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Abstract

Despite the potential importance of data structure layouts and traversal patterns, compiler trans-
formations on pointer-intensive programs are performed primarily using pointer analysis, and not by
controlling and using information about the layout of high-level data structures. This paper describes
a compiler transformation called Automatic Pool Allocation that segregates instances of “logical” data
structures in the heap into distinct pools, and allows different heuristics to be used to partially control
the internal layout of those data structures. Because these are rigorous transformations, their results,
combined with pointer analysis information, can be used to perform further compiler analyses and
transformations, and we briefly list a few examples. Automatic Pool Allocation also provides several
direct performance benefits for pointer intensive programs, most importantly, that traversals of a log-
ical data structure allocated to a separate pool can have better spatial locality and smaller working
sets. We evaluate the performance and cache behavior of the code transformed by the automatic
pool allocation transformation on a series of heap-intensive and general-purpose benchmarks, and find
that it speeds up several C programs by 10-40% percent or more, and does not hurt (or help) other
programs.

1 Introduction

One of the most important tasks for modern compilers and runtime systems is the management of memory
usage in programs, including safety checking, optimization, and storage management. Unfortunately,
compilers have proved much more effective at analyzing and controlling memory access patterns for
dense arrays than for pointer-based data structures. A key difference between the two is that compilers
have precise knowledge of the runtime layout of arrays in memory, but have much less information
about complex data structures allocated on the heap. For pointer-based data structures, however, both
the relative layout of distinct data structures in memory and the layout of nodes within a single data
structure (which affects memory traversal patterns) are difficult to predict. One direct consequence is that
irregular memory traversal patterns often have worse performance, both because of poor spatial locality
and because techniques like hardware stride prefetching are not effective. A potentially more far-reaching
consequence is that many compiler techniques (e.g., software prefetching, data layout transformations,
and safety analysis) are either less effective or inapplicable for complex data structures.

Despite the potential importance of data structure layouts and traversal patterns, compiler transfor-
mations on pointer-intensive programs are performed based primarily on pointer and dependence analysis,
and not by controlling and using information about the layout of high-level data structures. There are a few
compiler techniques that modify the layout of higher-level pointer-based data structures (not just fields
within a structure) in imperative programs, but none of them attempts to provide layout information to
enable further compiler transformations, or can be directly extended to achieve this goal. This is because
these techniques focus on giving hints or memory layout directives to a runtime library [12], memory
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struct list { list *Next; int *Data; };

list* createnode(int *Data) {

list *New = malloc(sizeof(list));

New->Data = Data;

return New;

}

void splitclone(list *L, list **R1, list **R2) {

if (L == 0) { *R1 = *R2 = 0; return; }

if (some_predicate(L->Data)) {

*R1 = createnode(L->Data);

splitclone(L->Next, &(*R1)->Next, R2);

} else {

*R2 = createnode(L->Data);

splitclone(L->Next, R1, &(*R2)->Next);

}}

int processlist(list* L) {

list *A, *B, *tmp;

// Clone L, splitting nodes in list A, and B.

splitclone(L, &A, &B);

processPortion(A); // Process first list

processPortion(B); // process second list

// free A list

while (A) { tmp = A->Next; free(A); A = tmp; }

// free B list

while (B) { tmp = B->Next; free(B); B = tmp; }

}

(a) Input C program manipulating linked lists

struct list { list *Next; int *Data; };

list* createnode(pooldesc *PD, int *Data) {

list *New = poolalloc(PD, sizeof(list), 1);

New->Data = Data;

return New;

}

void splitclone(pooldesc *PD1, pooldesc *PD2,

list *L, list **R1, list **R2) {

if (L == 0) { *R1 = *R2 = 0; return; }

if (some_predicate(L->Data)) {

*R1 = createnode(PD1, L->Data);

splitclone(PD1, PD2, L->Next, &(*R1)->Next, R2);

} else {

*R2 = createnode(PD2, L->Data);

splitclone(PD1, PD2, L->Next, R1, &(*R2)->Next);

}}

int processlist(list* L) {

list *A, *B, *tmp;

pooldesc PD1, PD2; // initialize pools

poolcreate(&PD1); poolcreate(&PD2);

splitclone(&PD1, &PD2, L, &A, &B);

processPortion(A); // Process first list

processPortion(B); // process second list

// free A list: this loop is eventually eliminated

while (A) { tmp = A->Next; poolfree(&PD1, A); A = tmp; }

// free B list this loop is eventually eliminated

while (B) { tmp = B->Next; poolfree(&PD2, B); B = tmp; }

pooldestroy(&PD1); pooldestroy(&PD2); // destroy pools

}

(b) C code after the basic pool allocation transformation

Figure 1: Example illustrating the Pool Allocation Transformation
This function copies a list into two disjoint lists A and B (based on some predicate), processes each,
then frees them. After basic pool allocation, the new lists are allocated in separate pools (PD1 and

PD2) and each is contiguous in memory. After two further optimizations, the calls to poolfree for A
and B are eliminated, as well as the loops containing them because the memory for both pools will be

reclaimed by pooldestroy before any more memory is allocated.

allocator [9], or garbage collector [23]. Furthermore, they do not analyze higher-level data structures in
order to segregate them on the heap or control their internal layout at compile-time.

The work of Tofte, Birkedal et al. on automatic region inference for ML [37, 36] is a systematic
compile-time transformation and could actually be used to enable subsequent compiler optimizations,
although they do not propose to do so. Their work is aimed at using region inference for automatic
memory management with little or no garbage collection, as they do in the ML Kit [36, 5, 21]. As we
discuss in Section 8, the two major differences between their work and ours is that their compile-time
transformation does not explicitly identify and control the internal layout of complex data structures
(although they may put each instance in a separate region), and they do not use an explicit pointer
analysis to track references in the presence of destructive heap updates, which is crucial for imperative
languages like C, C++ and Java. The latter issue and other minor differences are discussed further in
Section 8. Nevertheless, their transformation could be modified to enable further optimizations for the
functional subset of ML as our work aims to enable for imperative languages.

The key insight underlying our work is that (any) context-sensitive, field-sensitive points-to analysis
can be used to distinguish disjoint instances of logical data structures in a program, and identify the
locations at which nodes of those data structures are created, accessed, and destroyed (these terms
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are defined more precisely in Section 3). This gives the compiler the information needed to segregate
individual data structure instances and to better control their internal layout. Less aggressive pointer
analyses can also be used but may not distinguish data structure instances or may give less precise
information about their internal structure.

1.1 Contributions of this Work

This paper describes Automatic Pool Allocation, an automatic transformation framework for imperative
programs that segregates instances of “logical” data structures in the heap into distinct pools, and allows
different heuristics to be used to partially control the internal layout of those data structures. For ex-
ample, each distinct instance of a list, tree or graph identified by the compiler would be allocated to a
separate pool. Because these are rigorous transformations, their results, combined with pointer analysis
information, can be used to perform further compiler analyses and transformations. We briefly describe
several novel applications of our work in Section 9 that exploit this layout information and control, includ-
ing techniques for enforcing heap safety by exploiting type homogeneous pools, replacing (large) pointers
with (small) indices into a pool to reduce cache footprint of large pointer-based data structures, and
more speculative ideas on pointer prefetching and traversal order transformations. Detailed descriptions
or evaluation of these techniques are outside the scope of this paper.

Automatic Pool Allocation, with appropriate layout heuristics, can itself improve program perfor-
mance in several ways. First, since programs typically traverse and process only one or a few data
structures at a time, segregating logical data structures reduces the memory working sets of programs.
Second, in certain cases, the allocation order within each data structure pool will match the subsequent
traversal order (e.g., if a tree is created and the processed in preorder), improving spatial locality and
(if objects are smaller than a cache line) cache bandwidth. Third, in such cases the traversal order may
become a simple linear stride, allowing effective hardware prefetching. Fourth, some pools hold objects
of only a single type (and so a single size), speeding up allocation and deallocation. Finally, we show
that in certain cases, individual free operations on objects in a pool can be eliminated and the entire
memory for the pool reclaimed when the pool is destroyed (without increasing memory consumption).

Figure 1 illustrates the pool allocation transformation for an example C program fragment. Given a
list L, the code copies its nodes into two separate new lists A and B, processes each of the new lists, and
then destroys them. The code on the right shows the results of our basic transformation in C syntax.
The incoming list L and the two new lists have each been allocated to distinct pools (the pool for L is
not passed in and so not shown; the new lists use pools PD1 and PD2). The list nodes for A and B
will become segregated in the heap, unlike the original program where they are likely to be interleaved
in data-dependent fashion in memory. The compiler “knows” which pool contains which list, and some
properties of the layout within each pool. The items in each pool are explicitly deallocated and the pools
are destroyed within processList when the data they contain is no longer live.

We have implemented Automatic Pool Allocation as a link-time transformation using the LLVM
Compiler Infrastructure [27]. Our interprocedural transformations are performed at link-time to preserve
separate compilation. The implementation supports arbitrary C programs, including programs with
function pointers, recursion, non-type-safe memory accesses, and incomplete programs. We evaluate the
performance impact of Automatic Pool Allocation, and study the performance effects of the transforma-
tion on three suites of benchmarks. We find that several programs speed up by 10-40%, and one up by
99and importantly, are not hurt by the transformation.

2 Background: Points-To Graph Assumptions

In this section, we specify formally the points-to graph representation and properties that a pointer
analysis must provide in order to support Automatic Pool Allocation. We know of at least three such
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algorithms including our own [18, 28, 26] that provide or can be extended to generate graphs with these
properties.

We use the term Data Structure Graph (DS Graph) to refer to the points-to graphs used by Automatic
Pool Allocation. A DS graph is a compile-time description of the memory objects created by a program,
and their points-to properties. Different nodes within the same graph represent distinct memory objects.
We assume that a DS graph is computed for each function (of course, the same graph can be used for
all functions at some loss of precision), representing the memory objects reachable from variables in that
function or global variables.

Formally, a DS Graph is a directed multi-graph, where the nodes and edges are defined as follows:

DS Node : A DS node is a 5-tuple {τ, F, M, A, G}. τ is some program-defined type, or ⊥ representing
an unknown type. In the analysis, ⊥ is treated like an unknown-size array of bytes. F is an array
of fields, one for each possible field of the type τ . Scalar or array types have a single field. M is
a set of memory classes, written as a subset of {H,S,G,U}, indicating Heap, Stack, Global and
Unknown memory objects respectively. A U node is assigned type ⊥. Finally, if G ∈ M , then G is
a non-empty set of global variables and functions included in the objects for this node; otherwise,
G is empty. Finally, A is a boolean that is true if the node includes an A rray object.

DS Edge : A DS edge is a 4-tuple: {s, fs, t, ft}, s, t are DS nodes, and fs and ft are fields of s and t
respectively. Thus, the graph provides a field-sensitive representation of points-to information. A
field of a node may have no outgoing DS edge only if the field is known not to contain a pointer
type, e.g., it is a function, floating point, or small integer type, or if M = {U}.

Figure 2(b) shows the DS graph computed for function splitclone of our example program, computed
by our compiler. Note that each node of type list has two fields. The cycles indicate recursive data
structures. R1 and R2 point to distinct nodes, indicating that the two linked lists are completely disjoint.
This allows pool allocation to put these two lists in distinct pools, even though they are created in
interleaved fashion and by calling the same function.

Our algorithm that computes DS graphs is called Data Structure Analysis (DSA) [26]. DSA has
several properties required for supporting Automatic Pool Allocation, which are also shared by the other
two analyses mentioned above [18, 28] (which we refer to as FRD and LH). Most importantly, all three
are context-sensitive, which is important for distinguish data structure instances that may be created,
processed, and destroyed by calling common functions. For example, context-sensitivity allows DSA to
determine that lists A and B are disjoint in Figure 1(a). DSA and LH distinguish objects by complete
acyclic call paths, while FRD provides a more limited form of context-sensitivity. Pool allocation could
still work with less or even no context-sensitivity (e.g., if heap objects were distinguished only by allocation
site), but instances of a data structure processed by common functions would likely not be segregated
into distinct pools.

All three algorithms are also field-sensitive (they distinguish distinct pointer fields within objects).
LH and DSA are unification-style algorithms [34] while FRD uses inclusion constraints. We believe field-
sensitivity is crucial for unification-style algorithms to support pool allocation because merging all targets
of all pointer fields in a single object would lose most structural information about pointer-intensive data
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structures. A non-unification based algorithm that distinguishes objects of different types may be able to
support Automatic Pool Allocation effectively without requiring field-sensitivity [2]. In practice, however,
we have found the “unification” property to be crucial for allowing context-sensitivity by complete acyclic
call paths to be fast and to keep the graphs small [26] (in fact, imprecision tends to reduce the size of the
graphs, due to merging of nodes).

Finally, the DS graph of a function must include the side-effects of any function reachable from the
current one in the call graph (i.e., immediate callees and their callees and so on). These side-effects include
all memory objects created or accessed that are reachable from variables in the current function, and all
points-to relationships introduced on those objects. More specifically, for each node n in the callee’s graph
that is reachable in the caller, f , there is a unique node in the caller’s graph corresponding to it which we
denote NodeInCaller(f, n). Both DSA and LH compute separate “bottom-up” and “top-down” graphs,
and the bottom-up graphs provide exactly the information we need.

3 Logical Data Structures and Disjoint Instances

The high-level (“logical”) data structures around which a program is designed are a subjective notion
and difficult to formalize. The key property that we wish to exploit, however, is that pointer-intensive
computations are usually designed as traversals over one or more connected data structure (arrays or
pointer-based structures).

Based on this intuition, we define a data structure snapshot (DSS) to be a set of memory objects at
runtime that form nodes of a connected graph, where an edge is formed by a pointer from one object
element to another, and elements of individual objects can be traversed via structure or array indexing.
This gives the key property that a DSS must be traversable via sequences of pointer dereferences and
indexing operations. One DSS can contain another; for example, an array of binary trees forms a DSS,
and so does each individual tree (viewed at a particular point in an execution).

The DS graph of the previous section can be viewed as a static description of the DSSs created by a
program. Any DSS will be represented by some subgraph of the DS graph. Note that a single subgraph
represents a large number of DSSs (for example, a linked list that grows and shrinks). Intuitively, a DS
subgraph is a static description of a logical data structure, such that only one “instance” of this data
structure can exist at any point in an execution. Disjoint subgraphs represent distinct data structures:
more formally, DSSs of the two different subgraphs will not intersect.

4 The Core Pool Allocation Transformation

We first present a “core” version of the transformation in which all heap objects are allocated in pools
(i.e., none are allocated directly via malloc ) and every DS node generates a separate static pool (ex-
plained below). All steps of the algorithm consider only those DS nodes with H ∈ M (“ H nodes”) as
candidates for allocating to pools. Because disjoint DS subgraphs generate disjoint logical data structure
instances as defined above, this transformation automatically segregates such data structure instances in
the heap. In the next section, we consider alternative heuristics that could be used for these two choices;
the transformation steps only require one minor change to support arbitrary choices. All parts of the
algorithm assume a call graph is available; in our implementation, it is computed as a side effect of DSA.

4.1 Overview Using an Example

We can first illustrate the basic steps of the transformation in intuitive terms using the two-lists example
and its DS graphs in Figure 2.

First, from each function’s DS graph, we determine which H nodes are accessible after their respective
functions return, i.e., they “escape” to their callers. The H nodes in createnode and splitclone do
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escape, whereas the the two in processlist (A and B ) do not. The latter are candidates for creating
new pools in processlist . For now, we decide that every such candidate should be assigned a pool,
and each pool should be separate. In Section 5, we discuss alternative heuristics for each of these choices.

The transformation phase inserts code to create and destroy the pool descriptors for A (PD1 ) and
B (PD2 ) in processlist (see Figure 1(b)). It adds pool descriptor arguments for every H node that
escapes upwards for a function, i.e., for lists R1 and R2 in splitclone and for lists New in createNode .
It rewrites the calls to malloc and free with calls to poolalloc and poolfree , passing the appropriate
pool descriptors as arguments. Finally, it rewrites the calls to functions with pool descriptor arguments
(i.e., the calls to splitclone and createnode ), in order to pass in the right pool descriptor pointers as
arguments. At this point, the basic transformation is complete.

Further refinements of the transformation move the pooldestroy for PD1 as early as possible within
the function processlist , and then eliminate the calls to free items in the two lists and the loop
enclosing those calls to free.

The final resulting code (not shown) has put each linked list into a separate pool on the heap, made
the list objects of each list contiguous in memory, and reclaimed all the memory for each list at once
instead of freeing items individually, without increasing the peak memory consumption of the program.
In this example, the objects of a list are placed in dynamic creation order within each pool.

4.2 Pool Allocator Runtime Library

The interface to our pool allocation library is shown in Figure 3. The functions poolalloc and poolfree
are used by the generated code to allocate and deallocate memory from a pool, i.e., these are used in
place of calls to malloc and free in the program. Note that the third argument to poolalloc can be
used to expose to the library that an array is being allocated with elements of a particular size. The
function poolcreate initializes a pool descriptor for a new pool. pooldestroy releases any remaining
memory in the specific pool to the system heap. The library internally obtains memory from the system
heap in blocks of one or more pages at a time using malloc (doubling the size each time) and returns
blocks using free when they become empty. The allocation strategy is optimized for pools that have
items of uniform size. In such a pool, requests for an item are always satisfied in constant time, when
memory is available in the pool.

void poolcreate(Pool** PP);
Creates and returns a new pool descriptor

void pooldestroy(Pool* PP)
Release pool memory and destroys pool descriptor

void* poolalloc(Pool* PP, size t sz, uint numElem)
Allocate numElem objects of sz bytes each.

void poolfree (Pool* PP, void* ptr)
Mark the object pointed to by ptr as free.

Figure 3: Interface to the Pool Allocator Runtime Library

4.3 Analysis: Finding Candidate Nodes for Pools

The goal of the analysis is to identify what pool descriptors must be available in each function, and
which of those must be initialized within the function using poolcreate (the others will be passed in
as arguments). We use the term static pool to refer to a single poolcreate statement in the generated
code. During runtime, at most one dynamic instance of each static pool will exist at any time.

By definition, H ∈ M for a node if the objects of that node are returned by malloc or passed into
free by the current function or any of its known callees. These identify exactly those nodes for which a
pool descriptor must be available in the current function.

6



To determine which pool descriptors must be created within the current function, we must determine
which DS nodes represent memory objects local to the function, and which ones represent objects used
before or after the function exits. This is essentially an escape analysis [6], and can be done for all H
nodes efficiently using the DS graph. In the DS graph, a DS node represents objects accessible outside
the function if the node is reachable from the argument nodes for the function, return value nodes, or
Global nodes. If none of these conditions is true, then the lifetime of the memory objects represented
by that node are bounded by the lifetime of the function. All escaping DS nodes can be identified by a
single, linear-time traversal of the DS graph (not shown).

4.4 Transformation: Creating and Passing Pool Descriptors

4.4.1 The Basic Transformation

We first describe the basic pool allocation transformation, ignoring indirect function calls. The pseu-
docode for this basic transformation, including the analysis steps, is shown in Figure 4. The algorithm
makes two passes over the functions in the program in arbitrary order.

Lines 1–5 identify what DS nodes are candidates for inserting poolcreate statements within the
function. For each other DS node with the H flag, the algorithm adds one pool descriptor pointer
argument to the function (except for DS nodes pointed to by global variables, as described in section 4.5
below). We always add pool descriptor arguments to the start of a function’s argument list in order to
support variable-argument functions. The algorithm records the mapping of DS graph nodes to the pool
arguments for each function, to use when rewriting the calls to the function.

For each node that needs a pool in the function, the algorithm allocates a pool descriptor on the stack
frame, initializing it (using poolinit ) on entry to the function and destroying the pool (pooldestroy )
at every exit of the function (these placement choices are improved in Section ??). Because the DS node
does not escape the function, we are guaranteed that any memory allocated from that pool can never
be accessed outside of the current function, i.e., it is safe to destroy the pool, even if some of was not
deallocated by the original program. Note that this may actually eliminate some memory leaks in the
program!

In the second pass (lines 11–20), the algorithm replaces calls to malloc() and free()1 with calls to
poolalloc and poolfree. We pass the pool descriptor pointer of the DS node pointed to by the pointer
in each case, using the mapping information saved by the first pass. Since the DS node will have an H
, a pool descriptor pointer is guaranteed to be available.

Calls to functions other than malloc or free must pass additional pool descriptor arguments for
memory that escapes from them. Because the DS graph reflects all reachable memory objects of all
callees, any heap objects allocated by a callee will be represented by an H node in the caller graph (this
is true even for recursive functions like splitclone). This property guarantees that a caller will have
all of the pool descriptors that any callee will ever need, regardless of whether the callee is a recursive
function or not. Identifying which pool of the caller (f) to pass for each pool argument of the callee is
straightforward: for each callee node n that was recorded as needing an argument pool descriptor, we
pass the pool descriptor for the node NodeInCaller(f, n) in the caller’s DS graph (defined in Section 2).

4.4.2 Passing Pool Descriptors for Indirect Function Calls

The presence of indirect function calls makes it significantly more complex to pass the correct pool
descriptor arguments to each function. The problem is that different functions called via a function
pointer at the same call site may require different sets of pools. Furthermore, different indirect call

1Note that “malloc wrappers” (like calloc, realloc, valloc, etc) do not need special support from the pool allocator. Their bodies
are simply linked into the program and treated as if they were a user function, getting new pool descriptor arguments to indicate which
pool to allocate from.

7



basicpoolallocate(program P )
1 ∀f ∈ functions(P )
2 dsgraph G =DSGraphForFunction(f)
3 ∀n ∈ nodes(G) // Find pooldesc for heap nodes
4 if ( H ∈ n.M))
5 if (escapes(n)) // If node escapes fn
6 variable a = AddPoolDescArgument(f , n)
7 pdmap(n) = a // Remember pooldesc
8 else // Node is local to fn
9 variable pd = AddInitAndDestroyLocalPool(f , n)

10 pdmap(n) = pd

11 ∀f ∈ functions(P )
12 ∀i ∈ instructions(F ) // Rewrite function
13 if (i isa ’Ptr = malloc(size)’)
14 replace with ’poolalloc(pdmap(dsnode(Ptr)), size)’
15 else if (i isa ’free(Ptr)’)
16 replace with ’poolfree(pdmap(dsnode(Ptr)))’
17 else if (i isa ’call Callee(args)’)
18 ∀n ∈ poolDescArgNodes(Callee)
20 addCallArgument(pdmap(NodeInCaller(f, n)))

Figure 4: Pseudo code for basic algorithm

sites can have different but overlapping sets of potential callees. Our solution is shown in Figure 5, and
described below.

The pool allocator uses the call graph to partition all the functions of the program into disjoint
equivalence classes, such that any two functions callable from the same indirect call site will be in the
same equivalence class. Initially, every function in the program is placed into its own equivalence class.
For each indirect call site in the program, we unify the equivalence classes for all the potential callees at
that site, using the Tarjan union-find algorithm.

Because our algorithm for matching pools between functions uses the DS nodes for the functions and
the NodeInCaller(f, n) map, the DS graph for a caller must reflect all the possible nodes that must be
passed to any function in the equivalence class of a callee. To enforce this, the pool allocator merges all
the graphs for all the functions in the equivalence class to build a single common DS graph2. We merge
a pair of graphs in the equivalence class by merging corresponding formal argument nodes, global nodes,
and the return value node of each graph.

completepoolallocate(program P )
1 ∀cs ∈ callsites(P ) // Build equivalence classes
2 unify equivclasses(callees(cs))
3 ∀ec ∈ equivclasses(functions(P )) // Build graph for each class
4 ECGraph(ec) = mergeGraphs(DSGraphs(members(ec)))
5 ∀scc ∈ tarjansccfinder(callgraph(P ))
6 ECGraph(scc) = mergeGraphs(ECGraphs(functions(scc)))
7 ∀cs ∈ callsites(scc) // Inline callees into caller
8 ECGraph(scc) = mergeGraph(cs, ECGraph(callees(cs)))
9 basicpoolallocate(P )

Figure 5: Pseudo code for complete pool allocator
The last step is to incorporate the equivalence class graphs of the callees into the DS graph of each

function so that the caller and “callee” graphs are consistent. We call these the EBU (“equivalence
bottom-up”) graphs. The EBU graph for a function is initially its equivalence class graph. We then
traverse the SCCs of the call graph in bottom-up order using Tarjan’s SCC finding algorithm. As in
the original bottom-up phase of DSA, for each multiple-function SCC, we first collapse the EBU graphs
for the functions of the SCC into a single graph. This reduces the call graph to a DAG with a single
node for each original SCC. For each node in this DAG, we merge the completed EBU graph of each
callee into the EBU graph of the caller. The end result of this process is that the EBU graph for each
function represents the memory behavior of the function including any functions it can call indirectly
and all functions in the same equivalence class (because it may not call some of them directly, the EBU

2Merging graphs is a primitive operation in our DSA implementation used for inlining graphs in the bottom-up pass.
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graph is less precise than the original graph, but still correct).
Given the EBU graphs for a program, the pool allocator is now guaranteed to have all of the pool

descriptors required at an indirect call site for any of the potential callees of the call site. At this point,
we simply apply the algorithm of Figure 4 using the equivalence class graph instead of the original DS
graph for each function. Because the graphs for all functions in an equivalence class are identical, all of
their pool descriptor arguments will be identical. Also, when transforming the body of a function, the
correct arguments would be added to an indirect call based on the graph for the called equivalence class.

4.5 Algorithm Refinements

There are 3 important refinements to the algorithm, but they are simple and we only describe them very
briefly. The first is essential for efficiency, while the other two are optional optimizations:

1. Pools reachable from global variables need special handling for performance. The problem is that
such a pool would be created in the function main , and would have to passed down through many
layers of function calls to be available at each function that actually allocates or frees data in the
pool. We use a simple solution, which we describe only briefly here for lack of space. We simply
create a global variable to hold the pool descriptor for each heap node reachable from a global, and
then use the appropriate global at every point where such a pool descriptor is needed.

2. We use a simple intraprocedural dataflow analysis to move poolcreate and pooldestroy calls
later and earlier within the body of the function, so that the lifetime of objects in the pool is
reduced. This optimization can also make it more likely that the next refinement can apply.

3. Our final optimization eliminates poolfree for a pool, P , if there are no allocations out of any
pool (or malloc s) between the poolfree and the pooldestroy for pool P . Because there are
no intervening allocations, the peak memory consumption of the program is not increased, even
though the lifetime of the memory in pool P may have been increased. For example, in Figure 1(b),
we can eliminate the call to poolfree(&PD1, A), which also causes the compiler to eliminate the
enclosing while loop. The same steps can be applied to poolfree(&PD2, B) as well.

5 Heuristic Choices in Segregating Data Structures

The algorithm of the previous section provides a general framework for segregating data structures in
the heap. There are two aspects of the transformation where the algorithm makes specific choices, and
several different options are available for each of those choices. First, the algorithm creates pools for all
H DS nodes. Second, it creates creates distinct pools for each such DS node. Below, we motivate and
discuss alternative heuristics that different clients might prefer for each of these two choices. Since heap
objects are laid out separately and dynamically within each pool, these choices give the compiler some
control over the internal layout of data structures.

5.1 Selecting Nodes to Assign to Pools

The core transformation can be modified to select a subset of candidate nodes to assign to pools. We
simply change line (9) of Figure 4 so that, for DS nodes not assigned to a pool, no poolcreate or
pooldestroy is created, and the pool descriptor is initialized to NULL. For a NULL pool, poolalloc
and poolfree simply call malloc and free .

The choice of which candidate nodes to assign to pools depends on the client’s needs. For the static
heap safety enforcement technique described in [17], the previous choice (of allocating all nodes to pools)
is necessary. If performance is the primary goal, however, the small overheads of pool creation and
destruction are unnecessary for some pools. If a pool will hold only a single malloc object of any type (a
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common case is a single array), pool allocation will not change the data layout. More generally, a pool
only changes performance behavior if two or more objects in the pool can be visited by a single traversal.

To identify traversable objects using the DS graph, note that non-trivial traversals can only be made
through array or pointer-based data structures, which will appear as cycles in the graph (except in
degenerate cases). We therefore define a Collection to be either a node with the A set, or any non-trivial
strongly connected component (SCC) in the DS Graph. A non-trivial SCC is one containing at least one
cycle, including self-cycles. Now, any H node reachable from a Collection represents a set of objects that
may be visited by a single traversal over the objects of the Collection. (Note that a single A node not
in a cycle is not reachable from a collection, and so will not meet our criterion, which is what we want.)

Based on these principles and definitions, we propose two possible policies for choosing when to create
a new pool for a canddiate H node in its parent function:

AllPools: In each function F , create a pool for every candidate H node for which F is the parent
function.

TraversablePools: In each function F , create a pool for every candidate H node reachable from a
collection.

5.2 Heuristics for Merging Pools

Our transformation so far creates a distinct static pool for every H node selected for assigning to pools.
By merging pools together for distinct nodes, the compiler obtains partial control over the internal layout
of a data structure. Given some DS subgraph that represents a high-level data structure of interest, the
compiler can choose how to partition that subgraph into multiple pools. The objects within a particular
pool can then be controlled in different ways via appropriate extensions to the pool allocation library. By
default, objects might simply be interleaved in memory in allocation order. More sophisticated techniques
might segregate objects into “bins” based on arbitrary compiler information (e.g., as used in [9]), simply
by passing an extra bin parameter to the allocation routines.

The transformation algorithm is flexible enough to allow a common pool to be created for an arbitrary
group of H nodes. We retain separate pool descriptor pointer variables for each H DS node, but simply
change line 9 again so that poolcreate and pooldestroy are inserted for only one of the nodes, and
the other pool descriptor pointers are initialized to point to the common descriptor.

We propose three potentially useful heuristics for choosing which H nodes should share a common
pool:

OnePoolPerNode : Each candidate H nodes within a single function is assigned to a separate pool.
This is particularly useful for clients that require type-homogeneous pools, including both the
memory safety enforcement work [17]) and a “pointer compression” optimization mentioned in
Section 9.

OnePoolPerCollection : All candidate H nodes in a collection are assigned to a single pool. Any
other H node reachable from a collection (without going through another collection) is assigned
to the same pool as the collection. This choice effectively partitions the heap so that each minimal
“traversable” collection of objects becomes a separate pool. Intuitively, this gives the finest-grain
partitioning of recursive data structures, which are often hierarchical. It favors traversals over a
single collection within such a hierarchical (i.e., multi-collection) data structure.

MaximalDS : A maximal connected subgraph of the DS graph in which all nodes are H nodes are
assigned to a single pool. This partition could be useful as a default choice if there is no information
about traversal orders within and across collections. In particular, it is not uncommon that a
program creates a complex, connected data structure consisting of multiple DS nodes and traverses
it in the same order as it was created and putting all nodes in a single pool could allow such a
traversal to be linear in memory (if objects are laid out by the library in allocation order).
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The above heuristics are designed to work in the absence of profile information. In practice, grouping
objects based on some knowledge of the patterns of traversal over data structures could significantly
improve performance. Profile-driven heuristics could be used with the framework without any significant
change to the core allocation algorithm itself, though doing that is outside the scope of this paper.

6 Uses of Pool Allocation

To illustrate how the layout informaton and control provided by automatic pool allocation could enable
novel compiler transformations, and optimizations, we very briefly list a few examples of such techniques
that fundamentally depend on pool allocation. The first of these is fairly mature [17], the second partially
implemented, and the rest are speculative. Describing these techniques is outside the scope of this paper
but are the subject of our future work.

Program safety without garbage collection: Our major application of pool allocation to date
has been on enforcing program safety without garbage collection for type-safe C progams [17]. The
key property this work exploits is that pools for type-safe data structures are type homogeneous. This
allows us to enforce memory safety (but not type safety) without garbage collection, by ensuring that
any dangling pointers into the pool will have the same target type as any new item allocated from the
pool.

Transparent pointer compression: Allocating a data structure in a set of type homogeneous
pools allows us to use indexes into the pool to identify objects, instead of full pointers. Since most data
structures are likely to have far less than 232 distinct nodes of any one type, these indexes could be much
smaller (e.g., 16 or 32 bits) than a full pointer. This could reduce both the cache footprint and memory
bandwidth of pointer-intensive data structures, especially on 64-bit machines. We have implemented a
prototype of this transformation and are evaluating it currently.

Linear prefetching for linked data structures: As noted earlier, pool allocation converts some
potentially unpredictable memory traversals into simple, linear traversals. In machines without stride
prefetching hardware, the compiler could use a simple software prefetching algorithm similar to those
used for dense arrays [10, 30], which are much more practical than algorithms for prefetching linked data
structures (e.g., using jump pointers) [29].

Rewriting “complete” data structure traversals to operate in pool order: A much more
sophisticated optimization could be possible for traversals that perform commutative operations [31] on
all the nodes of a data structure (e.g., summing the values in a list, or finding the largest element in
a tree). If we can identify such cases, we could transform the loop to simply iterate over the items in
their order in the pool instead of in the original order. Reordering a traversal according to the layout
of a complex data structure in memory is a non-trivial problem, and would be quite difficult without
a combination of Automatic Pool Allocation (to expose the data structure layout) and DSA with some
additional analysis (to decide when this is legal).

7 Results

We evaluated the direct performance impact of the Automatic Pool Allocation transformation for a
number of heap-intensive and ordinary benchmark programs. We used two different combinations of
heuristics described in Section 5. One is the core transformation where all H nodes are pool allocated
in separate pools, i.e., AllPools+OnePoolPerNode. The second uses the combination Traversable-
Pools+OnePoolPerCollection. We call these AllPools (AP) and CollectionPools (CP) respectively.

We used programs from the Olden, Ptrdist, and SPEC CINT 20003 benchmark suites, as well as an-
alyzer from FreeBench 1.03 suite and llu-bench, an improved version of Olden-Health. (Other FreeBench
programs showed no significant affects on performance and are omitted for lack of space.) We compiled

3Four SPEC CINT benchmarks were not working correctly in time for submission.
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Program LOC Base PA AP PA CP Speedup Speedup Static Type Dyn. Num
runtime runtime runtime ratio AP ratio CP Pools Safe Pools Args

bh 2091 12.484 12.394 12.280 1.007 1.017 2 1 2 0
bisort 348 13.113 12.849 12.926 1.021 1.014 1 1 1 1
em3d 682 6.299 6.289 6.334 1.002 0.994 8 7 8 45
health 508 8.676 7.168 7.545 1.210 1.150 2 2 2 4
mst 432 7.601 6.946 7.006 1.094 1.085 5 5 5 0
perimeter 484 1.862 1.588 1.601 1.173 1.163 1 1 1 1
power 622 5.680 5.773 5.731 0.984 0.991 4 4 4 5
treeadd 245 7.172 7.039 7.065 1.019 1.015 1 1 1 1
tsp 579 5.155 5.223 5.260 0.987 0.980 1 1 1 1
voronoi 1111 6.447 6.842 6.752 0.942 0.955 3 2 3 1
anagram 647 1.467 1.512 1.486 0.970 0.987 4 3 3 1
bc 7297 1.512 1.070 1.350 1.413 1.120 26 24 20 15
ft 1803 2.389 1.778 1.788 1.344 1.336 4 4 4 4
ks 782 2.133 2.152 2.149 0.991 0.993 3 3 3 0
yacr2 3982 3.280 3.157 3.321 1.039 0.988 26 26 26 0
164.gzip 8616 22.151 23.183 22.635 0.955 0.979 7 6 7 2
175.vpr 17729 9.230 9.732 9.459 0.948 0.976 153 139 44 33
181.mcf 2412 25.307 25.715 26.240 0.984 0.964 2 2 2 0
186.crafty 20650 20.326 21.156 20.979 0.961 0.969 5 5 4 0
197.parser 11391 5.551 5.717 5.728 0.971 0.969 1 0 1 0
197.parser(b) 11204 7.642 6.160 6.334 1.241 1.207 52 51 6675 86
255.vortex 67220 6.110 6.293 6.455 0.971 0.947 2 1 1 6
256.bzip2 4647 26.291 26.115 26.056 1.007 1.009 10 9 8 0
300.twolf 20459 9.344 8.986 9.636 1.040 0.970 111 106 231 6
analyzer 923 56.643 28.390 28.621 1.995 1.979 8 8 8 0
llu-bench 187 12.129 9.729 9.699 1.247 1.251 2 2 2 0

Table 1: Runtimes and statistics for Olden, Ptrdist, SPECINT2000, and other benchmarks

and optimized each program with LLVM, applied pool allocation at link-time (with one of the two heuris-
tics), and used the LLVM interprocedural constant propagation and dead argument elimination passes
after pool allocation to clean up unused pool arguments due to NULL pool descriptors. To get the “Base
runtime”, we used the exact same steps with the exception of the pool allocator, including the cleanup
passes. We compiled the transformed LLVM code to C using the LLVM C backend and compiled the
resultant C code with GCC 3.3, and ran all programs on an Intel 3.06GHz Xeon CPU.

Table 1 shows speedups and several other statistics. The fourth column group shows statistics about
pools with the (AP) heuristic. This includes the static number of pools identified in the program, the
number of pools that are type-homogenous, the dynamic number of pools created in a run of the program,
and the number of arguments added by the pool allocator to the program.

The speedup results show that heap and data-structure intensive programs are sped up significantly
by the pool allocation transformation, from 10-40% in several cases and up to 97% in analyzer from the
FreeBench 1.03 suite), In contrast, some programs that have only a few pools are largely unaffected, and
in particular are not hurt by the transformation. The large speedups come primarily from two sources:
Improved cached behavior of data structure traversals (see below), and efficient memory allocation from
type-homogenous pools. In particular, even though the Olden benchmarks have a small number of pools,
almost all of their pools are type-homogenous.

Many of the SPEC benchmarks are heavily optimized to allocate and deallocate from the heap as
infrequently as possible. 181.mcf, for example, allocates large arrays of nodes whose elements it manages
by itself. Pool allocation has no benefit (but also does not hurt) this program. Several other benchmarks
including 197.parser, 255.vortex, and 175.vpr use custom memory allocators, which obscure the
memory allocation behavior of the program. In order to evaluate the impact of this problem, we changed
197.parser to call malloc/free directly, yielding the 197.parser(b) benchmark. Because it calls malloc &
free, DSA is able to identify logical datastructures, and the pool allocator is then able to segregate them.
Notice that the pool allocator is almost able to match the performance of the hand tuned allocator, while
segregating data structures and exposing type information about them to the compiler.

Figure 6 shows the change in cache misses for each program in the Table 1 that shows a speedup of
more than 3%. From the figure, we can see that the program with the largest speedup (analyzer) has
a very large reduction of both L1 and L2 cache misses. Other benchmarks (such as perimeter and ft)
speed up primarily due to better utilization of the L1 cache even in the case of ft at the expense of a
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few more L2 cache misses. We believe (but have yet to prove) that the pool allocation transformation is
turning pointer chasing data structure traversals into regular-stride memory accesses that the hardware
prefetcher on the Intel Pentium 4 Xeon processor can make use of. In addition, segregating memory
objects from disjoint data structures allows for a natural increase in effective cache density.

This chart also shows that the CP mechanism is failing to pool allocate important data structures
in some benchmarks, such as the bc benchmark from the Ptrdist suite. With further refinement and
experimentation we hope to tune the heuristic to be able to pool allocate all of the important data
structures while eliminating the obviously uninteresting ones (for example, pools where only a single
memory object is allocated).

8 Related Work

As noted in the Introduction, there are two major differences between the work region inference for ML [37,
36, 21] and our work. More specifically: (1) Although they can allocate distinct aggregate values (e.g., a
list) to separate regions, they do not identify and control the internal layout of complex data structures
(e.g., a list of trees constructed as a single value will be assigned a single region). Our algorithm tracks
objects and the pointers between them separately to enable internal segregation. (2) Their algorithm does
not perform any (interprocedural) points-to analysis and therefore deals with destructive heap updates
(storing values in reference types) in a limited manner. In particular, when storing a value into a non-local
reference, the lifetime of the reference is not directly tracked, and in fact can cause the memory for that
value to be leaked [36]. In contrast, our algorithm is driven by an interprocedural points-to representation
and allows explicit (though conservative) tracking of lifetimes of objects, which is essential for languages
with extensive use of destructive heap updates.

Aiken et al. [1] show how to relax another assumption in the Tofte and Birkedal transformation, to
allow regions to have arbitrary non-nested lifetimes. Our placement optimization for regions is conceptu-
ally similar, but we do not consider placements across procedure boundaries (though our algorithm could
be extended to do so).

Several recent languages have included mechanisms for manual region-based memory as an alternative
to garbage collection, e.g., Real-time Java [7], Cyclone [24] and others [19, 15, 8]. In these languages,
the heap is partitioned into separate regions and deallocation is only permitted on an entire region
at once. Compared with our work, these language-based techniques are much easier to implement,
but require significant manual effort to use. More importantly for our work, although these languages
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expose the relationship between objects and regions to the compiler, they do not expose any notion of
higher-level data structures or how they relate to objects and regions. Therefore, the compiler does not
obtain information about data structures and traversals that could enable optimizations on logical data
structures. Similarly, runtime libraries for region-based memory management [35, 4] also require manual
effort and do not provide the compiler any information to support further analyses or transformations.

There is a wide range of work on techniques for stack allocation of heap objects (e.g., see the recent
paper by [6] and the references therein). Unlike our work and the region inference work above, stack
allocation does not modify any properties of the remaining heap data. It does not attempt to analyze
or control the layout of logical data structures for either class of data. Similarly, techniques for static
garbage collection [33, 25] must perform similar analyses to identify object lifetimes and decide statically
when data can be freed, but they do not control data structure layout.

Chilimbi et al. [12] describe a semi-automatic tool called ccmorph that reorganizes the layout of
homogeneous trees at runtime to improve locality. It relies on programmer annotations to identify the
root of a tree and to indicate the reorganization is safe. We automatically identify and segregate instances
of many kinds of logical data structures, but do not yet identify when a runtime reorganization would be
safe. They also describe another tool, ccmalloc is a malloc replacement that accepts hints to allocate
one object near another object, but this only provides local information for an object pair and not any
global information about entire data structures.

Hirzel et al. [23] describe a technique to improve the effectiveness of GC by partitioning heap objects
according to their connectivity properties. Unlike our work, their partitions are not segregated on the
runtime heap, are not directly related to distinct data structures, and the graph of partitions is restricted
to be a DAG, which is likely to make it them much more coarse grain than nodes in DS graphs.

Several proposed techniques attempt to improve storage allocation or garbage collection performance
by relating objects based on their predicted lifetimes [22, 16, 3, 14, 13, 32]. These techniques use heuristics
such as allocation site, call stack, or object size, combined with profiling information, to predict lifetime
properties approximately. In contrast, our approach uses a more rigorous analysis to group objects both
by structural relationships and statically derived lifetimes.

Other authors have developed techniques (usually profile-based) to reorganize fields within a single
structure or place objects near each other to improve locality of reference [20, 9, 32, 11]. These placement
decisions are orthogonal to the choices made by Automatic Pool Allocation, and could therefore be
combined with our transformation. In fact, we consider this an important direction for future work.

Finally, in a preliminary workshop paper, we proposed the basic idea of Automatic Pool Allocation,
but with an impractical algorithm and without any evaluation. That work did not consider how to han-
dle the key difficult cases for this transformation, namely, function pointers, type-unsafe data structures,
and globally live pools. It also relied on an exponential version of the Data Structure Analysis algo-
rithm, but making DSA efficient [26] introduced key complications for pool allocation, such as collapsed
nodes. Finally, the previous paper was too early to present any performance evaluation. We believe the
transformation described here greatly improves over the previous one, addressing all the challenges above
and making it both practical and efficient. We have also refined several algorithmic choices through our
experience using it in our safety checking work [17].

9 Conclusions and Future Work

The primary contribution of this paper is a practical, efficient compiler algorithm to segregate distinct
instances of logical data structures into separate pools in the heap. Our implementation of the algorithm
applies to the full generality of C programs. Our results showed that for many programs, the transfor-
mation achieves the first of the two goals stated in the Introduction, namely, that it can improves their
performance, sometimes very substantially.

We have two goals in our ongoing work. First, we wish to compare the effectiveness of automatic pool

14



allocation with alternative pointer analysis algorithms (e.g., DSA vs. Anderson’s algorithm). The second
and broader aim of our work is to implement and evaluate some of the novel optimization techniques
described in Section 6. We believe that the combination of Data Structure Analysis and Automatic Pool
Allocation together provide a powerful foundation for analyzing and transforming programs in terms
of how they create and use entire logical data structures, rather than in terms of individual memory
references or data elements.
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