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ABBREVIATIONS: [AMD1] (S-adenosylmethionine decarboxylase proenzyme), [ARG1] 1 

(Arginase1), [DFUs] (Diabetic foot ulcers), [Nor-NOHA] (Nomega-hydroxy-nor-L-arginine), 2 

[NOS] (Nitric Oxide Synthase, [OAT] (Ornithine amino transferase), [ODC] (Ornithine 3 

decarboxylase), [ovx] (ovariectomized) 4 

 5 

ABSTRACT 6 

Non-healing wounds are a major area of unmet clinical need remaining problematic to treat. 7 

Improved understanding of pro-healing mechanisms is invaluable. The enzyme arginase1 is 8 

involved in pro-healing responses with its role in macrophages best characterized. Arginase1 9 

is also expressed by keratinocytes; however, arginase1 function in these critical wound repair 10 

cells is not understood. We characterized arginase1 expression in keratinocytes during normal 11 

cutaneous repair and reveal de novo temporal and spatial expression at the epidermal wound 12 

edge. Interestingly, epidermal arginase1 expression was decreased in both human and murine 13 

delayed healing wounds. We therefore generated a keratinocyte specific arginase1-null 14 

mouse model (K14-cre;Arg1
fl/fl

) to explore arginase function. Wound repair, linked to 15 

changes in keratinocyte proliferation, migration and differentiation, was significantly delayed 16 

in K14-cre;Arg1
fl/fl

 mice. Similarly, using the arginase inhibitor nor-NOHA, human in vitro 17 

and ex vivo models further confirmed this finding, revealing the importance of the 18 

downstream polyamine pathway in repair. Indeed, restoring the balance in arginase1 activity 19 

via addition of putrescine, proved beneficial in wound closure. In summary, we demonstrate 20 

that epidermal arginase1 plays a, to our knowledge, previously unreported intrinsic role in 21 

cutaneous healing, highlighting epidermal arginase1 and downstream mediators as potential 22 

targets for the therapeutic modulation of wound repair.  23 

 24 
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INTRODUCTION 1 

Non-healing wounds including pressure, diabetic, venous ulcers and non-healing surgical 2 

wounds, are a significant health burden (Harding et al., 2002), characterized by excessive 3 

inflammation and defective re-epithelialization. Numerous factors have been implicated in 4 

defective wound healing, including altered levels of the arginine metabolic enzyme, 5 

arginase1. Arginine metabolism is involved in numerous processes including; immune 6 

regulation  (Bronte and Zanovello, 2005, Tong and Barbul, 2004); the Krebs cycle; the urea 7 

cycle; growth hormone secretion; cell proliferation (Bronte et al., 2003, Li et al., 2002, Ochoa 8 

et al., 2001, Pegg and McCann, 1982) and collagen synthesis (Barbul, 2008). The effect on 9 

these processes depends on how L-arginine is metabolized and the balance of the competitive 10 

arginine catabolic enzymes- nitric oxide synthase (NOS) and arginase1. NOS metabolism of 11 

arginine leads to citrulline and nitric oxide (NO) production - important in the early pro-12 

inflammatory phase of repair, including anti-microbial effects and cell death. In contrast, 13 

arginase1 metabolism of arginine has two primary functions; detoxification of ammonia via 14 

the urea cycle and production of ornithine, which is known to be critical for the pro-healing 15 

response. Ornithine decarboxylase (ODC) metabolism of ornithine leads to polyamine 16 

synthesis (putrescine, spermidine and spermine), involved in epithelial stem cell function, cell 17 

proliferation and differentiation (Pietila et al., 2005, Ramot et al., 2011). Alternatively, 18 

ornithine amino transferase (OAT) metabolism of ornithine, promotes proline production, 19 

involved in collagen synthesis (Jenkinson et al., 1996, Witte et al., 2002). Thus, multiple 20 

facets of arginase1 activity are linked with the repair response. 21 

 22 

Conflicting reports of arginase’s impact on healing are likely due to its involvement in many 23 

aspects of the healing response. Dysregulation of arginase and pathway components are 24 

observed in diabetes (Kovamees et al., 2016, Ramírez-Zamora et al., 2013), advanced age 25 
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(Kim et al., 2009, Ming and Yang, 2013, Moretto et al., 2019, Muller et al., 2008), chronic 1 

wounds and delayed healing (Abd-El-Aleem et al., 2000, Jude et al., 1999, Sindrilaru et al., 2 

2011). Down-regulation of ARG1 gene expression has been linked to age-associated human 3 

(Hardman and Ashcroft, 2008) and murine delayed healing (Campbell et al., 2013); 4 

conversely, increased arginase activity was reported in diabetic wounds (Kampfer et al., 5 

2003). Similarly, mechanistic mouse studies report conflicting effects on wound repair 6 

showing both improved (Kavalukas et al., 2012) and delayed healing (Campbell et al., 2013) 7 

when arginase activity was inhibited either globally or in macrophages. Thus, although it is 8 

clear arginase plays a major role in wound healing, further investigation into the role of 9 

arginase1 in cutaneous repair is needed. Indeed, the apparent discrepancies between 10 

published studies suggest cell and wound-type specific roles in healing.  11 

 12 

Arginase1 is best characterized in activated ‘anti-inflammatory’ (M2) macrophages, and 13 

studies on cutaneous arginase1 function is almost exclusively confined to its role in 14 

macrophages (Mahdavian Delavary et al., 2011). Arginase1 is however, also expressed in 15 

other prominent wound cell types including keratinocytes (Bruch-Gerharz et al., 2003). On 16 

cutaneous wounding the keratinocytes at the wound edge proliferate and migrate during re-17 

epithelialization to close the wound and these processes are frequently impaired in chronic 18 

wounds. In normal healing, keratinocytes will then differentiate to stratify the newly formed 19 

epidermis, releasing factors such as lipids, cytokines and anti-microbial products to restore 20 

skin barrier integrity and contribute to immune defence (Coulombe, 1997, Pastar et al., 2014). 21 

Although arginase1 has been implicated in functions associated with epidermal repair, the 22 

role of epidermal arginase1 is poorly understood. Moreover, the functional relevance of 23 

arginase1 in epidermal keratinocytes, especially in cutaneous healing, is largely unexplored.  24 

 25 
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This study aimed to determine the epidermal specific role of arginase1 in cutaneous wound 1 

repair. We hypothesized that, keratinocyte specific defects in arginase1 function, contribute 2 

to pathological healing. To test this hypothesis, we determined epidermal arginase1 3 

expression profiles in human and murine delayed healing models and developed a 4 

keratinocyte-specific arginase1 null mouse.  5 

 6 

RESULTS AND DISCUSSION 7 

Epidermal arginase1 is temporally induced during cutaneous healing 8 

To define the role of epidermal arginase1 in cutaneous healing we characterized temporal and 9 

spatial arginase expression in wound edge keratinocytes during acute wound repair using 10 

immunohistochemical (IHC) analysis (Figure 1). Low arginase1 expression was observed in 11 

the unwounded epidermis (Supplementary Figure S1); however, expression was high at the 12 

wound edge and peri-wound epidermis, specifically the suprabasal layers of the wound edge 13 

epidermis, of both human (Figure 1a) and murine (Figure 1b) acute wounds. Arginase1 14 

immunofluorescence (IF) analysis of murine acute wounds, showed low arginase1 wound 15 

epidermal expression at 1day post-wounding (indicated by co-localization with keratin14 16 

(K14)).  By day 3, arginase1 was highly induced in the suprabasal layers of the neo-epidermis 17 

and peri-wound epidermis. Expression remained high at day 5, but almost completely 18 

disappeared by day 7 and was undetectable at 14days post-wounding, when the 19 

hyperproliferative wound epidermis had almost completely resolved (Figure 1c, d). 20 

Interestingly, this expression pattern of epidermal arginase during the proliferative, 21 

inflammatory and remodelling stages of cutaneous repair suggests multiple roles in healing.  22 

 23 

Jo
urn

al 
Pre-

pro
of



6 
 

Epidermal arginase1 expression is reduced in delayed healing wounds 1 

Arginase1 was assessed in human chronic wounds; ovariectomized (ovx) and age-matched 2 

intact controls (Emmerson et al, 2012); and aged murine models of delayed healing. In 3 

murine delayed healing wounds (ovx and aged) arginase1 was significantly reduced at 3days 4 

post-wounding compared to intact and young (7week old) controls, respectively (Figure 2a-d, 5 

Supplementary Figure S2). This finding was mirrored in human chronic DFUs whereby, 6 

arginase1 expression was reduced at initial clinical presentation in wounds that failed to heal 7 

within 12weeks, compared to those that healed within 8weeks of clinical assessment (Figure 8 

2e-g). The distinct localization in acute wounds contrasted with arginase1 expression 9 

observed throughout the epidermis in DFUs (Figure 2f,g), perhaps more akin to increased 10 

levels of global arginase typically reported in chronic wounds (Abd-El-Aleem et al., 2000, 11 

Jude et al., 1999, Wessagowit et al., 2004). These findings appear to contradict previous work 12 

demonstrating heightened arginase1 expression throughout the epidermis in chronic venous 13 

leg ulcers (Abd El-Aleem et al., 2020). One explanation for this is that the published data 14 

compared epidermal arginase expression at the ulcer edge with normal epidermis away from 15 

the ulcer edge. Alternatively, these observations may reflect the arginase1 expression we 16 

observed in DFUs that subsequently healed (Figure 2), illustrating the importance of 17 

longitudinal sampling where possible. Nevertheless, our data implicate dysregulation of 18 

epidermal arginase1 in defective healing. Future studies could explore this dynamic 19 

expression using diabetic models such as the db/db mouse, to further our understanding. 20 

 21 

Epidermal specific deletion of arginase1 delays acute murine healing 22 

We made a keratinocyte specific arginase1 knockout mouse model (K14cre;Arg1
fl/fl

). To 23 

confirm the depletion we performed PCR (Supplementary Text), arginase assay and IHC 24 

Figure 3). Collectively these protocols confirmed the efficacy of the epidermal arginase1 25 
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depletion and critically the specificity of depletionwhilst retaining dermal arginase1 1 

expression (Figure 3a).  Furthermore, the observation of reduced global arginase activity 2 

(Figure 3b), implicates keratinocytes as a major source of arginase1 during repair. 3 

Histological characterization showed the skin of unwounded K14cre;Arg1
fl/fl 

mice appeared 4 

akin to cre controls in most parameters assessed including H+E, keratin14, 10 and 6, 5 

proliferation and apoptosis, with the exception of loricrin, which was reduced in 6 

K14cre;Arg1
fl/fl 

unwounded skin (Supplementary Figure S3).  7 

 8 

We observed an overall delay in healing in the K14cre;Arg1
fl/fl 

 mice compared to cre 9 

controls. Histo-morphometric quantification of wound area demonstrated significantly larger 10 

wounds (Figure 3c, d), an altered immune response and immune cell composition 11 

(Supplementary Figure S4) and significantly reduced re-epithelialization at 3days post-12 

wounding (Figure 3e, f) in the K14cre;Arg1
fl/fl 

 wounds compared to controls, which was 13 

recapitulated in vitro (Supplementary Figure S5). These results demonstrate that epidermal 14 

arginase1 is important for timely cutaneous wound repair, impacting both dermal and 15 

epidermal responses.   16 

 17 

To determine how arginase1 influences healing, a microarray of laser capture micro-18 

dissected, 3day neo-epidermal wound tissue was performed. The most significant gene 19 

alterations observed in the K14cre;Arg1
fl/fl 

 wounds compared to control were associated with 20 

decreased cell-cycle progression and cell viability (Figure 3g). Changes in genes associated 21 

with an altered immune response were also identified, including cytokines, chemokines and 22 

host microbial response genes (Supplementary Figure S4d-f). Given the marked effects of 23 

arginase1 deletion on re-epithelialization we investigated arginase1 in keratinocyte 24 

proliferation and differentiation. 25 
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 1 

Arginase1 is required for effective regulation of keratinocyte proliferation 2 

Upon injury, keratinocytes become activated, priming cells to proliferate and migrate to seal 3 

the open wound. Microarray data implicated proliferation and cell-cycle progression as being 4 

impacted in the absence of keratinocyte arginase. In vivo wounds showed the absence of 5 

keratinocyte arginase1, in K14cre;Arg1
fl/fl

 mice, resulted in reduced activation and 6 

proliferation of keratinocytes at 3days post-wounding (Figure 4). Quantification of keratin6 7 

(K6) staining (Figure 4a-c), a marker of hyper-proliferation and keratinocyte ‘activation’, 8 

demonstrated a significantly reduced distance of K6 expression extending from the wound 9 

edge at 3days post-wounding compared to cre controls (Figure 4b). Similarly, there was a 10 

significant reduction of expression of the proliferation marker, Ki67 (Figure 4d) in the neo-11 

epidermis (Figure 4e) and basal keratinocytes (Figure 4f), observed specifically at the wound 12 

edge (Figure 4g), with a lesser effect observed extending to the peri-wound epidermis (Figure 13 

4h) in K14cre;Arg1
fl/fl

 compared to cre controls at 3days post-wounding. 14 

. Our findings are supported in a recent paper that showed localization of epidermal arginase1 15 

in proliferative keratinocytes in skin remote to the wound edge and throughout the epidermis 16 

at the ulcer edge in chronic venous leg ulcers (Abd El-Aleem et al., 2020). Our analysis of 17 

DFUs (Figure 2e-g) showed similar results with arginase1 expression throughout the 18 

epidermis implying a role for arginase1 in the hyperproliferative epidermal phenotype of 19 

chronic wounds.  20 

 21 

A lack of epidermal arginase1 delays keratinocyte stratification  22 

Regulation of epidermal proliferation and differentiation are interlinked and during re-23 

epithelialization keratinocytes away from the leading edge stop proliferating and start to 24 

differentiate, to stratify the newly formed epidermis. Interestingly, arginase1 expression was 25 
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high in the differentiated suprabasal wound edge epidermal keratinocytes in vivo (Figure 1 1 

and 5a) and the differentiation marker loricrin, in K14cre;Arg1
fl/fl

, was decreased in 2 

unwounded skin (Supplementary Figure S3). Furthermore, during acute wound repair the 3 

suprabasal arginase1 expression in the neo-epidermis was co-localized with differentiation 4 

markers keratin 10, filaggrin and loricrin (Figure 5a).  ARG1 mRNA levels were also 5 

increased upon in vitro differentiation of keratinocytes to a similar level as KRT10, FLG and 6 

LOR (Figure 5b), suggesting a possible role for arginase in epidermal differentiation. Indeed, 7 

other studies have shown that K10 and profillagrin contain high levels of arginine residues 8 

and during epidermal remodelling these proteins undergo deamination which produces 9 

citrulline and releases free amino acids including arginine (Mechin et al., 2007) - the 10 

substrate for arginase. Citrulline is both a product of L-arginine metabolism by NOS and a 11 

substrate for L-arginine de novo synthesis (Wu and Morris, 1998), therefore providing greater 12 

levels of arginine substrate in differentiating cells which could explain elevated arginase1 13 

levels. Arginase1 may also act as a precursor to keratinocyte differentiation as arginase1 14 

metabolic products such as proline are major components of cornified envelope proteins 15 

(Hohl et al., 1995) and polyamines are required for keratinocyte differentiation (Anisa B. 16 

Rahim, 2021). Indeed, IHC analysis of the differentiation associated markers K10 and 17 

loricrin in acute mouse wounds (Figure 5c), demonstrated significantly reduced epidermal 18 

differentiation by 7days post-wounding in K14cre;Arg1
fl/fl

 wounds compared to control with 19 

reduced loricrin (Figure 5d, e), a major differentiation associated cornified envelope protein 20 

(Kalinin et al., 2002, Koch et al., 2000). Loricrin was also reduced in unwounded skin of 21 

K14cre;Arg1
fl/fl

 mice (Supplementary Figure S3). Notably, hyperkeratosis and parakeratosis 22 

are characteristic of chronic wound keratinocytes (Stojadinovic et al., 2005), due to 23 

dysregulation of differentiation (Stojadinovic et al., 2008). Collectively, these results support 24 

a role for arginase1 as a precursor to epidermal differentiation during repair, also suggesting 25 
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altered epidermal arginase levels impact normal differentiation and the chronic wound 1 

phenotype. 2 

 3 

Manipulating the balance of arginase activity restores healing in human models of 4 

cutaneous repair 5 

Arginase1 metabolizes Arginine into ornithine, a precursor to proline or putrescine, required 6 

for the synthesis of polyamines, spermidine and spermine (Latour et al., 2020). Decreased 7 

arginase will lead to depletion of putrescine and polyamines, known to be important for 8 

wound healing. Polyamine levels and regulators of polyamine production including ODC1 9 

and AMD1 are upregulated at the wound edge (Lim et al., 2018, Maeno et al., 1990, Mizutani 10 

et al., 1974, Shi et al., 2002). Spermine and spermidine  are essential for cell migration and 11 

promote directed migration (Nakajima et al., 2015, Tai et al., 2018) (Lim et al., 2018). To 12 

determine if impaired re-epithelialization during wound healing caused by arginase inhibition 13 

is a consequence of decreased polyamine levels, we assessed whether putrescine could rescue 14 

the wound-healing phenotype. Additon of arginase inhibitor nor-NOHA delayed wound 15 

closure in a keratinocyte scratch assay which was rescued with the addition of putrescine 16 

(Figure 6a, b). Topical application of nor-NOHA to a human wound explant led to reduced 17 

wound re-epithelialization that was also restored with putrescine (Figure c, d). These data 18 

suggest that, on wounding, arginase functions, at least in part, to promote putrescine levels 19 

which are required for wound closure. However, while supplementation with putrescine 20 

rescued the arginase inhibition phenotype, when added in the presence of arginase, putrescine 21 

inhibited wound closure in in vitro and ex vivo models (Figure 6). Similarly, previous reports 22 

have demonstrated high putrescine levels inhibit scratch wound closure (Anisa B. Rahim, 23 

2021, Lim et al., 2018). Together these data suggest that arginase plays a crucial role in 24 

controlling the levels of putrescine at the wound edge which is required for conversion to the 25 

Jo
urn

al 
Pre-

pro
of



11 
 

polyamines spermine and spermidine, which in turn control the balance between proliferation 1 

and cell migration. Importantly, the ability to restore the balance in arginase and polyamine 2 

activity leading to rescue of the delayed healing response, demonstrates the therapeutic 3 

potential in manipulating the arginase pathway for improved healing of chronic wounds.  4 

 5 

We propose disparate roles for arginase1 in epidermal remodelling, where timing of 6 

expression is key to determining healing outcome. This is supported by the expression profile 7 

of epidermal arginase1 observed during acute healing, whereby arginase1 is upregulated (D3-8 

7 post-wounding) when epidermal remodelling, including proliferation and migration are at 9 

their peak. Furthermore, wound analysis showed heightened epidermal keratinocyte 10 

activation at 7days post-wounding in K14cre;Arg1
fl/fl

 acute wounds compared to cre controls. 11 

Such observations suggest a late proliferative response, concomitant to a delay in the early 12 

keratinocyte epidermal response, implicating a compensation mechanism. Indeed this lack of 13 

early keratinocyte arginase response, followed by an extended late response, corresponds to 14 

the typical chronic wound epidermal phenotype, that is hyperproliferative yet non-migratory. 15 

Thus, the timing of arginase induction in keratinocytes may be critical in eliciting an early 16 

wound response, with epidermal arginase levels potentially being a predetermining factor of 17 

healing outcome. As heightened arginase1 expression was more localized to the suprabasal 18 

layers of the peri-wound and neo-epidermis it seems unlikely that it  directly influences 19 

proliferation at the wound edge. High levels of arginase indicate high levels of putrescine, 20 

which in turn is typically converted to spermidine and spermine (Supplementary Figure S6). 21 

When spermidine and spermine levels are too high they are either converted back to 22 

putrescine or spermidine with the release of H202, or are acetylated and secreted (Wallace and 23 

Mackarel, 1998). Thus, we would suggest that epidermal arginase influences proliferation in 24 

vivo via the secretion of polyamines from suprabasal arginase high expressing cells. The 25 
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polyamines could act directly by extracellular polyamine influx into basal proliferating cells, 1 

and/or indirectly via the impact of polyamines altering epidermal and/or dermal specific 2 

immune responses (Lou et al., 2020).  3 

 4 

Collectively, our data demonstrates a positive correlation between early arginase1 expression 5 

and healing outcome, consistent across multiple models of both murine and human cutaneous 6 

healing. We also revealkeratinocyte-specific roles for arginase1 in wound cellular 7 

proliferation, migration and differentiation. We note that these processes are frequently 8 

dysregulated in chronic wounds, positioning the epidermal arginase1 pathway as an exciting 9 

target for therapeutic modulation to promote wound repair. 10 

11 
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MATERIALS AND METHODS 1 

Full details are given in Supplementary Text linked to the online version. 2 

 3 

Human acute and chronic wounds 4 

Clinical investigation was conducted according to the Declaration of Helsinki principles. 5 

Human studies were approved by the University of Manchester’s Research Ethics Committee 6 

(REC) under 07/Q1406/14 or 13/SC/0499 REC approval, and with written informed consent. 7 

Acute wound 1.5 mm punch biopsies were collected from 3 healthy volunteers (male, aged 8 

≥30 years) (Thomason et al., 2012). Chronic wound biopsy samples from 19 patients (mixed 9 

sex, aged ≥40 years) with chronic DFU (Williams et al., 2018). Ex vivo methodology culture 10 

of skin wound explants was adapted from (Stojadinovic and Tomic-Canic, 2013) and via 11 

communication with Dr David Ansell.  12 

 13 

Murine wounding 14 

Animal studies were conducted according to the Animals (Scientific Procedures) Act 1986 15 

under project licences 70/8136 and 40/3713 approved by the UK Home Office. A 16 

keratinocyte specific arginase1-null mouse model (K14-cre;Arg1
fl/fl

) was generated for this 17 

study (see supplemental methods online). 8 week old female K14-cre;Arg1
fl/fl

, K14-18 

cre;Arg1
+/+

 (wild-type controls), female C57BL/6J 6-8week old (young), 18month old (aged) 19 

or 10-week ovariectomised (bilateral ovariectomy performed 3 weeks before wounding) mice 20 

received two 1cm full-thickness dorsal incisions and left to heal by secondary intention 21 

(Ashcroft et al., 2003, Emmerson et al., 2012). Tissue harvest was performed at 1, 3, 5, 7 and 22 

14days post-wounding.  23 

 24 

 25 
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Histology and immunohistochemistry  1 

Histological sections were prepared as (Campbell et al., 2013). Briefly, paraffin embedded 2 

sections were stained with H+E or subjected to IHC or IF analyses against the following 3 

markers; arginase, NOS2, keratin6, kertain14, loricrin, keratin10, filaggrin, Ki67, Neutrophil, 4 

Mac3 (Supplementary Table S1).  5 

 6 

For IHC, antibody staining was detected using the Vector Elite ABC Kits (Rabbit, Rat, Goat) 7 

visualized with NOVA Red and IF stained sections were visualized using fluorescent 8 

secondaries (donkey anti-goat AF594; donkey anti-rabbit AF488; Abcam, Cambridge, UK,), 9 

counterstained with DAPI (ThermoFisher Scientific, Loughborough, UK). TUNEL staining 10 

was performed using the in Situ Cell Death Detection Kit Fluorescein (Roche, Welwyn 11 

Garden City, UK) according to manufacturers’ instructions. Analysis was performed blinded 12 

by two independent investigators. Refer to Supplementary text for details on analytical 13 

methods performed for each stain. 14 

 15 

Arginase activity assay 16 

Total wound arginase activity was assessed by the quantification of urea production via the 17 

metabolizm of L-arginine by arginase, modified from (Corraliza et al., 1994). To normalize 18 

the samples, the protein concentration in cell lysates was measured using a BCA Protein 19 

Assay Kit. (ThermoFisher Scientific). 20 

 21 

Microarray  22 

Laser Capture Microdissection (LCM) was used to isolate neo-epidermis cells from 3day 23 

incisional wounds. RNA was isolated using the RNAqueous-Micro Kit (AM1931; Ambion, 24 

Loughborough, UK) as per manufacturer’s instructions. RNA samples isolated by LCM from 25 
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frozen wound sections, were processed by the Genomic Technologies Core Facility in the 1 

Faculty of Biology, Medicine and Health, University of Manchester, for microarray analysis, 2 

using the mouse Clariom D Assay (Applied Biosystems).  3 

 4 

In vitro cell analysis 5 

Keratinocyte culture  6 

Normal human epidermal keratinocytes (NHEKs) isolated from juvenile foreskin (Promocell) 7 

were cultured in keratinocyte growth medium 2 (Promocell) at 37°C with 5% CO2. NHEKs 8 

were used in experiments at P3-5. N/TERT-1 cells were cultured at 37°C with 5% CO2 in 9 

Keratinocyte Serum Free Media as previously described (Lim et al., 2018) and transferred to 10 

DFK-2 media  and K-SFM, all from GIBCO). HaCaT cells (ATCC12191) were cultured in 11 

DMEM (high glucose) with 10% FBS and 1x Pen/Strep at 37°C with 5% CO2. 12 

 13 

Keratinocyte scratch assay  14 

HaCaT cells were seeded into 24well plates, cultured until confluent, then scatched with a 15 

1ml sterile pipette tip. 0hr controls were immediately stained with crystal violet, while nor-16 

NOHA or untreated wells were incubated for 24hrs before staining. Three images/well were 17 

captured using a Nikon Eclipse E600 microscope and SPOT insight camera (Image solutions 18 

Inc, Preston, UK). An average of 5 measurements/image from 3 images/well were used to 19 

calculate percentage wound width remaining using Image Pro Plus software (Media 20 

Cybernetics, Abingdon, UK). N/TERT-1 cells seeded at a density of 1x10
4 

cells/well 21 

incubated for 3days in Keratinocyte Serum Free Media, 2days in DFK-2 before treatment 22 

with nor-NOHA 5µM (Cayman, Michigan, USA) or Putrescine 10µM (Sigma) in DFK-2 for 23 

24 or 48hrs prior to scratch. Confluent monolayers were scratched with an Essen wound 24 

maker, rinsed with sterile PBS and DFK-2 media with or without nor-NOHA/putrescine was 25 
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added and cells were imaged every 2hr with the Incucyte system. Assay was performed in 1 

biological triplicate. Percentage wound closure was calculated based on scratch width after 2 

the specified duration, relative to initial width.  3 

 4 

Differentiation assay  5 

NHEKs were seeded into 6well plates at 4x10
5
 cells/well. At ~60% confluence, cells were 6 

transitioned over 2days into CNT-PR culture media, prior to switching to defined 7 

differentiation media CNT-PR-D (CellnTech). Cells were collected before the switch and 2, 8 

4, and 6days after.  9 

 10 

Quantitative real-time PCR 11 

Total RNA was isolated from NHEKs by Trizol/Chloroform extraction and column based 12 

purification using the Purelink RNA mini kit (Invitrogen, Paisley, UK).  13 

 14 

Statistical analysis 15 

Ordinary or repeated measures two-way ANOVA followed by Sidak’s multiple comparisons 16 

test was performed for all grouped data with two factors (1. genotype/treatment and 2. time) 17 

and adjusted P values reported. If normality could not be assumed, statistical comparisons 18 

between groups was determined using the Mann-Whitney test at each timepoint and the two-19 

tailed P value reported. Ordinary one-way ANOVA was used for single factor data with 3 or 20 

more groups followed by Tukey’s multiple comparisons; or Kruskal Wallis test with Dunn’s 21 

multiple comparisons if normality could not be assumed. Single factor data with less than 3 22 

groups were analyzed using the unpaired t-test and the two-tailed P value reported. All 23 

analysis was performed using GraphPad Prism 8 Version 8.4.2 (GraphPad Software, Inc. CA, 24 

USA). A probability value of less than 0.05 was considered statistically significant.  25 

Jo
urn

al 
Pre-

pro
of



17 
 

 1 

DATA AVAILABILITY STATEMENT 2 

Datasets related to this article can be found at https://www.ebi.ac.uk/arrayexpress/, hosted at 3 

ArrayExpress (accession  number: E-MTAB-10213). 4 

 5 

ORCID IDs 6 

Rachel A. Crompton (0000-0001-5878-9292), Helen Williams (0000-0001-5723-501X), 7 

Laura Campbell
 
(0000-0001-8888-3917), Lim Hui Kheng (0000-0002-3510-5334), Charis 8 

Saville
 

(0000-0002-6796-001X), David M. Ansell (0000-0002-6977-4288), Adam Reid 9 

(0000-0003-1752-3302), Jason Wong (0000-0003-2592-3226 ), Leah A. Vardy (0000-0003-10 

4186-684X
 
),

 
Matthew J. Hardman (0000-0002-6423-5074 )

 
and Sheena M. Cruickshank 11 

(0000-0002-3047-5475). 12 

 13 

CONFLICT OF INTEREST: The authors have declared no conflicts of interests. 14 

 15 

ACKNOWLEDGMENTS 16 

The work was funded by a MRC MICA project grant awarded to SC and MH and a BBSRC 17 

PhD awarded to SC, RC. We acknowledge the support of Dr Cath Booth and Dr James 18 

Wilson of Epistem Ltd. for their support and use of their facilities for this study. The 19 

histological sample processing was performed using the Histology Core Facility equipment. 20 

The Bioimaging Facility microscopes used in this study were purchased with grants from 21 

BBSRC, Wellcome and the University of Manchester Strategic Fund. Special thanks go to 22 

Roger Meadows and Steve Marsden for their help with the microscopy. We acknowledge the 23 

support of Andy Hayes and Michal Smiga of the Genomic Technologies Core Facility, in 24 

addition to Leo Zeef of the Bioinformatics Core Facility, in the Faculty of Biology Medicine 25 

Jo
urn

al 
Pre-

pro
of

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10213/


18 
 

and Health, University of Manchester, for their contribution towards microarray sample 1 

processing and analysis.  2 

 3 

AUTHOR CONTRIBUTIONS  4 

Conceptualization: RAC, HW, LC, LAV, MJH, SMC; Methodology: RAC, HW, DMA; 5 

Validation: RAC, HW; Formal Analysis: RAC, HW; Investigation; RAC, HW, LC, LHK; 6 

Resources; LC, CS, DMA, AR, JW; Writing – Original Draft: RAC, HW, LC, SMC; Writing 7 

– Review and Editing: RAC, HW, LC, DMA, JW, LAV, MJH, SMC; Funding acquisition: 8 

MJH, SMC; Supervision: SMC. 9 

 10 

 11 

 12 

 13 

 14 

  15 

Jo
urn

al 
Pre-

pro
of



19 
 

REFERENCES 1 

Abd-El-Aleem SA, Ferguson MW, Appleton I, Kairsingh S, Jude EB, Jones K, et al. 2 

Expression of nitric oxide synthase isoforms and arginase in normal human skin and 3 

chronic venous leg ulcers. J Pathol 2000;191(4):434-42. 4 

Abd El-Aleem SA, Abd-Elghany MI, Ali Saber E, Jude EB, Djouhri L. A possible role for 5 

inducible arginase isoform (AI) in the pathogenesis of chronic venous leg ulcer. 6 

Journal of cellular physiology 2020;n/a(n/a). 7 

Anisa B. Rahim HKL, Christina Yan Ru Tan, Li Jia, Vonny Ivon Leo, Takeshi Uemura, 8 

Jonathan Hardman-Smart, John E.A. Common, Thiam Chye Lim, Sophie Bellanger, 9 

Ralf Paus, Kazuei Igarashi, Henry Yang, Leah A. Vardy. The polyamine regulator 10 

AMD1 up-regulates spermine levels to drive epidermal. Journal of Investigative 11 

Dermatology 2021. 12 

Ashcroft GS, Mills SJ, Lei K, Gibbons L, Jeong MJ, Taniguchi M, et al. Estrogen modulates 13 

cutaneous wound healing by downregulating macrophage migration inhibitory factor. 14 

The Journal of clinical investigation 2003;111(9):1309-18. 15 

Barbul A. Proline precursors to sustain Mammalian collagen synthesis. J Nutr 16 

2008;138(10):2021S-4S. 17 

Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid 18 

cells controls T-lymphocyte functions. Trends Immunol 2003;24(6):302-6. 19 

Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nature 20 

reviews Immunology 2005;5(8):641-54. 21 

Bruch-Gerharz D, Schnorr O, Suschek C, Beck KF, Pfeilschifter J, Ruzicka T, et al. Arginase 22 

1 overexpression in psoriasis - Limitation of inducible nitric oxide synthase activity as 23 

a molecular mechanism for keratinocyte hyperproliferation. American Journal of 24 

Pathology 2003;162(1):203-11. 25 

Jo
urn

al 
Pre-

pro
of



20 
 

Campbell L, Saville CR, Murray PJ, Cruickshank SM, Hardman MJ. Local Arginase 1 1 

Activity Is Required for Cutaneous Wound Healing. J Invest Dermatol 2 

2013;133(10):2461-70. 3 

Corraliza IM, Campo ML, Soler G, Modolell M. Determination of arginase activity in 4 

macrophages: a micromethod. Journal of immunological methods 1994;174(1-2):231-5 

5. 6 

Coulombe PA. Towards a molecular definition of keratinocyte activation after acute injury to 7 

stratified epithelia. Biochemical and biophysical research communications 8 

1997;236(2):231-8. 9 

Emmerson E, Campbell L, Davies FC, Ross NL, Ashcroft GS, Krust A, et al. Insulin-like 10 

growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into 11 

cutaneous IGF-1R/ERalpha cross talk. J Invest Dermatol 2012;132(12):2838-48. 12 

Harding KG, Morris HL, Patel GK. Science, medicine and the future: healing chronic 13 

wounds. Bmj 2002;324(7330):160-3. 14 

Hardman MJ, Ashcroft GS. Estrogen, not intrinsic aging, is the major regulator of delayed 15 

human wound healing in the elderly. Genome Biol 2008;9(5):R80. 16 

Hohl D, de Viragh PA, Amiguet-Barras F, Gibbs S, Backendorf C, Huber M. The small 17 

proline-rich proteins constitute a multigene family of differentially regulated cornified 18 

cell envelope precursor proteins. J Invest Dermatol 1995;104(6):902-9. 19 

Jenkinson CP, Grody WW, Cederbaum SD. Comparative properties of arginases. 20 

Comparative biochemistry and physiology Part B, Biochemistry & molecular biology 21 

1996;114(1):107-32. 22 

Jude EB, Boulton AJ, Ferguson MW, Appleton I. The role of nitric oxide synthase isoforms 23 

and arginase in the pathogenesis of diabetic foot ulcers: possible modulatory effects 24 

by transforming growth factor beta 1. Diabetologia 1999;42(6):748-57. 25 

Jo
urn

al 
Pre-

pro
of



21 
 

Kalinin AE, Kajava AV, Steinert PM. Epithelial barrier function: assembly and structural 1 

features of the cornified cell envelope. BioEssays : news and reviews in molecular, 2 

cellular and developmental biology 2002;24(9):789-800. 3 

Kampfer H, Pfeilschifter J, Frank S. Expression and activity of arginase isoenzymes during 4 

normal and diabetes-impaired skin repair. J Invest Dermatol 2003;121(6):1544-51. 5 

Kavalukas SL, Uzgare AR, Bivalacqua TJ, Barbul A. Arginase inhibition promotes wound 6 

healing in mice. Surgery 2012;151(2):287-95. 7 

Kim JH, Bugaj LJ, Oh YJ, Bivalacqua TJ, Ryoo S, Soucy KG, et al. Arginase inhibition 8 

restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in 9 

old rats. Journal of applied physiology 2009;107(4):1249-57. 10 

Koch PJ, de Viragh PA, Scharer E, Bundman D, Longley MA, Bickenbach J, et al. Lessons 11 

from loricrin-deficient mice: compensatory mechanisms maintaining skin barrier 12 

function in the absence of a major cornified envelope protein. J Cell Biol 13 

2000;151(2):389-400. 14 

Kovamees O, Shemyakin A, Pernow J. Amino acid metabolism reflecting arginase activity is 15 

increased in patients with type 2 diabetes and associated with endothelial dysfunction. 16 

Diabetes Vasc Dis Re 2016;13(5):354-60. 17 

Latour YL, Gobert AP, Wilson KT. The role of polyamines in the regulation of macrophage 18 

polarization and function. Amino Acids 2020;52(2):151-60. 19 

Li H, Meininger CJ, Kelly KA, Hawker JR, Jr., Morris SM, Jr., Wu G. Activities of arginase 20 

I and II are limiting for endothelial cell proliferation. American journal of physiology 21 

Regulatory, integrative and comparative physiology 2002;282(1):R64-9. 22 

Lim HK, Rahim AB, Leo VI, Das S, Lim TC, Uemura T, et al. Polyamine Regulator AMD1 23 

Promotes Cell Migration in Epidermal Wound Healing. J Invest Dermatol 24 

2018;138(12):2653-65. 25 

Jo
urn

al 
Pre-

pro
of



22 
 

Lou F, Sun Y, Xu Z, Niu L, Wang Z, Deng S, et al. Excessive Polyamine Generation in 1 

Keratinocytes Promotes Self-RNA Sensing by Dendritic Cells in Psoriasis. Immunity 2 

2020;53(1):204-16 e10. 3 

Maeno Y, Takabe F, Inoue H, Iwasa M. A study on the vital reaction in wounded skin: 4 

simultaneous determination of histamine and polyamines in injured rat skin by high-5 

performance liquid chromatography. Forensic Sci Int 1990;46(3):255-68. 6 

Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. 7 

Macrophages in skin injury and repair. Immunobiology 2011;216(7):753-62. 8 

Mechin MC, Sebbag M, Arnaud J, Nachat R, Foulquier C, Adoue V, et al. Update on 9 

peptidylarginine deiminases and deimination in skin physiology and severe human 10 

diseases. Int J Cosmet Sci 2007;29(3):147-68. 11 

Ming X-F, Yang Z. Functions and Mechanisms of Arginase in Age-Associated 12 

Cardiovascular Diseases. Current Translational Geriatrics and Experimental 13 

Gerontology Reports 2013;2(4):268-74. 14 

Mizutani A, Inoue H, Takeda Y. Changes in Polyamine Metabolism during Wound-Healing 15 

in Rat Skin. Biochimica et biophysica acta 1974;338(1):183-90. 16 

Moretto J, Girard C, Demougeot C. The role of arginase in aging: A systematic review. Exp 17 

Gerontol 2019;116:54-73. 18 

Muller I, Hailu A, Choi BS, Abebe T, Fuentes JM, Munder M, et al. Age-related alteration of 19 

arginase activity impacts on severity of leishmaniasis. PLoS Negl Trop Dis 20 

2008;2(5):e235. 21 

Nakajima KI, Zhu K, Sun YH, Hegyi B, Zeng Q, Murphy CJ, et al. KCNJ15/Kir4.2 couples 22 

with polyamines to sense weak extracellular electric fields in galvanotaxis. Nat 23 

Commun 2015;6(1):8532. 24 

Jo
urn

al 
Pre-

pro
of



23 
 

Ochoa JB, Strange J, Kearney P, Gellin G, Endean E, Fitzpatrick E. Effects of L-arginine on 1 

the proliferation of T lymphocyte subpopulations. JPEN Journal of parenteral and 2 

enteral nutrition 2001;25(1):23-9. 3 

Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. 4 

Epithelialization in Wound Healing: A Comprehensive Review. Advances in wound 5 

care 2014;3(7):445-64. 6 

Pegg AE, McCann PP. Polyamine metabolism and function. Am J Physiol 7 

1982;243(5):C212-21. 8 

Pietila M, Pirinen E, Keskitalo S, Juutinen S, Pasonen-Seppanen S, Keinanen T, et al. 9 

Disturbed keratinocyte differentiation in transgenic mice and organotypic keratinocyte 10 

cultures as a result of spermidine/spermine N-acetyltransferase overexpression. J 11 

Invest Dermatol 2005;124(3):596-601. 12 

Ramírez-Zamora S, Méndez-Rodríguez ML, Olguín-Martínez M, Sánchez-Sevilla L, 13 

Quintana-Quintana M, García-García N, et al. Increased erythrocytes by-products of 14 

arginine catabolism are associated with hyperglycemia and could be involved in the 15 

pathogenesis of type 2 diabetes mellitus. Plos One 2013;8(6):e66823-e. 16 

Ramot Y, Tiede S, Biro T, Abu Bakar MH, Sugawara K, Philpott MP, et al. Spermidine 17 

Promotes Human Hair Growth and Is a Novel Modulator of Human Epithelial Stem 18 

Cell Functions. Plos One 2011;6(7). 19 

Shi HP, Fishel RS, Efron DT, Williams JZ, Fishel MH, Barbul A. Effect of supplemental 20 

ornithine on wound healing. J Surg Res 2002;106(2):299-302. 21 

Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. An unrestrained 22 

proinflammatory M1 macrophage population induced by iron impairs wound healing 23 

in humans and mice. The Journal of clinical investigation 2011;121(3):985-97. 24 

Jo
urn

al 
Pre-

pro
of



24 
 

Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, et al. Molecular 1 

pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition 2 

of epithelialization and wound healing. Am J Pathol 2005;167(1):59-69. 3 

Stojadinovic O, Pastar I, Vukelic S, Mahoney MG, Brennan D, Krzyzanowska A, et al. 4 

Deregulation of keratinocyte differentiation and activation: a hallmark of venous 5 

ulcers. Journal of cellular and molecular medicine 2008;12(6B):2675-90. 6 

Stojadinovic  OS, Tomic-Canic M. Chapter 14 Human Ex Vivo Wound Healing Model. In: 7 

Gourdie RG, Myers TA, editors. Wound Regeneration and Repair: Methods and 8 

Protocols. Totowa, NJ: Humana Press; 2013. p. E1-E. 9 

Tai G, Tai M, Zhao M. Electrically stimulated cell migration and its contribution to wound 10 

healing. Burns Trauma 2018;6:20. 11 

Thomason HA, Cooper NH, Ansell DM, Chiu M, Merrit AJ, Hardman MJ, et al. Direct 12 

evidence that PKCalpha positively regulates wound re-epithelialization: correlation 13 

with changes in desmosomal adhesiveness. J Pathol 2012;227(3):346-56. 14 

Tong BC, Barbul A. Cellular and physiological effects of arginine. Mini reviews in medicinal 15 

chemistry 2004;4(8):823-32. 16 

Wallace HM, Mackarel AJ. Regulation of polyamine acetylation and efflux in human cancer 17 

cells. Biochem Soc Trans 1998;26(4):571-5. 18 

Wessagowit V, Mallipeddi R, McGrath JA, South AP. Altered expression of L-arginine 19 

metabolism pathway genes in chronic wounds in recessive dystrophic epidermolysis 20 

bullosa. Clin Exp Dermatol 2004;29(6):664-8. 21 

Williams H, Campbell L, Crompton RA, Singh G, McHugh BJ, Davidson DJ, et al. Microbial 22 

Host Interactions and Impaired Wound Healing in Mice and Humans: Defining a Role 23 

for BD14 and NOD2. J Invest Dermatol 2018;138(10):2264-74. 24 

Jo
urn

al 
Pre-

pro
of



25 
 

Witte MB, Barbul A, Schick MA, Vogt N, Becker HD. Upregulation of arginase expression 1 

in wound-derived fibroblasts. J Surg Res 2002;105(1):35-42. 2 

Wu G, Morris SM, Jr. Arginine metabolism: nitric oxide and beyond. Biochem J 1998;336 ( 3 

Pt 1)(1):1-17. 4 

 5 

  6 

Jo
urn

al 
Pre-

pro
of



26 
 

FIGURE LEGENDS 1 

Figure 1. Temporal epidermal arginase1 expression during cutaneous wound repair.  (a) 2 

Representative IHC arginase1 staining of acute human (dashed line indicates basement 3 

membrane) and (b) mouse day 3 incisional wounds. Scale bar = 400µm (zoomed image 4 

100µm). (c) Quantification and (d) representative IF staining of epidermal arginase1 5 

expression in acute murine incisional wounds, yellow arrows indicate arginase1 epidermal 6 

staining. Keratin 14 shows the epidermal layers of the skin. White arrows indicate the dermal 7 

wound edge and white dashed lines outline the basement membrane (Red=K14; 8 

Green=Arginase1; Blue=Dapi; Scale bar = 50µm; n=4 or 6 human wounds or mice/group 9 

respectively).  10 

 11 

Figure 2. Epidermal arginase1 expression is reduced in impaired healing. (a) 12 

Representative IHC arginase1 expression from young intact and ovariectomized (ovx) 3day 13 

murine wounds (Scale=100µm) and (b) quantification. (c) Epidermal arginase1 expression in 14 

aged versus young murine wounds at 3days post-wounding. Yellow arrows indicate arginase1 15 

epidermal staining; white arrows the wound edge (Scale=50µm; n=5 mice/group). (d) 16 

Quantification of epidermal arginase1 expression in aged versus young 3day wounds. (e) 17 

Human DFUs obtained at presentation were analysed for arginase1 expression then grouped 18 

by length of time to heal (Healed <8weeks; Non-Healed >12weeks from initial visit). 19 

Arginase1 expression was quantified in healed and non-healed DFUs (f) and representative 20 

staining is shown in (g; Scale=50µm). Mean±SEM; n=6 patients with healed wounds and 21 

n=13 non-healed wounds; Red=K14; Green=Arginase1; Blue=Dapi; dashed white lines 22 

outline basement membrane;  unpaired t-test (b,d,f).  23 

 24 
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Figure 3. Epidermal arginase1  is essential for timely healing. (a) Representative 1 

arginase1 IHC staining of 3day wounds from K14cre;Arg1
wt/wt

 and K14cre;Arg1
fl/fl 

C57BL/6 2 

mice (solid black arrows indicate epidermal arginase1 stain; open arrows indicate dermal 3 

arginase1 positive cells; dashed lines outline the basement membrane (Scale=50µm neo-4 

epidermis, 200µm full wound). (b) Quantification of whole wound temporal arginase activity. 5 

(c) Representative H+E sections of K14cre;Arg1
wt/wt

 and K14cre;Arg1
fl/fl

  3day  incisional 6 

wounds (dashed lines indicate wound margins; scale=250µm) and (d) wound area 7 

quantification. (e) Representative K14 staining of 3day wounds (solid lines indicate degree of 8 

epidermal closure, dashed lines indicate the path to re-epithelialization, scale=200µm) and (f) 9 

quantification of re-epithelialization. (g) Microarray analysis of neo-epidermal gene 10 

transcriptional profiles between K14cre;Arg1
fl/fl

 and K14cre;Arg1
wt/wt

 wounds. Mean±SEM; 11 

n=4-6 mice/group; *p<0.05; ordinary two-way ANOVA with Sidaks multiple comparisons 12 

(b, d), Mann-Whitney U (f).  13 

 14 

Figure 4. Arginase1 is important in regulation of epidermal activation and proliferation. 15 

(a) Representative K6 IHC staining of K14cre;Arg1
wt/wt

 and K14cre;Arg1
fl/fl

 wounds at 3days 16 

post-wounding. Open arrows indicate the wound edge; solidarrows indicate the cessation of 17 

K6 expression (Scale=100µm). Enumeration of  K6 (b) distance from wound edge and (c) 18 

neo-epidermal expression. (d) Representative Ki67 staining of K14cre;Arg1
wt/wt

 and 19 

K14cre;Arg1
fl/fl

 wounds, illustrating the neo-epidermis (scale=50µm) and the wound edge 20 

(500µm distance from black arrow, scale=20µm) at 3days post-wounding and the peri-wound 21 

edge (500-1000µm from black arrow, scale=20µm) at 7days post-wounding. (e) 22 

Quantification of neo-epidermal proliferation and (f) proliferating, Ki67 positive, basal 23 

keratinocytes extending from the (g) wound edge and (h) peri-wound edge. Mean±SEM; 24 
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n=5-6 mice/group; *p<0.05; Mann-Whitney U (b-c), or *p<0.05, **p<0.01, ***p<0.001; 1 

ordinary two-way ANOVA with Sidak’s multiple comparison (e-h).  2 

 3 

Figure 5. Arginase1 is important in regulation of epidermal differentiation. (a) 4 

Representative IF illustrating co-localization (arrowed) of arginase1 and differentiation 5 

markers  K10, filaggrin and loricrin at the epidermal wound edge of K14cre;Arg1
wt/wt

 control 6 

mice at 5days post-wounding (Red=Keratin10/Filaggrin/Loricrin; Green=Arginase1; 7 

Blue=Dapi) (Scale=50µm; dashed lines outline the basement membrane). (b) qPCR of 8 

differentiated in vitro human keratinocytes showing ARG1 (<0.05) upregulation in line with 9 

differentiation markers KRT10, FLG andLOR. (c) Representative images ofdifferentiation 10 

markers K10 and loricrin in 7day K14cre;Arg1
wt/wt

 and K14cre;Arg1
fl/fl

 wounds 11 

(Scale=100µm) and their respective quantification (d, e) . Mean ± SEM; n = 5-6 mice/group; 12 

*p<0.05; repeated measures (b) or Mann-Whitney U (d-e).  13 

 14 

Figure 6. Manipulating the balance of arginase activity restores healing in human 15 

models of cutaneous repair. (a) Representative in vitro keratinocyte (N/TERT-1) wound 16 

closure images, 10 hours post scratch, treated with arginase inhibitor nor-NOHA (5µM) 17 

and/or putrescine (10µM) with (b) quantification of percentage wound closure. (v) 18 

Quantification of wound closure of nor-NOHA (10µM) and/or Putrescine (100µM) treated 19 

human skin explants, 3days post-wounding with.(d)  representative images wholemount 20 

stained with K14. Mean ± SEM; n = 5-7/group; *p<0.05, **p<0.01, ***p<0.001 vs control; 21 

repeated measures two-way ANOVA with Sidak’s multiple comparisons (b) or ordinary one-22 

way ANOVA with Tukey’s multiple comparisons (c).  23 
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Supplementary Figure S1. Arginase1 expression in unwounded murine skin. Representative epidermal 

arginase1 expression in unwounded C57BL/6 mouse skin (dashed line indicates basement membrane; 

Scale bar = 10μm; n=2).  

Supplementary Figure S2. Epidermal arginase1 expression in age associated delayed murine healing. 

Epidermal arginase1 expression in an aged (18 months) versus young (7 weeks) murine incisional wound 

model of delayed healing at 3 days post wounding. Single colour images of Figure 2C. Yellow arrows 

indicate arginase1 positive epidermal staining. White arrows indicate the wound edge and dashed white 

lines outline the basement membrane (Red=K14; Green=Arginase1; Blue=Dapi; Scale bar = 50μm; n=5 

mice/group).  

Supplementary Figure S3. Normal skin phenotype of epidermal arginase1 depleted mice. 

Representative H+E (scale = 100μm) and IHC stained (keratin 14; keratin 10; loricrin; keratin 6; Ki67; 

(scale = 50μm) and TUNEL (scale = 20μm) images of K14cre;Arg1wt/wt and K14cre;Arg1fl/fl normal skin; 

n= 5 mice/group.  

Supplementary Figure S4. Wound immune response to epidermal arginase1 deletion. Quantification of 

(A) neutrophils, (B) macrophages and (C) arginase1 expressing dermal cells over a time course of 3 and 7 

days post wounding reveals an altered immune response in K14cre;Arg1fl/fl wounds compared to 

K14cre;Arg1wt/wt control wounds. (D-F) Microarray analysis of neo-epidermal 3 day wound tissue 

shows alterations in immune associated gene transcription of K14cre;Arg1fl/fl wounds compared to 

K14cre;Arg1wt/wt control wounds. Mean+SEM; n=5-6 mice/group; **p <0.01, ***p<0.001; Mann-

Whitney U (A-C).  

Supplementary Figure S5. Arginase inhibition delays keratinocyte scratch closure in vitro. (A) 

Quantification of HaCaT temporal arginase activity, shows a trend towards a reduction in arginase 

activity 48 hour post scratch wounding, determined by urea production. (B) Quantification of HaCaT 

scratch closure following nor-NOHA treatment compared to control and (C) representative crystal-violet 

stained HaCaT wounds after nor-NOHA treatment (yellow line indicates migrating wound edge). 

Mean±SEM; n = 3/4/group; NS = ordinary one-way ANOVA with Tukey’s multiple comparisons (A) or 

**p<0.01 Kruskal Wallis test with Dunn’s multiple comparisons (B).  

Supplementary Figure S6. Altered metabolism of arginine by arginase in cutaneous healing. (Graphical 

Abstract) (A) Normal homeostasis and wound re-epithelialisation (blue outline). (B) Inhibition of 

arginase allows greater NOS metabolism and reduced polyamine synthesis, leading to reduced wound 

edge keratinocyte proliferation and migration impacting re-epithelialisation and differentiation (red 

arrows). (C) Downstream activation of the arginase pathway with putrescine decreases wound closure 

impacting cell migration (green arrows/outline). B and C combined restores healing as A. Abbreviations; 

NOS _ nitric oxide synthase; NOHA _ N-hydroxy-L-arginine; Nor-NOHA - N-hydroxy-nor-arginine; NO _ 

nitric oxide; ODC _ ornithine decarboxylase; AMD1 - Sadenosylmethionine decarboxylase proenzyme; 

SPDS _ spermidine synthase; SMS _ spermine synthase; SAT1 _ diamine acetyltransferase 1; PAOX _ 

peroxisomal N(1)-acetyl-spermine/spermidine oxidase; SMOX _ spermine oxidase.  
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Supplementalry Table S1. Quantitative real-time PCR primers 

 

 
Gene 

Primer sequences (5'->3') Product 

length 

(bp) 
Forward Reverse 

YWHA 

Z 

ACTTTTGGTACATTGTGGCTTC 

AA 
CCGCCAGGACAAACCAGTAT 94 

ARG1 AAGATTCCCGATGTGCCAGG GTCCACGTCTCTCAAGCCAA 87 

LOR CTCACCCTTCCTGGTGCTTT GGGTGGGCTGCTTTTTCTGA 73 

K10 TCCCAACTGGCCTTGAAACA TGAGAGCTGCACACAGTAGC 75 

FLG CAGGCTCCTTCAGGCTACATT 
GCAAAGATGTTTTCCAGGAGAG 

T 
95 

FLG2 GCAAGCTGCATCAGGCTTTA CACTTCTCAAGAGGTCGGTCA 90 

 
 

Supplementary Table S2. IHC and IF primary antibodies 

 

Primary Antibody Product Number Company 

anti-liver arginase goat polyclonal ab92274 Abcam, Cambridge, UK 

anti-arginase1-I goat polyclonal SC-18354 Santa Cruz Biotechnology, 

Heidelberg, Germany 

anti-NOS2 rabbit polyclonal SC-651 Santa Cruz Biotechnology, 

Heidelberg, Germany 

anti-keratin6 rabbit polyclonal PRB-169P Covance, Maidenhead, UK 

anti-keratin14 rabbit polyclonal PRB-155P Covance, Maidenhead, UK 

anti-loricrin rabbit polyclonal PRB-145P Covance, Maidenhead, UK 

anti-keratin10 rabbit polyclonal 905404 Biolegend, CA, USA 

anti-filaggrin rabbit polyclonal Ab24584 Abcam, Cambridge, UK 

anti-Ki67 rabbit monoclonal Ab16667 Abcam, Cambridge, UK 

anti-neutrophil rat polyclonal MA1-40038 ThermoFisher Scientific, 

Loughborough, UK 

anti-Mac-3 rat polyclonal 553322 BD Biosciences, Oxford, UK 
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SUPPLEMENTARY TEXT 

MATERIALS AND METHODS 

 

Human acute and chronic wounds 

Acute wound samples were collected from 3 healthy volunteers (male, aged ≥30 years). 

Briefly, 1.5 mm punch biopsies were taken from the left upper inner arm following local 1% 

lignocaine infiltration. This initial biopsy was excised using a second 3 mm biopsy. Chronic 

wound biopsy samples were used from 19 patients (mixed sex, aged ≥40 years) with chronic 

DFU (defined as distal to the medial and lateral malleoli, with a known duration ≥4 weeks, 

grade A1/B1 according to the University of Texas ulcer classification, no infection or 

ischaemia at the time of presentation) as previously described. All patients received standard-

of-care treatment, including regular debridement, non-anti-microbial dressings and 

offloading. No local anaesthetic was used at any time during treatment. At presentation, 

wound biopsy samples were collected from the margin of DFUs prior to debridement using 

sterile technique. Patients were followed for a period of 12 weeks (via weekly visits to the 

diabetic clinic), with photographs taken at each visit to determine longitudinal healing 

outcome using wound traces and calculating the wound area with ImageJ 1.x software 

(ImageJ, Maryland, USA). DFUs were then separated into two groups, those who healed (full 

wound closure at ≤7 weeks; 6 patients) and those who failed to heal (wound not closed at 12 

weeks; 13 patients) following current best practice treatment. Samples were fixed and 

processed for histological analysis.   

 

Conditional arginase1 knockout mouse model 

Following local ethics committee approval, all animal studies were conducted in accordance 

with UK Home Office regulations. All mice used in this study were bred in the same room 
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under the same conditions at the University of Manchester’s Biological Services Facility, 

housed in isolator cages with ad libitum food and water. The room was maintained at a 

constant temperature of 21°C, with 45-65% humidity on a 12 hour light-dark cycle. K14-

cre;Arg1
fl/fl

 mice were generated in house by crossing an arginase1 floxed mouse (El Kasmi 

et al., 2008) with a  K14cre expressing mouse (Li M. et al., 2001) and K14-cre;Arg1
wt/wt 

mice 

were used as cre positive controls (all C57BL/6J background). Transgenic mice were bred 

onsite from homozygous mating. Genotype was determined by PCR (see Genotyping 

supplemental section) and cell specific deletion confirmed by IHC. IHC results confirmed a 

lack of arginase1 expression in the neo-epidermal tongues of K14cre;Arg1
fl/fl 

wounds 

compared to K14cre;Arg1
wt/wt

 controls. The specificity of the knockout was also 

demonstrated by retained dermal arginase1 expression in K14cre;Arg1
fl/fl

 mice (Figure 3a).  

 

Genotyping 

Mice were genotyped by PCR using three sets of primers (Invitrogen, Loughborough, UK); 

arg flox [F- TGCGAGTTCATGACTAAGGTT; R- AAAGCTCAGGTGAATCGG; wt200bp; 

floxed230bp]; k14 cre [F- ATTTGCCTGCATTACCGGTC; R- 

ATCAACGTTTTGTTTTCGGA; 349bp]; and deletion confirmation [F-

CCCCCAAAGGAAATGTAAGAA; R- CACTGTCTAAGCCCGAGAGTA; 500bp] and HS 

MyTaq Red mastermix (Bioline). Reactions were performed using a SimpliAmp Thermal 

Cycler (Applied Biosystems, Loughborough, UK) using the following cycling parameters; 

Initial denaturation (95°C 3min); 40x cycles 1. Denaturation (94°C 45sec) 2. Annealing 

(53°C arg flox or 55°C delta and k14 cre 45sec) 3. Elongation (72°C 1min); Final extension 

(72°C 5min). PCR products were run on a standard 2% agarose gel (Bioline, London, UK). A 

single arg flox band; k14 cre band and delta band indicate the K14cre;Arg1
fl/fl 

genotype. A 
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single arg wt band; k14 cre band and the absence of a delta band indicate the 

K14cre;Arg1
wt/wt 

genotype. 

 

 

Quantitative real-time PCR 

In brief, cDNA was transcribed from 0.5μg of RNA using the GoScript RT kit (Promega, 

Madison, WI) and quantitative PCR performed using the PowerUp Sybr Green Master Mix 

(Thermo, UK) and LightCycler 480 Instrument (Roche, UK). For each primer set, an optimal 

dilution was determined and melt curves were used to determine amplification specificity. 

Each sample was performed in triplicate and relative expression was determined from a 

standard curve. Expression ratios were normalized to the housekeeper YWHAZ. Full primer 

sequences are listed in Supplementary Table S1. 

 

IHC and IF image analysis 

All antibodies used are listed in Supplementary Table S2. Images were acquired on a 3D-

Histech Pannoramic-250 microscope slide-scanner using a 20x/ 0.80 Plan Apochromat 

objective (Zeiss, Cambridge, UK) and the DAPI, FITC and TRITC filter sets for fluorescence 

imaging. Snapshots of the slide-scans were taken using the Case Viewer software (3D-

Histech). Images were also acquired using manual microscopes; a Nikon Eclipse E600 

microscope and a SPOT insight camera (Image solutions Inc, Preston, UK); or a Nikon 

Eclipse Ci microscope using 4x/0.13; 10x/0.30; 20x/0.50 or 40x/0.75 Plan Fluor objectives, 

with a Nikon DS-Fi3 camera and NIS-Elements software (Nikon, Kingston Upon Thames, 

UK). Quantification of wound measurements and cell counts were performed using Image 

Pro Premier software (Media Cybernetics, Abingdon, UK) as described previously (Williams 

et al., 2018). Briefly, H+E stains imaged at x4 magnification were analysed for wound area, 
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wound width and percent re-epithelialization (confirmed with K14 stained sections). The 

wound area was considered the area of granulation tissue beneath the clot to the margins of 

normal skin either side of the wound. Percent re-epithelialization was determined by dividing 

the sum length of each neo-epidermal tongue by the total distance required to fully close the 

wound. K6 staining was quantified by area measurements of the neo-epidermal tongue and 

the length of K6 staining away from the wound edge, taken as an average of each side per 

wound. Ki67 IHC was quantified by cells/neo-epidermal area. Basal Ki67 expression was 

manually counted as a percentage of positive and total basal keratinocytes, measured at the 

wound edge (0-500µm distance from the wound edge) and the peri-wound edge (500-

1000µm distance from the wound edge). Cell counts within the wound area were determined 

using 5 representative images of the granulation tissue at x20 magnification. Keratin 10 and 

Loricrin staining were quantified based on a subjective scoring system out of 10; 0 being no 

positive staining in the newly formed epidermis and 10 being as normal skin. Arginase1 

staining was quantified, as an average score from x20 magnification images of the entire 

epidermis of DFU sections or neo-epidermal/wound edge regions of acute mouse wounds, 

based on a subjective scoring system out of 10 for both epidermal coverage (IHC) or stain 

intensity (IF) (0 = no expression; 10 = full coverage or high intensity). All staining and 

quantification was performed blind. 

 

TUNEL staining  

Briefly, rehydrated tissue sections were incubated in Proteinase K (20µg/ml proteinase K in 

10mM Tris/HCl pH 7.5) for 20min at 37°C, followed by washing in PBS. Sections were 

incubated in TUNEL reaction mixture (1:10 Enzyme Solution: Label Solution) or Label 

Solution as a negative control, in the dark for 30min at 37°C. After washing, sections were 

counterstained with DAPI (1µg/ml) (ThermoFisher Scientific) for 5min at room temperature, 
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washed and mounted using Prolong Gold Antifade Mounting Media (ThermoFisher 

Scientific) and visualized under a fluorescent microscope.  

 

 

 

Arginase activity assay 

In brief, normal skin and wound tissue was homogenized in 0.1% Triton X-100 (Sigma). 

After 30min, samples were centrifuged for 1min at 8000g to pellet cell debris. Assay buffer 

(10mM MnCl in 50mM Tris, pH 7.5) was added to the supernatant for 10 minutes at 56°C. 

Samples were incubated with the arginase substrate L-arginine (0.5M L-Arginine pH9.7) for 

3hrs at 37°C before adding acid stop solution (H2SO4, (Sigma) : H3PO4 (Sigma) : H20 in 1:3:7 

ratio (v/v)). 9% α-isonitrosopropiophenone (Sigma) was added and samples heated at 100°C 

protected from light. Absorbance was measured after 45min at 570nm (VersaMax microplate 

reader, Molecular Devices LLC) and urea concentration was calculated against a standard 

curve. Total protein concentration in the cell lysates was determined by the Pierce 660nm 

Protein Assay (ThermoFisher Scientific) to normalize each sample. 

 

Laser Capture Microscopy (LCM) 

Day 3 incisional wounds (n=4/group) were snap frozen upon tissue harvest and OCT 

embedded prior to cryosectioning. 10µm thick cryosections were obtained using a clean 

RNase free designated CM3050 cryostat (Leica Biosystems) and mounted onto RNase free 

MMI MembraneSlides, inverted and placed onto a glass slide for protection against 

contamination. Samples were dehydrated in isopropanol (30sec) and xylene (30sec) and air 

dried immediately prior to LCM. Samples were laser microdissected using the MMI CellCut 

laser microdissection system (Olympus, Southend-on-Sea, UK). Using the freehand tool in 
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the MMI software, cells of the neo-epidermis were marked and cut automatically using a 

20x/0.45 Plan FL N objective and UV-Laser at 60% power; speed of 18µm/s; focal point of 

350.  The isolated target cells were collected from the MMI Membrane Slides by lowering 

and lifting of the adhesive cap of 0.5ml MMI Isolation Caps (Olympus) held from 

above. Captured samples were stored in  Lysis Solution (Ambion RNAqueous-Micro Kit 

component) inverted on ice then stored at -80°C until ready for RNA isolation.  

 

Microarray 

Data was provided to the Bioinformatics core facility in the Faculty of Biology Medicine and 

Health, University of Manchester, for analysis as follows. Technical quality control and 

outlier analysis was performed with dChip (V2005) (Li and Wong, 2001) using the default 

settings. Mouse Transcriptome Assay 1.0 data were processed and analysed using Partek 

Genomics Solution (version 6.6, Copyright 2009, Partek Inc., St. Charles, MO, USA) with 

the following options: probesets were quantile normalized and RMA background correction 

applied. Probesets were summarized to genes by calculating the means (log 2). Validation 

and gene enrichment strategies consisted of the following steps. Step 1, to establish 

relationships and compare variability between replicate arrays and experimental conditions, 

principal components analysis (PCA) was used. PCA was chosen for its ability to reduce the 

effective dimensionality of complex gene-expression space without significant loss of 

information (Quackenbush, 2001). Step 2, Differential expression analysis was performed on 

annotated genes with Limma using the functions lmFit and eBayes (Smyth, 2004). Gene lists 

of differentially expressed genes were controlled for false discovery rate (fdr) errors using the 

Benjamini–Hochberg procedure (Team, 2008). Step 3, functional annotation of gene lists 

containing significantly differentially expressed genes was done with QIAGEN’s Ingenuity 

Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity), filtered to 
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fold change +/-1.25 and p value <0.05. Supplemental data presented is unfiltered by fold 

change with a p value <0.05. Raw data was deposited in ArrayExpress 

(accession  number: E-MTAB-10213). 

 

In vitro cell analysis 

Keratinocyte culture 

Normal human epidermal keratinocytes (NHEKs) isolated from juvenile foreskin (Promocell) 

were cultured in keratinocyte growth medium 2 (Promocell) at 37°C with 5% CO2. NHEKs 

were used in experiments at P3-5. N/TERT-1 cells were cultured at 37°C with 5% CO2 in 

Keratinocyte Serum Free Media (Complete KSFM:  low Ca2+ (500µl of 300mM) K-SFM 

(with 25µg/ml BPE, 0.2ng/ml EGF, 5ml Pen/Strep) and transferred to DFK-2 media (50:50 

ratio of DFK-1 media (DMEM (high glucose), F-12 , 25µg/ml BPE, 0.2ng/ml EGF, 5ml L-

glutamine, 5ml Pen/Strep) and K-SFM,all from GIBCO). HaCaT cells (ATCC12191) were 

cultured in DMEM (high glucose) with 10% FBS and 1x Pen/Strep at 37°C with 5% CO2. 

 

Human skin wound explant model 

Briefly, adult female abdominal skin (Caucasian, aged ≥50 years from four donors) was 

washed in sterile PBS and excess fat removed. 3mm partial thickness wounds were generated 

within 8mm diameter biopsy-punched constructs. Biopsies were cultured within 6well plates, 

placed on a stack, consisting of a 0.45µm nylon membrane on top of 2x absorbent pads, 

saturated with 1ml of Williams E media + supplements (100U Penicillin and 0.1mg 

Streptomycin per ml, 2mM l-glutamine, 10µg/ml insulin, 10ng/ml hydrocortisone (Sigma)). 

10µl nor-NOHA 10µM (Cayman, Michigan, USA) or Putrescine 100µM (Sigma) was 

applied directly to the wound. Biopsies were maintained at 37°C, 5% CO2 for 3 days, media 

replenished and re-treated daily, then formalin fixed before wholemount staining with anti-
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keratin 14 antibody. Images were obtained using a stereo microscope (Leica) and camera 

(Leica) and wound re-epithelialization was determined by calculating the remaining wound 

area as a percentage of the initial wound area, measured using Image Pro Premier software 

(Media Cybernetics, Abingdon, UK). 
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