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Abstract (max 200 words) 10 

Climate change directly impacts the foraging opportunities of cetaceans (e.g., lower prey 11 

availability), leads to habitat loss, and forces cetaceans to move to other feeding grounds. The 12 

rise in ocean temperature, low prey availability, and loss of habitat can have severe 13 

consequences for cetacean survival, particularly those species that are already threatened or 14 

those with a limited habitat range. In addition, it is predicted that the concentration of 15 

contaminants in aquatic environments will increase due to Arctic meltwater and increased 16 

rainfall events leading to higher rates of land-based runoff in downstream coastal areas. 17 

These persistent and mobile contaminants (PMCs) can bioaccumulate in the ecosystem, and 18 

lead to ecotoxicity with potentially severe consequences on the reproductive organs, immune 19 

system, and metabolism of marine mammals. There is a need to measure and assess the 20 

cumulative impact of multiple stressors, given that climate change, habitat alteration, low 21 

prey availability and contaminants do not act in isolation. Human-caused perturbations to 22 

cetacean foraging abilities are becoming a pervasive and prevalent threat to many cetacean 23 

species on top of climate change associated stressors. We need to move to a greater 24 

understanding of how multiple stressors impact the metabolism of cetaceans and ultimately 25 

their population trajectory.  26 
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Introduction 27 

The change in climate during the past decades is having a devastating effect on our ecosystem 28 

with a gradual change in temperature, ocean circulation, ice coverage, sea level, and acidity 29 

and with more sudden increases in extreme weather events. In their 1996 paper, MacGravin 30 

& Simmonds predicted that climate change will affect cetaceans by both a reduction in prey 31 

availability and a shift in the distribution of prey species. They speculated that this will be 32 

caused by changes in water temperature, turbulence, and surface salinity of our oceans [1]. 33 

Over the last two decades, Arctic surface air temperature has indeed increased by more than 34 

double the global average, resulting in loss of sea ice but also a disproportionate increase in 35 

global ocean heat [2]. For example, in 2014, the Pacific Decadal Oscillation changed to a 36 

positive phase with a rise in sea surface temperatures, and coastal upwellings weakened as a 37 

result [3]. Coinciding with this climate event, a massive lens of warm water developed in the 38 

North East Pacific and moved east in the summer of 2014, spreading along the shelf of North 39 

America and coastal Alaska [4]. This led to sea surface temperature increases greater than 40 

+3°C in certain areas [5]. This marine heatwave had detrimental impacts on the marine 41 

ecosystem, recording not only mass strandings of marine mammals and seabirds but also a 42 

geographical shift of species [5]. Extreme climatic events, which are predicted to increase in 43 

frequency as a result of climate change [6], can induce ecosystem change and alter patterns 44 

of resource availability, as observed in a habitat shift of bottlenose dolphins (Tursiops 45 

truncatus) following seagrass die-off from the 2011 La Niña event [7].  46 

Using quantitative models to estimate global terrestrial, freshwater, and marine diversity 47 

scenarios containing information on extinctions, changes in species abundance, habitat loss, 48 

and distribution shifts indicate that there will be a continuous decline in biodiversity over the 49 

21st century [8]. For example, the overexploitation of important fish stocks to top marine 50 

predators in combination with this rise in ocean temperature can cause a decline in the 51 

availability of fish. In Europe, a shift has been observed in the tropic-web of fish communities 52 

and a decline in mean trophic level [9]. In addition, the increase in harmful algal blooms is 53 

associated with climate change [10–12]. These algal blooms can produce biotoxins and can 54 

further bioaccumulate in filter-feeding shellfish, transferring toxins to higher trophic levels 55 

[13]. Recurring harmful algal blooms are also linked to loss of foraging fish and a decline in 56 

plankton dynamics [14], leading to an overall decline in prey availability for marine top 57 



 

predators. In addition, these biotoxins produced by the harmful algal blooms can impact 58 

physiological functions and lead to an overall decline in health and body condition of marine 59 

mammals [15,16].  60 

Changes in ocean temperature and prey availability can have particularly dramatic 61 

consequences for marine mammals [17] and trait-based approaches show that threatened 62 

species or local resident populations are the most vulnerable to climate change [18, Sousa et 63 

al. 2020]. Species may be impacted, for example, by the loss of suitable habitat for functional 64 

behaviors. For example, many currently occupied humpback whale (Megaptera 65 

novaeangliae) breeding grounds are predicted to be unsuitable (>28°C) by the end of the 21st 66 

century [19]. Genetic data combined with predictive habitat models for the year 2100 also 67 

predicts that gray whales (Eschrichtius robustus) will expand beyond their habitat to the 68 

Atlantic, potentially via Arctic migration routes [20]. Similarly, beluga (Delphinapterus leucas) 69 

habitats are predicted to continue to decline for the year 2100, resulting in a distribution shift 70 

northwards and leading to a population decline in some populations [21]. Shifts in distribution 71 

ranges appear to have been successfully employed in the past in response to climate change, 72 

at least in some species. For example, ancient DNA revealed that the bowhead whale (Balaena 73 

mysticetus) lineage survived the change in the Late Pleistocene climate by shifting habitats 74 

northwards [22]. Foote et al. predict that the response to climate change will be species-75 

specific and suitable habitat for bowhead whales will likely be halved by the end of this 76 

century. The combination of the rise in ocean temperature, low prey availability, and the loss 77 

of habitat can have severe consequences for the survival of many cetacean species, 78 

particularly those that are already threatened or those with a limited habitat range [23]. Here, 79 

we will discuss the consequences of climate change on cetacean health by looking at impacts 80 

on distribution, abundance, phenology and behavior, reproductive success, and pollutant 81 

burden. Finally, we will discuss how health is currently being measured to assess 82 

environmental impacts and the novel approaches taken to increase our knowledge of the 83 

physiological constraints limited prey availability might cause.  84 

 85 



 

Consequences on distribution, abundance, phenology, and behaviour 86 

Changes in habitat usage/diversity and abundance are one of the most common responses of 87 

marine biota to the rise in ocean temperature. Similarly, the distributions of many cetacean 88 

species are expected to shift towards the poles, resulting in range contraction for polar 89 

species and range expansion for warm water species, as well as changes in population size 90 

[24–27]. Although effects on Arctic species are of particular concern (e.g., [28–30]), climate-91 

driven impacts on cetaceans are projected to be global (e.g., [18,31,32]). Indeed, a recent 92 

systematic review (58 articles, 29 species) on climate change and distribution, migration, and 93 

habitat use showed a poleward shift for many species [33]. Habitat usage is species-specific, 94 

meaning that whilst some species may move between different temperature zones, others 95 

might be more constrained. For example, the white-beaked dolphin (Lagenorhynchus 96 

albirostris) is a cold-water species whose relative abundance appears to be declining in 97 

northwest Scotland (UK), based on both frequencies of strandings between 1992-2003 and 98 

sighting surveys from 2002 and 2003 [34]. Indeed, statistical models show a negative 99 

relationship between white-beaked dolphin distribution and increasing water temperature 100 

[35]. On the other hand, the common dolphin (Delphinus delphis) has increased in abundance 101 

(both stranding and sightings), reflecting increased habitat usage of the warmer waters in 102 

northwest Scotland [34]. In addition, striped dolphins (Stenella coeruleoalba) are now 103 

regularly sighted in Scottish waters, despite never being recorded before 1988 [36]. Similar 104 

observations were documented in St. Mary’s Bay (Canada), which historically had few 105 

sightings of cetaceans. Due to an increase in the local water temperature, this became a 106 

feeding ground for humpback whales in 2016 [37]. Changes in species abundance have also 107 

been reported in the North Atlantic, where sightings reported over the last 14 years showed 108 

an increase in humpback and fin (Balaenoptera physalus) whale abundance, but a significant 109 

decrease in common minke whale (Balaenoptera acutorostrata) abundance [38,39].  110 

Similar shifts in distribution and abundance were observed in bowhead whales tracked by 111 

satellite between 2001-2011 in West Greenland. Bowhead whales showed a change in 112 

movement pattern, and were found at higher latitudes during spring and summer [40], likely 113 

due to the decrease in ice covering and the need to change their habitat usage. Bowhead 114 

whales feed on krill (Euphasia spp.) and the sea ice edge provides shelter from predators for 115 

krill and contains critical food resources (i.e., sea ice algae). As such, the receding of the sea 116 



 

ice edge results in a decline in krill availability [41]. On the other hand, the Pacific-Arctic 117 

bowhead whale was reported to be thriving during a period of rapid sea ice loss (longer 118 

duration of summer open water) and changes in upwelling potential (wind stress) with 119 

increased population size, body condition, and calf counts over the last 25 years [42,43]. This 120 

was in combination with a substantial shift in habitat usage over those 25 years and reflects 121 

the findings of the bowhead whale lineage that survived the Late Pleistocene climate by 122 

shifting habitats [22]. Changes in habitat usage and abundance are not limited to colder 123 

regions and were also observed in cetaceans inhabiting tropical and subtropical regions of the 124 

Pacific Ocean. For example, the abundance of Bryde’s whales (Balaenoptera edeni) increased 125 

between 2000 and 2010 in the Southern California Bight (USA), which was likely driven by 126 

prey availability [44]. Similarly, unusual sightings of Clymene dolphins (Stenella clymene) have 127 

been recorded on the northern coast of Spain [45], the Patagonian Coast (Argentina) [46], 128 

and the Brazilian coast [47], outside their usual habitat in the tropical waters of the Atlantic 129 

Ocean, Caribbean Sea and the Gulf of Mexico. Range shifts are believed to correlate with 130 

habitat expansion, leading to a functional feeding response of cetacean species to changes in 131 

the marine environment [39]. If climate-change impacts accelerate, such regime shifts are 132 

thought to become more widespread [48]. In general, range shifts are believed to be an 133 

indirect effect of climate change, as cetaceans adapt to changes in the distribution of prey 134 

(e.g., Víkingsson et al. 2015). However, a recent study showed that pilot whales shifted 135 

polewards at a strikingly high rate that correlated with thermal niche, rather than shifts in 136 

prey distribution, thus suggesting a direct response to warming waters [49]. This decoupling 137 

between predator and prey distribution may potentially influence trophic interactions, 138 

reshaping marine communities and affecting cetacean populations. Future studies 139 

quantifying the rate of distribution shift in other populations and species will be crucial 140 

towards our understanding of the direct effects of climate change on cetaceans and the 141 

ecosystem-level consequences of these range shifts. 142 

Environmental changes can impact food-web dynamics and may change entire marine 143 

ecosystems. They may lead, for example, to the introduction or increased occurrence of top 144 

predators, with consequences propagating through the entire food chain. For example, as the 145 

Arctic sea ice cover diminishes as a result of warming waters, killer whales (Orcinus orca) are 146 

expanding to ice-free areas of Hudson Bay (Canada) [50]. These animals are reported to feed 147 



 

on other marine mammals including seals and other whales (e.g. narwhal (Monodon 148 

monoceros) and bowhead whales) [51,52].  The expansion of inhabitable Arctic water is likely 149 

to continue to lead to an increasing presence of those killer whales that prey on marine 150 

mammals, putting severe pressure on marine mammals stocks and the Arctic marine 151 

ecosystem [51]. Behavioural studies of belugas, narwhals and bowhead whales show that in 152 

the presence of killer whales, these species change their habitat usage which can lead to 153 

increased stress and decreased fitness [53–55]. Such nonconsumptive effects on prey species 154 

may cause cumulative consequences for energy acquisition in habitat that may already be of 155 

poorer quality due to climate change effects on resource availability. In addition, the shift of 156 

cetaceans to new feeding grounds can have an impact on the body condition of other non-157 

cetacean species (e.g., Adelie (Psygoscelis adeliae) and Emperor penguins (Aptendytes 158 

forsteri)) [56].  159 

Phenology and behavioural changes have also been reported as a result of climate changes. 160 

For migratory species, the impacts of climate change can be particularly challenging as these 161 

species time their migration to maximise exploitation of prey in feeding areas, which is only 162 

available temporarily. Changes in the period of prey availability will lead to mismatches 163 

between the arrival of migrants and the availability of prey, leading predators to shift their 164 

migration timing. However, there may be limits to the degree to which such timings can be 165 

adjusted before other important functional behaviours are affected. Baleen whales that 166 

migrate between feeding and breeding grounds provide an excellent example of these 167 

impacts. For example, in the Gulf of St. Lawrence, fin and humpback whales were shown to 168 

shift arrival date over a period of 30 years, arriving and leaving earlier to and from their 169 

feeding grounds (Ramp et al. 2015). While both species were initially able to maintain 170 

temporal niche separation, there were indications of increasing temporal overlap, leading to 171 

higher competition for prey resources. The high rate of change in migration timing observed 172 

also suggested that if environmental changes continued at the same pace, both species would 173 

need to substantially change their annual life cycle to adapt to the timing of prey availability. 174 

Similar changes in migration timing have also been observed in other species [33]. 175 

Additionally, changes in behaviour as a result of climate change have also been reported, such 176 

as in group size. For example, bottlenose dolphins in the Moray Firth (UK) and killer whales in 177 

Johnstone Strait (Canada), seemed to change their group size in relation to changes in ocean 178 



 

climate over a period of 9-11 years [57]. Climate indicators correlated with local prey 179 

abundance and smaller groups were observed during periods of lower salmon availability in 180 

both areas. This seemed to recur each 2 years after a low phase of North Atlantic and Pacific 181 

Decadal Oscillations [57].  182 

Clearly, climate change can impact not only the distribution range and abundance of 183 

cetaceans but also impact migration timing and behaviour, all of which may eventually lead 184 

to poorer health due to decreased access to preferred prey or decreased foraging success. 185 

Those cetacean species that are limited by their habitat usage may face a greater challenge 186 

to cope with the temperate change, and thus may lead to extinction events. In contrast, those 187 

that can change their habitats, such as the bowhead whale, may ensure the survival of the 188 

species as demonstrated by historical climate events. Shifts in habitat usage will lead to 189 

increased sightings of uncommon species in some areas, which could have repercussions 190 

across the food chain, and ultimately alter whole ecosystems. As such, monitoring schemes 191 

and policy makers should take into account the predicted trajectory of habitat usage and 192 

those species that have a limited range when managing Marine Protected Areas.  193 

 194 

Consequences on reproductive success 195 

The rise in ocean temperature can impact the metabolism of marine mammals and their 196 

overall health. For example, following a heat wave, Indo-Pacific bottlenose dolphins (Tursiops 197 

aduncus) inhabiting Shark Bay (Western Australia) showed a significant decline in female 198 

reproductive rates [58]. Those that use tools for foraging had a higher survival rate compared 199 

to those that did not. The lower survival rate persisted post-heatwave and Wild et al. 200 

speculate that habitat loss may prolong negative impacts on higher trophic level marine 201 

predators. Wild et al also speculate that the decline in population numbers is likely due to (1) 202 

females spending more time foraging leaving calves open to predators; (2) a trade-off 203 

between energy available and reproduction; and 3) suppression of the reproductive system 204 

due to low body weight.  205 

The amount of energy available (e.g., fat) is tightly linked to the ability to invest in 206 

reproduction, and blubber thickness is linked to reproductive success [59–63]. When in 207 

poorer body condition (e.g., due to low prey availability) early term abortion or less 208 



 

investment in foetus growth has been observed in cetaceans as a measure to save energy and 209 

protect the mother’s survival [60,61,64]. In addition, suppressed ovulation or delayed sexual 210 

maturity may also occur when females are below a certain threshold of body weight [65]. As 211 

such, the impact of climate change may have long-term effects on reproduction rates and 212 

lead to severe population declines over longer periods. For example, coinciding with the 213 

changes in the Pacific Decadal Oscillation and other climate events, the mother-calf rates of 214 

humpback whales sighted at Au’Au Channel Maui (Hawaii) dropped by 76.5% between 2013-215 

2018, showing a rapid decline in reproductive rates [66]. There has been a decline in 216 

abundance and apparent survival rates of fin whales over the last 35 years [67] and a 217 

reduction in the reproductive success of humpback whales at the Gulf of St Lawrence 218 

(Canada) [68]. In humpback whales observed between 2004-2018, 39% of the identified 219 

pregnancies were unsuccessful over this 15 year period [68]. Both species also displayed 220 

changes in their migratory timing [69]. One of the likely drivers for these changes is the 221 

reduced prey availability caused by environmental shifts as a result of reduced sea ice extent 222 

[67].  223 

Continued increasing water temperatures and sea ice reduction may also have major effects 224 

on ecosystem energy flux altering the ratio of phytoplankton and zooplankton species 225 

production [70]. With a gradual shift in the composition of Atlantic zooplankton species, lipid 226 

rich prey species such as amphipods may contain less energy [71]. Marine predators such as 227 

common minke whales feeding on these less-energy rich species then fail to build up energy 228 

reserves for migration to breeding areas and may lead to a decline in producing offspring [72]. 229 

Similar patterns are observed with the southern right whale (Eubalaena australis) preying on 230 

krill [73]. Data collected between 1997 and 2013 showed a strong correlation between whale 231 

breeding success in southern Brazil and krill density. During that period, krill density was 232 

correlated with global climate indices and thus reduced krill is likely to slow down the current 233 

recovery rate of these historically overexploited species [73].  234 

For some cetacean predators, consequences of environmental changes may be stronger due 235 

to low flexibility for dietary shifts. For example, population trends of killer whales in the north 236 

eastern Pacific Ocean are strongly correlated with the availability of their principle prey, the 237 

Chinook salmon (Oncorhynchus tshawytscha) [74]. The lack of this key prey is associated with 238 

low reproductive success and high rates of unsuccessful pregnancies in the Southern Resident 239 



 

killer whale population [75]. Although other prey exists in the environment, the strong 240 

preference for this specific prey species can lead to population demographic consequences in 241 

killer whales. This dependence on a single prey species stems from fixed behavioural 242 

traditions within a pod, acting as important social isolating mechanisms which ultimately lead 243 

to the evolution of genetically distinct populations [76]. Thus, genetic diversity is also 244 

threatened under climate change. The decline in population size allows for inbreeding 245 

depression by reducing the genetic diversity and increasing recessive homozygotes created 246 

by consanguineous mating [77–79]. That would lead to a weakened resilience of populations 247 

against climate change effects and other anthropogenic pressures [80].  248 

Prey switching to provide sufficient energy when other sources are low may not be an optimal 249 

response either, as it can lead to a decrease in body condition if suboptimal prey are 250 

consumed. Beluga whales in the eastern Beaufort Sea (Arctic region) primarily prey on Arctic 251 

cod, which is a fish species sensitive to climate change. Data collected between 2011-2014 252 

showed that the diet of belugas containing cod declined and a prey switch occurred to capelin. 253 

The lowest body condition (maximum girth and blubber thickness) measured in 2014 254 

coincided with the lowest consumption of cod and the highest of capelin, and this 255 

predominantly affected females and juveniles [81,82].  256 

Climate change impacts reproductive success indirectly by reducing the food availability and 257 

thus worsening body condition. Given the trade-off between survival and reproducing when 258 

fat stores are low, climate change can lead to less offspring being born and thus could lead 259 

over-time to an overall population decline. In addition, those species that migrate to their 260 

breeding grounds may encounter a loss of those grounds, change their migratory patterns, or 261 

fail to reproduce as migration can be energetically costly. 262 

 263 

Consequences on pollutant burden 264 

Climate change has the potential to impact the current environmental distribution of 265 

chemical toxicants and their associated biological effects on the marine ecosystem (see 266 

review [83]). With the increase in arctic ice melting and change in regional precipitation 267 

patterns, the concentration of contaminants in the meltwater and aquatic environments will 268 

increase [84,85]. As a warmer atmosphere can hold more water vapor, climate change models 269 



 

predict an intensification and an increase of rainfall events in certain areas [86–89]. This can 270 

lead to higher rates of land-based runoff in downstream coastal areas, elevating pollutant 271 

concentrations. Over time, this could contribute to increased contaminant exposure on 272 

cetaceans and affect survival rates of entire populations [90,91]. For example, model 273 

forecasts predict that >50% of world killer whale populations are threatened by PCB-274 

mediated effects [92]. This is likely to be more severe in coastal populations, that are and will 275 

be exposed to higher concentrations of pollutants than those with an oceanic habitat. 276 

Persistent and mobile contaminants (PMCs) are globally distributed, persist long after their 277 

emissions (most banned in 1960s) and can bioaccumulate in the ecosystem, leading to 278 

ecotoxicity [93]. Environmental exposure to these PMCs can continue for years and decades, 279 

with long-lasting adverse health effects on many organisms including marine species [94]. 280 

These effects include immunotoxicity and endocrine disruptions, which leads to changes in 281 

reproductive success [94–96].  282 

Cetaceans are particularly vulnerable to these pollutants as they are apex predators, feed on 283 

top of the food chain and have a thick blubber layer where these chemicals bioaccumulate 284 

[97]. These contaminants then recirculate in periods of low prey availability (using energy 285 

stores), exposing vital organs to toxic risks [98]. Further, the immunosuppressive effects of 286 

PCBs make it more likely for an individual to die from infectious disease [99]. Although there 287 

has been a general decline in POPs since the 1980s in blubber samples of cetaceans [100,101], 288 

the current change in climate could lead to a resuspension and reintroduction of these 289 

contaminants into the aquatic environment. Especially those species inhabiting coastal and 290 

Arctic regions may be most at risk of an increased contaminant exposure and there is evidence 291 

of PMCs transferring maternally in several species [102–105]. For example, following a severe 292 

weather event in 2011 resulting in an influx of contaminated freshwater into coastal waters 293 

in Queensland (Australia), unusually high mortality was observed in several dolphin species 294 

[90]. A rise in DDT, PCB and HCB levels (i.e. POPs) in blubber samples was also recorded 295 

between 2011-2015 following this event in coastal Australian humpback dolphins (Sousa 296 

sahulensis) and Australian snubfin dolphins (Orcaella heinsohni) [106]. Further, sustained 297 

periods of elevated freshwater discharge may contribute to a higher mortality of resident 298 

inshore cetaceans [90]. This could potentially impact their health and reproductive success 299 



 

due to the increased exposure to infectious pathogens [107] and contaminants with 300 

immunosuppressive effects [108], making the animal more vulnerable to disease. 301 

Shifts in habitat usage and prey, due to the low availability of preferred prey, may also result 302 

in higher exposure to pollutants [109]. Pollutant burdens are strongly influenced by 303 

geographical distribution, [110], and the shift of species to new feeding grounds/habitats 304 

could expose cetaceans to higher levels of pollutants.  305 

 306 

Measuring health in cetaceans: current and novel approaches  307 

The ability of an animal to reproduce is highly dependent on the amount of energy that is 308 

available to invest in reproduction. When fat reserves are low, one’s own survival is prioritised 309 

with a shut-down of processes related to reproduction. Therefore, the amount of fat stores 310 

is widely used in mammals to assess body condition or used as a health proxy [111–113], 311 

including in cetaceans (i.e. blubber thickness) [114]. However, using blubber thickness alone 312 

to infer body condition has led to inconclusive results (see review [63]). In some cetacean 313 

species, blubber thickness may not reflect whether individuals are in negative energy status 314 

or not [115–120]. This is likely because blubber also serves other functions than an energy 315 

storage, such as buoyancy aid, insulator and gives structural support. For example, bowhead 316 

whale blubber thickness did not vary with seasons or life stages but showed an increase in 317 

structural fibre density within the blubber layers [121]. As such, blubber thickness did not 318 

change but the morphology of the blubber did, with a reduced fat cell size. In addition, 319 

dolphins exhibit a unique fasting profile after 24h, with a rapid switch to lipids and amino 320 

acids as fuel [122]. This is in agreement with Kershaw et al. (2017) who argued that muscle 321 

mass may be used as fuel during periods of starvation to protect the blubber’s other functions 322 

[123]. As such, novel approaches are being developed that consider other metrics than 323 

blubber thickness to infer health/body condition in cetaceans (see reviews [124,125]). As 324 

Castrillon et al. (2020) extensively reviewed traditional and other approaches in evaluating 325 

cetacean body condition, we will here focus on the recent developments in molecular 326 

approaches.  327 

We currently do not fully understand how the physiological system in cetaceans responds to 328 

low food availability and new insights in this complex system wide response are emerging 329 



 

[122]. For example, nucleic acid-derived indices have recently been successfully applied as 330 

ecophysiological indicators in bottlenose dolphins and pilot whales, showing differences 331 

between species and animals with different residency patterns (Alves et al. 2020). This 332 

approach shows promise and may have wide future applications, as it can be used in samples 333 

obtained via biopsying, a technique widely used for tissue sampling of several cetacean 334 

species. With recent advances in technology, we are also now able to characterize many 335 

thousands of genes, metabolites, lipids and proteins associated with phenotypic traits and 336 

this is key to the discovery of health biomarkers in for example human diseases (see reviews 337 

[126–130]). Omics technologies are now emerging as novel methods in the field of cetacean 338 

health research and to unravel how their metabolism may cope with stressors. For example, 339 

evidence for a Dynamic Network Marker (DNM), originally created for early human disease 340 

detection, emerged within the plasma metabolomic network of 24h fasted dolphins [122]. 341 

This DNM hinted that dolphins may enter a “fat conservation” state more rapidly than 342 

expected and shows a tipping point is emerging in energy state transitions [122]. Managed or 343 

stranded cetaceans can be used as “model species” to create a more comprehensive 344 

understanding of cetacean health and the physiological/metabolic response to stressors as a 345 

way to create biomarkers to assess wild populations [122,131–137]. For example, in managed 346 

whales, a correlation was found between lipidomics (i.e. lipid profile) and blood parameters 347 

related to metabolism [133]. As such, lipidomics shows great promise to assess the change in 348 

energy body reserves and thus body condition in free ranging cetaceans [98,131,138,139]. 349 

Other omics approaches such as proteomics and metabolomics are also emerging as novel 350 

methods to increase our understanding of cetacean metabolism [135,140–143]. Finally, we 351 

also lack an understanding of how cetacean metabolism and nutrient requirements influence 352 

feeding ecology. For example, selective feeding, whereby only certain portions of the prey 353 

are eaten or only certain prey are targeted, may be driven by nutrient balancing, rather than 354 

simple maximisation of energy intake [144]. Lipid-rich or protein-rich prey or parts of prey 355 

may be preferred, depending on the nutrient needs of predators. Climate change may impact 356 

not only prey availability but also prey nutrient composition, thus affecting the nutrient 357 

balance required by cetacean predators. Thus, a shift in the focus of future studies away from 358 

only caloric measurements and applying a nutrient geometry framework may be useful to 359 

further our understanding of the impacts of climate change on feeding decision-making of 360 

cetacean predators and its consequences to their health.  361 



 

 362 

Conclusion 363 

The impacts of climate change on cetaceans are species or population-specific, with some 364 

being able to expand their habitat while others are forced to constrain their habitat range. 365 

Those with a limited habitat range may suffer from declining population sizes mainly caused 366 

by a range shift in prey availability across the food chain. Impacts may also differ depending 367 

on habitat type, however knowledge on the effects of climate change in populations 368 

inhabiting oceanic or remote areas is still lacking. However, conclusive to most cetaceans is 369 

that with rising ocean temperature, food availability is declining and thus so is body condition. 370 

This will lead to a change in metabolism with a negative energy status and thus lead to a 371 

decline in reproductive rates. This is attributed to the trade-off between survival and 372 

reproduction as cetaceans cannot invest in reproduction when energy reserves are already 373 

low. Finally, changes in precipitation and sea ice loss caused by a warming and changing 374 

climate can resuspend or introduce contaminants in the water column, potentially causing 375 

adverse effects on cetacean metabolism (e.g., endocrine disruption). The worsened body 376 

condition resulting from low food availability and the pollutants bioaccumulated in the thick 377 

blubber layer can impact cetacean health.   378 

There is a need to measure and assess the cumulative impact of multiple stressors, given that 379 

climate change, habitat alteration, low prey availability and contaminants do not act in 380 

isolation. Human-caused perturbations to cetacean foraging abilities are becoming a 381 

pervasive and prevalent threat to many cetacean species on top of climate change associated 382 

stressors. Multiple stressors can lead to a decline in population growth by reducing the 383 

amount of energy that is available to invest in reproduction, which may lead to extinction 384 

events. Approaches such as modelling and/or trait-based methods for assessment of climate 385 

change vulnerability can be helpful in identifying local or regional management units that are 386 

at particular risk. As such, monitoring schemes and policy makers should take into account 387 

the predicted trajectory of habitat usage and those species that have a limited range when 388 

managing Marine Protected Areas and their exposure to anthropogenic stressors. We need 389 

to begin to address the knowledge gaps regarding the interactions between multiple stressors 390 

and unravel the complex physiological mechanisms regulating cetacean metabolism, 391 

reproduction, and body condition to better understand the consequences of future 392 



 

environmental changes. With approximately 25% of cetacean species classified as threatened 393 

(IUCN December 2020), it is critical to understand the physiological effects of climate change 394 

on these apex predators to protect vulnerable cetacean species. The field of omics is showing 395 

great potential for biological markers to assess health in free ranging cetaceans. 396 

Lastly, the majority of the papers focus on the impact of climate change on prey availability 397 

and cascading through the food-web, but little work has been done to discuss the direct 398 

consequences of oceanic acidification for cetaceans. It is important to point out that with an 399 

increase in atmospheric CO2 levels, the ocean plays an increasing role in the carbon cycle with 400 

a higher biological uptake of CO2 per unit area [145]. This can have indirect effects on 401 

cetaceans via their food chain by altering the quality of food available for cetaceans. However, 402 

very little is known what the direct impacts of increased CO2 levels may be on cetacean’s 403 

metabolism. There is indication from experimental work on other species that ocean 404 

acidification directly impacts metabolism. For example, molluscs show a substantial change 405 

to their energy metabolism with a shift in metabolic pathways when exposed to parameters 406 

mimicking ocean acidification [146]. In large pelagic fish, elevated CO2 increased resting 407 

oxygen uptake rates compared to fish with normal conditions [147]. Other work on 408 

notothenioid fish suggests that some species may require a physiological trade-off to 409 

compensate for the energetic costs of acclimations to both temperature increase and CO2 410 

changes [147]. If the rise in ocean acidity requires cetaceans to increase their resting oxygen 411 

uptake levels with potentially extra energetic costs, this could lead to cetaceans having to rely 412 

more on their stored energy reserves. The change in acidification could lead to a reduced 413 

body condition, reduced reproductive success and an increased susceptibility to diseases. As 414 

mentioned earlier, climate change associated impacts such as change in temperature, 415 

increased ocean acidification and a decline in prey availability are cumulative. We need to 416 

move to a greater understanding how multiple stressors impact the metabolism of cetaceans 417 

and ultimately their population trajectory. 418 
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