((b)) respectively, and when the RTS/CTS mechanism is employed. (Note that

relative capacity is computed from the total number of received packets counted at the receiving

modules.) As shown in Figure 3.7, the relative errors — the differences between the protocol

capacity measured in packet level simulation and that in fluid model based simulation, fall within

about 2 % in all cases. The larger the time step value, the larger the relative error. Figure 3.8

shows the simulation results in the same configuration as in Figure 3.7, except that the RTS/CTS

mechanism is not employed. The same observation can be made.

Figures 3.9–3.10 depict the relative protocol capacity as the number of nodes increases to 100

nodes, when the packet size is fixed at 25 (10, (a)) and 250 bytes (100 slot times, (b)), respectively,

in both the cases with and without the RTS/CTS mechanism. The same observation can be made:
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Figure 3.8: Relative protocol capacity and relative errors versus packet sizes, when the number of
nodes is 10 and 100, respectively, without the RTS/CTS mechanism.

the discrepancy in system throughput under the two simulation modes falls within 2 %.

Results in WLANs of extremely large sizes: To study whether or not the relative errors

increase as the network size further increases, we carry out simulation for WLANs of (unreasonably)

large sizes. Figures 3.11–3.12 give the relative protocol capacity as the number of nodes increases

to 1000 nodes with and without the RTS/CTS mechanism. The packet size is fixed at 25 (10, (a))

and 250 bytes (100 slot times, (b)) respectively. Again the relative errors fall within 2 %.

Results in the presence of varying loads imposed by applications: We have also conducted

simulations to study whether or not the relative errors increase when the total aggregate load

(imposed by applications) does not fully utilize the maximum bandwidth as allowed in wireless

channel. Figures 3.13– 3.14 present the relative protocol capacity as the ratio of the aggregate load

to the maximum bandwidth, 1 Mb, as allowed in the WLAN, increases (from 50% to 150%) in both

the cases with and without the RTS/CTS mechanism. The packet size is fixed at 250 bytes (100

slot times, (a)), and the number of nodes is fixed at 50 ((b)), respectively. The time step value

is set to 1.0 (s). As can be observed in both figures, the relative errors fall within 2 % when the

WLAN is not saturated.
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Figure 3.9: Relative protocol capacity as the number of nodes increases to 100. The packet size is
25 (10) and 250 bytes (100 slot times), respectively (both with the RTS/CTS mechanism).
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Figure 3.10: Relative protocol capacity as the number of nodes increases to 100. The packet size
is 25 (10) and 250 bytes (100 slot times), respectively (both without the RTS/CTS mechanism).
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Figure 3.11: Relative protocol capacity as the number of nodes increases up to 1000 nodes (with
the RTS/CTS mechanism). The packet size is 25 (10) and 250 bytes (100 slot times), respectively.
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Figure 3.12: Relative protocol capacity as the number of nodes increases up to 1000 nodes (without
the RTS/CTS mechanism). The packet size is 25 (10) and 250 bytes (100 slot times), respectively.
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Figure 3.13: Relative protocol capacity as the total application load increases (the RTS/CTS
mechanism is used). The packet size is 250 bytes (100 slot times) in (a) and the number of nodes
is 50 in (b), respectively.
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Figure 3.14: Relative protocol capacity as the total application load increases (the RTS/CTS
mechanism is not used). The packet size is 250 bytes (100 slot times) in (a) and the number of
nodes is 50 in (b), respectively.

35



 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90  100

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

The number of nodes

Fluid with Time-step 0.01
Fluid with Time-step 0.1
Fluid with Time-step 0.3
Fluid with Time-step 1.0
Fluid with Time-step 2.0

Packet

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60  70  80  90  100

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

The number of nodes

Fluid with Time-step 0.01
Fluid with Time-step 0.1
Fluid with Time-step 0.3
Fluid with Time-step 1.0
Fluid with Time-step 2.0

Packet

(a) 25 bytes (10 slot times) (b) 250 bytes (100 slot times)

Figure 3.15: Execution time versus the number of nodes when the packet size is 25 (10) and 250
bytes (100 slot times), respectively (the RTS/CTS mechanism is used).

Performance in Terms of execution time

We now evaluate the performance gain that the fluid model based simulation framework can achieve

as compared with packet level simulation.

Figure 3.15 depicts the execution time versus the number of nodes when the packet size is

fixed with 25 bytes (100 slot times, (a)) and 250 bytes (200 slot times, (b)), respectively in the

case that the RTS/CTS mechanism is used. We observe approximately two orders of magnitude

improvement. The improvement is especially pronounced when the number of nodes increases or

the packet size decreases. This is because under these conditions packet level simulation generates

more events to be processed. The same trend can be observed when the packet generation rate of

the applications increases, even if the number of nodes is small and/or the packet size is large.

Figure 3.16 presents the simulation results obtained in the same configuration as in Figure 3.15

except that the RTS/CTS mechanism is not used. The level of improvement in the cases without

RTS/CTS is a little bit lower than that in the cases with RTS/CTS. This results from the fact

that events incurred in processing RTS/CTS frames themselves can be saved in the cases without

RTS/CTS.

Results in the multiple-WLAN, multiple-application scenario: To study whether or not

the performance improvement levels off as the network size further increases, we evaluate the

performance for large scale networks in which multiple WLANs (each of which is made up of multiple
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Figure 3.16: Execution time versus the number of nodes when the packet size is 25 (10) and 250
bytes (100 slot times), respectively (the RTS/CTS mechanism) is not used.

nodes) exist and are interconnected via bridge wireless nodes, each pair of which are connected by

a wired link and which constitute a ring structure (Figure 3.17). In this configuration, both the

number of applications per node and the number of WLANs may increase.

Figure 3.18 depicts the execution time versus the number of applications per node when the

number of WLANs is 5 (each of which consists of 10 nodes) and when the packet size is fixed at 25

bytes (10 slot times, (a)) and 250 bytes (100 slot times, (b)), respectively. More than two orders of

magnitude improvement can be observed in this scenario, and moreover, the improvement becomes

more prominent as the number of applications, the number of nodes per WLAN, the number of

WLANs, or the packet generation rate increases. Figure 3.19 presents the simulation results in th

cases that the RTS/CTS mechanism is not employed. The results show a similar trend as those in

Figure 3.18 does.

Results in WLANs of extremely large sizes: We also carry out simulations for WLANs of

(unreasonably) large sizes. Figure 3.20 depicts the execution time versus the number of wireless

nodes when the packet size is fixed at 25 (10 slot times, (a)) and 250 bytes (100 slot times, (b)),

respectively. The speed-up in execution times as a result of using the proposed framework can

now be as large as about 100 times. Additionally, the improvement in this case also becomes

salient when the packet generation rate increases even in the case of large packet sizes. Figure 3.21

presents the results without the RTS/CTS mechanism. The same observation is observed as done
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Figure 3.17: Multiple WLANs interconnected via bridge wireless nodes.

in Figure 3.20.

Effects of time step values

As the proposed simulation framework advances system states at every time step, the time step

value may affect the performance speed-up and the simulation accuracy.

Figures 3.22–3.25 give the execution time and the relative errors (difference in relative protocol

capacity) versus the time step values, in both cases with and without the RTS/CTS mechanism.

Figures 3.22–3.23 depict the execution time and relative protocol capacity when the packet size is

fixed at 25 bytes (10 slot times) and when the packet size is fixed at 250 bytes (100 slot times),

respectively. Although a larger time step value reduces execution time, it also leads to larger relative

errors, which suggests that an appropriate value of the time step has to be chosen to ensure fidelity

in fluid model based simulation. Figures3.25 and 3.25 gives another set simulation results in the

same configuration as in Figures3.22 and 3.23, respectively, except that the RTS/CTS mechanism

is not used. The same observation can be made: the larger the time step values, the smaller the

execution time, but the larger the relative errors.
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Figure 3.18: Execution time versus the number of applications per node, when the number of
WLANs is 5 (each of which is made up of 10 nodes) and packet size is 25 (10) and 250 bytes (100
slot times), respectively (the RTS/CTS mechanism is used).
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Figure 3.19: Execution time versus the number of applications per node, when the number of
WLANs is 5 (each of which is made up of 10 nodes) and packet size is 25 (10) and 250 bytes (100
slot times), respectively (the RTS/CTS mechanism is not used).
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Figure 3.20: Execution time versus the number of nodes (up to 1000) when packet size is 25 (10)
and 250 bytes (500 slot times), respectively (the RTS/CTS mechanism is used).
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Figure 3.21: Execution time versus the number of nodes (up to 1000) when packet size is 25 (10)
and 250 bytes (500 slot times), respectively (the RTS/CTS mechanism is not used).
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Figure 3.22: Execution time and relative throughput capacity versus time step values, when packet
size is 25 bytes (10 slot times) respectively (the RTS/CTS mechanism is used).
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Figure 3.23: Execution time and relative throughput capacity versus time step values, when packet
size is 250 bytes (100 slot times) respectively (the RTS/CTS mechanism is used).
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Figure 3.24: Execution time and relative throughput capacity versus time step values, when packet
size is 25 bytes (10 slot times) respectively (the RTS/CTS mechanism is not used).
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Figure 3.25: Execution time and relative throughput capacity versus time step values, when packet
size is 250 bytes (100 slot times) respectively (the RTS/CTS mechanism is not used).
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3.5.2 Performance under TCP Traffic

In addition to simulations with CBR traffic on top of UDP, we conduct experiments with FTP on

top of TCP in order to verify whether or not fluid model based simulation is effective for different

types of traffic.

We employ network calculus based simulation [29] to simulate complex TCP specifics. As ex-

plained in Chapter 2, network calculus based simulation characterizes how TCP congestion control

interacts with AQM strategies in the analytic model with the properties of network calculus [9, 13],

and regulates TCP flows in a simulation engine with the derived model. As reported in [29], signif-

icant improvement can be made in expediting network simulation with TCP traffic, while keeping

the error discrepancy acceptably small. The interested readers are referred to [29] for a detailed

account of the network calculus models and how they are incorporated into network simulation.

Packet-level simulation employed in this part of study uses the same network configuration as

that used in Section 3.5.1, except that now we lay FTP on top of TCP, rather than CBR on top

of UDP (Figure 3.26). Fluid model based simulation for IEEE 802.11 is integrated with network

calculus based simulation for TCP traffic. The configuration is given in Figure 3.27. NC-TCP

modules approximate TCP dynamics with the use of network calculus models given in [29]. Loss

Manager provides packet loss information that occurs in the wireless LAN to the sender and hence

saves the execution time incurred in processing ACK packets that come from the TCP receiver

sides [29].

Except for the different modules used to generate TCP traffic and to simulate IEEE 802.11 data

transmission activities, the two modes of simulation share the common configuration: each wireless

node in packet level simulation (network calculus based simulation) has (i) one TCP module and

one TCP sink module (two NC-TCP modules), the former as the sender and the latter as the

receiver, and (ii) one FTP module that generates FTP traffic on top of TCP (NC-TCP). The

number of FTP flows is equal to the number of wireless nodes, and each simulation runs for 500

simulation seconds.

43



LL

IEEE 802.11 MAC

Interface Queue

Wireless PHY

Static ARP

Static Routing

TCP

FTP

Fluid LL

Fluid Module (FM)

Fluid Interface Queue

Fluid IEEE 802.11 MAC

Fluid Wireless PHY

Static Routing

Static ARP

TCP

FTP

(a) For packet level simulation (b) For the proposed simulation
framework

Figure 3.26: The network protocol stacks for the packet level simulation and the proposed fluid
model based simulation framework in the cases with TCP.
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Figure 3.27: Fluid model based simulation for IEEE 802.11-operated WLANs integrated with
network calculus based simulation for TCP traffic.
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Figure 3.28: Relative protocol capacity as the number of nodes increases to 100 in the case that the
RTS/CTS mechanism is used. The packet size is 250 bytes (100 slot times) in (a) and 500 bytes
(200 slot times) in (b), respectively.

Performance in Terms of relative errors

Figures 3.28–3.29 give the relative protocol capacity versus the number of nodes in the cases with

and without the RTS/CTS mechanisms, respectively. The TCP default packet size is fixed at 250

(100 slot times) in (a) and 500 bytes (200 slot times) in (b) respectively. In all the cases, the

discrepancy in the throughput capacity under the two simulation modes falls within about 2 ∼ 4

%. (Network calculus based simulation causes 2 % additional error due to its approximated round

trip time computation.)

Performance in Terms of execution time

Figures 3.30–3.31 give the execution time versus the number of nodes, in both the cases with and

without the RTS/CTS mechanism. The packet size is fixed with 250 bytes (100 slot times) in

(a) and 500 bytes (200 slot times) in (b)), respectively. Approximately two orders of magnitude

improvement can be observed, and the improvement is especially pronounced when the number

of nodes increases or the packet size decreases. Note that the observed performance improvement

is the combined effect of fluid model based simulation for data transmission activities in wireless

LANs and network calculus based simulation for TCP traffic.
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Figure 3.29: Relative protocol capacity as the number of nodes increases to 100 in the case that
the RTS/CTS mechanism is not used. The packet size is 250 bytes (100 slot times) in (a) and 500
bytes (200 slot times) in (b), respectively.
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Figure 3.30: Execution time versus the number of nodes when the packet size is 250 (100) and 500
bytes (200 slot times) respectively, (the RTS/CTS mechanism is used).
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Figure 3.31: Execution time versus the number of nodes when the packet size is 250 (100) and 500
bytes (200 slot times) respectively, (the RTS/CTS mechanism is not used).

3.5.3 Discussion

The simulation study indicates that the proposed simulation framework is quite effective in studying

the transmission activities of IEEE 802.11-operated WLANs. Under several cases, it improves the

performance by about two orders of magnitude as compared to packet level simulation, irrespective

of TCP or UDP traffic. The performance improvement is even more pronounced as the number

of nodes, the number of applications per node, and/or the packet generation rate per application

increases. As a matter of fact, packet level simulation in ns-2 throws an out-of-memory exception

when the number of nodes in a WLAN increases to more than 1000. The relative errors incurred

in the framework with the use of the time stepping technique, nevertheless, fall within 2 %, as long

as time step value is appropriately determined. We also observe that the ripple effect usually found

in fluid model based simulation is not significant in the proposed framework. This is because (i)

all the simulation configurations have only one point of interaction — the fluid wireless channel —

among wireless nodes; (ii) as the simulation is conducted in the time-stepped manner, the ripple

effect is less pronounced than [38, 47].

We claim that the proposed simulation framework can be applied to other network proto-

cols/entities. In our configuration, each protocol entity is considered as a network component, and

the wireless channel is considered as a network component of interaction among different network
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flows. The latter component is, in general, applicable to network queues, multiplexers, switches, or

routers. As a result, we believe that the advantages and drawbacks of fluid model based simulation

that we observe in IEEE 802.11-operated WLANs can be generalized to other networks, as long as

the the analytical model for the point of interaction in the network can be accurately derived.
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Chapter 4

Network Calculus Based Simulation
for TCP Networks

In this chapter, we examine the feasibility of incorporating network calculus based models in sim-

ulating TCP/IP networks. By exploiting network calculus properties, we characterize how TCP

congestion control, additive increase and multiplicative decrease (AIMD) and slow start, together

with the queue management strategy used in routers, regulates TCP flows. We first divide the time

axis into intervals, each of which consists of multiple round-trip times, and derive a TCP through-

put model which derives the attainable throughput of a TCP flow, given the number of losses in an

interval. Then based on the derived throughput model, we define a set of network calculus based

theorems that give upper and lower bounds on the attainable TCP throughput in each interval.

Finally, we implement network calculus (NC) based simulation in ns-2, conduct simulation in both

the packet mode and the network calculus based mode, and measure the performance gain in terms

of the execution time thus reduced and the error discrepancy in terms of the discrepancy between

the network calculus based simulation results and packet-level simulation results.

4.1 Network Calculus and Its Notations

Before delving into the derivation, we first introduce several important operations and notations

that pertain to our work. In the network calculus theory a data flow is usually described by means

of the cumulative function f(t) or g(t), defined as the number of units (bits or packets) seen on

the flow in the time interval [0, t]. These functions belong to F , the set of wide-sense increasing

sequences or functions f taking values in R+ ∪∞ [9, 13]. The following operations are defined as
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basic operations under min-plus algebra.

• ∧ represents the minimum operation, f ∧ g = min [f, g];

• ∨ represents the maximum operation, f ∨ g = max [f, g];

• ⊗ represents the min-plus convolution of two functions or sequences f, g ∈ F ,

(f ⊗ g)(t) = inf0≤s≤t [f(t− s) + g(s)];

• f , for f ∈ F represents the sub-additive closure of f , which is f = infn≥0

[
f (n)

]
.

To extend the min-plus algebra to the time varying case, the family of bivariate functions is

introduced: F̃ = {F (·, ·) : F (s, t) ≥ 0, F (s, t) ≤ F (s, t + 1), for all 0 ≤ s ≤ t}, and if F (·, ·) ∈ F̃ ,

F (t, t) = 0 for all t. Also, the following functions are defined for F̃ :

• (F ∧G)(s, t) = min [F (s, t), G(s, t)];

• (F ∨G)(s, t) = max [F (s, t), G(s, t)];

• (F ⊗G)(s, t) = infs≤τ≤t{F (s, τ) + G(τ, t)};

• F (s, t) represents the sub-additive closure of F (s, t),

F (s, t) = infS
∑m

i=1 [F (ti−1, ti)], where S = t0, t1, t2, . . . , tm is any subset of {1,2,. . . ,t} with

t0 = s < t1 < t2 < . . . < tm = t.

4.2 Analytic Model

In this section, we derive two throughput models: the throughput model and the network calculus

model. In the throughput model, we derive the throughput attained in a time interval, T , under the

TCP AIMD congestion avoidance mechanism and the throughput attained until the time instant

t under TCP slow start mechanism. The interval T will be used as the value of the time step in

the simulation. Then, based on the derived throughput model, we develop the network calculus

model that gives upper and lower bounds on the attainable TCP throughput in each interval.

Finally, we derive the other functions, i.e., the queue, loss, and output functions needed to describe

network behaviors corresponding to TCP interactions, and moreover to realize network calculus

based simulation.
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Figure 4.1: A typical histogram of the attainable throughput under the TCP AIMD mechanism in
an interval T , where a is the initial rate in the given period, and tRi is the round trip time.

4.2.1 Throughput Model

We denote, respectively, the additive increase parameter and the multiplicative decrease parameter

under TCP AIMD as α and β. We make the following assumptions in the derivation: (i) all the

routers in the network employ FIFO (drop tail) as their buffer occupancy discipline, and (ii) the

round trip time, tRi , within an interval T is constant. (Note that we do not make the assumption

that tRi is constant throughout the simulation.)

Throughput Model for TCP AIMD

We intend to capture the throughput dynamics under the TCP AIMD mechanism in an interval

T . Let the number of packet losses in the interval T be m − 1, and the initial window size be a.

Figure 4.1 depicts a typical histogram of the attainable throughput under TCP AIMD in an interval

T ((a)) and in an AI phase ((b)). Under the assumption that the round trip time is constant in

each interval T , the slope in each AI phase in the interval T is equal to tan θT = α 1
t2Ri

, by Kelly’s

deterministic differential equation, ṙ = α 1
t2Ri

− β · r(t − tRi) · p(r(t − tRi)), that characterizes the

TCP throughput dynamics (where p(t) is the packet loss rate function [27]).

Given m− 1 packet losses in an interval T , we have m AI phases within that interval, and the
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total attainable throughput can be expressed as

ST,m−1 =
m∑

i=1

si = a · (t1 + βt2 + β2t3 + . . . + βm−1tm
)

+ tan θT · t1 ·
(

1
2
t1 + βt2 + . . . + βm−1tm

)
+ · · ·

+ tan θT · tm ·
(

1
2
tm

)
,

(4.1)

where ti = ci · tRi , ci ≥ 1 and ci ∈ Z, for 1 ≤ i ≤ m, and si stands for the throughput of each AI

phase within T .

Eq. (4.1) can be recast in the vector and matrix notation as

ST,m−1 = tan θT · tT ·Q · t + a · P T · t, 1 (4.2)

where

t =
(

t1 t2 t3 . . . tm−1 tm

)T

,

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 β β2 . . . βm−2 βm−1

0 1
2 β β2 . . . βm−2

· · · · · · · · ·
0 0 0 . . . 1

2 β

0 0 0 . . . 0 1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

P =
(

1 β β2 . . . βm−2 βm−1

)T

.

Minimum throughput: We derive the minimum and maximum attainable throughput for a

tagged TCP flow when the interval, T , and, the number of losses, m− 1, are given. We formulate
1The superscript symbol T represents transposition.
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the problem of deriving the minimum attainable throughput as follows:

min ST,m = tan θT · tT ·Q · t + a · P T · t

subject to
m∑

i=1

ti = T.
(4.3)

In order to solve the problem, we first investigate (with the use of the Lagrange multiplier theory

[5]) whether or not a minimum solution exists, and if so, we can use one of the Lagrange multiplier

algorithms [5] to obtain the solution. We formulate the Lagrangian function L as follows:

L(t, λ) = ST,m(t) + λh(t), (4.4)

where h(t) =
∑m

i=1 ti − T = 0.

The first and second derivatives of Eq. (4.4) are, respectively,

tL(t, λ) = tan θT ·Q′ · t + a · P + λ, (4.5)

λL(t, λ) =
m∑

i=1

ti − T, (4.6)

2
ttL(t, λ) = tan θT ·Q′, (4.7)

where

Q′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 β β2 . . . βm−2 βm−1

β 1 β β2 . . . βm−2

β2 β 1 β . . . βm−3

· · · β2 β · · · β · · ·
βm−2 βm−3 . . . β 1 β

βm−1 βm−2 βm−3 . . . β 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.8)

As the matrix Q′ is positive definite since det(Q′) > 0 and tan θT > 0 since 0 < θT < 90o, there

exists a minimum solution of ST , subject to
∑

i=1 ti = T .
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Maximum throughput: Similarly we formulate the problem of deriving the maximum attain-

able throughput as

min S
′
T,m−1 = −ST,m−1 = −(tan θT · tT ·Q · t + a · P T · t)

subject to
m∑

i=1

ti = T.
(4.9)

Following the same line of derivation as in the minimization problem, we define the Lagrangian

function L′ for this maximization problem as follows:

L′(t, λ) = −(tan θT · tT ·Q · t + a · P T · t) + λh(t), (4.10)

where h(t) =
∑m

i=1 ti − T = 0.

The first and second derivatives of Eq. (4.10) are, respectively,

tL
′(t, λ) = − (tan θT ·Q′ · t + a · P )+ λ, (4.11)

λL′(t, λ) = T −
m∑

i=1

ti, (4.12)

2
ttL

′(t, λ) = − tan θT ·Q′, (4.13)

where Q′ is given in Eq. (4.8).

Since the second derivative, − tan θT · Q, of the Lagrangian function in Eq. (4.10) does not

satisfy the second order condition for optimality in Lagrange multiplier theory, we cannot draw

the conclusion of whether or not there exists a solution for this problem. However, by Weistrass’

Theorem [5], we know that the solution exists, and can be obtained when all the losses occur at

the beginning or ending point of the interval. Figure 4.2 depicts such a scenario. That is, we can

calculate the maximum attainable throughput in a given interval T as

Smax
T =

⎧⎪⎨⎪⎩
(
a + 1

2 tan θT · T
) · T, if T > 0;

0, if T ≤ 0.
(4.14)
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Figure 4.2: The maximum attainable throughput in an interval of T .

Throughput Model for TCP Slow Start Phase

In the TCP slow start phase, a TCP flow seeks a maximally attainable throughput by exponentially

increasing the TCP congestion window (and hence the sending rate) until it encounters packet

loss(es). The instantaneous rate at time t in the slow start phase, rss(t), can be expressed as:

rss(t) = 2(t−1) (4.15)

and the cumulative throughout till the time instant t is

Sss = 1 + 2 + 22 + · · ·+ 2t−1 =
t∑

i=1

2(t−1) = 2t − 1. (4.16)

Note that we divide the time domain with each unit equal to one round trip time in any interval

T .

4.2.2 Network Calculus Model

Based on the above throughput models, we now derive the network calculus models that will be used

to determine the TCP throughput in network simulation. Let R, X, Y , and L denote, respectively,
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Figure 4.3: The network configuration in the network calculus domain.

the cumulative amount of the various types of traffic as labeled in Figure 4.3. For example, R(t)

denotes the amount of traffic sent by the TCP connection in [0, t]. These functions belong to the

set, F , of wide-sense increasing sequences or functions f taking values in R+ ∪ ∞ (Section 4.1).

Note that we take t in the discrete time domain in this study (t ∈ Z), and consider that the time

axis is divided into intervals in the discrete time domain, Ti = [ti, ti+1], i ≥ 0, each of which in turn

consists of multiple round-trip times of equal length. We also define

Ri(t) = R(ti + t)−R(ti), when t ∈ Ti = [ti, ti+1] . (4.17)

Network Calculus Model for TCP AIMD

We first prove that TCP AIMD is a piecewise linear time varying shaper in the following theorems

and corollary. The piecewise linear property in the shaper function means that the function is de-

fined by concatenating several linear functions without overlapping, and the time varying property

means that given a function of two time variables H(s, t), the shaper forces the output R(t) to

satisfy the condition

R(t) ≤ H(s, t) + R(s)

for all s ≤ t.

Theorem 2: TCP AIMD is a piecewise linear time varying shaper with the time varying shaping
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curve σTi in the interval Ti = [ti, ti+1], where

σTi(s, t) = σTi(t)− σTi(s), (4.18)

σTi(t) =

(
ai +

1
2

α

t2Ri

t

)
t,

and ai = r(ti) = R(ti)−R(ti − 1).

Proof: First we know that the function σTi(t) is convex and piecewise linear since t takes

discrete time. Hence we can connect different successive points
(

t, (ai + 1
2

α
t2Ri

t)t
)

for all t =

0, 1, 2, 3, . . ., and the resulting curve will be a concatenation of segments, whose slopes are equal to

1
2

α
t2Ri

(2t + 1) + ai for each interval [t, t + 1] when t ≥ 1 but the initial slope in the interval [0, 1] is

a + 1
2

α
t2Ri

.

Let Ri(t) =
∑t

i=1 ri(t) be the cumulative throughput in the interval [1, t], and R̂i(s, t) =

Ri(t) − Ri(s) be the cumulative throughput in the interval [s + 1, t], and Ri(t) = 0, for t ≤ 0.

Then we have the following relation:

R̂i(s, t) = Ri(t)−Ri(s) =
t∑

k=s+1

rk(t),

for all 0 ≤ s ≤ t ≤ (ti+1 − ti).

From the previous analysis for maximum attainable throughput, we know that the throughput is

upper-constrained by σTi in the interval Ti = [ti, ti+1] (Figure 4.2 and Eq. (4.14)). Therefore, we

have

Ri(t)−Ri(s) =
t∑

k=s+1

rk(t)

≤ σTi(s, t) =

(
a +

1
2

α

t2Ri

t

)
t−

(
a +

1
2

α

t2Ri

s

)
s.
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Finally we have

Ri(t) ≤ Ri(s) + σTi(s, t),

Ri(t) ≤ min
0≤s≤t

[Ri(s) + σTi(s, t)] . (4.19)

By Eq. (4.19), we conclude that TCP AIMD is a piecewise linear time varying shaper with the time

varying shaping curve σTi in the interval Ti.

Theorem 3: TCP AIMD is upper constrained by a linear function C(t) in any interval Ti =

[ti, ti+1], where C represents a given constant output capacity:

Ri(t) ≤ Ri(s) + C(s, t),

Ri(t) ≤ min
0≤s≤t

[Ri(s) + C · (t− s)] . (4.20)

Proof: The proof is similar to that for Theorem 2, and is then omitted.

Theorem 4: TCP AIMD is upper constrained by a linear function W (t) in any interval Ti =

[ti, ti+1], where W represents a given constant maximum advertised window 2:

Ri(t) ≤ Ri(s) + W (s, t),

Ri(t) ≤ min
0≤s≤t

[Ri(s) + W · (t− s)] . (4.21)

Proof: The proof is similar to that for Theorem 2, and is then omitted.

Corollary 1: The maximum solution of Eqs. (4.19), (4.20), and (4.21), Rmax
i (t), is

Rmax
i (t) = (σTi ⊗ (C ∧W )(t), (4.22)

where σTi(t) = a +
1
2

α

t2Ri

t.

2This constraint is only for the comparison with packet level simulation (ns-2), in which the amount that each
TCP can send is upper-bounded by W even if it can send the more number of packets.
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Proof: We note that the initial condition Ri(t) = 0, for t ≤ 0. Also, following [9] we define

the δ(t) function as

δτ =

⎧⎪⎨⎪⎩ ∞, if t > τ ;

0, if t ≤ τ.

Therefore, Ri(t) is constrained by

Ri(t) ≤ (σTi ⊗Ri) (t) ∧ (C ⊗Ri) (t) ∧ (W ⊗Ri) (t) ∧ δ0(t).

By Theorem 4.3.1 in [9] or Theorem 4.1.5 in [13],3, we know that the maximal solution of the above

equation is

Rmax
i (t) = (σTi ⊗ (C ∧W )) (t), where σTi(t) = min

n≥0

[
σ

(n)
Ti

]
.

Note that the min-plus convolution, ⊗, of two convex functions is also convex. Furthermore,

by the property stated/proved in the section entitled properties of ⊗ for convex function in [9], if

the two functions are convex and piecewise linear, the min-plus convolution can be obtained by

sorting the different linear pieces of the two functions in the order of increasing slopes. Now σTi is

convex and piecewise linear since it has a linear slope, 1
2

α
t2Ri

(2t+1)+a, in each interval [t, t + 1] for

t ≥ 1, except the initial slope in the interval [0, 1], which is a + 1
2

α
t2Ri

. By using the aforementioned

property, σTi ⊗ σTi can be obtained by doubling the length of different linear segments of σTi , and

sorting them end-to-end in the increasing order of their slopes. Note that the first linear segment

whose slope a + 1
2

α
t2Ri

has a double length. If we repeat this operation for convolution n times, we

obtain a convex piecewise linear sequence σ
(n)
Ti

(t):

σ
(n)
Ti

(t) = a +
1
2

α

t2Ri

t if 0 ≤ t ≤ n.

Conclusively, the sub-additive closure of σTi is determined when n→∞, and therefore,

σTi(t) = a +
1
2

α

t2Ri

t.

3The proof is given in [1]
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In what follows we prove in the following Lemma and Theorem that TCP AIMD is a system that

offers a time varying service curve γTi in interval Ti. The piecewise linear property in the service

curve means that the curve is defined by concatenating several linear functions without overlapping,

and the time varying property means that given a function of two time variables H(s, t), the curve

serves the output R(t) to satisfy the condition

R(t) ≥ H(s, t) + R(s)

for all s ≤ t.

Lemma 1: The function γT (ti, tj) is non-negative and wide-sense increasing in t ∈ Ti = [ti, ti+1],

where

γTi(ti, tj) = γTi(tj)− γTi(ti), (4.23)

where γTi(t) = minSt,m, when t ∈ Ti. (4.24)

Proof: According to [9] and [13], if γTi(ti, tj) ≥ 0 and γTi(ti, tj) ≤ γTi(ti, tj + 1) for all

0 ≤ ti ≤ tj, γTi(ti, tj) is a nonnegative and increasing in t. We know that γTi(ti, tj) ≥ 0 since

min S(tj−ti),m is always greater than or equal to 0 when m ≥ 0, and (tj − ti) > 0. In addition,

since γTi(ti, tj + 1) = γTi(ti, tj) + γTi(tj , tj + 1) and γTi(tj, tj + 1) = minS1,m̃, for m̃ ≥ 0, is always

non-negative, we know that γ(ti, tj + 1) ≥ γ(ti, tj). Hence γ(ti, tj) is non-negative and increasing

in t.

Theorem 5: When the number of packet losses, m − 1, in an interval Ti = [ti, ti+1] is known,

TCP AIMD is a system that offers a time varying service curve γTi which is piecewise linear in the

interval Ti, where γTi(t) = minSt,m, when t ∈ Ti.

Proof: First let t∗ be the solution of minarg STi,m. Given the number of packet losses, we can

separate Ti into m AI phases Ti,j = [ti,j−1, ti,j] for 1 ≤ j ≤ m, each of which has the throughput

function

γTi,j (t) =

(
ai,j +

1
2

α

t2Ri

t

)
t,

where ai,j = r(ti,j−1) and ti,j−1 ≤ t ≤ ti,j.
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We know that each function γTi,j is convex and piecewise linear, and since the sum of convex

functions is convex, γTi(t) is convex and piecewise linear. The remaining derivation is similar to

that in Theorems 2, 3, and 4, and finally we have:

Ri(t) ≥ Ri(s) + γTi(s, t),

Ri(t) ≥ min
0≤s≤t

[Ri(s) + γTi(s, t)] . (4.25)

Corollary 2: The minimum solution of Eq. (4.25), Rmin
i (t), is

Rmin
i (t) = γTi

(t) =
m∑

j=1

{
aj−1 +

1
2

α

t2Ri

(ti,j − ti,j−1)

}
, (4.26)

where all the terms are defined in Theorem 5.

Proof: By Eq. (4.25), Ri(t) is constrained by

Rmin
i (t) = (γTi ⊗Ri) (t).

From Theorem 4.3.1 in [9] or Theorem 4.1.5 in [13], the solution of the above equation is

γTi
(t) = min

n≥0

[
γ

(n)
Ti

]
.

Since Ti = [ti, ti+1] consists of non-overlapped m sub-intervals, where Ti,j = [ti,j−1, ti,j] for 1 ≤ j ≤
m, has the throughput function

γTi,j (t) =

(
ai,j−1 +

1
2

1
t2Ri

t

)
t, (4.27)

we know that Ri(t) is served with the time varying service curve given by (4.27) in the sub-interval

Ti,j. Let x(τ)
�
= Ri(ti,j−1 + τ)−Ri(ti,j−1). Then,

x(τ) ≥ (γTi,j ⊗ x)(τ) = min
0≤ω≤τ

[
γTi,j (ω, τ) + x(ω)

]
.
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By employing the same reasoning as in the proof of Corollary 1, the solution of the above equation

is

xmin(τ) = γTi,j
(τ), where γTi,j

(t) = ai,j−1 +
1
2

α

t2Ri

t.

By recasting the above two equations with the original notation, we obtain respectively

Ri(ti,j−1 + τ)−Ri(ti,j−1) ≥ min
0≤ω≤τ

[
γTi,j (ω, τ) + Ri(ti,j−1 + ω)−Ri(ti,j−1)

]
,

Rmin
i (ti,j−1 + τ)−Rmin

i (ti,j−1) = γTi,j
(τ).

Then, we have

Ri(t) ≥ min
ti,j−1≤s≤t

[
γTi,j (s, t) + Ri(s)

]
,

Rmin
i (t) = γTi,j

(t) + Rmin
i (ti,j−1), when ti,j−1 ≤ t ≤ ti,j.

By repeating this procedure for each sub-interval, we obtain the minimum solution, Rmin
i (t):

Rmin
i (t) = γTi

(t) =
m∑

j=1

γTi,j
(t) =

m∑
j=1

{
aj−1 +

1
2

α

t2Ri

(ti,j − ti,j−1)

}
. (4.28)

Based on Theorems 2-5 and their subsequent Corollaries or Lemmas, we recast the TCP/IP

operated network in the domain of network calculus (Figure 4.3). Then, we can use the cumula-

tive input function R(t) to emulate the TCP AIMD throughput behavior with the time-stepping

technique.

The following theorems extend the throughput derivation from within an interval to the entire

simulation period.

Theorem 6: When t is in the interval Ti = [ti, ti+1], R(t) is constrained by the time varying

shaping curve σTi , and hence R(t) is upper constrained as follows:

R(t) ≤ min
ti≤s≤t

[σTi(s, t) + R(s)] , when t ∈ Ti. (4.29)
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Proof: By Eq. (4.19), Ri(t) is upper constrained by a time varying shaping curve σTi(ti, ti+1)

in the interval Ti = [ti, ti+1]. Recall (from Eq. (4.17)) that

Ri(τ) = R(ti + τ)−R(ti). (4.30)

Since Ri(τ) is upper constrained by σTi ,

Ri(τ) ≤ (σTi ⊗Ri) (τ) = min
0≤ω≤τ

[σTi(ω, τ) + Ri(ω)] .

Therefore, by Corollary 1,

Rmax
i (τ) = (σTi ⊗ (C ∧W ))(τ), where σTi(t) = ai +

1
2

α

t2Ri

t.

Recasting the original notation into the above equation, we obtain

R(ti + τ)−R(ti) ≤ min
0≤ω≤τ

[σTi(ω, τ) + R(ti + ω)−R(ti)] ,

Rmax(ti + τ)−Rmax(ti) = (σTi ⊗ (C ∧W ))(τ).

Rearranging the terms, we have

R(t) ≤ min
ti≤s≤t

[σTi(s, t) + R(s)] ,

Rmax(t) = (σTi ⊗ (C ∧W ))(t) + Rmax(ti), when t ∈ Ti = [ti, ti+1]. (4.31)

Theorem 7: When the cumulative input function R(t) is in the interval Ti = [ti, ti+1], it is served

by a time varying service curve γTi , and hence R(t) is minimally guaranteed as follows:

R(t) ≥ min
ti≤s≤t

[γTi(s, t) + Ri(s)] , where t ∈ Ti. (4.32)
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Proof: By Eq. (4.25), Ri(t) is lower bounded by a time varying service curve γTi(ti, ti+1) in

the interval Ti = [ti, ti+1]. Using the expression of Ri(τ) given in Eq. (4.30), we have

Ri(τ) ≥ (γTi ⊗Ri)(τ) = min
0≤ω≤τ

[γTi(ω, τ) + Ri(ω)] .

Following the same line of reasoning as in Theorem 6, we obtain

R(t) ≥ min
ti≤s≤t

[γTi(s, t) + R(s)] ,

Rmin(t) = γTi
(t) + Rmin(ti), when t ∈ Ti = [ti, ti+1]. (4.33)

With Theorems 6–7, we determine the maximum value of R(t) using Eq. (4.31) and the minimum

value of R(t) using Eq. (4.33) at each time step T . Note that any non-decreasing function R(t)

such that Rmin(t) ≤ R(t) ≤ Rmax(t) can be a solution to emulate TCP AIMD throughput in the

context of network calculus.

Algorithm for determining the amount of TCP traffic sent by a TCP flow: In the

simplest form, the amount of TCP traffic sent by a TCP flow in the current time slot Ti = [ti, ti+1]

is Rmax
j (ti+1)−Rmax

j (ti) if no packet loss was incurred in the previous slot; and Rmin
j (ti+1)−Rmin

j (ti)

otherwise. To more accurately determine the amount of TCP traffic sent by a TCP flow, we present

a refined algorithm that takes into account of activities in the past slots.

Let ti denote the current time, Lprev the number of packet losses in Ti−1 = [ti−1, ti], Uprev the

amount of traffic sent in Ti−1 = [ti−1, ti], and Usucc the amount of traffic sent in the most recent

interval that does not incur packet loss. Then, the amount of traffic, Unext, to be sent in [ti, ti+1]

is determined as follows:

1. if Lprev = 0, Unext ← Rmax
j (ti+1)−Rmax

j (ti);
2. else {
3. if

(
Rmin

j (ti+1)−Rmin
j (ti) < Uprev && Rmin

j (ti+1)−Rmin
j (ti) < Usucc < Rmax

j (ti+1)−Rmax
j (ti)

)
4. Unext ← Usucc;
5. else if

(
Rmin

j (ti+1)−Rmin
j (ti) < Uprev && Rmin

j (ti+1)−Rmin
j (ti) > Usucc

)
6. Unext ←

(
Rmin

j (ti+1)−Rmin
j (ti)

)
;

7. else if
(
Rmin

j (ti+1)−Rmin
j (ti) > Usucc > Uprev

)
8. Unext ← Uprev − Lprev;
9. else if

(
Rmin

j (ti+1)−Rmin
j (ti) > Uprev > Usucc

)
10. Unext ← Usucc;
11. }
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The refined algorithm focuses on the scenarios with incurred losses since losses are feedback from

the network to notify the change of network state; it just sends Rmax
j (ti+1)−Rmax

j (ti) if no packet

loss was incurred (line 1), but in the other cases it takes the elaborate steps as follows (line 2-11).

The refined algorithm basically sends Rmin
j (ti+1) − Rmin

j (ti) if packet loss occurs in the previous

time slot (line 5-6). However, it uses Usucc (line 3-4) if Usucc is in between Rmin
j (ti+1)−Rmin

j (ti) and

Rmax
j (ti+1)−Rmax

j (ti) since Usucc is one of the solutions that satisfy Rmin(t) ≤ R(t) ≤ Rmax(t). The

remaining portion (line 7-10) allows the algorithm to quickly switch from an inappropriate state

to a desirable state (which produces the appropriate amount of traffic); if Rmin
j (ti+1) − Rmin

j (ti)

is larger than Uprev (which caused losses), Rmin
j (ti+1) − Rmin

j (ti) might cause losses again, which

means that the current AIMD phase at which the algorithm targets does not agree well with the

new network state which results from the instantaneous traffic change. In order to rapidly switch

the current AIMD phase to the appropriate AIMD phase, we simply exploit Usucc, Uprev, and Lprev

as shown in the algorithm. Note that we can also use the algorithm for TCP slow start phase

(which will be explained in the following section) without any modification for this transition and

the only intention of the algorithm is to speed it up by discovering the next allowable traffic amount

as soon as possible.

The refined algorithm and the rationale behind the algorithm are best illustrated with the

example given in Figure 4.4 (which depicts the decision flow which the refined algorithm will take).

Note that the y-axis in Figure 4.4 represents the amount of traffic sent in each time slot, but not

the cumulative amount of traffic till t. For example, in Figure 4.4, the amount of traffic sent in

[t1, t2] is determined at time t1, and is represented by the y-axis value at t2.

Figure 4.4 (1) shows the basic cases in which the algorithm uses Rmax
j (t) or Rmin

j (t) to determine

the amount of TCP traffic to be sent. At time t1, the algorithm determines the amount of traffic

according to Rmax
j (t2) − Rmax

j (t1) since no packet loss is incurred in the previous slot T0; in time

slot T1, the TCP flow incurs some packet loss and hence at time t2 the algorithm determines the

amount of traffic according to Rmin
j (t3)−Rmin

j (t2). In Figure 4.4 (2), the TCP flow incurs packet

loss in T3, and hence at time t4 the algorithm computes the amount of traffic based on Rmin
j (t).

Fortunately, Usucc, the amount of traffic successfully sent up to now (the amount sent at in T2),

is greater than Rmin
j (t5) − Rmin

j (t4) and less than Rmax
j (t5) − Rmax

j (t4), so that Usucc is another

solution of satisfying Rmin(t) ≤ R(t) ≤ Rmax(t). As a result, the algorithm uses the amount of

traffic successfully sent in T2 (i.e., the y-axis value at time t3) as the amount of traffic to be sent
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Figure 4.4: The decision flow that the elaborated algorithm takes to determine the amount of TCP
traffic sent by a TCP flow in the current slot. The x axes is the time, and the y axes denotes the
amount of traffic.

in [t4, t5], i.e., the dotted blue line in Figure 4.4 (2). Compared with these previous scenarios,

the following scenarios are only for inappropriate cases. In Figure 4.4 (3), the TCP flow also

incurs packet loss in T4, and hence the algorithm determines the amount of traffic to be sent in

T5 = [t5, t6] based on Rmin
j (t). However, the computed result, Rmin

j (t6) − Rmin
j (t5), is larger than

both (i) the amount of traffic sent in T4 = [t4, t5] (Uprev), i.e., the y-axis value at time t5 (that

leads to packet loss), and (ii) the amount of traffic successfully sent in T3 = [t3, t4] (Usucc), i.e., the

y-axis value at time t4. In this case, the algorithm computes the amount of traffic to be sent in T5

as the amount of traffic sent in T4 minus the amount of packet losses in T4 (line 7-8). The dotted

blue line in Figure 4.4 (3) depicts this decision. In Figure 4.4 (4), the TCP flow encounters the

same situation as in Figure 4.4 (3), except that the amount of traffic sent in T6 (Uprev) is larger

than that successfully sent in T5 (Usucc), and therefore, the algorithm simply uses the amount of

traffic successfully transmitted in T5 as the amount of traffic to be sent in T7. The blue dotted in

Figure 4.4 (4) line depicts this decision. Figure 4.4 (5) shows the complete set of decisions that the

algorithm makes for the amount of TCP traffic to be sent.

Note that the above algorithm only uses Rmax
j (t), Rmin

j (t), the amount of traffic sent in the

previous slot, the amount of packet losses in the previous slot, and the amount successfully sent in

the most recent slot to determine the amount of traffic to be sent in the next slot, so that it can

rapidly discover the appropriate amount of traffic.
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Network Calculus Model for TCP Slow Start Phase

Following the same line of derivation for the network calculus model for TCP AIMD algorithm,

we first show that TCP slow start is piecewise linear in the following theorems and corollaries. In

contrast to the derivation for TCP AIMD, we do not use the time varying property, as the same

rate function (Eq. (4.15)) and the same cumulative throughput function (Eq. (4.16)) are used till

the end of the slow start phase.

Theorem 8: TCP slow start is upper constrained by a linear function C(t) in any interval where

C represents a given constant output link capacity:

Rss(t)−Rss(s) ≤ C · (t− s),

Rss(t) ≤ min
0≤s≤t

[Rss(s) + C · (t− s)] . (4.34)

Proof: The proof is similar to that for Theorem 2, and is then omitted.

Theorem 9: The amount of traffic, Rss(t), sent by a TCP flow in the slow start phase is upper

constrained by a linear function W (t) in any interval where W represents a given constant maximum

advertised window:

Rss(t)−Rss(s) ≤ W · (t− s),

Rss(t) ≤ min
0≤s≤t

[Rss(s) + W · (t− s)] . (4.35)

Proof: The proof is similar to that for Theorem 2, and is then omitted.

Corollary 3: The maximum solution of Eqs. (4.34) and (4.35), Rmax
ss (t), is

Rmax
ss (t) = (C ∧W ) (t). (4.36)

Proof: Rss(t) is constrained by

Rss(t) ≤ (C ⊗Ri) (t) ∧ (W ⊗Ri) (t) ∧ δ0(t).
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By Theorem 4.3.1 in [9] or Theorem 4.1.5 in [13], we know that the maximal solution of the above

equation is

Rmax
ss (t) = (C ∧W )(t) = (C ⊗W ))(t) = (C ∧W )(t). (4.37)

Note that we do not derive a maximum throughput function, as in Theorem 2. This is because

(i) in the slow start phase a TCP flow intends to reach an maximally allowable throughput as

fast as possible, and hence maximal regulation is not necessary; (ii) since the exponential function

(Eqs. (4.15) and (4.16)) that a TCP flow follows to send packets in the slow start phase is non-

polynomial, for which a corresponding linear function can hardly be defined.

In what follows, we show that TCP slow start is a system that offers a piecewise linear service

curve in any interval.

Theorem 10: TCP slow start shapes Rss(t) with a piecewise shaper with the shaping curve ξ(t)

in any interval, where

ξ(t) =

⎧⎨⎩ 2t − 1, if t ≥ 1;

0 t ≤ 0.
(4.38)

Proof:

First we know that the function ξ(t) is convex and piecewise linear as it takes discrete time, and

thus we can connect different successive points
(
t, 2t

)
when t ≥ 1 and (0, 0) when t = 0 , and the

resulting curve will be a concatenation of segments, whose slopes are equal to 2t for each interval

[t, t + 1] when t ≥ 0.

Since Rss(t) =
∑t

i=1 ri(t) in the interval [1, t], and Rss(t) = 0, for t ≤ 0, we have the following

relation:

Rss(t)−Rss(s) =
t∑

k=s+1

rk(t), (4.39)

for all 0 ≤ s ≤ t. By integrating ξ(t) into the above equation, we have

Rss(t)−Rss(s) = ξ(t)− ξ(s) = (2t − 1)− (2s − 1) = 2s · (2(t−s) − 1)

= 2s · Rss(t− s) ≥ Rss(t− s). (4.40)
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Finally we have

Rss(t) ≥ Rss(s) + ξ(t− s)

Rss(t) ≥ min
0≤s≤t

[Rss(s) + ξ(t− s)] . (4.41)

By Eq. (4.41), we conclude that a TCP flow in the slow start phase is served by a piecewise linear

curve ξ.

Corollary 4: The minimal solution of Eq. (4.41) is

Rmin
ss (t) = ξ(t), (4.42)

where ξ(t) = t.

Proof: Rss(t) is served by

Rss(t) ≥ (ξ ⊗Rss) (t). (4.43)

Again by Theorem 4.3.1 in [9] or Theorem 4.1.5 in [13], we know that the minimal solution of the

above equation is

Rmin
ss (t) = ξ(t), where ξ(t) = min

n≥0

[
ξ(n)

]
. (4.44)

Following a similar line of reasoning as in the proof of Corollary 1, the solution to Eq.(4.44) is

ξ(t) = t.

In the slow start phase, the algorithm to determining the amount of traffic sent by a TCP

flow in the current time slot Ti = [ti, ti+1] is as follows: the amount of traffic is calculated as

Rmin
ss (ti+1)−Rmin

ss (ti) according to Eq. (4.42), and at the same time whether or not the computed

amount exceeds the maximally allowed amount of traffic in Eq. (4.36) is checked.

4.2.3 Queue, Loss, and Output Function

We also express the output function, the queue length function, and the loss function at each router

during Ti = [ti, ti+1]. Let N be the total number of flows routed to the same output link, l, at

each router. Then, the cumulative output function, the queue length function, and the cumulative
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amount of packet loss at the output link, l, are respectively determined as follows:

Y (ti+1) = Y (ti) + min(
N∑

j=1

Rj(ti, ti+1), Cl(ti+1 − ti)), (4.45)

q(ti+1) = min(Q, [q(ti) + R(ti, ti+1)− Cl(ti, ti+1)]
+), (4.46)

L(ti+1) = L(ti) + [q(ti) + R(ti, ti+1)− Cl(ti, ti+1)−Q]+ , (4.47)

where in Eq. (4.45) we use superscript to denote a flow among multiple flows, and Cl represents

the capacity of the output link.

Each TCP flow “contributes to” the cumulative amount of output, the packet loss and the queue

length according to the proportion of its flow amount to the total amount of flows. Additionally, we

have to consider the round trip time per flow since flows with smaller round trip times contribute

to a larger portion of the output, loss, and queue functions, as compared with flows with larger

round trip times. Based on this observation, a router divides flows into several classes according

to their round trip time, and then distribute the amount of output, packet loss, and queue length

to each class in the ascending order of round trip times until the amount of (Y (ti+1)− Y (ti)) is

consumed.

Let N ′(≤ N) be the number of classes, and Class(k), 1 ≤ k ≤ N ′, the kth class. The amount

of traffic that the kth class can send during Ti = [ti, ti+1] is:

Y Class(k)(ti+1) = Y Class(k)(ti) + (Y (ti+1)− Y (ti)) ·
∑

k′∈Class(k) Rk′
(ti, ti+1)∑N

j=1 Rj(ti, ti+1)
. (4.48)

The queue length that the kth class contributes is also determined as:

qClass(k)(ti+1) = q(ti+1) ·
∑

k′∈Class(k) Rk′
(ti, ti+1)∑N

j=1 Rj(ti, ti+1)
. (4.49)

Within each class, we determine the output function, the packet loss function, and the queue

length function for each flow j as follows. First, the output function for flow j is

Y j(ti+1) = Y j(ti) +
(
Y Class(k)(ti+1)− Y Class(k)(ti)

)
· Rj(ti, ti+1)∑

k′∈Class(k) Rk′(ti, ti+1)
; (4.50)
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Figure 4.5: Network components implemented for the network calculus based simulation.

Second, the queue length function for flow j is

qj(ti+1) = qj(ti) + qClass(k)(ti+1) · Rj(ti, ti+1)∑
k′∈Class(k) Rk′(ti, ti+1)

; (4.51)

and finally the loss function for flow j is

Lj(ti+1) = Lj(ti) +
[
Rj(ti, ti+1)−

(
Y j(ti+1)− Y j(ti)

)− qj(ti+1)
]+

. (4.52)

4.3 Simulation Study

In this section, we discuss how we incorporate network calculus models into ns-2. Based on the

implementation, we also evaluate network calculus based (the network calculus based) simulation

for TCP/IP-operated networks by conducting an extensive set of simulations.

4.3.1 Implementation

Based on all the equations derived in Section 4.2, we implement network calculus based simulation

in ns-2. In particular, we create two modules, NC-TCP and NC-LINK, and a new packet nc-

tcp. Figure 4.5 gives the software architecture that consists of NC-TCP, NC-LINK, and existing

modules such as FTP module and nodes.

A NC-TCP module at the sending side performs the following tasks: it (i) directly supports

Theorems 6 7, 8, 9, and 10, (ii) computes a round trip time used for the next time step on the
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basis of the loss and delay information fed back from the corresponding receiver NC-TCP module,

(iii) determines the maximum throughput and minimum throughput by Eqs. (4.31) and (4.33) in

the congestion avoidance phase or by Eqs. (4.36) and (4.42) in the slow start phase, and finally

(iv) decides the amount of traffic according to the algorithm introduced in Section 4.2.2, and

sends the computed amount of traffic via a nc-tcp packet at each time step. A NC-TCP module

at the receiving side simply computes the effective throughput when it receives nc-tcp packets,

and responds with another nc-tcp packet with the loss and delay information collected over the

forward path. This acknowledgment is delivered to the sending NC-TCP without intervention with

NC-LINK since the backward path consists of existing SimpleLink module in ns-2.

NC-LINK modules are used to connect network nodes. They are equipped with drop-tail queue,

can process nc-tcp packets and determine the output, loss, and queue function using Eqs. (4.50),

(4.52), and (4.51), respectively. NC-TCP operates in the time-stepped fashion [22] while NC-LINK

is activated when all the flow information it handles arrives.

4.3.2 Simulation

We have conducted simulation to evaluate the network calculus based simulation and compared its

performance (in terms of reduction in execution time and discrepancy between network calculus

model based simulation and packet level simulation) against fluid model based simulation as well

as packet level simulation, in a wide variety of network topologies. The packet size is set to 1000

bytes, unless otherwise stated. Two sets of experiments were carried out: one employs TCP Tahoe

and the other uses TCP Reno for both packet level simulation and fluid model based simulations.

In what follows, we only present results with TCP Reno.

All the experiments are conducted in Linux 2.4.18 on a Pentium 4/1.9 Ghz PC with 1 GBytes

memory and with 2 GBytes swap memory, and ns-2.1b9a is chosen as the underlying simulation

environment.

Performance of the network calculus based simulation w.r.t. error discrepancy: First

we examine how close the TCP throughput obtained under the network calculus based simulation is

to that under packet level simulation. The simulation is carried out in a simple network (Figure 4.6)

with the number of FTP nodes varying from 10 to 100. The link bandwidth and delay are labeled

in the figure, and the buffer size at each router is 50 packets. Figure 4.7 gives the number of packets

delivered every 100 seconds in the system in an �-second simulation under both simulation modes
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Figure 4.6: The network configuration used in the first set of experiments.

(� varies from 100 to 1000), when the number of nodes is 40 and the link bandwidth of each link is

2 Mb/s ((a)) or 10 Mb/s ((b)). As shown in Figure 4.7, the results generated under the network

calculus based simulation are very close to those under packet level simulation. The discrepancy

in the results between the two simulation modes is maximally ∼10 %.

Even though the error discrepancy in the aggregate throughput maximally reaches to 10 %,

the error discrepancy on a per flow basis is more acceptable. Figure 4.8 shows the comparison

on a per flow basis between two sets of throughputs: (i) the maximum, the minimum, and the

average throughput in the packet level simulation, and (ii) the maximum, the minimum, and the

average throughput in the network calculus based simulation. As shown in Figure 4.8, All three

throughputs in the network calculus based simulation exist within the throughput range in the

packet level simulation, and they are all close to the average value of the packet level simulation.

Therefore we can claim that the flows generated in the network calculus based simulation are

TCP-friendly.

To verify whether or not the network calculus based simulation still renders high-fidelity simu-

lation results in more complicated network configurations, we repeat the same experiments but in

the configurations given in Figures 4.9, 4.12, and 4.15. In Figure 4.9, the number of nodes in each

class varies from 10 to 100, and the buffer size at each router is set to 50 packets. Figure 4.10 gives

the number of packets delivered every 100 seconds in the system in an �-second simulation under

both simulation modes (again � varies from 100 to 1000), when the number of nodes is 40 and the

link capacity of bottleneck link is 10 Mb/s ((a)) or 20 Mb/s ((b)). As shown in Figure 4.10, the

discrepancy in the results between the two simulation modes is maximally ∼10 %.
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(a) Link bandwidth = 2 Mb/s in Figure 4.6 (b) Link bandwidth = 10 Mb/s in Figure 4.6

Figure 4.7: The total number of packets received every 100 seconds in the network calculus based
and and packet level simulation in an �-second simulation, where � varies from 100 to 1000. The
network configuration is given in Figure 4.6, where the number of nodes is 40.
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Figure 4.8: The maximum, minimum, and the average number of packets received every 100 seconds
at each node in the network calculus based and the packet level simulation in an �-second simulation,
where � varies from 100 to 1000. The network configuration is given in Figure 4.6, where the number
of nodes is 40.
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Figure 4.9: The network configuration used in the second set of experiments.
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Figure 4.10: The total number of packets received every 100 seconds in the network calculus based
and and packet level simulation in an �-second simulation, where � varies from 100 to 1000. The
network configuration is given in Figure 4.9, where the number of nodes is 40.
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Figure 4.11: The maximum, minimum, and the average number of packets received every 100
seconds at each node in the network calculus based and the packet level simulation in an �-second
simulation, where � varies from 100 to 1000. The network configuration is given in Figure 4.9,
where the number of nodes is 40.

Figure 4.11 compares the throughputs on a per flow basis between the packet level and the

network calculus based simulations. The same observation as done in Figure 4.8 is made: The

flows generated in the network calculus based simulation mimic the throughput behaviors of TCP

flows.

In Figure 4.12, the number of nodes in each class varies from 10 to 100, and the buffer size

at each router is set to 50 packets. Figure 4.13 depicts the number of packets delivered every 100

seconds in each class in an �-second simulation under both simulation modes, when each of the two

TCP classes consists of 20 nodes ((a)) and 40 nodes ((b)), respectively. Again the network calculus

based simulation renders very close results to packet level simulation. As the number of flows

increases, the discrepancy in the results between the two simulation modes also increases and is

maximally ∼10 %. Figure 4.14 compares the throughputs on a per flow basis between the packet

level and the network calculus based simulations. The same observation as done in Figures 4.8

and 4.11 is made.

Figure 4.15 gives another complicated network configuration where the buffer size at each router

is 50 packets and the number of nodes in each class varies from 10 to 100. Figure 4.16 gives the

corresponding results under both simulation nodes, when each of the three TCP classes consists

of 40 nodes ((a)) and 60 nodes ((b)), respectively. As shown in Figure 4.16, a similar trend can

be observed, except that the error discrepancy is now maximally ∼12 %. Figure 4.17 compares
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Figure 4.12: The network configuration used in the third set of experiments.
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Figure 4.13: The total number of packets received every 100 seconds in the network calculus based
and packet level simulation in an �-second simulation, where � varies from 100 to 1000. The network
configuration is given in Figure 4.12.
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Figure 4.14: The maximum, minimum, and the average number of packets received every 100
seconds at one node in class 0 (a) and one node in class 1 (b) in the network calculus based and the
packet level simulation in an �-second simulation, where � varies from 100 to 1000. The network
configuration is given in Figure 4.12.
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Figure 4.15: The network configuration used in the forth set of experiments.
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Figure 4.16: The total number of packets received every 100 seconds in the network calculus based
and packet level simulation in an �-second simulation, where � varies from 100 to 1000. The network
configuration is in Figure 4.15.

the throughputs on a per flow basis between the packet level and the network calculus based

simulations. The same observation as done in the previous cases is made.

We believe the observed error discrepancy in the aggregate throughput across all the nodes

results from the facts that (i) the algorithm used to determine the amount of TCP traffic to be

sent is not exact and (ii) network calculus cannot fully describe the non-linear TCP dynamics with

linearity. Note, however, that the observed error discrepancy is more acceptable on a per flow basis.

Performance of the network calculus based simulation w.r.t. execution time: Fig-

ure 4.18 (Figure 4.19) gives the execution time it takes to carry out 1000-second simulation versus

the number of nodes under packet level and the network calculus based simulation in the network

configuration given in Figure 4.6 (Figure 4.9), while Figure 4.20 (Figure 4.21) gives the execution

time taken to carry out 1000-second simulation versus the number of nodes per class in the network

configuration given in Figure 4.12 (Figure 4.15). As shown in Figures 4.18–4.21, the execution time

incurred in the network calculus based simulation is maximally 5-10 times less than that in packet

level simulation. (The speed-up can be further improved with a larger time step value.) One inter-

esting result is that the execution time incurred in the network calculus based simulation slightly

increases with the number of nodes per class. This results from the time step overhead: even if the

number of packets to be sent is small, the number of timing events in the network calculus based

simulation increases with the number of nodes in the network configuration, and moreover, such the
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Figure 4.17: The maximum, minimum, and the average number of packets received every 100
seconds at one node in class 0 (a) and at one node in class 1 (b) in the network calculus based
and the packet level simulation in an �-second simulation, where � varies from 100 to 1000. The
network configuration is given in Figure 4.15.

overhead increases as congestion at the bottleneck link increases. We are currently investigating

how to alleviate such the timing overhead based on the method of simulating large IP network at

the flow level in [3].

Effects of the time step value: To investigate how the time step value T (Figure 4.1), affects

the performance in the network calculus based simulation, we carry out simulation that varies the

time step value T . Tables 4.1–4.4 give the results with varying time step values for the network

configurations given in Figures 4.6, 4.9, 4.12, and 4.15, respectively. In all the configurations, the

buffer size at each router is set to 50 packets.

As shown in the tables, the performance of the network calculus based simulation can be

improved (up to about 20 times better than that of packet level simulation) as the time step value

increases. Note that the error discrepancy does not always increase with the time step value, and

hence the execution time cannot be unlimitedly reduced by increasing the time step value. This

is due to the facts that in the current the network calculus based simulation implementation: (i)

sometimes the error that results from the computation optimization in the matrix computation

(Section 4.2) is larger than that incurred in the choice of larger time step values, and dominates the

total error; as a result the error does not fully depends on time step values, and (ii) as the number

of losses (usually) linearly increases with the increase in the time step value and the performance of
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Figure 4.18: The execution time taken to carry out 1000-second simulation versus the number of
nodes, in both packet level and the network calculus based simulation in the network configuration
in Figure 4.6, when the link bandwidth is 10 Mb/s.
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Figure 4.19: The execution time taken to carry out 1000-second simulation versus the number of
nodes, in both packet level and the network calculus based simulation in the network configuration
in Figure 4.9, when the bottleneck link bandwidth is 10 Mb/s. and bottleneck link delay is 100 ms
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Figure 4.20: The execution time taken to carry out 1000-second simulation versus the number of
nodes per class, in both packet level and the network calculus based simulation in the network
configuration in Figure 4.12.
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Figure 4.21: The execution time taken to carry out 1000-second simulation versus the number of
nodes per class, in both packet level and the network calculus based simulation in the network
configuration in Figure 4.15.
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Table 4.1: The number of packets received in a 1000-second simulation run and execution time
(s) in both packet level and the network calculus based simulation in the network configuration in
Figure 4.6, where the link bandwidth, delay, and the number of nodes are 10 Mb/s, 100 ms., and
40, respectively.

Time step packet level simulation the network calculus based simulation
value (s) total # of packets time total # of packets time

1148061 37.69
0.5 1127072 8.93
1.0 1028183 6.15
2.0 1116222 2.63
4.0 1175617 1.80

Table 4.2: The number of packets received in a 1000-second simulation run and execution time
(s) in both packet level and the network calculus based simulation in the network configuration in
Figure 4.9, where the bottleneck link bandwidth, delay, and the number of nodes are 10 Mb/s, 100
ms., and 40, respectively.

Time step packet level simulation the network calculus based simulation
value (s) total # of packets time total # of packets time

1140723 43.07
0.5 1187571 13.58
1.0 1141306 7.73
2.0 1043305 4.92
4.0 1128313 3.52

computation optimization depends on the number of losses, the optimization algorithm consumes

more computation time when the number of losses is large.

Comparison with fluid model based simulation: We also compare the network calculus

based simulation against fluid model based simulation. We use the time-stepped hybrid simulation

(TSHS) technique [22] to realize fluid model based simulation, since instead of solving a set of

differential equations for TCP dynamics, this technique actually sends, receives, drops, and ac-

knowledges packets as other network simulators usually do. In TSHS, packets that are sent by the

same session in each time step are grouped into a chunk, and all the packets in a chuck are assumed

to be evenly spaced within the time step (the process of which is termed as packet smoothing). We

use Eqs. (4.45), (4.47) and (4.46), to compute the amount of output, the packet loss, and the queue

length at each link module (output of router), and when packet losses occur, we distribute them

evenly over all flows. We believe this technique has three major advantages in our implementation:

(i) we do not randomly drop packets in a sequence of packets delivered in a chunk packet, but in-

stead drop packets from the end of the packet sequence at each routing node. This improves TCP
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Table 4.3: The number of packets received in a 1000-second simulation run and execution time
(s) in both packet level and the network calculus based simulation in the network configuration in
Figure 4.12, where the number of nodes is 40.

Time step packet level simulation the network calculus based simulation
value (s) class 1 class 2 time class 1 class 2 time

563605 569206 78.43
0.5 623860 623860 29.68
1.0 608808 608808 16.43
2.0 524901 524901 9.95
4.0 531605 531605 6.73

Table 4.4: The number of packets received in a 1000-second simulation run and execution time
(s) in both packet level and the network calculus based simulation in the network configuration in
Figure 4.15, where the number of nodes is 40.

Time step packet level simulation the network calculus based simulation
value (s) class 1 class 2 class 3 time class 1 class 2 class 3 time

410994 718703 735189 148.09
0.5 391877 787703 792450 43.66
1.0 400430 776574 787850 24.73
2.0 318217 781412 782459 15.34
4.0 447279 712530 733790 11.00

throughput, as it prevents TCP from retransmitting successfully received packets due to packets

dropped with smaller sequence numbers; (ii) we apply the time stepping technique only to TCP

modules, so that no waiting time is incurred at nodes on the path. This prevents the round trip

time from being prolonged as a result of using the time stepping technique at intermediate nodes;

and (iii) we do not apply transmission, queuing, and propagation delay to data packets on the

forward path, but to ACK packets. This improves accuracy in terms of throughput for fluid model

based simulation.

Tables 4.5–4.6 give the results in packet level, the network calculus based, and fluid model based

simulation in the network configuration given in Figure 4.6 where the buffer size is 50 packets. The

link bandwidth and delay used are, respectively, {2 Mb/s, 100 ms.}, and {10 Mb/s, 100 ms.}.
Note that we have attempted to tune the time step value to obtain the best results (in terms of

error discrepancy and execution time) in both the network calculus based and fluid model based

simulation. As compared with fluid model based simulation, the network calculus based simulation

not only incurs (slightly) smaller execution time, but also more closely follows the trajectory in

packet level simulation. Fluid model based simulation produces good results only when there exist
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Table 4.5: The number of packets received in a 1000-second simulation run and execution time
(s) in packet level, the network calculus based, and fluid model based simulation in the network
configuration in Figure 4.6, where the link bandwidth is 2 Mb/s and the delay is 100 ms. (Time step
value in the network calculus based simulation is 1.0 (s) while that in fluid model based simulation
is 100 (ms).

# of nodes packet level simulation the network calculus based simulation fluid simulation
total # of packets time total # of packets time total # of packets time

10 239704 6.08 223046 1.50 138907 3.00
20 238499 6.78 239558 2.71 190110 4.96
40 236746 7.66 224672 4.99 241965 7.96

Table 4.6: The number of packets received in a 1000-second simulation run and execution time
(s) in packet level, the network calculus based, and fluid model based simulation in the network
configuration in Figure 4.6, where the link bandwidth is 10 Mb/s and the delay is 100 ms. (Time
step in the network calculus based simulation is 3.0 (s) while that in fluid model based simulation
is 100 (ms).)

# of nodes packet level simulation the network calculus based simulation fluid simulation
total # of packets time total # of packets time total # of packets time

10 495286 13.13 493356 0.71 154316 3.47
20 988174 30.61 986712 1.13 190811 4.96
40 1148061 37.69 1116758 2.12 408948 12.05

a sufficiently large number of flows to saturate bottle-neck links.

Tables 4.7 gives the results in packet level, the network calculus based, and fluid model based

simulation in the network configuration given in Figure 4.9. The same observation can be made;

the network calculus based simulation produces similar results to those in packet level simulation,

while incurring much less execution time. Table 4.8–4.9 gives the results in packet level, the network

calculus based, and fluid model based simulation in the network configuration in Figure 4.12 where

the buffer size is 50 packets and the link bandwidth is either as specified in the figure (Table 4.8) or

set to 10 Mb/s (Table 4.9). Again the network calculus based simulation follows more closely the

trajectory in packet level simulation, while incurring much less execution time. Finally tables 4.10

gives the results in packet level, the network calculus based, and fluid model based simulation in

the network configuration given in Figure 4.15, from which the same observation can be made.

In all the above experiments, we observe that the performance of fluid model based simulation is

sensitive to the time step values. If the time step value is small, fluid model based simulation suffers

from the excessive timeout events and cannot reduce the execution time as desired. On the other

hand, if the time step value is large (especially when n× time step ∼ RTT), the error discrepancy
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Table 4.7: The number of packets received per class in a 1000-second simulation run and execution
time (s) in packet level, the network calculus based, and fluid model based simulation in the network
configuration in Figure 4.9. (Time step in the network calculus based simulation is 0.5 (s) while
that in fluid model based simulation is 100 (ms).)

# of nodes packet level simulation the network calculus based simulation fluid simulation
total # of packets time total # of packets time total # of packets time

10 821379 26.78 816172 3.40 241922 5.25
20 1192427 42.91 1032863 8.01 1074644 18.54
40 1140723 43.37 1187571 13.58 1013768 21.60

Table 4.8: The number of packets received per class in a 1000-second simulation run and execution
time (s) in packet level, the network calculus based, and fluid model based simulation in the network
configuration in Figure 4.12. (Time step in the network calculus based simulation is 1.5 (s) while
that in fluid model based simulation is 100 (ms).)

# of nodes packet level simulation network calculus simulation fluid simulation
per class class 0 class 1 time class 0 class 1 time class 0 class 1 time

10 194336 196889 21.43 197859 197859 3.24 137528 114057 10.14
20 388598 390500 47.55 395719 395719 6.47 215649 309420 22.93
40 563605 569206 77.34 559290 559290 12.01 425703 537156 48.32

becomes prohibitively larger. When TCP connections of different round trip times co-exist, it

becomes a non-trivial task to tune the time-step value. Furthermore, the network calculus based

simulation reduce the execution time more significantly (30 times less than packet level simulation)

when we choose larger time step values in these experiments.

Current limitation and improvement: As the number of flows (or the number of nodes) in

all network configurations increases, the error discrepancy in the network calculus based simulation

also increases. The reason is as follows: as the number of flows increases, some flows, especially flows

Table 4.9: The number of packets received per class in a 1000-second simulation run and execution
time (s) in packet level, the network calculus based, and fluid model based simulation in the network
configuration in Figure 4.12 except that all the link bandwidth are set to 10 Mb/s. (Time step in
the network calculus based simulation is 2.0 (s) while that in fluid model based simulation is 100
(ms).)

# of nodes packet level simulation network calculus simulation fluid simulation
per class class 0 class 1 time class 0 class 1 time class 0 class 1 time

10 196081 198492 21.53 198871 198871 2.54 128712 156772 11.44
20 391540 393428 47.71 397742 397742 4.67 215649 309420 23.71
40 534113 596307 75.61 572605 572605 9.96 425703 537156 47.74
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Table 4.10: The number of packets received per class in a 1000-second simulation run and execution
time (s) in packet level, the network calculus based, and fluid model based simulation in the network
configuration in Figure 4.15. (Time step in the network calculus based simulation is 1.0 (s) while
that in fluid model based simulation is 500 (ms).)

# of nodes packet level simulation network calculus simulation fluid simulation
per class class 0 class 1 class 2 time class 0 class 1 class 2 time class 0 class 1 class 2 time

10 161766 195872 195872 34.60 165125 197915 197915 6.90 132710 132710 132710 16.56
20 321719 386237 387977 77.52 330250 395830 395830 12.30 233315 242935 262132 33.08
40 410994 718703 735189 148.09 400430 776574 787850 24.73 345097 396085 410049 58.89
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Figure 4.22: A modified architecture for implementing the network calculus based simulation.

with longer round trip time, often cannot enqueue their packets in the buffer in the network and

hence cannot send any packet in a time step, T . However, the current buffer model (Section 4.2.3)

can serve all flows even in the extremely congested cases. We are currently investigating how to

resolve this problem.

Additionally, by modifying the software architecture for implementing the network calculus

based simulation from Figure 4.5 to Figure 4.22, we can further reduce the execution time by 10-20

%. This is because instead of feeding back nc-tcp packet (acknowledgment) at the receiver side,

the Loss Manager module collects the loss information from routers and provides the information

to the sender. As a result, the execution time is reduced as a result of the reduction in the number

of packet events to be processed.
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Chapter 5

Mixed Mode Simulation for IEEE
802.11-operated WLANs

As shown already in Chapters 3 and 4, fluid model based simulation and network calculus based

simulation cannot provide packet mode dynamics such as the instantaneous queue length and the

packet dropping probability, even though they significantly alleviate the computational overhead

in large scale networks by approximating flows with theoretical models. In some sense, such the

model based simulations trade some degree of accuracy and packet level dynamics for simulation

performance. If packet level details are of concern to users, the best approach seems to simulate

foreground traffic (whose packet dynamics are of interest) in the packet mode, and model the

background traffic (that comprise of possibly hundreds of flows) with a fluid model. The notion of

mixed mode simulation (a.k.a. hybrid simulation) was proposed to combine the performance gains

of fluid model based simulation with the accuracy afforded by packet mode simulation. Figure 5.1

gives a blueprint on mixed mode simulation. One foreground flow is simulated at the packet mode,

while the other background flows are approximated into a collection of fluid chunks and simulated

in the theoretical mode. Note that these two types of flows influence each other at the point of

interaction, e.g. a routing buffer or a wireless channel.

One important issue of mixed mode simulation is to accurately characterize the interaction

between foreground traffic and background flows, e.g., when, and how many, packets of a foreground

flow should be dropped due to the existence of background fluid chucks (that may represent a large

number of background packets) at a router and vice versa. We deal with this mixed mode simulation

in this chapter and the following chapter.

In this chapter, we investigate how to realize mixed mode simulation for IEEE 802.11-operated

WLANs, by proposing the model of interaction at the wireless channel between the foreground
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Figure 5.1: Conceptual description for mixed mode simulation.

flow and the other background flows, in view of their achievable throughput. This enables packet

mode simulation to co-exist and interact with fluid model based simulation within one simulation

framework. In order to accomplish the goal, we need two analytical models: one that describes

background flows in view of their data transmission activities, and the other that characterizes

data transmission of the foreground flow, as well as its interaction with background flows. We

then implement mixed mode simulation in ns-2 [4], and conduct a comprehensive simulation study

to evaluate mixed mode simulation with respect to accuracy in terms of error discrepancy and

efficiency in terms of speed-up in conducting simulation.

5.1 Throughput Model That Characterize Interactions Between

Foreground and Background Traffic

Based on the fluid model [28], we derive the throughput model for one tagged flow so as to char-

acterize the interaction between the tagged flow and the other (background) flows in view of the

achievable throughput. In this model, the tagged flow is generated by one or multiple applications.

(In the latter case, packets generated by multiple applications are multiplexed into one foreground

flow.)

The throughput that a foreground flow can achieve depends on its interaction with the other

background flows. Figure 5.2 depicts how flows interacts/affects one another. Let T fg denote the
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Figure 5.2: Delay experienced by a tagged node.

expected throughput of the foreground flow, dfg the expected delay that a frame in the tagged,

foreground flow experiences, and x′ the average frame size. The throughput of a foreground flow

can then be expressed as

T fg =
x′

dfg

. (5.1)

To derive T fg, we have to derive dfg. To facilitate the analysis of dfg, we define the following

random variables

• Dfg : the r.v. representing the total delay experienced by a frame in the tagged flow;

• R : the r.v. representing the residual service time as seen by a frame of the foreground flow

at its arrival;

• Xfg : the r.v. representing the current frame size in the tagged node;

• bi : the r.v. representing the ith backoff time after the ith collision for i ≥ 0;

90



• di : the r.v. representing the ith deferred backoff time after the ith collision for i ≥ 0. Accord-

ing to IEEE 802.11, a node cannot decrease its backoff timer when the transmission medium

is in use, i.e., di = bi+ the time interval during which the medium is in use (Figure 5.2).

With the above notations, we can express Dfg as

Dfg = R +
∞∑
i=0

di + Xfg. (5.2)

Note that the deferred time di instead of the backoff time bi is used in Eq. (5.2). By taking the

expectation of Dfg, R, and Xfg in Eq. (5.2), we have

E [Dfg] = E[R] + E

[ ∞∑
i=0

di

]
+ E[Xfg]. (5.3)

Let r
�
= limi→∞ E[Ri], and let d and xfg denote the expected deferred time till the transmission of

the tagged frame and the expected frame size, respectively. Then, we have

dfg = r + d + xfg. (5.4)

The term d in Eq. (5.4) can be derived as follows. Let b denote the expected backoff window

size, Tslot a physical slot time defined in Table 3.1, and λ the rate at which the background flows

attempts to transmit their frames. (As shown in Chapter 3, λ is approximated to be λ = N · 1
b
,

where N is the number of background nodes.) Then the term d in Eq. (5.4) can be written as

d = �size · b, where

�size = Pidle,bg · Tslot + Pcollision,bg · (Tslot + cbg)

+ Psuccess,bg · (Tslot + xbg), (5.5)

Pidle,bg = e−λ,

Psuccess,bg = λe−λ,

Pcollision,bg = 1− e−λ − λe−λ,

where cbg and xbg are, respectively, the expected length of collision period (due to collision of

two or more background frames) and successful transmission period, both of which are caused by
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background flows.

The terms yet to be determined in Eq. (5.5) are cbg, xbg, and b. To derive the former two

terms, we define their corresponding random variables: Cbg is the r.v. representing the length of

background collision period, and Xbg the length of successful background frame transmission time.

When the RTS/CTS mechanism is employed, we have

Cbg = RTS + DIFS,

Xbg = RTS + SIFS + CTS + SIFS + X ′

+SIFS + tACK + DIFS,

and when the RTS/CTS mechanism is not employed, we have

Cbg = CF + DIFS,

Xbg = X ′ + SIFS + tACK + DIFS,

where

• CF : the r.v. representing the size of a collided frame;

• X ′: the r.v. representing the size of a frame (note that the distribution of CF is the same as

that of X ′);

• DIFS, SIFS: the system parameters whose values are given in Table 3.1.

• tACK : another system parameter defined as tACK = ACK/1(Mb/s).

Let C∗
bg(s), X∗

bg(s) and X ′∗(s) denote, respectively, the Laplace transform of the probability

density function associated with Cbg, Xbg, and X ′. Then, we have

X∗
bg(s) = X ′∗(s) ·

e−(RTS+SIFS+CTS+SIFS+SIFS+ACK+DIFS)s

in the case that the RTS/CTS mechanism is used, or

X∗
bg(s) = X ′∗(s) · e−(SIFS+ACK+DIFS)s

92



in the case that the RTS/CTS mechanism is not used. In addition, we have

C∗
bg(s) = e−(RTS+DIFS)s

in the case that the RTS/CTS mechanism is used, or

C∗
bg(s) = CF ∗(s) · e−DIFSs

in the case that the RTS/CTS mechanism is not used. Since ck
bg = (−1)k · C∗(k)

bg (s)|s=0, we have

cbg = −C∗(1)(s)|s=0 = RTS + DIFS (5.6)

in the case that the RTS/CTS mechanism is used, or

cbg = −C∗(1)(s)|s=0 = cf + DIFS (5.7)

in the case that the RTS/CTS mechanism is not used, where cf is the expectation of CF . Note

that the distribution of CF is the same as that of X ′ and is given.

Similarly, we have the followings by using xk
bg = (−1)k ·X∗(k)

bg (s)|s=0

xbg = RTS + SIFS + CTS + SIFS + x′

+SIFS + tACK + DIFS, (5.8)

when the RTS/CTS mechanism is used; and

xbg = x′ + SIFS + tACK + DIFS (5.9)

in the other case.

Finally, we can determine d = �size ·b in Eq. (5.5) as follows. Let p represent the probability that

collision occurs between one foreground frame and one or more background frames. Recall that bi

is the average backoff window size when the contention window is C̃W i; i.e., bi = 1�CW i

∑�CW i−1
i=0 i =

�CW i−1
2 , and m is the index for the maximum contention window size (in Chapter 3). Then we have
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C̃Wi = 2i · C̃W0 for 1 ≤ i ≤ m, and

d =�size · b = �size · E
[ ∞∑

i=0

bi

]

=�size ·
[

m−1∑
i=0

{
C̃Wi − 1

2
· pi(1− p)

}
+

∞∑
i=m

{
C̃Wm − 1

2
· pi(1− p)

}]

=�size ·
[

C̃W 0

2(1− 2p)
· (1− p− p · (2p)m)− 1

2

]
.

(5.10)

Since the collision between foreground and background traffic occurs when one or more back-

ground nodes are attempting to transmit their frames when the backoff timer of the foreground

node expires. Hence, the collision probability, p, can be expressed as

p = Pcollision,bg + Psuccess,bg = 1− e−λ. (5.11)

The term r in Eq. (5.4) is the expected residual service time for background traffic, which can

be a collision period or a successful transmission time. Therefore, r can be expressed as

r = Pcollision,bg ·
(

cbg

2
+

σ2
Cbg

2cbg

)
+ Psuccess,bg ·

(
xbg

2
+

σ2
Xbg

2xbg

)
. (5.12)

Conclusively, we can express the expected value of dfg as follows:

dfg = r + �size ·
{

C̃W 0

2(1− 2p)
· (1− p− p · (2p)m)− 1

2

}
+ xfg, (5.13)

where r, �size, and xfg = xbg are given in Eqs. (5.12), (5.5), and (5.8) (or (5.9)), respectively. The

throughput attained by foreground traffic is then given by Eqs. (5.1) and (5.13).

5.2 Throughput Model for Background Traffic

The aggregate throughput for background traffic should be determined in both the cases in which

foreground traffic is present and is not. Fortunately the throughput under both cases can be

determined in the same manner as in the work Chapter 3 and [28] (Chapter 3). The only difference
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is that the number, M , of active nodes (which is needed to compute the attempt rate, λ) is N−1 in

the latter case, and is N in the former case. The remaining derivation has been given in Chapter 3.

5.3 Model Validation

In this section, we validate the interaction model derived in Section 5.1 via simulation, and compare

results against those obtained via both packet mode simulation and fluid model based simulation.

5.3.1 Validation w.r.t. Network Dynamics

We investigate whether or not the interaction model correctly reflects the interaction among one

foreground node and other background nodes at the wireless medium, by investigating the dy-

namics of the TCP behavior in a WLAN. To this end, we implement both the interaction model

(Section 5.1) and the TCP fluid model that characterizes the TCP dynamics [36] with MAT-

LAB/Simulink.

The network configuration under which we carry out the experiment is in Figure 5.3. In the

figure, a total of 10 wireless nodes exist in the WLAN, each of which has a buffer size of 50 packets,

and establishes 20 FTP/TCP flows (with the default TCP packet size set to 500 bytes). The

RTS/CTS mechanism is used as the floor acquisition mechanism. Assume that the wireless link

has a maximum bandwidth of 1 Mb/s and a constant delay of 25 µs.

Figure 5.4 gives the TCP dynamics and queue dynamics calculated using the TCP dynamics

model and the interaction model. Note that the TCP dynamics model [36] expresses the queue

length, the RTT, and the window size as functions of the link capacity of the bottleneck link. We

use the interaction model to calculate the throughput attained by a node (Eq.(5.1) and divide

the value by the number of TCP connections (10). This gives the “link capacity” of the wireless

channel as viewed by a TCP connection. This value is then plugged into the TCP dynamics model

to calculate the queue length of a node, the RTT, and the window size of a TCP connection. Finally

the TCP sending rate is simply obtained by dividing the window size by the RTT.

We now inspect whether or not the results presented in Figure 5.4 are reasonable. As shown

in Figure 5.4 (a), the queue length approaches the maximum buffer capacity quickly, as the traffic

generated by the 20 wireless nodes (each with 10 TCP/FTP connections) is quite heavy and quickly

saturates the wireless link of 1 Mb/s.

Part of the wireless capacity is consumed in (i) transporting the MAC header and the control
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Figure 5.3: Networks for TCP dynamics

packets such as FCS, RTS/CTS/ACK frame, and the inter-frame space such as SIFS and DIFS,

(ii) transporting the physical layer PLCP preamble and header, and (iii) collisions and subsequent

retransmissions. According to the parameters given in Table 3.1, the overhead incurred due to (i)

and (ii) is 1724 bits per packet in IEEE 802.11-operated WLANs. As will be seen in Section 5.3.2,

when the number of nodes is 10, the capacity utilization is 70%, excluding all the MAC and physical

overheads. Therefore, the RTT of a TCP connection is simply 50×( (500×8)

(106×0.70× 1
10

)
+25×10−6×2) ≈

2.85(s), where 50 is the buffer size, 10 is the number of wireless nodes in the WLAN, and 25×10−6×2

is the constant link delay consumed at both the receiver and the sender. This result is corroborated

by the result given in Figure 5.4 (b).

Recall the TCP window size represents the maximum number of packets that can be in transit

without being acknowledged the equilibrium state. It is simply the bandwidth-delay product.

Therefore, the window size can be calculated as (0.70×106× 1
10

× 1
25

)

(500×8) × 2.85(RTT ) ≈ 1.99, where 10 is

the number of wireless nodes in the WLAN, and 25 is the number of TCPs per node. This result

coincides with the value given in Figure 5.4 (c) in the equilibrium state.

Finally, the TCP sending rate can be simply determined by dividing the window size by the

RTT value, and in this case is equal to 1.99
2.85 ≈ 0.70. This value is corroborated by the result given

in Figure 5.4 (d).

Based on the above calculation, we conclude that the interaction model indeed accurately char-
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Figure 5.4: TCP dynamics and queue dynamics calculated using the interaction model derived in
Section 5.1 and the TCP dynamics model. Note that the queue length ((a)) refers to the number
of packets queued at a node, while the other parameters are with respect to a TCP connection.

acterizes the interaction between the foreground traffic and the background traffic in the wireless

channel in a WLAN.

5.3.2 Validation w.r.t. Attainable Throughput

Figure 5.5 depicts the throughput versus the total number of nodes, N , in a IEEE 802.11-operated

WLAN with the RTS/CTS mechanism ((a)) and without the RTS/CTS mechanism ((b)). Traffic

from one of the nodes is considered as the foreground traffic. The packet size 250 bytes (100 slot

time).

The upper two curves in Figure 5.5 represent, respectively the throughput attained by the

aggregate traffic (that includes both the background and foreground traffic) in the simulation and
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Figure 5.5: Aggregate throughput and throughput attained by the foreground traffic obtained in
the simulation and the analytic model. The packet size is 250 bytes.

the analytic model. We observe that they agree extremely well with each other. The bottom three

curves depict, respectively, the analytical result of the throughput attained by the foreground traffic

(calculated by Eq. (5.1)), and the corresponding throughput obtained in packet mode simulation

and fluid model based simulation. Three curves agree well with one another.

5.4 Simulation Study

We have conducted a simulation study in a variety of network configurations to evaluate the perfor-

mance of the proposed mixed mode simulation approach in terms of the accuracy and performance

as compared with both fluid model based simulation and packet mode simulation.

5.4.1 Implementation and Configuration

To realize mixed mode simulation, we extend ns-2 to conduct both packet mode simulation and

fluid model based simulation. Fluid model based simulation is implemented based on the fluid

model derived in Chapter 3 and [28]. Traffic that is simulated at the packet mode competes, in

compliance with the interaction model derived in Section 5.1, with traffic that is simulated in the

fluid mode for the current bandwidth available in the WLAN.

Extension to ns-2 simulator: To focus on the effect of data transmission-related activities and

to filter out other second-order effects in the simulation study, we deliberately leave out several

protocol operations in IEEE 802.11, e.g., power saving, beaconing, association and re-association
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Figure 5.6: Protocol stacks for packet mode simulation and fluid model based simulation.

between wireless nodes and access points, and hidden terminal effects. Specifically, we extend ns-2

as follows.

First, we introduce a virtual wireless LAN node, with which all the wireless nodes communicate

with each other through this virtual node. The wireless LAN node uses a static routing algorithm,

and also uses a static ARP table. The control overhead considered in the simulation study is

therefore solely due to data transmission-related activities (overheads incurred in transmitting

RTS/CTS/ACK packets). Second, in order to construct fluid chunks as the abstract simulation

units, we exploit the time stepping techniques introduced in [28, 45]. With the time stepping

technique, we introduce a new packet type, called the fluid rate packet which describes fluid chunks

of one flow within one time step. Third, we also include in ns-2 (i) several new protocol modules

that correspond to the fluid model based version of existing link, MAC, physical, and channel layer

modules, and (ii) a new module, called fluid module, that translates a cluster of packets into a fluid

rate packet or vice versa (see Chapter 3 and [28]). Last, we extend ns-2 to include a modified packet

mode version of existing link, MAC, physical, and channel modules, all of which are adapted to

interact with fluid model based simulation according to the proposed interaction model ( derived

in Section 5.1).

Figure 5.6 (a) and (b) gives, respectively, the protocol stack in the nodes under packet mode

simulation and under fluid model based simulation. Note that both the protocol stacks exist and

operate simultaneously in mixed mode simulation. Figure 5.7 depicts the interaction between fluid
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Figure 5.8: The configuration for foreground mode only simulation.

model based simulation and packet mode simulation in the mixed mode simulation framework. The

interaction takes place in the mixed mode channel, which consists of the fluid model based wireless

channel (for background traffic) and the packet mode wireless channel (for foreground traffic). The

former channel computes the throughput (allocated to background traffic) according to the total

number of active nodes (including the foreground nodes if it exists in a time step). The latter

channel is based on the throughput model derived in Section 5.1, and computes the throughput

attained by the foreground traffic (which is then used to schedule foreground frames).

Figure 5.8 gives a simplified version of mixed mode simulation, called foreground only mixed

mode simulation. In this simulation mode, background traffic virtually exist within ns-2. With

this configuration, only the packet mode wireless channel exists, and the simulation engine virtually

provides the number of active background nodes for the foreground wireless channel, so as for the

latter to estimate the throughput attained by the foreground traffic.
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Figure 5.9 depicts fluid model based simulation. The detailed explanation is referred to Chap-

ter 3 and [28]. We use this configuration to compare the fluid model based simulation with the

mixed mode simulation, in addition to comparison with the packet mode simulation.

The experiments have been carried out under two different IEEE 802.11 operational modes: one

with the RTS/CTS mechanism and the other without, and in each instance of fluid model based

simulation, with a variety of time step values. However, due to the space limit, we only present

results with the RTS/CTS mechanism. All the simulations are conducted on Linux 2.4.18 on a

Pentium 4-1.9 Ghz PC with 1 GBytes memory memory and with 2 GBytes swap memory. We

use ns-2.1b9a, but upgrade the code of the IEEE 802.11 MAC layer with that available in ns-2.26.

Each simulation run lasts for 60 simulation seconds for UDP traffic while it lasts for 100 seconds

for TCP traffic.

5.4.2 Capability in Retaining Network Dynamics

In this section, we verify whether or not mixed-mode simulation indeed retains accurate packet

level dynamics, by keeping track of the congestion window size of TCP connections in both packet

mode simulation and mixed-mode simulation. Figure 5.10 depicts the congestion window sizes

of 3 (randomly selected) TCP connections in packet mode simulation and that of the foreground

TCP connection in mixed-mode simulation (with Figure 5.7 as the mixed-mode configuration). The

number of nodes in the WLAN is set to 10 ((a)) and 20 ((b)), respectively. As shown in Figure 5.10,

the foreground TCP connection exhibits similar (increasing or decreasing) trends in the window

dynamics to those in packet mode simulation.
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Figure 5.10: TCP congestion window sizes of TCP connections in packet mode simulation (denoted
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802.11-operated WLAN with the RTS/CTS mechanism. A total of 10 and 20 nodes exist, each
having 5 TCP connections. The TCP packet size is 500 bytes.

5.4.3 Performance w.r.t. Relative Errors and Execution Times

In this section, we evaluate mixed mode simulation in terms of accuracy in simulation results and

performance gain in reducing execution time.

Performance in terms of relative errors

Mixed-Mode simulation inevitably trades accuracy for performance efficiency since all the traffic

except the foreground traffic is abstracted in fluid model based simulation. In this section, we

quantitatively evaluate the discrepancy between results obtained in mixed mode simulation and

those respectively obtained in packet mode simulation and in fluid model based simulation. The

comparison is made in two steps: in the first step, we study the discrepancy in the aggregate

throughput (as a percentage of the maximum bandwidth of the WLAN) between results obtained

in fluid model based simulation and those in packet mode simulation. The purpose of this step is

to verify that fluid model based simulation accurately characterizes the background traffic. In the

second step, we study the discrepancy in the throughput attained by the foreground flow, between

results obtained in mixed mode simulation, packet mode simulation, and fluid mode simulation.

The purpose of the second step is to validate that the foreground flow (simulated in the packet

mode) attains in a fair manner the throughput in the wireless LAN with multiple competing flows.
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Figure 5.11: Aggregate throughput and throughput attained by the foreground traffic versus the
number of nodes in an IEEE 802.11-operated WLAN with the RTS/CTS mechanism. The time
step value is 0.1 (s). Packet size are 25 ((a)) and 250 bytes ((b)), respectively. Curves labeled
with “Full Fluid,” “BG/Mixed,” and “Packet” corresponds to the aggregate throughput results in
fluid model based simulation, mixed mode simulation, and packet mode simulation, respectively.
Curves labeled with “ 1

N Full Fluid,” “ 1
N Packet,” and “FG/Mixed” correspond to the foreground

throughput results in fluid model based simulation, packet mode simulation, and mixed mode
simulation.

Figure 5.11 compares (i) the aggregate throughput (relative to protocol capacity) between packet

mode and fluid model based simulation and (ii) the throughput attained by the foreground traffic (in

mixed mode simulation) and the average throughput obtained by a flow in packet mode simulation

and fluid model based simulation. In both cases, the error discrepancy is less than 2 % of the

protocol capacity as far as the time step value is appropriately chosen. In particular, the throughput

attained by the foreground flow agrees extremely well with the average per-flow throughput in pure

packet mode simulation or pure fluid model based simulation. We also observe that for simulation

results without the RTS/CTS mechanism, the error discrepancy also falls within 2 %. Figure 5.12

shows the simulation results in the same configuration as in Figure 5.11, except that the RTS/CTS

mechanism is not used. The same observation is made.

Results in WLANs of extremely large sizes To investigate whether or not the error discrep-

ancy is still within the 2 % bound, when the size of the WLAN grows, the same experiments have

been conducted in a WLAN with a (perhaps unreasonably) large number of nodes. Figure 5.13

gives the protocol capacity (both fluid model based and mixed mode simulation) versus the number

of nodes in a WLAN of size up to 1000 nodes, when the packet size is fixed at 25 (10) and 250
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Figure 5.12: Aggregate throughput and throughput attained by the foreground traffic versus the
number of nodes in an IEEE 802.11-operated WLAN without the RTS/CTS mechanism. The time
step value is 0.1 (s). Packet size are 25 ((a)) and 250 bytes ((b)), respectively.

bytes (100 slot times) respectively, and when the time step value is 0.1 (s). Again, the relative

error discrepancy in both the aggregate throughput and the foreground throughput (both relative

to the maximum protocol capacity) falls within 2 %. Figure 5.14 shows the simulation results in

the same configuration as in Figure 5.13, except that the RTS/CTS mechanism is not used. The

same observation as done in Figure 5.13 is made.

Performance in terms of execution time

This section presents the performance improvement (in terms of execution time) that mixed mode

simulation makes, as compared with packet mode simulation. We also study the overhead incurred

in mixed mode simulation which does not exist in fluid model based simulation.

Figure 5.15 depicts the execution time versus the number of nodes among packet mode simu-

lation, fluid model based mixed mode simulation (Figure 5.7), and the simplified version of mixed

mode simulation (Figure 5.8). The RTS/CTS mechanism is used, the time-step value is set to

0.1 (s) and the packet size is 25 and 250 bytes, respectively. Packet level simulation incurs the

most execution time. Both mixed mode simulation and fluid model based simulation achieve about

two orders of magnitude of improvement as compared to packet mode simulation. Mixed-Mode

simulation (labeled as BG/MIXED) is slightly slower than fluid model based simulation (labeled

as Full Fluid), due to the overhead incurred in its interaction with the packet mode simulation.

On the other hand, the simplified version of mixed mode simulation (labeled as FG/MIXED), in
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Figure 5.13: Aggregate throughput and throughput attained by the foreground traffic versus the
number of nodes in an IEEE 802.11-operated WLAN with the RTS/CTS mechanism. The time
step value is 0.1 (s). Packet size are 25 ((a)) and 250 bytes ((b)), respectively.

which background traffic virtually exists, performs the best.

Figure 5.16 presents the simulation results obtained in the same configuration as in Figure 5.15

except that the RTS/CTS mechanism is not employed. The level of improvement in the cases

without RTS/CTS is a little bit lower than that in the cases with RTS/CTS. This observation

results form the fact that events incurred in processing RTS/CTS frames themselves can be saved

in the cases without RTS/CTS.

Figure 5.17 evaluates the effect of time step values on the performance of mixed mode simulation

in the same configuration used in Figure 5.15. Four different values of time steps are used. We

observe approximately two orders of magnitude improvement in mixed mode simulations (with the

time step values varying from 0.01 to 1.0), and more than two orders of magnitude improvement in

the simplified version of mixed mode simulation. The improvement is especially pronounced when

the number of nodes increases or the packet size decreases. This is because under these conditions

the packet mode simulation generates more events to be processed.

Figure 5.18 conducts the same evaluation as done in Figure 5.17 except that the RTS/CTS is

not used. The same observation is made: about two orders of magnitude improvement in the mixed

mode simulations is made, and furthermore, more than two orders of magnitude improvement in

the simplified mixed mode simulation (foreground only simulation) is observed. Due to the same

reason inferred in the results of Figure 5.16, the level of improvement in the cases without RTS/CTS

is a little bit lower than that in the cases with RTS/CTS.
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Figure 5.14: Aggregate throughput and throughput attained by the foreground traffic versus the
number of nodes in an IEEE 802.11-operated WLAN without the RTS/CTS mechanism. The time
step value is 0.1 (s). Packet size are 25 ((a)) and 250 bytes ((b)), respectively.

Results in WLANs of extremely large sizes Figure 5.19 gives the execution time versus the

number of nodes in WLANs (of up to 1000 nodes) with the RTS/CTS mechanism, under packet

mode simulation, fluid model based simulation, mixed mode simulation, and the simplified version

of mixed mode simulation. The time-step value is set to 0.1 (s), and the packet size is 25 (10) and

250 bytes (100 slot times), respectively. The same observation as in Figure 5.15 can be made.

Figure 5.20 shows the results in the cases without the RTS/CTS mechanism. The same obser-

vation as done in Figure 5.19 is made.

Figure 5.21 evaluates the effect of time step values on the performance of mixed mode simulation

in the same configuration used in Figure 5.19. Four different values of time steps are used. The same

observation as in Figure 5.17 can be made: as compared to packet mode simulation, approximately

two orders of magnitude improvement has been made in mixed mode simulations (with the time

step values varying from 0.01 to 1.0), and more than two orders of magnitude improvement in the

simplified version of mixed mode simulation. Figure 5.22 presents the results in the cases without

the RTS/CTS mechanism. The similar trend is observed.

Results in multiple-WLAN, multiple-application scenarios To study whether or not the

performance improvement levels off as the network size further increases, we evaluate the perfor-

mance for large scale networks in which multiple WLANs (each of which is made up of multiple

nodes) exist and are interconnected via “bridge” wireless nodes. Bridge nodes are connected by

wired links in a ring structure (Figure 5.23). In this configuration, both the number of applications
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Figure 5.15: Execution time under (i) packet mode simulation, (ii) fluid model based simulation,
(iii) mixed mode simulation, and (iv) a simplified version of mixed mode simulation, in IEEE 802.11
operated WLANs with the RTS/CTS mechanism. The number of nodes increases up to 100 nodes,
the time-step value is 0.1 (s), the packet size is 25 (10) and 250 bytes (100 slot times), respectively.

per node and the number of WLANs in the network to be simulated may vary.

Figure 5.24 gives the execution time versus the number of applications per node, in the large

mixed-mode network (composed of 5 WLANs, each of which consists of 20 nodes), under packet

mode simulation, fluid model based simulation, mixed mode simulation, and the simplified version

of mixed mode simulation. The packet size is fixed at 25 (10) and 250 bytes (100 slot times),

respectively. The same observation as in Figures 5.15 and 5.19 can be made.

Figure 5.25 shows the results without the RTS/CTS mechanism. The same trend appears in

this simulation.

Figure 5.26 evaluates the effect of time step values on the performance of mixed mode simulation

in the same configuration used in Figure 5.24. Four different values of time steps are used. The

same observation as in Figures 5.17–5.21 can be made.

Figure 5.27 presents the cases without the RTS/CTS mechanisms. We also observe more than

two orders of magnitude improvement in the simulation.
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Figure 5.16: Execution time under (i) packet mode simulation, (ii) fluid model based simulation,
(iii) mixed mode simulation, and (iv) a simplified version of mixed mode simulation, in IEEE 802.11
operated WLANs without the RTS/CTS mechanism. The number of nodes increases up to 100
nodes, the time-step value is 0.1 (s), the packet size is 25 (10) and 250 bytes (100 slot times),
respectively.

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90  100

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

The number of nodes

BG/Mixed with Time-step 0.01
BG/Mixed with Time-step 0.1
BG/Mixed with Time-step 0.3
BG/Mixed with Time-step 1.0

Packet
FG/Mixed

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90  100

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

The number of nodes

BG/Mixed with Time-step 0.01
BG/Mixed with Time-step 0.1
BG/Mixed with Time-step 0.3
BG/Mixed with Time-step 1.0

Packet
FG/Mixed

(a) 25 bytes (10 slot times) (b) 250 bytes (100 slot times)

Figure 5.17: Effect of time step values on the performance of mixed mode simulation. The number
of nodes increases up to 100 nodes, the packet size is 25 (10) and 250 bytes (100 slot times),
respectively, and the IEEE 802.11-operated WLAN is equipped with the RTS/CTS mechanism.
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Figure 5.18: Effect of time step values on the performance of mixed mode simulation. The number
of nodes increases up to 100 nodes, the packet size is 25 (10) and 250 bytes (100 slot times),
respectively, and the IEEE 802.11-operated WLAN is equipped without the RTS/CTS mechanism.
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Figure 5.19: Execution time under (i) packet mode simulation, (ii) fluid model based simulation,
(iii) mixed mode simulation, and (iv) a simplified version of mixed mode simulation, in IEEE 802.11
operated WLANs (up to 1000 nodes) with the RTS/CTS mechanism. The time-step value is 0.1
(s), and the packet size is 25 (10) and 250 bytes (100 slot times), respectively.
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Figure 5.20: Execution time under (i) packet mode simulation, (ii) fluid model based simulation,
(iii) mixed mode simulation, and (iv) a simplified version of mixed mode simulation, in IEEE 802.11
operated WLANs (up to 1000 nodes) without the RTS/CTS mechanism. The time-step value is
0.1 (s), and the packet size is 25 (10) and 250 bytes (100 slot times), respectively.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600  700  800  900  1000

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

The number of nodes

BG/Mixed with Time-step 0.1
BG/Mixed with Time-step 0.3
BG/Mixed with Time-step 1.0
BG/Mixed with Time-step 2.0

Packet
FG/Mixed

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  100  200  300  400  500  600  700  800  900  1000

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

The number of nodes

BG/Mixed with Time-step 0.1
BG/Mixed with Time-step 0.3
BG/Mixed with Time-step 1.0
BG/Mixed with Time-step 2.0

Packet
FG/Mixed

(a) 25 bytes (10 slot times) (b) 250 bytes (100 slot times)

Figure 5.21: Effect of time step values on the performance of mixed mode simulation. The number
of nodes increases up to 1000 nodes, the packet size is 25 (10) and 250 bytes (100 slot times),
respectively, and the IEEE 802.11-operated WLAN is equipped with the RTS/CTS mechanism.
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Figure 5.22: Effect of time step values on the performance of mixed mode simulation. The number
of nodes increases up to 1000 nodes, the packet size is 25 (10) and 250 bytes (100 slot times),
respectively, and the IEEE 802.11-operated WLAN is equipped with the RTS/CTS mechanism.
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Figure 5.23: Multiple WLANs interconnected via bridge wireless nodes.
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Figure 5.24: Execution time under (i) packet mode simulation, (ii) fluid model based simulation,
(iii) mixed mode simulation, and (iv) a simplified version of mixed mode simulation, in a large
mixed-mode network (composed of 5 WLANs, each of which consists of 20 nodes). The time-step
value is 0.1 (s), and the packet size is 25 (10) and 250 bytes (100 slot times), respectively.
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Figure 5.25: Execution time under (i) packet mode simulation, (ii) fluid model based simulation,
(iii) mixed mode simulation, and (iv) a simplified version of mixed mode simulation, in a large
mixed-mode network (composed of 5 WLANs, each of which consists of 20 nodes). The time-step
value is 0.1 (s), and the packet size is 25 (10) and 250 bytes (100 slot times), respectively. Both do
not use the RTS/CTS mechanism.
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Figure 5.26: Effect of time step values on the performance of mixed mode simulation. The mixed-
mode network is composed of 5 WLANs (equipped with the RTS/CTS mechanism), each of which
contains 20 wireless nodes. The packet size is 25 (10) and 250 bytes (100 slot times), respectively.
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Figure 5.27: Effect of time step values on the performance of mixed mode simulation. The mixed-
mode network is composed of 5 WLANs (which do not employ the RTS/CTS mechanism), each
of which contains 20 wireless nodes. The packet size is 25 (10) and 250 bytes (100 slot times),
respectively.
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Chapter 6

Mixed Mode Simulation for TCP
Networks

In this chapter, we investigate how to integrate packet level simulation with network calculus

based simulation for large scale TCP/IP networks. Network calculus simulation interacts with

packet level simulation in the buffer at the point of bottleneck link. Based on existing network

calculus simulation, we propose a simple analytical model to implement such the interaction between

two mode simulations. Then we implement mixed-mode simulation simulation in ns-2, conduct

simulation in both the packet mode and mixed-mode simulation, and measure the performance gain

in terms of the execution time thus reduced and the error discrepancy in terms of the discrepancy

between NC-based simulation results and packet-level simulation results.

6.1 Interaction Model

In this section, we define the model of interaction among a foreground flow and the other network

calculus based flows (NC-based flows).

Figure 6.1 presents the interaction between packet mode and network calculus based simulation

in mixed mode simulation framework. According to [29], each flow in network calculus based

simulation estimates the amount of TCP traffic to be sent during an interval, T , and then sends

only the information of the amount at the beginning point of the interval. The top portion in

Figure 6.1 presents the behavior of the NC-based flows, and the bottom portion shows an arrival

sequence of packets belong to foreground flow.

At each time step, simulation engine estimates the amount of TCP traffic to be sent at each

TCP sender, and computes the amount of packets dropped, queued, or transmitted at each link,
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Figure 6.1: Interaction among one packet flow and the other NC-based flows

according to network calculus rules in [29]. However, if there might be some activities in the

foreground flow during last time interval, the simulation engine should consider buffer occupation,

link capacity, and amount of packet droppings consumed by the foreground flow.

On the contrary, whenever a foreground packet arrives at the link (let t be the arrival time), the

simulation engine uses the information collected from NC-based flows which arrived at the previous

time step. The engine assumes that all the packets belong to NC-based flows are evenly spaced

over the time step, and computes the number of packets that arrives from NC-based flows until t.

Then, it computes the current buffer size, the available link capacity, and the number of dropped

packets incurred until t. Based on the computation, the simulation engine decides whether or not

it sends the packet to next hop, whether or not it drops the packet, or whether or not it queues

the packet.

6.1.1 The Behavior of Foreground Traffic

A foreground packet, Pfg, arrives at the point of bottleneck in an interval, Ti = [ti, ti+1], and sees

the current queue length, which are determined by both background flows and foreground flow

arrived ahead of its arrival.

q̂fg(t) when ti ≤ t ≤ ti+1, packet mode queue, denotes the current queue the foreground packet

sees. qbg(ti), network calculus based queue, represents the queue length at the beginning point of

the interval, Ti. rj
bg denotes the rate of one background flow, j, during Ti. N presents the number

of background flows. n̂fg(t) represents the number of foreground packets transmitted during sub-

interval [ti, t]. Cl, Pl, and Q denotes the capacity, the propagation delay, and the maximum queue

length of the bottleneck link, l, respectively.
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Then, q̂fg(t) is as follows:

q̂fg(t) = min

⎡⎣Q, qbg(ti) +
N∑

j=1

rj
bg · (t− ti) + q̂fg(t−)− (Cl · (t− ti)− n̂fg(t))

⎤⎦ , (6.1)

where t− denotes the time just before the foreground packet arrives at t.

Based on Eq. (6.1), the foreground packet firstly decides whether or not it drops itself, and then

decides whether or not it queues or sends itself: in other words, it is dropped when q̂fg(t) is equal

to Q; otherwise, it is queued and then transmitted.

The packet experiences the next queuing delay,

dq =
q̂fg(t)

Cl
,

and takes the following transmission delay also:

dt =
size(Pfg)

Cl
,

where size(·) is a function of determining the packet size. Then, the packet arrives at the next link

after Pl link delay.

In order to correctly reflect the effect of foreground flows into background flows, all the resource

usages of foreground flow during the current interval should be kept track of. Let nfg(t), qfg(t),

and lfg(t) denote respectively the number of transmitted packets, the number of queued packets,

and the number of dropped packets observed from the foreground flow at time t when ti ≤ t ≤ ti+1.

The specific algorithm is as follows: (i) when (ti+1 − t) > (dq + dt + Pl) and q̂fg(t) < Q,

nfg(t+) = nfg(t) + 1, qfg(t+) = qfg(t), lfg(t+) = lfg(t);

when t+ denotes the time just after the packet arrived at t is processed; (ii) when (ti+1 − t) <

(dq + dt + Pl) and q̂fg(t) < Q,

nfg(t+) = nfg(t), qfg(t+) = qfg(t) + 1, lfg(t+) = lfg(t);
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(iii) when q̂fg(t) = Q,

nfg(t+) = nfg(t), qfg(t+) = qfg(t), lfg(t+) = lfg(t) + 1;

(iv) when the time, (dq + dt + Pl), in case (ii) expires,

nfg(t+) = nfg(t) + 1, qfg(t+) = qfg(t)− 1, lfg(t+) = lfg(t);

(v) when the current time step expires

nfg(t+i+1) = 0, qfg(t+i+1) = qfg(ti+1), lfg(t+i+1) = 0.

Note that q̂fg(t) and n̂fg(t) differ from qfg(t) and nfg(t) in that q̂fg is qfg(t) plus the number

of foreground packets not transmitted yet and n̂fg(t) is the number of foreground packets really

transmitted until t, so that q̂fg(t) ≥ qfg(t), n̂fg(t) ≤ nfg(t), and q̂fg(t) + n̂fg(t) = qfg(t) + nfg(t).

6.1.2 The Behavior of Background Traffic

All the background flows cannot fully exploit Cl when they arrive at the link, l, as far as some

foreground packets appear and use some of it (Figure 6.1). In addition to link capacity, the

foreground flow also consumes buffer at the link (Eq. (6.1). Therefore, even though background

traffic exactly follows the method introduced in [29], it should use the remained amount of capacity

and queue length as follows.

Following the notations in [29], let R, Y , L, and q denote, respectively, the cumulative amount

received, the cumulative amount transmitted, the cumulative amount of dropped packets, and the

buffer size at a link.

Y (ti+1) = Y (ti) + min

⎛⎝ N∑
j=1

Rj(ti, ti+1), (Cl(ti+1, ti)− nfg(ti+1))

⎞⎠ , (6.2)

q(ti+1) = min (Q, [q(ti) + R(ti, ti+1)− (Cl(ti, ti+1)− nfg(ti+1)) + qfg(ti+1)]
+) , (6.3)

L(ti+1) = L(ti) + [q(ti) + R(ti, ti+1)− (Cl(ti, ti+1)− nfg(ti+1))− (Q− qfg(ti+1))]
+ . (6.4)
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Figure 6.2: Network components implemented for mixed mode simulation.

6.2 Simulation Study

In this section, we discuss how we implement mixed mode simulation, and evaluate it in terms of

execution time and error discrepancy.

6.2.1 Implementation

According to Section 6.1 and [29], we implement mixed mode simulation in ns-2 as shown in

Figure 6.2. In the figure, there are NC-TCP, MIXED-LINK, and existing modules such as FTP

module and Node. The upper portion in Figure 6.2 shows packet mode simulation and the lower

portion presents the network calculus based simulation.

A NC-TCP module at the sending side performs the following tasks: it (i) computes a round

trip time on the basis of the loss and delay information fed back by the receiving NC-TCP module,

and (ii) determines the amount of traffic to be transmitted, and then sends the information of the

traffic amount via a nc-tcp packet. The detailed explanation is referred to [29].

MIXED-LINK consists of two submodules: NC-LINK submodule and Packet-LINK submodule

and its graphical representation is shown in Figure 6.3. NC-LINK submodules are used to de-

liver NC-based flows, and determine the output, loss, and queue function using Eqs. (6.2), (6.4),

and (6.3), respectively. Packet-LINK submodule serves foreground flows based on the model of
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Figure 6.3: Mixed mode link for mixed mode simulation.

interaction specified in Section 6.1.

6.2.2 Simulation

We have conducted a simulation study to evaluate mixed mode simulation and compare its perfor-

mance in terms of execution time and error discrepancy in a wide variety of network topologies,

compared to packet mode simulation. The packet size is set to 1000 bytes, TCP Reno and TCP

Tahoe are used for both packet mode and mixed mode simulation. Due to space limit, in what

follows we only present the results in case of TCP Reno.

All the experiments are conducted in Linux 2.4.18 on a Pentium 4/1.9 Ghz PC with 1 GBytes

memory and with 2 GBytes swap memory, and ns-2.1b9a is chosen as the underlying simulator.

Performance of mixed mode Simulation w.r.t. Error Discrepancy: To begin with, we

examine whether or not one foreground flow in mixed mode simulation under-utilizes or over-

utilizes network bandwidth, competing with other NC-based flows. For the purpose, we compare

the throughput that the foreground flow achieves in mixed mode simulation with (i) the throughput

range which is measured in packet mode simulation (where all the per-flow throughputs exist), i.e.

the maximum, the minimum, and the average throughput of flows in packet mode simulation, and

(ii) the average throughput of the other NC-based flows in mixed mode simulation.

The first simulation topology is a simple dumbbell network structure in Figure 6.4 with the

varying number of flows (nodes) where each router has the buffer of 50 packets length. As marked

in the figure, one flow represents one packet flow which really transmits a sequence of TCP packets.

Figure 6.5 gives the relative throughput to the bottleneck link capacity every 100 seconds in the

system in a 1000-second simulation under both packet mode and mixed mode simulation, when the
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Figure 6.4: The network configuration used in the first set of experiments.

number of nodes is 10, 20, 40, and 60, respectively, and the bandwidth of the bottleneck link is 10

Mb/s in Figure 6.4. Figure 6.5 firstly presents the throughput that one foreground flow achieves

in mixed mode simulation. We simply call the throughput foreground throughput. Additionally, it

shows its comparison with the maximum, the minimum, the average throughput of all the flows

in packet mode simulation, and also with the average throughput of the other NC-based flows in

mixed mode simulation.

As shown in Figure 6.5, the throughput of the foreground flow oscillates in the range between

the maximum and the minimum throughput in packet mode simulation during every 100 seconds.

In some cases, the throughput is deviated from the range, but the error discrepancy is negligible,

compared with the bottleneck link capacity. Specifically, the error discrepancy in the results of

the foreground throughput against both (i) the achievable throughput range of packet mode flows

and (ii) the average throughput of the other NC-based flows falls within 1 % of the bottleneck link

capacity. Therefore, mixed mode simulation correctly provide a bandwidth environment for the

foreground flow by approximating the other flows with NC-based flows, so that the foreground flow

accurately mimics one packet mode flow in packet mode simulation in perspective of performance.

To verify whether or not mixed mode simulation still produces high-fidelity simulation results

in more complicated network configuration, we repeat the same experiments as we increasingly

make network configuration complicated. The second network configuration is in Figure 6.6 where

buffer size at each link is 50 packets. Figure 6.7 gives the relative throughput to the bottleneck link

capacity every 100 seconds in 1000-second simulation under both packet mode and mixed mode
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Figure 6.5: The relative throughput to the bottleneck link capacity that one foreground packet flow
achieves every 100 seconds in mixed mode simulation, compared with the maximum, the minimum,
and the average throughput of all the flows in packet mode simulation, and also with the average
throughput of the other NC-based flows in mixed mode simulation. The network configuration is
given in Figure 6.4, where the number of nodes is 10, 20, 40, and 60, respectively.
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Figure 6.6: The network configuration used in the second set of experiments.

simulation, when the number of nodes is 20, 40, 60, and 80, respectively, and the bandwidth of the

bottleneck link is 10 Mb/s in Figure 6.6. Figure 6.7 presents the foreground throughput in mixed

mode simulation, and then shows its comparison with the maximum, the minimum, the average

throughput of all class 0 flows in packet mode simulation, and also with the average throughput of

the other NC-based flows in the same class (class 0) in mixed mode simulation.

As shown in Figure 6.5, the same observation is made: the error discrepancy in the results

of the foreground throughput, compared to both the achievable throughput range of class 0 flows

in packet mode simulation and the average throughput of the other class 0 NC-based flows, falls

within less than 1 % of the bottleneck link capacity; and therefore the foreground flow does not

over-utilize nor under-utilize the link bandwidth in mixed mode simulation.

The last network configuration is in Figure 6.8, in which the buffer length at each router is still 50

packets. Figure 6.9 gives the relative throughput to the bottleneck link capacity every 100 seconds

in a 1000-second simulation under both packet mode and mixed mode simulation, when the number

of nodes is 20, 40, 60, and 80, respectively, and the bandwidth of the bottleneck link is 10 Mb/s in

Figure 6.6. Figure 6.9 presents the foreground throughput in mixed mode simulation achieves, and

additionally it shows its comparison with the maximum, the minimum, and the average throughput

of all class 0 flows in packet mode simulation, and also with the average throughput of the other

class 0 NC-based flows in mixed mode simulation.

122



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  200  400  600  800  1000

T
hr

ou
gh

pu
t r

el
at

iv
e 

to
 b

ot
tle

ne
ck

 li
nk

Simulation time

NS Class 0 MAX
NS Class 0 MIN
NS Class 0 AVG
a Packet flow in Class 0 with NC
NC Class 0 AVG

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  200  400  600  800  1000
T

hr
ou

gh
pu

t r
el

at
iv

e 
to

 b
ot

tle
ne

ck
 li

nk
Simulation time

NS Class 0 MAX
NS Class 0 MIN
NS Class 0 AVG
a Packet flow in Class 0 with NC
NC Class 0 AVG

(a) The number of nodes is 20 (b) The number of nodes is 40
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Figure 6.7: The relative throughput to the bottleneck link capacity that one foreground packet
flow achieves every 100 seconds in mixed mode simulation, compared with the maximum, the
minimum, and the average throughput of class 0 flows in packet mode simulation, and also with
the average throughput of the other class 0 NC-based flows in mixed mode simulation. The network
configuration is given in Figure 6.4, where the number of nodes is 20, 40, 60, and 80, respectively.
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Figure 6.8: The network configuration used in the third set of experiments.

As shown in Figures 6.5 and 6.7, the similar trend is observed: the error discrepancy in the

results of the foreground throughput from both the achievable throughput range in packet mode

simulation and the average throughput of the other NC-based flows falls within about 1 % of the

bottleneck link capacity, so that the foreground flow in mixed simulation correctly represents one

packet flow in perspective of throughput.

In addition to the throughput dynamics every 100 seconds, we also investigate the aggregate

throughput measured in 1000-second run in mixed mode simulation. Figures 6.10– 6.12 compare

the aggregate foreground throughput with the maximum, the minimum, the average throughput of

all the flows in the same class in packet mode simulations, and also with the average throughput

of the other NC-based flows in the same class in mixed mode simulation.

Figure 6.10 presents the relative throughput that the foreground flow achieves during 1000

seconds in Figure 6.4, and compares it with other four (4) throughputs: the maximum, the mini-

mum, and the average throughput of all the flows in packet mode simulation, and also the average

throughput of the other NC-based flows in mixed mode simulation. As the errors are accumulated

during 1000 seconds, the error discrepancy gets a little slightly larger than the one in Figure 6.5,

but still falls within 1 % in almost cases.
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(a) The number of nodes is 20 (b) The number of nodes is 40
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(c) The number of nodes is 60 (d) The number of nodes is 80

Figure 6.9: The relative throughput to the bottleneck link capacity that one foreground packet
flow achieves every 100 seconds in mixed mode simulation, compared with the maximum, the
minimum, and the average throughput of class 0 flows in packet mode simulation, and also with
the average throughput of the other class 0 NC-based flows in mixed mode simulation. The network
configuration is given in Figure 6.4, where the number of nodes is 20, 40, 60, and 80, respectively.
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Figure 6.10: The throughput (relative to bottleneck link capacity) that one foreground flow achieves
during 1000-second run in mixed mode simulation when the number of nodes varies in the network
in Figure 6.4. The throughput is compared with the maximum, the minimum, and the average
throughput of all the flows in packet mode simulation, and also with the average throughput of the
other NC-based flows in mixed mode simulation.

Figure 6.11 conducts the similar throughput comparison in the network of Figure 6.6. The error

discrepancy is still confined within 1 % for the most time.

Figure 6.12 also shows the same trendy in the network of Figs 6.8. The error discrepancy still

falls within 1 % in the most cases. In some cases, the foreground throughput gets a little larger

than the maximum throughput measured in packet mode simulation, but the error is small enough

to be ignored, compared to the bottleneck link capacity.

Conclusively, from Figures 6.10–6.12, we can also observe that the foreground flow in mixed

mode simulation shows a similar behavior in perspective of throughput.

Performance of mixed mode Simulation w.r.t. Execution Time: After we verify that

mixed mode simulation generates acceptably small error, we study to what extent mixed mode

simulation save execution time in network simulation for TCP-operated networks.

Figure 6.13 shows the execution time taken to carry out 1000-second simulation versus the

number of nodes under both packet mode and mixed mode simulation in the network configuration

shown in Figure 6.4. Figures 6.14–6.15 presents the execution time taken to carry out 1000-second

simulation versus the number of nodes per class in the network configuration given in Figure 6.6
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Figure 6.11: The throughput (relative to bottleneck link capacity) that one foreground flow achieves
during 100-second run in mixed mode simulation when the number of nodes varies in the network
in Figure 6.6. The throughput is compared with the maximum, the minimum, and the average
throughput of all class 0 flows in packet mode simulation, and also with the average throughput of
the other class 0 NC-based flows in mixed mode simulation.
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Figure 6.12: The throughput (relative to bottleneck link capacity) that one foreground flow achieves
during 1000-second run in mixed mode simulation when the number of nodes varies in the network
in Figure 6.8. The throughput is compared with the maximum, the minimum, and the average
throughput of class 0 flows in packet mode simulation, and also with the average throughput of the
other class 0 NC-based flows in mixed mode simulation.
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Figure 6.13: The execution time taken to carry out 1000-second simulation versus the number
of nodes, under both packet mode and mixed mode simulation in the network configuration in
Figure 6.4.

and 6.8, respectively.

As shown in Figures 6.13–6.15, the execution time incurred in mixed mode simulation is maxi-

mally 10 times less than that in packet mode simulation. (The speed-up can be further improved

with a larger time step value.)

Effects of the Time Step Value: As NC-based flows in mixed mode simulation operates in

time-stepped manner, we need to investigate how the time step value affects the performance in

mixed based simulation. Thus, we carry out simulation with the varying time step value T .

Tables 6.1–6.3 give the results with varying time step values for the network configurations given

in Figures6.4, 6.6, and 6.8, respectively. In all the configurations, the buffer size at each router is

set to 50 packets.

As shown in the tables, the performance of mixed mode simulation can be improved (up to

about 20 times better than that of packet mode simulation) as the time step value increases. Note

that the error discrepancy does not always increase with the time step value, and the execution

time cannot be unlimitedly reduced by increasing the time step value. This is due to the facts

that in the underlying implementation of network calculus based simulation implementation: (i)

sometimes the error that results from the computation optimization in the matrix computation is

larger than that incurred in the choice of larger time step values, and thus it dominates the total
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Figure 6.14: The execution time taken to carry out 1000-second simulation versus the number of
nodes per class, under both packet mode and mixed mode simulation in the network configuration
in Figure 6.6.
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Figure 6.15: The execution time taken to carry out 1000-second simulation versus the number of
nodes per class, under both packet mode and mixed mode simulation in the network configuration
in Figure 6.8.
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Table 6.1: The number of packets and execution time (s) that that the foreground flow sent and
consumed in a 1000-second simulation run in mixed mode simulation, with the network configura-
tion in Figure 6.4 when the number of nodes is 20. The number of packets is compared with the
maximum, the minimum, and the average number of all the flows in packet mode simulation, and
also with the average value of the other NC-based flows in mixed mode simulation.

Time step packet mode simulation mixed mode simulation
value (s) max min avg time foreground avg time

73755 27807 59621 44.84
0.5 34649 53460 8.71
1.0 42803 63775 6.34
2.0 53487 53419 3.48
4.0 54144 51648 2.57

Table 6.2: The number of packets and execution time (s) that that the foreground flow sent and
consumed in a 1000-second simulation run in mixed mode simulation, with the network configura-
tion in Figure 6.6 when the number of nodes is 40. The number of packets is compared with the
maximum, the minimum, and the average number of packets of all class 0 flows in packet mode
simulation, and also with the average value of the other class 0 NC-based flows in mixed mode
simulation.

Time step packet mode simulation mixed mode simulation
value (s) max min avg time foreground avg time

17159 11829 14090 82.54
1.0 10754 15288 17.82
2.0 10598 13631 10.86
4.0 14252 12717 7.74

error; in other words, the error does not fully depends on time step values, and (ii) since the number

of losses increases with the increase in the time step value and the performance of optimization

depends on the number of losses, the optimization algorithm consumes more computation time as

the number of losses increases. Note that both causes affect also the foreground flow since NC-based

flows dynamically influence on the flow.

6.3 Analysis in Worst Case

In this section, we conduct an analysis for worst case error bounds which might be observed on the

simulation results in the previous section.

Given an equation for the dropping probability, pl, we can describe the instantaneous change
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Table 6.3: The number of packets and execution time (s) that that the foreground flow sent and
consumed in a 1000-second simulation run in mixed mode simulation, with the network configura-
tion in Figure 6.8 when the number of nodes is 50. The number of packets are compared with the
maximum, the minimum, and the average number of packets of all class 0 flows in packet mode
simulation, and also with the average value of the other class 0 NC-based flows in mixed mode
simulation.

Time step packet mode simulation mixed mode simulation
value (s) max min avg time foreground avg time

8120 5734 6990 156.21
1.0 5299 6939 35.55
2.0 6765 7309 22.87
4.0 9127 6926 16.76

in the rate with the fluid model in [26, 42]:

ṙi(t) = α
1

t2Ri

− βri(t− tRi) · pl(ri(t− tRi)) (6.5)

where ṙi(t) is the rate change of a flow i passing through bottleneck link l, tRi being the round trip

time for the flow i, pl is the loss rate function which is a function of all flows, and α and β are an

additive increase parameter and a multiplicative decrease parameter, respectively.

If we change the above rate equation (fluid model) into the equation for the dynamics of window

size with ri(t) = wi(t)/tRi , we obtain the following:

ẇi(t) = α
1

tRi

− βwi(t− tRi) · pl

(
wi(t− tRi)

tRi

)
. (6.6)

Therefore, we need to determine the dropping probability function, pl(·), in order to decide the

throughput and the window dynamics of one foreground flow, and consequently we can investigate

the difference between two throughputs, each of which is obtained by the flow in packet mode

simulation and mixed mode simulation respectively.

In the case of DropTail, dropping probability is approximately determined as follows [25, 42],

pl(t) =

(∑N ′
i=1 ri(t)− Cl

)+

∑N ′
i=1 ri(t)

, (6.7)

where N ′ = (N + 1) denotes the total number of flows, one of which is one foreground flow while

the other N number of flows are NC-based background flows, sharing link l.
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Figure 6.16: The worst scenario for the throughput for one foreground packet flows.

The biggest difference in two throughputs is perceived when the instantaneous queue length at

the time t (when one new packet arrives at the link) is overestimated due to the increased rate of the

NC-based flows by assuming that all the packets belong to NC-based flows are evenly spaced during

a time interval (time step) [29]; for example, even if a buffer has an ample space to accommodate the

newly arrived foreground packet in packet mode simulation, mixed mode simulation might decide

there is no room for the packet and then decides to discard it. Specifically, as shown in Eq. (6.7),

dropping probability in DropTail depends on the aggregate input rate. The problem is that mixed

mode simulation might increase the current input rate,
∑N ′

i=1 ri(t), by the assumed traffic amount

(or rate) of the NC-based flows (the amount is proportional to the time step). Therefore, the worst

case of the throughput difference happens when a dropping occurs in mixed mode simulation when

a foreground packet arrives, even if any background flow does not cause any dropping in packet

mode simulation.

Figure 6.16 represents one of the extreme cases; Figure 6.16 (a) presents the real scenario in

which the foreground flow (the flow at the lowest position of the figure) has the first packet, pfirst,

among all the packets during an interval h. On the contrary, Figure 6.16 (b) shows another scenario

made by mixed mode simulation in which the first packet pfirst competes other three packets belong

to background flows.

In this worst case, the dropping function in the real situation is still Eq. (6.7), but the function
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in mixed mode simulation is,

p̂l(t) =

(∑N ′
i=1 ri(t) +

�
i∈Im

mi

h − Cl

)+

∑N ′
i=1 ri(t)

≤
(∑N ′

i=1 ri(t) +
�N

i=1 mi

h − Cl

)+

∑N ′
i=1 ri(t)

, (6.8)

where mi represents the number of packets sent by flow i during h, and Im denotes a set of flows

that do not have any packet which arrives at the time when the first packet in the foreground flow

arrives but come to send their packet in mixed mode simulation.

Therefore, the relationship between p and p̂ is

p̂l(t) ≤ pl(t) +

�N
i=1 mi

h∑N ′
i=1 ri(t)

.

Let the focus return to the throughput window dynamics in Eq. (6.6) in order to see the

throughput difference. Instead of general dropping function in Eq. (6.6), we can use the dropping

function in Eq. (6.7) for this DropTail case as follows

�wi

�t
= α

1
tRi

− βwi(t− tRi) · pl

(
wi(t− tRi)

tRi

)
. (6.9)

As for mixed mode simulation, the instantaneous throughput fluctuation in perspective of win-

dow size with the dropping function in Eq. (6.8) is described as

�ŵi

�t
≥ α

1
tRi

− βwi(t− tRi) ·
⎛⎝pl(t− tRi) +

�N
i=1 mi

h∑N ′
i=1

wi(t−tRi
)

tRi

⎞⎠ . (6.10)

Comparing Eq. (6.9) and (6.10), we finally obtain

�wi

�t
− �ŵi

�t
≤ βwi(t− tRi) ·

�N
i=1 mi

h∑N ′
i=1

wi(t−tRi
)

tRi

(6.11)

From Eq. (6.11), we can see that the error discrepancy caused in mixed mode simulation depends

on the additional dropping probability, which comes from an incorrect estimate about the traffic

amount of NC-based flows arrived up to now.
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Chapter 7

Rescaling Simulation Model for Large
Scale IP Networks

In this chapter, we present a rescaling simulation methodology (RSM) to expedite simulation in

large scale IP networks without loss of fidelity of simulation results. Conceptually, we scale down

the network to be simulated in order to save the number of events, simulate the downscaled network

for a short period of time, and then extrapolate the corresponding results for the original network

by scaling up the simulation results obtained from the downscaled network. Both the operations

of scaling down and rescaling up the network are conducted in such a manner that the network

invariant, called the bandwidth-delay product, is preserved. In particular, since the dynamics of

queues, such as the queue size, the dropping probability, and other parameters at every link are the

same in both the original and the downscaled network, RSM can accurately infer the network dy-

namics behavior of the original network (equipped with various Active Queue Management (AQM)

strategies). Figure 7.1 coarsely explains this underlying idea of the proposed rescaling simulation

methodology. Now the key issue is how to preserve the properties that characterize the original

network in the downscaled network so that accurate results can be extrapolated after the packet

mode simulation. In particular, the network property of interest should remain invariant in the

process of scaling down and rescaling up the network.

For the purpose of simulating large scale IP networks, we use the bandwidth-delay product as

the network property to be preserved, as it represents the capacity of the “pipe,” i.e., the amount

of data packets that can be transmitted without waiting for the acknowledgment [41]. That is,

we scale down the original network by reducing the link capacity by a fraction α (0 < α ≤ 1),

increasing the link delay by 1
α , but keeping the bandwidth-delay product constant. (Note that

we change neither the number of nodes/flows nor the queue. (the maximum buffer size or the
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Figure 7.1: The underlying concept for the rescaling simulation methodology

AQM parameters.)) By preserving this product invariant during the down/up scaling operations,

the network capacity as perceived by each TCP connection is preserved, and we can formally

prove that the queue dynamics (e.g., the instantaneous queue length), the RTT dynamics, the

TCP window size dynamics, and even the effect of TCP-friendly flows remain unchanged in the

operations. Additionally, we will show that the event times, which change the dynamics (such as

the number of flows or their bandwidth) in network, do not need to be adjusted in the course of

scaling-down and scaling-up, even if the down-scaling delays all the events by 1
α . The proposed RSM

based simulation focuses on the α portion of each time period, which is defined by two consecutive

network events, then simulates those portion of period with the downscaled network (which takes

shorter time), and finally extrapolates the results for the whole simulation period from the obtained

results (The formal description and its proof appears in Section 7.1 and Figure 7.2.) By repeating

this procedure each period until the end of simulation, the RSM based simulation can estimates all

the simulation results, which consists of both queue dynamics and throughput.

7.1 Rescaling Simulation Methodology

In this section, we present the rescaling simulation methodology. The key idea of the methodology

is to preserve the network capacity (as determined by the queue dynamics) during the down/up
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scaling operation. We first discuss the network invariant in simulating IP networks. Then we

introduce the rescaling simulation model based on the network invariant.

7.1.1 Network Invariant

Our objective is to scale down a large scale network to a small one that can be simulated to pro-

duce sufficient results in a short time interval to infer the performance for the original network.

The down scaling operation expedites network simulation by reducing the number of events gen-

erated/processed in the simulation. For example, if we reduce the link capacity at each link, we

can reduce the number of sending and receiving events per unit time at the link. Similarly, if we

increase the propagation delay at each link, we can reduce the sending rate of each TCP connection

(as a result of increased round trip time.)

One important issue is then how to scale down the network so that the simulation results

obtained from the down-scaled network can be used to accurately infer those corresponding to the

original network. We claim that the down scaling operation should not change the network capacity

as perceived by TCP connections. Note that the network capacity is determined by the network

dynamics (such as the instantaneous queue length and dropping probability) and is reflected upon

the throughput TCP connections can attain. Hence, we use the bandwidth-delay product as the

network invariant to be preserved during the down/up scaling operations. Since the bandwidth-

delay product represents the amount of data packets that can be in transit [41], the product can

be regarded as the TCP window size in the perspective of a TCP connection.

Specifically, let B and D denote, respectively, the available bandwidth and delay along a path

in the original network, and PBDP the bandwidth-delay product along the path. For notational

convenience, we denote the corresponding variables in the down-scaled network by attaching an

apostrophe to the variables, i.e., B′, D′, and P ′
BDP . The following constraint is used in the down/up

scaling operations:

PBDP = B ·D = B′ ·D′ = P ′
BDP . (7.1)

By Eq. (7.1), a scaling parameter, α, is determined as follows:

B′ = α ·B, (7.2)

D′ =
D

α
, (7.3)
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where 0 < α ≤ 1.

Note that we do not change the number of nodes, the number of flows, or the queue-related

parameters (e.g., the maximum buffer size or the AQM parameters). The only parameters that

are scaled are the link capacity and the link delay. As will be formally proved in Section 7.1.2,

by keeping PBDP invariant, the queue dynamics (e.g., the instantaneous queue length), the RTT

dynamics, the window size dynamics, and the effect of TCP-friendliness remain unchanged in the

operations. As a result, the down-scaled network exhibits exactly the same behavior as the original

network.

7.1.2 Rescaling Simulation Model

We now propose the rescaling simulation model. Let N denote the number of flows sharing a path

with the bottleneck link of capacity C. Let q(t) and p(t) denote, respectively, the queue length and

the packet dropping probability of the bottleneck link at time t, and T the propagation delay of

the path. Let Wi(t) and Ri(t) denote, respectively, the window size and the round trip time of flow

i at time t. Then the interaction between TCP flows and the bottleneck link can be characterized

with the TCP model given in [36]:

Ri(t) = T +
q(t)
C

, (7.4)

dq(t)
dt

=
N∑

i=1

Wi(t)
Ri(τi)

−C, (7.5)

dWi(t)
dt

= a · 1
Ri(t)

− b ·Wi(t) · Wi(τi)
Ri(τi)

· p(τi), (7.6)

where a is an additive increase parameter, b is a multiplicative parameter, and τi = ti −Ri(t).

The rescaling simulation model reduces the link bandwidth and increases the link delay by the

scaling parameter, α (Eqs. (7.2) and (7.3)). Since each packet is served at the rate of α ·B (which

stretches its transmission time by the factor of 1
α) and experiences 1

α times larger delay, the time

instants at which packet events occur are also delayed by 1
α . Specifically, a packet event that occurs

at time t in the original network is now delayed to t′ in the down-scaled network as follows:

t′ =
1
α
· t, (7.7)

where t(t ≥ 0) and t′(t′ ≥ 0) denote, respectively, a time instant for the original network and for
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the down-scaled network.

In what follows, we will investigate the dynamics of the queue length, the round trip time,

and the TCP window size in both the down-scaled network and the original network. Again we

denote the corresponding variables in the down-scaled network by attaching an apostrophe to the

variables.

Queue Dynamics

We will show that queue length of the bottleneck link in the original network is the same to that

in the down-scaled network:

q′(t′) = q(t).

This implies that the queue responds to each TCP connection in the down-scaled network in

exactly the same manner (including the packet dropping probability) as in the original network.

Moreover, this is achieved without modifying or approximating any AQM parameter in the down-

scaled network. We first look at dq′(t′)
dt :

dq′(t′)
dt

=
N∑

i=1

P ′
i,BDP (t′)
D′

i(t′)
− C ′ =

N∑
i=1

Pi,BDP (t)
Di(t)

α

− α · C

= α ·
{

N∑
i=1

Pi,BDP (t)
Di(t)

− C

}
= α · dq(t)

dt
=

dq(t)
1
α · dt

.

(7.8)

Note that in Eq. (7.8), the change in the queue size is simply the difference between the arrival rate

of all flows and the link capacity, and the arrival rate of a flow i is obtained by dividing its current

bandwidth-delay product (Pi,BDP (t)) by its current delay (Di(t)).

Since t′ = 1
α · t (Eq. (7.7)), dt′ = 1

αdt, and thus,

dq′(t′)
dt

=
dq(t)
dt′

,

or

dq′(t′) · dt′ = dq(t) · dt. (7.9)

Since q′(0) = q(0) = 0 and Eq. (7.9) is a separable first order equation [10], we obtain the following
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result by integrating both sides of Eq. (7.9) when t, t′ ≥ 0:

q′(t′) = q(t). (7.10)

By Eq. (7.10), we know as long as the down scaling operation preserves the bandwidth-delay product

of the original network, the queue dynamics in both the original network and the down-scaled

network are the same at each event time.

RTT Dynamics

We can compute the round trip time in the down-scaled time domain, t′, as follows. Since Ri(t) =

T + q(t)
C ,

R′
i(t

′) = T ′ +
q′(t′)
C ′ =

T

α
+

q(t)
α · C =

1
α
· (T +

q(t)
C

)

=
1
α

Ri(t). (7.11)

Note that we have used q′(t′) = q(t) in the second equality in Eq. (7.11). With Eq. (7.11), we can

now re-express dq′(t′)
dt in Eq. (7.8) as follows:

dq′(t′)
dt

=
N∑

i=1

W ′
i (t

′)
R′

i(τ
′
i)
− C ′ =

N∑
i=1

Wi(t)
Ri(τi)

α

− α · C

= α ·
{

N∑
i=1

Wi(t)
Ri(τi)

− C

}
= α · dq(t)

dt
=

dq(t)
dt′

where the first equality results from the fact that the current TCP window size (Wi(t)) can be rep-

resented by the current bandwidth-delay product (Pi,BDP (t)) as perceived by each TCP connection

i.

Window Size Dynamics

Eq. (7.11) implies that each TCP connection in the down-scaled network exhibits the same window

dynamics but the response is 1
α times slower than that in the original network (since a TCP

connection in the down-scaled network adjusts its rate per round trip time R′
i(t)). To further verify
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this, we express the window dynamics in the down-scaled network based on Eq. (7.6) as follows:

dW ′
i (t

′)
dt′

= a · 1
R′

i(t′)
− b ·W ′

i (t
′) · W

′
i (τ

′
i)

R′
i(τ

′
i)
· p(τ ′

i), (7.12)

where τ ′
i = t′ −R′

i(t
′).

By plugging Eq. (7.11) into Eq. (7.12), we have

dW ′
i (t

′)
dt′

= a · 1
1
α ·Ri(t)

− b ·Wi(t) · Wi(τi)
1
α · Ri(τi)

p(τi)

= α ·
{

a · 1
Ri(t)

− b ·Wi(t) · Wi(τi)
Ri(τi)

· p(τi)
}

= α · dWi(t)
dt

, (7.13)

where τi = t− Ri(t). Note that in the first equality of Eq. (7.13), we use the current window size

as the current bandwidth-delay product of the path, and hence W ′
i (x

′) = Wi(x), for ∀x′ = 1
α · x.

Additionally, τ ′
i = 1

α · τi since R′
i(t

′) = 1
α · Ri(t) (Eq. (7.11)), and p(t) = p′(t′) since q′(t′) = q(t)

(Eq. (7.10)), for ∀t′ = 1
α · t.

As implied in Eqs. (7.11) and (7.13), all the events that occur in the original network are delayed

by the factor of 1
α in the down-scaled network. This is consistent with Eq. (7.7).

TCP Dynamics in the Slow Start Phase

In the TCP slow start phase, a TCP connection exponentially increases its TCP window until

packet loss occurs. Let Wi,ss(t) be the instantaneous window size at time t in the slow start phase.

Then, Wi,ss can be expressed as:

Wi,ss(0) = 1, and

Wi,ss(t) = 2 ·Wi,ss(t−Ri(t)) = 2
�

t
Ri(t)

�
for t > 0.

We first investigate the TCP window dynamics in the slow start phase. The TCP window

size at time t depends on the number of successful transmissions until time t. We appropriate

Ri(ti) ≈ Ri(tj) for all 0 < ti ≤ t and 0 < tj ≤ t since in the slow start phase no packet loss is

incurred, and all the packets experience approximately the same queuing time (if any). The window
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dynamics in the down-scaled network can be expressed as follows:

dW ′
i,ss(t

′)
dt′

=
d

dt′

(
2

�
t′

R′
i
(t′)

�)
=

d
1
αdt

(
2

�
1
α ·t

1
α ·Ri(t)

�)

= α · d

dt

(
2
�

t
Ri(t)

�)
= α · dWi,ss(t)

dt
. (7.14)

By Eq. (7.14), we know that the dynamics of the TCP window in the slow start phase in the

down-scaled networks is scaled by the parameter of 1
α , as compared to that in the original network.

Next we prove the cumulative throughput attained by a TCP connection in the slow start

phase in the down-scaled network is equal to that in the original network. Note that we use

”cumulative throughput”, Ti(ti, ti+1), to denote the number of packets sent by the flow, i, in time

interval [ti, ti+1], which is
∫ ti+1

ti
dri(t) when ri(t) is the rate function. Let Ti,ss(t) be the cumulative

throughput attained until time t in the slow start phase. (By means of Ti,ss(t), we simply denote

Ti,ss(0, t).) Then T ′
ss(t

′) can be expressed as

T ′
i,ss(t

′) ≈ 1 + 2 + 22 + · · ·+ 2

�
t′

R′
i
(t′)

�
=

�
t′

R′
i
(t′)

�
∑
k=0

2k

= 2

�
t′

R′
i
(t′)

�
− 1 = 2

�
1
α t

1
α Ri(t)

�
− 1

≈ Ti,ss(t). (7.15)

Down-scaling of Unresponsive Traffic

In the case that unresponsive flows (e.g., UDP traffic) exist in the network, as no rate adaptation

scheme such as TCP window dynamics (Eq. (7.13) is used, we have to forcefully adjust the rate of

unresponsive traffic in the down-scaled network, so as to handle them in a consistent manner with

Eqs. (7.7), (7.11), (7.13), and (7.14).

Specifically, let σi(t) denote the rate function of a unresponsive flow i used in the original

network. Since we down-scale the network bandwidth by a scaling factor of α, the rate function

of flow i in the down-scaled network should also be down scaled by the same factor, i.e., α · σi(t).

With such an adjustment, unresponsive flows introduce the same degree of aggressiveness in the

down-scaled network as they do in the original network.
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Event Times in Down-scaled/Original Networks

Sometimes one would like to obtain the cumulative throughput attained by a TCP connection

during a specific interval in steady state, say [t0, tn], in the original network. As all the events in

the down-scaled network are delayed by a factor of 1
α , one would expect to measure the throughput

attained by the TCP connection in [ t0α , tn
α ]. In what follows, we prove this is not the case, i.e., from

the perspective of the attainable throughput, one can make the measurement in the same interval

[t0, tn] in the down-scaled network and then extrapolate the results in the original network.

Let tk for k = 0, 1, 2, · · · , n represent the n event times at which events are respectively sched-

uled, and let Ti(tk−1, tk) denote the cumulative throughput attained by a TCP connection i in the

interval [tk−1, tk]. Then the total cumulative throughput attained by flow i can be expressed as

Ti(t0, tn) =
n∑

k=1

Ti(tk−1, tk). (7.16)

The cumulative throughput, T ′
i (tk−1, tk) attained by a TCP flow during [tk−1, tk], in the down-scaled

network can be expressed:

T ′
i (tk−1, tk) =

∫ tk

tk−1

(
dW ′

i (t
′)

R′
i(t′)

)
=

∫ tk

tk−1

(
dWi(t)
1
αRi(t)

)
= α ·

∫ tk

ti−1

(
dWi(t)
Ri(t)

)
= α · Ti(tk−1, tk).

Therefore, we can have the following as the total cumulative throughput attained by TCP flow

i during [t0, tn]:

T ′
i (t0, tn) =

n∑
k=1

T ′
i (tk−1, tk)

= T ′
i (t0, t1) + T ′

i (t1, t2) + · · · + T ′
i (tn−1, tn)

= α · (Ti(t0, t1) + Ti(t1, t2) + · · · + Ti(tn−1, tn))

= α ·
n∑

k=1

Ti(tk−1, tk) = α · Ti(t0, tn). (7.17)

Eq. (7.17) implies that from the perspective of obtaining the cumulative throughput attained

by TCP connections in steady state, one does not have to scale event times. Instead, s/he simply
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simulates activities in the down-scaled network for the given set of event times, obtains the simula-

tion results in each interval, and then infers (by up-scaling) simulation results for the same period

in the original network.

7.1.3 Summary

With the proposed rescaling simulation model (RSM) (Eqs. (7.9)–(7.11), (7.13)–(7.15), and (7.16)–

(7.17)), one does not have to scale the event times in the down-scaled network in order to

obtain the throughput (Eqs (7.15) and (7.17)) and the dynamics (Eqs. (7.10), (7.11), (7.13),

and (7.14)), since RSM can extrapolate the queue dynamics, the throughput changes, and the

cumulative throughput in a specific interval in the original network simply by simulating activities

in the α portion of the interval (of the original network) in the down-scaled network and then

scaling up the results. For example, suppose two events e1 and e2 occur at t1 and t2 in the original

network. The results observed in [t1, t2] in the down-scaled network are actually the results in

[t1, t1 + α · (t2 − t1)] in the original network. As the results in [t1, t1 + α · (t2 − t1)] represent the α

portion of the results in [t1, t2], the latter can be inferred accordingly.

In summary, one can measure both the throughput and the dynamics in [ti, ti+1], 0 ≤ i ≤ n−1, in

the down-scaled network. The obtained results correspond to those in the α portion of each interval

[ti, ti+1] in the original network. The results in each interval in the original network are inferred by

scaling up the obtained results. The entire set of simulation results can be obtained by repeating

the procedure in each interval, and inferring the results accordingly. Figure 7.2 conceptually shows

the throughput relationship between the original and the down-scaled networks.

7.1.4 Comparison with SHRiNK

As compared to SHRiNK [40], RSM possesses several desirable features: (i) RSM does not make

any assumption on the input traffic, while SHRiNK relies on the Poisson assumption for the input

traffic; (ii) RSM preserves the queue dynamics and hence the network capacity as perceived by

TCP connections. In contrast, SHRiNK approximates the queue dynamics in the down-scaled

network in order to preserve the queuing delay (round trip time). As a result, the down-scaled

network may respond differently to TCP connections; (iii) RSM can work together with any AQM

strategy, while SHRiNK cannot be used if the modified queue dynamics cannot keep the queuing

delay invariant in the down-scaled network. For example, as reported in [40], if the AQM strategy is
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Figure 7.2: The relationship between the instantaneous throughput in the original network and
that in the down-scaled network.

Drop Tail, SHRiNK cannot produce accurate results; (iv) RSM is universally effective irregardless

of the value of the scaling factor, while the scaling factor in SHRiNK cannot be too small, as

SHRiNK reduces the number of flows according to the factor; and (v) the correctness of RSM has

been established for short-lived flows (which lasts only in the slow start phase), long-lived flows,

TCP-friendly rate-controlled flows, and unresponsive flows (UDP flows).

Table 7.1 gives a quantitative comparison between RSM and SHRiNK. The network configu-

ration under which the simulation is carried out is given in Figure 7.8. The buffer size is set to

100 packets and RED is used as the buffer management strategy. The minimum threshold, the

maximum threshold, the maximum drop probability, and the gentle option of RED are set to 30,

70, 1, and enabled, respectively. As shown in Table 7.1, the execution time incurred in RSM re-

duces as the scaling factor decreases while SHRiNK cannot produce correct results and even cannot

proceed when the scaling factor becomes small. This is because RSM does not change the number

of connections in its rescaling operation, while SHRiNK reduces the number of connections.
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Table 7.1: The number of packets received per class and the execution time (s) in a 1000-second
simulation run in RSM and SHRiNK. The network configuration is given in Figure 7.8, in which
the buffer size is set to 100 and RED is used as the buffer management strategy. The minimum
threshold, the maximum threshold, the maximum drop probability, and the gentle option of RED
are set to 30, 70, 1, and enabled, respectively.

# of nodes scaling factor RSM SHRiNK
per class class 0 class 1 class 2 time class 0 class 1 class 2 time

20 1.0 520131 1671982 1676905 166.11 520131 1671982 1676905 166.11
0.2 491415 1492095 1512170 32.29 506540 1570700 1604325 24.27
0.1 490290 1537490 1529750 17.47 132890 1819520 1812290 10.24
0.01 482000 1506000 1535100 3.80 N/A

40 1.0 522755 1671982 1676905 189.99 522755 1671982 1676905 189.99
0.2 473870 1596565 1620595 38.97 526885 1684530 1711410 28.16
0.1 455530 1665950 1695290 22.75 170330 1959670 1965020 12.20
0.01 421100 1671300 1724200 6.59 N/A

7.2 Validation of RSM with MATLAB

In this section, we validate RSM with MATLAB [43]. The specific effect when we use the RSM

model with a scaling parameter α is that all the events that occur at time t(t ≥ 0) in the original

network are delayed to t′(t′ ≥ 0) = 1
α · t in the down-scaled network. This is attributed to the fact

that the link bandwidth is scaled down by the factor of α and the link delay is scaled up by the

factor of 1
α during the down-scaling operation. The dynamic network behavior that the original

network exhibits at any time instant can be observed in the down-scaled network, except that the

time instant at which each event occurs is delayed by the factor 1
α (Eqs. (7.13) and (7.7)). In

what follows we inspect the trajectory of the queue length and transient behavior of the dropping

probability at a link to verify Eqs. (7.13) and (7.7) under the assumption that TCP dynamics in

Eqs. (7.4)–(7.6) are correct.

The network topology in which we validate RSM is a simple dumbbell network topology, as

shown in Figure 7.3 (a). The link capacity, the link delay, and the buffer, of the bottleneck link

are set to 1000 packets/second, 100 ms, and 100 packets, respectively. RED is used as the AQM

strategy. The minimum threshold, the maximum threshold, the maximum drop probability, and

the gentle option of RED are set to 50, 100, 1, and enabled, respectively. A total of 100 TCP

connections traverse the bottleneck link. Figure 7.3 (b) gives a corresponding MATLAB Simulink

diagram of Figure 7.3 (a) implements the interaction between a bottleneck link (equipped with

RED) and multiple TCP flows. In the figure, the RTT module executes the operation given in
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Figure 7.3: Network configuration and MATLAB/Simulink representation for the validation

Eq. (7.4), the queue module executes the function given in Eq. (7.5), the RED module performs the

RED operations at the link [17] and the TCP module carries out the dynamics given in Eq. (7.6).

Additionally, the prop. delay module and the link capacity module represent, respectively, the delay

and the capacity of the link, and N is the number of flows.

Figures 7.4 and 7.5 give, respectively, the kinetic dropping probability and the instantaneous

queue length on the bottleneck link. Figure 7.4 (a) gives the dynamic trajectories of the packet

dropping probability of the link in the down-scaled network, where each trajectory corresponds

to a different value of the scaling parameter α. Note that events are delayed by the factor of 1
α .

Figure 7.4 (b) gives the trajectories of the packet dropping probability after the network is re-scaled
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Figure 7.4: Trajectories of the packet dropping probability in the down-scaled network and after
the network is re-scaled up with the same scaling parameter α.

up with α. Note that all the trajectories agree with one another. Figure 7.5 gives the instantaneous

queue length of the link in the down-scaled network ((a)) and after the network is re-scaled up ((b)).

Conclusions similar to those made for Figure 7.4 can be drawn.

7.3 Simulation Study

In this section, we discuss how we implement RSM in ns-2 [4] and conduct a simulation study to

compare the network behaviors (e.g., the queue dynamics) and the steady state behavior (e.g., the

TCP throughput) obtained in RSM-based simulation and packet level simulation.

7.3.1 Implementation

Recall that the key idea of RSM is to reduce the number of events in the simulation by scaling down

the original network (i.e., decreasing the link capacity and increasing the link delay by the same

parameter), while preserving the bandwidth-delay product invariant in the down-scaled network

(Section 7.1). As a result, neither the number of flows nor the queue-related parameters (e.g.,

the maximum buffer size and AQM parameters) need to be changed. As a matter of fact, the

implementation of RSM is quite simple and straightforward. The network simulator takes as input

the network topology and the scaling parameter, scales down the original network, carries out packet

mode simulation in the down-scaled network, and then extrapolates the results corresponding to

the original network. Only a light-weight preprocessor and a post-processor are needed to scale
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Figure 7.5: Trajectories of the instantaneous queue length in the down-scaled network and after
the network is re-scaled up with the same scaling parameter α.

Sink

FTP

10 Mb/s, 10 ms

10 Mb/s, 10 ms

10 Mb/s, 10 ms

10 Mb/s, 10 ms

10 Mb/s, 10 ms

10 Mb/s, 10 ms

Figure 7.6: The network configuration used in the first set of experiments.

down the network and to extrapolate the simulation results.

7.3.2 Simulation

We have carried out an extensive ns-2.1b9a simulation study in a wide variety of network topologies

and traffic loads, to assess the effectiveness of RSM in reducing the execution time and in capturing

transient, packet level network dynamics. However, due to the space limit, in what follows we

only present representative simulation results obtained in the three network configurations given

in Figures 7.6, 7.7, and 7.8 Both the link and delay are labeled in the figures, unless otherwise

specified. The major differences between the last two configurations lie in (i) the configuration in
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Figure 7.7: The network configuration used in the second set of experiments.

Figure 7.7 has one bottleneck, while that in Figure 7.8 has two bottleneck links; (ii) the number

of input links (not flows) at each of the bottleneck links in Figure 7.8 is larger than that at the

bottleneck link in Figure 7.7. As a result, the impact of flows of short RTTs on the flows of large

RTTs becomes more severe than in the other case.

Different variations of TCP are used in the transport layer, but due to the space limit, we only

present results with TCP Reno connections. Each router is equipped with a buffer of size 100

packets, with the default packet size set to 500 bytes. Different AQM strategies are employed at

routers in different simulation runs. The various parameters in the AQM strategies are selected

as follows. The minimum threshold, maximum threshold, maximum drop probability, and gentle

option of RED are set to 30, 70, 1, and enabled, respectively. The update interval, reference value,

and gain of REM are set to 10 ms, 50, and 0.1, respectively. The reference queue size and sampling

frequency of PI are set to 50 and 100 times per second, and the remaining parameters, such as kp

and ki (which in turn determine a and b) are determined in compliance with [23]. The desirable

utilization, γ, of AVQ is set to 0.98, while the damping factor, α, is determined in compliance with

Theorem 1 in [30] to ensure system stability (α = 0.15). Parameters other than those mentioned

above are set to their default values that come with the ns-2 distribution. All the experiments are

conducted in Linux 2.4.18 on a Pentium 4/1.9 Ghz PC with 1 GBytes memory and with 2 GBytes
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Figure 7.8: The network configuration used in the third set of experiments.

swap memory.

Performance in the presence of long-lived TCP connections

In this section, we study how effective RSM based simulation is in simulating long-lived TCP flows

in perspective of network dynamics, throughput, and execution time.

Performance of RSM based simulation w.r.t. network dynamics First, we examine how

close the network dynamics under RSM based simulation are to those under packet mode simulation.

Figure 7.9 presents the instantaneous queue length versus time in the network configuration in

Figure 7.6. The number of nodes in each class varies from 5 to 100, and the scaling parameter

varies from 0.02 to 1.0 in these simulation runs. Also, router nodes employ a different AQM strategy

(among Drop Tail, RED, REM, PI, and Virtual Queue) in each simulation run. We only present in

Figure 7.9 the case that each class has 100 nodes, routers employ one of the three randomly chosen

AQMs (which are PI, Virtual Queue, Drop Tail), and only show the initial 30 seconds (although

each simulation run lasts for 1000 seconds). Regardless of the AQM strategy employed, the queue
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Figure 7.9: Instantaneous queue length versus time in the network configuration given in Figure 7.6
when the number of nodes is 100. The curve labeled with “scale 1.0” is the instantaneous queue
length in the original network and that labeled with “scale 0.2” is the instantaneous queue length
extrapolated from the down scaled network.

length extrapolated from the down-scaled network (the curves labeled with ”scale 0.2”) agrees

extremely well with that observed in the original network (the curves labeled with ”scale 1.0”).

Figure 7.10 depicts the instantaneous queue length versus time in the network configuration

given in Figure 7.7. The number of nodes in each class varies from 5 to 100, and the scaling

parameter varies from 0.02 to 1.0 in these simulation runs. Also, router nodes employ a different

AQM strategy (among Drop Tail, RED, REM, PI, and Virtual Queue) in each simulation run.

Due to the space limit, we only present in Figure 7.10 the case that each class has 100 nodes and

routers employ one of the three randomly chosen AQMs, and only show the initial 30 seconds

(although each simulation run lasts for 1000 seconds). Regardless of the AQM strategy employed,

the queue length extrapolated from the down-scaled network (the curves labeled with ”scale 0.2”)

agrees extremely well with that observed in the original network (the curves labeled with ”scale

1.0”).

Figure 7.11 depicts the instantaneous queue length of the second bottleneck link versus time in

the network configuration in Figure 7.8. Due to the space limit, we only present the case in which

each class has 20 nodes and routers employ one of the three AQMs, Drop Tail, REM, and PI. Again

the instantaneous queue length extrapolated from the down-scaled network agrees extremely well

with that in the original network.

Performance of RSM based simulation w.r.t. error discrepancy We now quantitatively

evaluate the discrepancy between results obtained in RSM based simulation and those in packet

mode simulation. In both simulation modes, the TCP throughput is measured at a receiver and
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Figure 7.10: Instantaneous queue length versus time in the network configuration given in Figure 7.7
when the number of nodes per class is 100. The curve labeled with “scale 1.0” is the instantaneous
queue length in the original network and that labeled with “scale 0.2” is the instantaneous queue
length extrapolated from the down scaled network.
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Figure 7.11: Instantaneous queue length versus time in the network configuration given in Figure 7.8
when the number of nodes per class is 20.

summed up to give the total throughput per class and the total throughput for the network.

Figure 7.12 gives the total number of packets received in the network configuration given in

Figure 7.6. Each simulation run lasts for 1000 seconds. The error discrepancy observed between

two simulation modes is at most approximately 10 % of the capacity of the bottleneck link.

Figure 7.13 only gives the total number of packets received at class 0 nodes in the network

configuration given in Figure 7.7. Each simulation run lasts for 1000 seconds. The error discrepancy

observed between two simulation modes is at most approximately 10 % of the capacity of the

bottleneck link. (The error discrepancy measured in the total throughput as well as the aggregate

throughput of all the class 1 nodes are also less than 10 %.)

Figure 7.14 gives the total number of packets received at class 1 nodes, in the the network

configuration given in Figure 7.8. Again each simulation run lasts for 1000 seconds. The error

discrepancy is at most approximately 10 % of the capacity of the bottleneck link.
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Figure 7.12: The total number of packets received at class 0 nodes in a 1000-second simulation run
in the network configuration given in Figure 7.6.
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Figure 7.13: The total number of packets received at class 0 nodes in a 1000-second simulation run
in the network configuration given in Figure 7.7.

Performance of RSM based simulation w.r.t. execution Time We now evaluate the

performance gain of RSM (as compared to packet level simulation) in terms of the execution time

required to carry out the simulation. Figure 7.15 depicts the execution time versus the number

of nodes in a 1000-second simulation run in the network configuration given in Figure 7.7. The

simulation results indicate more than an order of magnitude improvement (maximally 50 times)

in execution time and the performance improvement becomes more prominent as the network size

increases (in terms of the number of nodes and the link capacity) or as the scaling parameter

decreases.

Figure 7.16 depicts the execution time versus the number of nodes in a 1000-second simulation

run in the network configuration given in Figure 7.7. The simulation results indicate more than

an order of magnitude improvement (maximally 50 times) in execution time and the performance

improvement becomes more prominent as the network size increases (in terms of the number of

nodes and the link capacity) or as the scaling parameter decreases.
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Figure 7.14: The total number of packets received at class 1 nodes in the network configuration
given in Figure 7.8.
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Figure 7.15: Execution time (sec.) required to carry out a 1000-second simulation run in the
network configuration given in Figure 7.6.

Figure 7.17 depicts the execution time versus the number of nodes in a 1000-second simulation

run in the network configuration given in Figure 7.8. The speed-up in execution time as a result of

employing RSM can be as large as 50 times.

Performance in the presence of long- and short-lived TCP connections

In this section, we explore more dynamic scenarios in which long-lived and short-lived TCP connec-

tions co-exist and interfere with each other. Each short-lived connection is generated by a Pareto

traffic generator in ns-2. Packets are sent at a fixed rate of 200 Kbps during the on periods and no

packets are sent during the off periods. The length of each on/off period follows a Pareto distribu-

tion with the Pareto shape parameter of 1.5 and the mean value of 100 ms. The application frame

size is set to 210 bytes. Note that the Pareto traffic distributor is positioned on top of TCP, and

that most of short-lived TCP flows only last in their slow start phase.
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Figure 7.16: Execution time (s) required to carry out a 1000-second simulation run in the network
configuration given in Figure 7.7.
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Figure 7.17: Execution time (s) required to carry out a 1000-second simulation run in the network
configuration given in Figure 7.8.

Performance of RSM based simulation w.r.t. network dynamics Figures 7.18–7.19 de-

picts the instantaneous queue length versus time in the network configuration given in Figure 7.7,

except that the capacities of all the link, excluding the bottleneck link, are increased to 100 Mb/s.

Each class has 50 nodes. Each simulation run lasts for 300 seconds. Short-lived connections are

only active in the interval [100, 200] seconds, and hence the entire simulation time is separated into

three periods: [0, 100], [100, 200], and [200, 300]. Figure 7.18 (7.19) show the dynamic changes of

the queue length during the 20 % of each period when AQM is Drop Tail (PI). We can see that

the changes in the down-scaled network agree very well with the original behavior.

Performance of RSM based simulation w.r.t. error discrepancy We again quantitatively

evaluate the discrepancy between results obtained in RSM based simulation and those in packet

mode simulation. Figure 7.20 gives the total number of packets received at class 0 nodes in the

network configuration given in Figure 7.7. Each simulation run lasts for 900 seconds, and short-

lived connections are only active in the interval [300, 600] seconds. The error discrepancy observed
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Figure 7.18: Instantaneous queue length versus time in the presence of both long-lived and short-
lived TCP connections in the network configuration given in Figure 7.7. The capacities of all the
links, excluding the bottleneck link, are increased to 100 Mb/s. Drop Tail is used as the AQM
strategy.
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Figure 7.19: Instantaneous queue length versus time in the presence of both long-lived and short-
lived TCP connections in the same network configuration used in Figure 7.18, except that PI is
employed as the AQM strategy.

between two simulation modes is still confined by 10 % of the capacity of the bottleneck link. (Note

that the error discrepancy per flow is much smaller than 10% of its attained throughput then.)

Performance of RSM based simulation w.r.t. execution time We evaluate again the

performance gain of RSM (as compared to packet level simulation) in terms of the execution time

required to carry out the simulation. Figure 7.21 depicts the execution time versus the number of

nodes in a 900-second simulation run in the network configuration given in Figure 7.7. The same

conclusion made in the case of presence of only long-lived TCP connections can be applied here:

the performance improvement can be as large as 50 times.
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Figure 7.20: The total number of packets received at class 0 nodes in the presence of both long-lived
and short-lived TCP connections in a 900-second simulation run in the same network configuration
used in Figure 7.18.

 0

 100

 200

 300

 400

 0  10  20  30  40  50  60  70  80  90  100

T
he

 e
xe

cu
tio

n 
tim

e

The number of nodes

Scale 1.0
Scale 0.5
Scale 0.2

Scale 0.1
Scale 0.05
Scale 0.02

 0

 100

 200

 300

 400

 0  10  20  30  40  50  60  70  80  90  100

T
he

 e
xe

cu
tio

n 
tim

e

The number of nodes

Scale 1.0
Scale 0.5
Scale 0.2

Scale 0.1
Scale 0.05
Scale 0.02

 0

 100

 200

 300

 400

 0  10  20  30  40  50  60  70  80  90  100

T
he

 e
xe

cu
tio

n 
tim

e

The number of nodes

Scale 1.0
Scale 0.5
Scale 0.2

Scale 0.1
Scale 0.05
Scale 0.02

(a) Drop Tail (b) PI (c) REM

Figure 7.21: Execution time (s) required to carry out a 900-second simulation run in the presence
of both short-lived and long-lived TCP connections in the same network configuration given in
Figure 7.18.

Performance in the presence of long-lived TCP and unresponsive UDP connections

In this section, we investigate RSM in scenarios in which long-lived TCP connections co-exist with

unresponsive UDP connections. Each UDP connection delivers traffic generated by a CBR traffic

generator with the rate set to 750 Kbps.

Performance of RSM based simulation w.r.t. network dynamics Figures 7.22–7.23 depict

the instantaneous queue length versus time in the network configuration given in Figure 7.7, except

that the capacities of all the link, excluding the bottleneck link, are increased to 100 Mb/s. Each

class has 50 nodes. Each simulation run lasts for 300 seconds. UDP connections are only active in

the interval [100, 200] seconds, and hence there are three periods in the entire simulation time: [0,

100], [100, 200], and [200, 300].

Figure 7.22 (7.23) show the dynamics changes of the queue length during the 20 % of each
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Figure 7.22: Instantaneous queue length versus time in the presence of both long-lived TCP and
UDP connections in the network configuration in Figure 7.7, except that the capacities of all the
links, excluding the bottleneck link are increased to 100 Mb/s. RED is employed as the AQM
strategy.
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Figure 7.23: Instantaneous queue length versus time in the presence of both long-lived TCP and
UDP connections in the same network configuration used in Figure 7.22, except that Virtual Queue
is used as the AQM strategy.

period, when AQM is RED (Virtual Queue). The dynamic changes of the queue length in the

down-scaled network agree very well with the original behavior.

Performance of RSM based simulation w.r.t. error discrepancy Figure 7.24 gives the

total number of packets received at class 0 nodes in the network configuration given in Figure 7.7.

Each simulation run lasts for 900 seconds, and UDP connections are only active in the interval

[300, 600] seconds. The error discrepancy observed between two simulation modes is still within 10

% of the capacity of the bottleneck link.

Performance of RSM based simulation w.r.t. execution time Figure 7.25 depicts the

execution time versus the number of nodes in a 900-second simulation run in the network config-

uration given in Figure 7.7. The same conclusion made in the previous two cases can be applied

158



 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  10  20  30  40  50  60  70  80  90  100

T
he

 n
um

be
r 

of
 p

ac
ke

ts

The number of nodes

Scale 1.0
Scale 0.5
Scale 0.2
Scale 0.1
Scale 0.05
Scale 0.02

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  10  20  30  40  50  60  70  80  90  100

T
he

 n
um

be
r 

of
 p

ac
ke

ts

The number of nodes

Scale 1.0
Scale 0.5
Scale 0.2
Scale 0.1
Scale 0.05
Scale 0.02

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  10  20  30  40  50  60  70  80  90  100

T
he

 n
um

be
r 

of
 p

ac
ke

ts

The number of nodes

Scale 1.0
Scale 0.5
Scale 0.2
Scale 0.1
Scale 0.05
Scale 0.02

(a) RED (b) Virtual Queue (c) REM

Figure 7.24: The total number of packets received at class 0 nodes in the presence of both long-lived
TCP and UDP connections in a 900-second simulation run in the same network configuration used
in Figure 7.22.
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Figure 7.25: Execution time (s) required to carry out a 900-second simulation run in the presence of
both short-lived TCP and UDP connections in the same network configuration used in Figure 7.22.

here: the speed-up in execution time as a result of employing RSM can be as large as 50 times.
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Chapter 8

Conclusion

In this chapter, we specify the main contributions of the thesis in detail, and we then identify

several research directions for future work.

8.1 Summary and Contributions

The fundamental contribution of this thesis is that we successfully enabled theoretical model based

simulation techniques for simulating large scale networks, and conducted a comprehensive set of

simulation experiments to validate their effectiveness in both correctness and performance gain. In

particular,

• We took advantages of fluid model based approach, which is mainly employed to analyze TCP

congestion control together with AQM strategy, to lay a fast simulation framework for IEEE

802.11-operated wireless LANs for the first time in Chapter 3. The framework abstracts a

large number of packets with fluid chunks and characterizes the behaviors of them with the

analytical model that we developed. Simulation results indicate that the proposed fluid model

based simulation is effective in simulating IEEE 802.11-operated WLANs. It achieves in the

best case more than two orders of magnitude improvement in terms of execution time as

compared to the packet mode simulation, irrespective of the type of traffic (UDP or TCP).

The performance improvement is more pronounced when the number of nodes, the number

of applications running on each node, or the number of WLANs in a network to be simulated

increases. The relative error, on the other hand, falls within 2 % in all cases as long as the

value of the time step is appropriately determined;

• We contrived network calculus based simulation to speed up network simulations for TCP-
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operated networks by approximating TCP traffics with the network calculus theory in Chap-

ter 4. We first derive two analytical models to characterize how TCP operates in the conges-

tion avoidance phase as well as in the slow start phase in perspective of traffic amount: (i)

the throughput model that determines both the minimum and the maximum throughput for

a TCP flow when the number of losses in an interval is given, and (ii) the network calculus

model which, give based on the derived throughput model, the upper and lower bounds on

the attainable TCP throughput in each interval. Network calculus based simulation can give

an order of magnitude or more (maximally 30 times) improvement in execution time, while

yielding an error discrepancy of minimally 1-2 % and maximally 8-12 %, of the bottleneck

link capacity. In the case of error discrepancy, we observe that the error comes to be neglected

when we conduct the study on a per flow basis since each network calculus based flow is al-

lowed to produce its throughput in the range of the maximum and the minimum throughput

measured in the corresponding packet mode simulation. Based on the simulation results, we

conclude that in addition to their existing applications in the traffic regulation area, network

calculus theory can also be used for network simulation, and that the network calculus based

simulation is quite effective in simulating TCP traffic.

• Based on the recognition that we are usually interested in one flow or one point of networking,

we proposed mixed mode simulation for IEEE 802.11-operated wireless LANs in Chapter 5. In

the mixed mode simulation, the packet mode simulation co-exists with the fluid model based

simulation and they affect one another at the point of interaction, the wireless medium. In

order to specify the interaction, we developed an analytic model at the wireless channel among

one foreground flow and multiple background flows. Simulation results indicate that mixed

mode simulation speeds up simulation performance and produces the accurate results for both

foreground flow and background flows in a WLAN. The mixed mode simulation achieves two

orders of magnitude improvement in terms of execution time as compared to packet mode

simulation. The achievement is almost equal to the achievement of the previous fluid model

based simulation. The relative error, on the contrary, falls within 2 % in all the cases as far

as the time step value is appropriate. Conspicuously, the mixed-mode simulation still shows

packet level details for the foreground traffic.

• In the extended line of Chapter 5, we contrived mixed mode simulation for TCP-operated

networks in Chapter 6, in which packet mode simulation runs one foreground, packet mode
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flow while network calculus based simulation runs the other background, network calculus

based flows. In order to describe the interaction between two modes of simulation techniques

at each point of bottleneck link, we developed an analytical model in terms of queue length,

dropping, and achievable throughput. The simulation results indicate an order of magnitude

improvement (maximally 20 times) in execution time and the performance improvement be-

comes more pronounced as the network size increases. The error discrepancy of the achieved

throughput of one foreground flow in the mixed mode simulation, against the throughput

range in the corresponding packet mode simulation (within which all the packet mode flows

produce their throughput) falls within 1-2 % of the bottleneck link capacity in a wide spec-

trum of network topologies and traffic loads. Additionally, the average throughput of the

other network calculus based flows in the mixed mode simulation also has the same error

discrepancy. More promisingly, the mixed mode simulation still generate the behavior for one

foreground flow in packet level details.

• We contrived the rescaling simulation methodology (RSM) based simulation for large scale IP

networks in Chapter 7 for the cases that all the details for all the flows cannot be approximated

as done in the previous simulation techniques. We scale down the original network by reducing

the link capacity by a fraction, increasing the link delay with the same factor in the way that

the bandwidth-delay product is preserved. By preserving the product invariant during the

down/up scaling operations, the network capacity perceived by each TCP flow does not

change in down-scaled network, which is analytically proved by presenting that the queue

dynamics, the RTT dynamics, the window size dynamics, and even the effect of TCP-friendly

and unresponsive flows remain unchanged in both up/down-scaling operation. The simulation

results indicate an order of magnitude or more improvement (maximally 50 times) in execution

time and the performance improvement becomes more prominent as the network size increases

in terms of number of nodes and network capacity or as the scaling parameter decreases.

The error discrepancy between RSM based simulation and packet mode simulation, on the

contrary, is minimally 1-2 % as long as the scaling parameter is appropriately determined

and maximally 10 % in a wide variety of network topologies with various AQM strategies and

traffic loads. The most noticeable point in RSM-based simulation is that it can handle any

AQM strategy available, and also deal with UDP traffic in addition to TCP traffic.

162



8.2 Future Work

We have two tiers of future work: the one is short term work and the other is long term work. We

identify the specific plans for each fast simulation method.

• In the case of fluid model based simulation for wireless LANs, we would like to extend the

analytic models presented in Chapter 3 to accommodate hidden nodes, timing violations,

external interference, self interference and overlapping channels. Such the components are

necessary to extend the proposed fluid model based simulation to simulate multi-hop wireless

LAN networks.

• In the case of network calculus based simulation, we plan to derive the packet dropping rules

at each link for other active queue management (AQM) schemes. We have to seek better

methods to solve the optimization problem. Furthermore, we would like to apply network

calculus based simulation to other network architectures.

• In the case of mixed mode simulation for wireless LANs, we would like to elaborate the

interaction model in Chapter 5 to address the cases in which we want to see packet level

details of two or more number of foreground flows. We also plan to keep this method in the

pace with the improvement which will be done to the analytical model for wireless LANs.

• In the case of mixed mode simulation for TCP-operated networks, we plan to accommodate

all the improvement which will be made in network calculus based simulation. We also plan

to carry out a more thorough analysis for the throughput difference presented in Chapter 6.

• In the case of rescaling simulation methodologies, we need to theoretically analyze the re-

lationship between the error discrepancy and the scaling parameter. We also would like to

include in our study wireless LANs in one of major part in large scale networks.

Together with the specific short term plans, we also identify long term plans, some of which

pertain to how to integrate the developed simulation techniques into one framework and others

focus on how to use the resulting simulation framework.

We plan to incorporate all the simulation models that we propose in this thesis into one inte-

grated simulation framework. As a first step, we plan to improve a hybrid simulation framework

in Chapter 3, so that TCP flows across over both wireless and wireline networks can be more
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correctly handled. Then, we will develop several interface modules capable of translating all the

simulation units, such as fluid model based packet, network calculus based packet, and a collection

of packets, in order to incorporate all the simulation techniques into one framework. The final

simulation framework thus realized allows us to selectively use an appropriate simulation technique

or to employ several techniques of simulation at the same time for a given network according to

the degree of interest, the network type, and traffic type. Figure 8.1 demonstrates one example

network configuration in simulation study, which consists of home, edge, access, and core networks.

As shown in the figure, we can employ a different simulation technique for each area of concern

and interest by using the prospective integrated simulation framework.

The fundamental goal of the integrated simulation framework inclusive of all the current fast

simulation techniques is to speed up network simulation while the accuracy is acceptably guar-

anteed in simulation results. With the framework that rapidly estimates the upcoming status of

networks, we can provide status information for any application which needs on-demand estimate

for future status, such as delay or loss. Also, the framework can assist the network operators

who usually need to know the effect of new network policy, resource management details, proto-

col deployment, and additional network load before they allow them permanently or for a while.

Furthermore, frameworks can help QoS provisioning in the aspects of both admission control and

resource allocation because it can empirically estimate the effect of newly arrived service requests

on the current network traffic.
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Figure 8.1: The prospective usage of the integrated simulation framework
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Abstract

Modern data communication networks are extremely complex and do not lend well to theoretical

analysis. It is common that network analysis can be rigorously made after leaving out subtle details

that cannot be easily captured in the analysis. Instead, packet mode, event driven simulation studies

are usually resorted to better study the network performance. The major obstacle in packet mode

simulation is, however, the vast number of packets that have to be simulated for producing accurate

results. What seems to be a reasonable solution is to incorporate theoretical modeling into packet

mode simulation.

We developed a fluid model of describing the data transmission activities in IEEE 802.11-

operated WLANs, and used it to explore whether or not fluid model-based simulation is effective

in simulating WLANs. Fluid model based simulation is not well-suited for studying the network

behavior under light and/or sporadic traffic, as it assumes a large number of flows in networks. To

address the issue, we introduced network calculus based simulation; we characterize the interac-

tion between TCP and AQM, determine necessary scheduling rules to regulate TCP traffic, and

incorporate the rules into a simulation engine. Although both fluid model based and network cal-

culus based simulation give encouraging results in terms of performance improvement, they cannot

provide the packet level details, such as the instantaneous queue length and packet dropping prob-

ability, due to the use of larger simulation units. In order to examine the packet level dynamics, we

proposed mixed mode simulation. In the mixed mode framework, packet mode simulation co-exists

with theoretical model-based simulation within one simulation framework. We also proposed a new

rescaling simulation methodology (RSM) to simulate IP networks with TCP and/or UDP traffic for

the cases that all the network behaviors should be inspected. The underlying idea of RSM based

simulation is to reduce the computation by scaling down the network to tractable one that can be

simulated for a short time to produce sufficient results, and then to extrapolate the results for the

original network with the obtained results.


