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Abstract: This article presents a novel four-dimensional autonomous fractional-order chaotic system
(FOCS) with multi-nonlinearity terms. Several dynamics, such as the chaotic attractors, equilibrium
points, fractal dimension, Lyapunov exponent, and bifurcation diagrams of this new FOCS, are
studied analytically and numerically. Adaptive control laws are derived based on Lyapunov theory
to achieve chaos synchronization between two identical new FOCSs with an uncertain parameter.
For these two identical FOCSs, one represents the master and the other is the slave. The uncertain
parameter in the slave side was estimated corresponding to the equivalent master parameter. Next,
this FOCS and its synchronization were realized by a feasible electronic circuit and tested using
Multisim software. In addition, a microcontroller (Arduino Due) was used to implement the sug-
gested system and the developed synchronization technique to demonstrate its digital applicability in
real-world applications. Furthermore, based on the developed synchronization mechanism, a secure
communication scheme was constructed. Finally, the security analysis metric tests were investigated
through histograms and spectrograms analysis to confirm the security strength of the employed
communication system. Numerical simulations demonstrate the validity and possibility of using this
new FOCS in high-level security communication systems. Furthermore, the secure communication
system is highly resistant to pirate attacks. A good agreement between simulation and experimental
results is obtained, showing that the new FOCS can be used in real-world applications.

Keywords: adaptive synchronization; chaotic systems; fractional-order; microcontroller;
secure communications

1. Introduction

In the last few decades, the nonlinear phenomenon in chaos has been widely consid-
ered in engineering, sciences, and applied mathematics [1,2]. When a deterministic system
exhibits a strange phenomenon of aperiodic trajectories, this is called chaos [3-5]. Chaotic
system sensitivity is introduced when the initial conditions and system parameters have
a strong influence on chaotic systems; however, even a minor alteration in the starting
situation can have a significant impact on the final result [6].

Chaos plays a significant role in many fields, such as biological systems dealing with
the human heart and brain [7], protected communication systems [8], smart systems [9],
digital signal processing [10], data encryption [11], robotics engineering [12], adaptive
control engineering [13], and nonlinear oscillator designs [14]. Recently, several fractional-
order systems are proposed to have exhibit chaotic behavior, such as a fractional-order
Lotka-Volterra system, a fractional-order Chua Hartley oscillator, a fractional-order Van der
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Pol oscillator [15], a fractional-order Lui system [16], a fractional-order Lorenz system [17],
and many other systems [18]. The FOCSs are very useful in secure communication and
high-level encryption because they exhibit very high complexity in their dynamics.

Fractionality is a branch of mathematics that is an extension of classical calculus. The
study of fractional calculus has recently received a lot of attention due to its potential
application in different fields [19]. In 1694, Leibniz was asked by L'Hospital if the half order
derivative is possible [20]. Representation of a system by a fractional order gives several
benefits over its classical integer-order depiction. The fractional-order has transmissible
properties, and as a result of that, the core of the real physical system can be more exactly
maintained. In addition, the system order “4” can be varied in a range (0, 1] that allows an
extension in the system parameter space [21-23].

Fractional calculus has applications in a wide range of engineering and science fields,
including fluid mechanics, viscoelasticity, systems’ identification, electromagnetics, elec-
trochemistry, biological population models, signal processing, optics, control, analog
filters, circuit theory, oscillators, encryption systems, image processing, economics, and
chemistry [24-26]. Because fractional-order chaotic models include the fractional-order
parameter as well as the original system features, they have more complex dynamical
behavior than integer models [27,28].

The chaos synchronization technique is based on the notion that two chaotic systems
might evolve on different attractors, but when they are synchronized, they start on various
attractors and eventually follow the same course. The synchronization between two
systems can be achieved when the trajectories of two systems are matched [29-31]. In
chaos systems, the synchronization mechanism plays a significant role in constructing
secure communication schemes [32-34]. It can occur between two chaotic systems; one
is a master and the driven one is a slave [35,36]. In such applications, the master grants
the transmitter, and the slave demonstrates the receiver. Chaotic synchronization was
first studied by Yamada and Fujisaka in 1983 [37]. Many control methods have been
developed for controlling and synchronizing the fractional-order chaotic systems, such
as active control, impulsive control, adaptive control, passive control, and sliding mode
control [38].

Many FOCSs have been recognized and used in the security of communication sys-
tems. Jialin Hou et al. [39] used the FOCS for proposing image encryption. They use
exclusive or (XOR) for encryption algorithm; this encryption system has increased the
arbitrariness and improved the encryption speed. The authors developed a traditional
integer Chen chaotic system to be a fractional type. Therefore, this system cannot be
considered a novel in the subject area. As a result, the encryption system did not provide
more high-security performance. Maitreyee Dutta et al. [40] suggested a novel FOCS. The
suggested system shows multiple wing chaotic attractors which produce chaos for generat-
ing a change in complex attractors by changing only one parameter. A synchronization
mechanism based on an adaptive sliding mode controller is used in that system. The
proposed system contains a hyperbolic tangent function, which increases the difficulty of
its implementation in the real world. On the other hand, our proposed system has not
contained such these functions. Thus, it can be implemented simply. Zahra Rashidne-
jad et al. [41] introduced a finite time synchronization mechanism of two different FOCSs
master and slave systems with unknown parameters, disturbances, and uncertainties,
where the synchronization was rapidly realized in perfect time. The realization of this
investigated synchronization mechanism was not taken into account to prove the feasibility
of the application in the real world. An improved cryptosystem image based on FOCS has
been proposed by Musheer Ahmad et al. with better performance and appropriateness of
the proposed improved algorithm for realizing a robust and strong safe communication
scheme [42]. In this work, a control method by Pecora and Carroll (PC) was used to achieve
the synchronization mechanism. In our work, we used the adaptive synchronization mech-
anism. The adaptive synchronization technique has many advantages, including rapid
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dynamics responses, good transient performance, and a robust technique for parameter
variations, initial conditions, and disturbances.

Several chaotic-based safe communication schemes have been applied over the last
few years. Chaotic masking, inclusion, chaotic shift keying, and parameter modulation are
the main approaches for exploiting chaotic signals in secure communications [43—45].

In this work, the chaotic masking technique was employed, and a new four-dimensional
FOCS was proposed. The proposed FOCS exhibits more complex attractors than an
integer regular chaotic system complexity which makes it very suitable for designing
high-security communication systems. Since the new FOCS was applied in the secure
communication scheme, an adaptive synchronization mechanism was developed between
two identical FOCSs, one presented as the master (transmitter) and the other for the slave
(receiver). Adaptive control laws were derived based on the Lyapunov approach, which
are responsible for attaining master—slave synchronization. Furthermore, an update control
rule was developed to estimate an uncertain parameter in the slave side according to
the equivalent master side parameter. For verifying the security analysis of the used
communication system, histograms and spectrograms were explored. The achieved results
were tested and determined by using MATLAB Simulink (MathWorks, Portola Valley,
California, United States). Furthermore, a feasible electronic circuit of that new FOCS and
its synchronization was realized by Multisim.

The paper’s organization is as follows. In Section 2, the fundamental calculus of frac-
tional order is described. In Section 3, the new FOCS are studied by equilibria, eigenvalues,
and their chaotic attractors. Thy dynamical analysis including the fractal dimension and
Lyapunov exponents bifurcation diagrams are investigated in Section 4. For attaining
chaos synchronization between two new identical FOCSs with an uncertain parameter in
the slave side, adaptive control laws are derived in Section 5. In Section 6, we realize an
electronic circuit of the new FOCS. In Section 7, the proposed FOCS and the developed syn-
chronization mechanism are digitally implemented, where the Arduino Due board is used.
In Section 8, the suggested FOCS and the synchronization process are applied for encoding
and decoding a stream of binary numbers in the master and the slave sides, respectively. In
Section 9, histograms and spectrograms are investigated for proving the security analysis
of the utilized communication scheme. In Section 10, we conclude this paper.

2. Fractional Order Preliminaries

The history of fractional calculus extends back more than three hundred years [46]. In
the development of fractional calculus, there are several fundamentals for differentiation
and integration. The popularly used definitions of fractional-order calculations were
developed by Griinwald-Letnikov, Caputo, and Riemann-Liouville [47].

Generally, in fractional-order chaotic systems modeling, the Caputo derivative is
preferred due to several advantages. Firstly, it takes into account the influences of initial
conditions. Secondly, it has a clearer physical meaning. Finally, all fractional operators take
the memory effect into account [48,49]. Caputo introduced a definition of the fractional-
order derivative (g-order) for a function f(t), as expressed in the following Equation (1) [50].

t
toDIf(t) = { T0m=a) z{ Tt m q<n @
dﬂl
d{»gt) ; q=m.

where m is the least integer number, greater than g and I'(m — q) is known as Gamma
function is the function that is most used in the fractional calculus, and it is defined in
Equation as follows (2) [51]:

+oo
I'(x)= /e_ttx_ldt ; x>0 (2)
0
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WithI'(1) =1; I'(0) = 0.
Grunwald-Letnikov approaches the fractional derivative, as demonstrated in the
following [52].

D1 = ,t) = limh™9(—-1
) = fat) = im0 (-1 1

H.
<
=
—
—_
—
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—_—

. >x(t —in) &)

where 1 is the step size.
The fractional integral operator (J9) created by Riemann-Liouville for order (g > 0) of
function (f(#)) is given by Equation (4) [53].

Jry = 4ty [t DT WA g <o,

f(t); q=0.

4)

3. New Fractional-Order Chaotic System

There are two types of fractional order systems: the commensurate fractional-order
system and the incommensurate fractional-order system. The fractional-order values
(91, 92,---qn) of the system equations are equaled in the first type (g1 = g2 =...=qn), while
these values are unequaled in the second type (71 # g2 #, ... #qn) [54].

The FOCS are a special type of nonlinear system; this type of system has the original
properties of integer-order chaotic systems and has additional properties, such as high
complexity and extreme sudden behavior. Despite the fact that there are a lot of new
chaotic systems proposed over the last few years, it is still advantageous for the field of
chaos in theoretical and practical areas to develop, discover, and analyze new chaotic
systems. This fact is stated in many specialized articles and the article’s references [55-58]
are some of these examples. That is because some of the chaotic applications, such as secure
communication, require new systems continuously. Here, we proposed a new 4-D FOCS,
as demonstrated by the fractional-order dynamic Equation (5).

dix dly diz dw
i —ayz,W =bxz—c =x— dz,W

’W =kx® —w. (5)

In Equation (5), x, y, z, and w are the state variables; 4, b, d, and k are system positive
constant parameters; and q is the fractional-order derivative value. The dynamics which
are chaotic attractors, fixed (equilibrium) points, and Lyapunov exponent are investigated
for the proposed system. The system (5) shows chaotic actions when selecting parameters
a=25,0=0.05c=12,d=2,k=0.001, and the fractional-order g = 0.9. Where the initial
conditions are x(0) = 0.1, ¥(0) = 0.2, z(0) = —1, and w(0) = 0.3. The phase portraits of the
proposed system are illustrated in Figure 1. The simulation results for systems (5) were
obtained using the Roberto Garrappa method of solving fractional order nonlinear systems,
with a step size of (1 = 0.005) [59].

The equilibrium points (equilibria) of the novel proposed fractional-order chaotic
system (5) can be obtained by solving the following nonlinear Equations.

%:—ayz:o; %:bxz—c:o; Z—Z:x—dz:o; (j—tqu):kx3—w20 (6)

The equilibrium points are determined as given in Table 1. In addition, the eigenvalues
consistent with the obtained equilibrium points are calculated by linearizing method
(Jacobian matrix of system (5)), as described in Equation (7).

0 -—az —ay 0
bz 0 bx 0
=11 0o -4 o @)

3kxz 0 0 -1
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Figure 1. The chaotic attractors in 2D and 3D arrangements.

Table 1. Equilibrium points, consistent eigenvalues, and equilibria class.

No. Equilibrium Point Eigenvalues Equilibria Classification
(—1,0.2052 + 1.5643i, 0.2052
1 (6.9282, 0, 3.4641, 0.3326) — 1.5643i, —2.4104) Saddle focus
2 (—6.9282,0, —3.4641, —0.3326) (=1,0.2052 + 1.5643, 0.2052 Saddle focus

— 1.5643i, —2.4104)

The equilibrium point in fractional-order systems is stable if the following criterion

is met: -
larg(A;)] > qz ;1=1,2,3 (8)

Thus, the equilibria of the new FOCS were classified according to the condition in
(8), as illustrated in Table 1 [60]. Generally, a dynamic system with two saddle equilibria
connected by heteroclinic exhibits chaos [61]. That is exactly verified in the proposed new
nonlinear fractional-order systems.

4. The Dynamical Analysis

Generally, the major dynamical tools that may be used to examine the dynamical
behaviors of nonlinear chaotic systems are the fractal dimension, bifurcation diagrams, and
Lyapunov exponents [62-64]. The fractal dimension, bifurcation diagrams, and Lyapunov
exponents are numerically investigated using MATLAB.

4.1. Fractal Dimension

The basic parameter for describing self-similar patterns and processes is the fractal
dimension. The concept of fractal dimension is useful in describing natural objects because
it indicates their degree of complexity [65]. There are several approaches to calculate the
fractal dimension. For example, Higuchi’s method, the rescaled range method, Renyi’s
entropy, and Katz’s method. Higuchi's fractal dimension (HFD) is a popular nonlinear
measure for signal analysis and it is a time-domain signal complexity metric [66].
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Higuchi’s method for calculating the fractal dimension of a signal or function is
explained following [67]. An epoch with N number of samples of the signal is represented
by x(1), x(2), ..., x(N). K is new sub-epochs that are constructed from this original epoch
and represented by Xk, where sub-epoch is described by the following equation.

XK = {x(m),x(m+k),x(m+2k),...,x(m+int[(N — k) /k]k);m =1,2,...,k
k=1,2,.. kpax ©)

In Equation (9) m, k, int(.), and ky,x are the initial time, the time interval, integer real
part number, and a free parameter, respectively.
The average length L;, (k) for each of the sub-epochs constructed can be calculated: as:

- B int[(N—m) /K] " 1k N-1 10
nlk) =1 Y. lx(meik) —x(m+ (i—1)k| (int[(N —m)/k])k o

i=1

The mean of the k values is used to calculate the length of the epoch L(k) for the time
interval k as follows.

1 k
L(k) = 2 Y Lu(k) (11)
m=1
Finally, Higuchi’s fractal dimension can be estimated as.
_ In(L(k)
HED =T /k) (12

The choice of the free parameter ki, is critical in HFD estimation. In our work, HFD
values were calculated for various ky;,y values with N ranging from 500 to 10,000, as shown
in Figure 2. A smooth signal’s HFD value (for example, a low-frequency sine wave and
linear) was estimated to be 1. The HFD of random white noise or more complex signals
was calculated to be ~2. Because it is a numerical approximation of the fractal dimension,
the calculated HFD values may be slightly greater than 2 [68]. Therefore, it can be noted
from Figure 2 that the suggested FOCS exhibits very complex dynamical behavior.

23 T T T T T T T T T
+kmax=18
22F +kmax=10 ]
—=—k__ =6
max
211 #—+ * +
Q
g o -
1.9+ Am—S—  — a— 9
1.8 1 .

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
Epoch size (Samples)

Figure 2. The HFD of the suggested FOCS.
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4.2. Bifurcation Diagrams

It can be proven that the proposed system exhibits the chaoticity phenomena by the
bifurcation diagrams [69]. For the proposed system, the bifurcation diagram is numerically
calculated in two cases, one with respect to parameter d of the system in (5), and the other
case versus the fractional-order derivative value (g).

Figure 3a shows the system bifurcation diagram against the parameter d, where the
parameters are selected as a = 2.5, b =0.05, c = 1.2, k = 0.001, and the fractional order 4 = 0.9
with initial conditions x(0) = 0.1, y(0) = 0.2, z(0) = —1, and w(0) = 0.3. Figure 3b shows
the system bifurcation diagram against the fractional order () with the same values in
Figure 3a, except the parameter d = 2. The new system exhibits chaos in range d € [0.745, 2]
and, for the fractional-order derivative value (g), the range is [0.896, 1]. As seen in Figure 3,
the new proposed system exhibits a variety of bifurcation topological patterns.

9 T T 8

8 L

7t 61

6 L
4 =

5 L

S >

4+ ol

3 L

2t ot

1 -

0 — -2 - : . : :
0.88 0.9 0.92 0.94 0.96 0.98 1

0 02 04 06 08
Parameter d

(a)

1 12 14 16 18 2
Fractional order (q)

(b)

Figure 3. The bifurcation diagram of the proposed FOCS with respect to: (a) Parameter d; (b) Fractional-order deriva-

tive value.

4.3. Lyapunov Exponents

Lyapunov exponents are calculated and strongly indicate that the new system exhibits
the chaoticity phenomena. At least one positive Lyapunov exponent in nonlinear dynamic
systems ensures that these systems display chaos [70,71]. For the suggested system, the
Lyapunov exponents are numerically determined, as shown in Figure 4. The Lyapunov
exponents are obtained as: Lel = 0.1585, Le2 = —0.0001, Le3 = —1.0366, and Le4 = —2.2034.
Thus, the proposed FOCS exhibits chaotic performance because one of the Lyapunov
exponents is positive.

Moreover, Lyapunov exponents are determined when the fractional-order derivative
value is changed to g € [0.88, 1], as illustrated in Figure 5. The system parameters utilized in
this calculation are the same as those used in the first Lyapunov exponent’s computations.
As shown in Figure 5, the Lyapunov exponents are Lel = 0.6461, Le2 = 0.1654, Le3 = —0.1223,
and Le4 = —0.7161, which indicates a chaotic phenomenon in our proposed system.
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Figure 4. Lyapunov exponents with parameters a = 2.5, b =0.05,c = 1.2, d = 2, k = 0.001, and the
fractional order g = 0.9 with initial conditions x(0) = 0.1, y(0) = 0.2, z(0) = —1, and w(0) = 0.3.

Let
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%)
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c 0.5 1
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@)
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-1 : . : : A
0.88 0.9 0.92 0.94 0.96 0.98 1

Fractional order derivative value (q)

Figure 5. Lyapunov exponents corresponding to the fractional-order derivative value (g).

5. Adaptive Synchronization

Practically, the two important ways to utilize chaos are chaos control and synchro-
nization techniques [72]. The chaos synchronization has received much attention; this
is because the secure communication schemes primarily depend on the synchronization
between the transceivers [73,74]. Researchers have introduced many chaos control and
synchronization techniques, as listed in the introduction section.

In this work, an adaptive synchronization mechanism is developed for synchronizing
two identical new FOCSs; one acts the master (transmitter side) and the other acts the
slave (receiver side). Based on the Lyapunov method, adaptive control laws were derived,
which are responsible for achieving the synchronization between the master and the slave.
Furthermore, an update control law was designed for estimating the single uncertain
parameter in the slave side, corresponding to the equivalent master parameter.
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5.1. Adaptive Control Law Design

In this section, we derive the adaptive and update control laws. The drive system
(master) and controlled system (slave) dynamics are named as in Equations (13) and (14),

respectively:
dxy Ay, Cdizy Cdlwy, 3
datd = —AYmZm, 7dtq = meZm —C BT =Xm — dlzml dH - kxm — Wm (]‘3)
s — _a Ty — b ;2 v —dy(t ;
At YsZs + 251 + Uy, dgtq = DXsZs — C+ Up; am Xs 2( )ZS + us; (14)
Ws

T = kxs® — ws + uy

As shown in Equation (14), the adaptive controllers to be designed are uy, uy, u3 and
1y, and d;(t) is the uncertain parameter in the slave system to be estimated. The synchro-
nization errors between systems (13) and (14) can be defined in the following equation.

61 =Xs — Xm; €2 =Ys — Ym; €3 = Zs — Z; €4 = Ws — Wiy (15)

Therefore, the error dynamics can be obtained by Equations (16)—(19).

dle
qul = a(Ymzm — Yszs) + U1 (16)

die
W; = b(Xszs — Xmzm) + Uz (17)

dq€3
Th e1 — does —egzy + U3 (18)

de
W; = k(xs3 - xm3) —eg+uy (19)
In Equation (18), the master—slave parameter estimation error ¢;(t) is given in
Equation (20).

eq = dao(t) —dy (20)

As a result, the parameter error dynamics can be obtained in Equation (21).

eq = do(t) (21)
The Lyapunov approach is used to derive the update law that is responsible for

estimating the uncertain parameter in the slave side corresponding to the equivalent
parameter of the master. The quadratic Lyapunov function is determined in Equation (22).

1
V(e e, e3,64,85) = 3 (e% + e% + 6% + eﬁ + eﬁ) (22)

Then, differentiating Equation (22) with respect to time, yields Equation (23).

V o < dqel dq(i’z qu3 dq€4

e1 ar +€2d +€3d + ey ar +€d€d) (23)

Replacing the dynamic errors from Equations (16)—(21) in Equation (23) gives:

V = (e1(a(ymzm — Yszs) +u1) + e2(b(xmzm — xszs) +up) +e3(e;
—dyez — ed( )Zm + u3) + 64(k(xs — Xm ) —e4+ u4) (24)

+(da(t) — dy)da(1)
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The feedback adaptive controller functions have been designed, as named in Equation (25)
based on Lyapunov theory for stability. Where many methods can be used for designing
similar controllers, as in [75,76].

up = —kyey — (L 4+ a(Ymzm — yszs)ey ;
= —kpep — (1 + b(xmzm — xsz5))ea ; u3 (25)
= —kzes — ey +daez —e3; uy = —kgeq — k(x> — x,)eq

where ki, k;, k3 and kg4, are positive constants. Additionally, the updating law that is
responsible for updating the uncertain slave parameter is obtained in Equation (26):

éd = Zmes (26)

Finally, by substituting the feedback adaptive controller functions described by Equa-
tion (25) and the update law named by Equation (26) in Equation (24), we get Equation (27).

V = —k1€12 — kz@zz — k3€32 — k4€42 (27)

A negative definite function is shown in Equation (27) [77]. Therefore, for any initial
conditions, the synchronization state errors converge to zero exponentially with respect to
time. In addition, the estimated slave parameter exponentially aligned with the equivalent
master parameter. As a result, the established synchronization technique’s asymptotic
global stability is guaranteed.

5.2. Numerical Simulation

For the numerical simulations, MATLAB software is used for simulating this adaptive
synchronization mechanism between the two identical FOCSs (13) and (14). In the syn-
chronization simulation, the parameters of the new FOCSs are chosen as a = 2.5, b = 0.05,
c=1.2,d; =2,d)(t) is uncertain, k = 0.001, and the fractional order g = 0.9. Where the initial
conditions for the master are x;,(0) = 0.1, ¥,,(0) = 0.2, z,(0) = —1, and w;,(0) = 0.3. For the
slave, they are x5(0) = 0.2, y5(0) = 0, z5(0) = 0.1, and ws(0) = —1.

The state variables synchronization of the identical novel FOCSs is shown in Figure 6.
The 3-D projections of phase portrait for the master-slave synchronization are demonstrated
in Figure 7, where the synchronization process was simulated for 12 s only. Figure 8
confirms the convergence of the synchronization errors ej, 3, e3, and e4 which exponentially
tend to zero with respect to time. Figure 9 illustrates the parameter estimation, where
parameter dp(t) in the slave side is exponentially converging to the equivalent parameter
value (dq = 2) on the master side.

Furthermore, the slave was subjected to disturbances for testing the robustness and
disturbance rejection capabilities of the developed synchronization mechanism. Where
the disturbances ;1 (t), §>(t), d5(t), and 4(t) were inserted into the slave state variables, as
shown in the following equation.

, ATy,
ddq;t;b = —ayszs + Ui + 510)} % = bxszs — C+ Uy — ayszs + ui + (52(f);
”Z]ﬁ; = x5 — dp(t)zs + Uz — ayszs + uy + d3(t); (28)
d1z,

T = Xs — do(t)zs + uz — ayszs + uy + 4(t)

The developed synchronization mechanism shows a good robustness against dis-
turbances as confirmed in Figure 10. The disturbances are chosen as ;(t) = 0.15sin(4t),
0o(t) = 0.08sin(4t), 65(t) = 0.1sin(4t), and d4(t) = 0.13sin(4t). Where these disturbances were
subjected to slave states at a time of 25 s.
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Figure 10. The synchronization errors e, e;, €3, and ey, the slave subjected to disturbances at a time
of 25s.
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6. Electronic Circuit Realization

In real-world applications, there are no electronic circuit devices that can reproduce
the fractional-order operator; therefore, there are challenges in realizing the fractional-
order transfer functions. Ahmed and Sprott introduced the approximation of 1/5%?, as in
Equation (29) [78].

2.2675(s +1.292)(s +215.4)

1
9 = (29)
$09 (5 +0.01292)(s + 2.154) (s + 359.4)

The electrical component that exhibits fractional order impedance features is called
a fractance [79]. In realization of these devices, the classical integer integrator (op-amp
integrator) can be used by replacing the capacitor with the fractance that is equivalent to the
designed fractional-order operator. Therefore, the fractional-order integrator is obtained.
The realization of the proposed FOCS and its synchronization by an electronic circuit are
verified for confirming the feasibility of using the new FOCS in real applications.

In the circuit design of the FOCS, for the order g = 0.9, the key idea is how to design
the circuit of 1/s%°. The chain fractance realization corresponding to 1/5% is shown in
Figure 11 [80].

Rf1 Rf21 Rf3
—AA—+— AN —— AN~
62.84 MQ| 250 kQ | 2.5 kQ

*r— r—

C1 C2 c3
——l |

1.232 pF 1.835 yF 1.1 pF

Figure 11. Chain fractance cell (CFC) of 1/ 09,

So, based on the fractional-order frequency domain calculation function in Equation
(29), it is easy to construct a FOCS electronic circuit. It needs simple elements, such as
operational amplifiers and resistors, as well as the chain fractance element that is shown in
Figure 11 above. Figure 12 illustrates the electronic circuit schematic diagram for realizing
the proposed FOCS. In Figure 13, the phase portraits of the chaotic attractors for the realized
electronic circuit of the new FOCS are obtained. Additionally, the adaptive synchronization
mechanism of two FOCSs is verified by electronic circuits. The results of electronic circuits
of the master—slave system synchronization are shown in Figure 14. Circuit simulation
outputs (see Figure 13) show good qualitative matching with the numerical simulations
(see Figure 1).
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Figure 12. Electronic scheme of the proposed FOCS.
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Figure 13. Electronic circuit phase portraits with:
(c) x(5V/Div)-w(1V/Div) plane.

Figure 14. The synchronization circuit experimental result, x;, (2V/Div) state verse x; (2V/Div) state.

7. Microcontroller Implementation

The main purpose of this section is to prove the implementation of the new FOCS and
the developed synchronization mechanism in real-world applications. Fractional-order
chaotic systems can be implemented in hardware using several embedded devices<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>