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Abstract— In this paper, we investigate the minimum
total power (termed as critical total power) required to
ensure asymptotick-connectivity in heterogeneous wireless
networks where nodes may transmit using different levels
of power. We show that under the assumption that wireless
nodes form a homogeneous Poisson point process with
density λ on a unit square region [0, 1]2 and the Toroidal
model [17], the critical total power required for maintain-
ing k-connectivity is Θ(Γ(c/2+k)

(k−1)! λ1−c/2) with probability
approaching one asλ goes to infinity, wherec is the path
loss exponent. Compared with the result that all nodes use
a commoncritical transmission power for maintaining k-
connectivity [18], [25], we show that the critical total power
can be reduced by an order of(log λ)c/2 by allowing node
to optimally choose different levels of transmission power.
These results are not subject to any specific power/topology
control algorithm, but rather a fundamental property in
wireless networks.

keywords–Stochastic processes/queuing theory, Graph
theory, Combinatorics

I. INTRODUCTION

A wireless ad hoc network is a collection of wire-
less mobile hosts which communicate with each other
without the support of fixed infrastructure or centralized
administration. It has gained tremendous attentions in
recent years because of its wide applications in civil-
ian and military fields, and its capability of building
mobile wireless networks without the need for pre-
existing infrastructures. One important issue in such a
network is how to minimize power consumption while
maintaining network connectivity. Minimizing power not
only saves energy, but also reduces MAC-level collision
and hence increases the network capacity. However, this
has to be performed subject to maintaining network
connectivity. As a matter of fact, in order to enable
robust communications in the presence of mobility and
node failures, it is important that the networks arek-
connected.

The research on reducing power consumption while
maintaining (k-)connectivity has been approached inde-
pendently along two thrusts. In one thrust, researchers
aim to determine critical conditions on network param-
eters (such as the transmission range [19], [15], [17],
[18], [22], [25], the number of neighbors [25], [26],
the minimum total power required [1], [4], [8], [20], or
the node failure probability [23]) to ensure network (k-
)connectivity with high probability. Of particular interest
is how these critical conditions scale as the number of
wireless devices increases. Take the transmission radius
as an example. Consider a wireless network on a unit
disk on which n nodes are uniformly and randomly
placed. Letrn denote as the critical (minimum) common
transmission radius required by all nodes to ensurek-
connectivity in such a network. Penrose showed in [18]
that under the Torus convention assumption,

P (nπr2
n − log n− (k − 1) log log n + log(k − 1)! ≤ τ)

= exp(−e−τ ). (1)

Wan and Yi further extended the results by considering
boundary effects in [25]. Take the minimum total power
of all the nodes required to maintain asymptotic (k-
)connectivity (termed ascritical total power) as another
example. Both Bloughet al. [1] and Gomezet al. [8]
studied the critical total power for 1-connectivity, based
on results on the asymptotic total weight for weighted
minimal spanning trees [24], [27]. Rengarajanet al. [20]
gave the expectation of the (lower and upper) bounds on
the critical total power for 1-connectivity. Clementiet al.
[4] studied the problem of assigning transmission ranges
for wireless nodes so as to minimize the total power
consumption in the special case of path loss exponent
c = 2 such that any pair of nodes are withinh hops.

In the other thrust, researchers aim to devise dis-
tributed algorithms in which each node chooses its own
transmission power in order to minimize the total trans-
mission power of all wireless nodes, while maintaining
(k-)connectivity. This problem is, in general, NP hard
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in the Euclidean plane [5], and many researchers have
developed localized heuristics [21], [12], [14], [13], or
efficient algorithms with bounded approximation ratios
[11], [3], [9], [2].

In this paper, we address the power consumption
issue along the first thrust, and investigate thecriti-
cal total powerrequired for maintaining asymptotick-
connectivity in a random wireless network on a unit
squareS = [0, 1]2. Instead of imposing the uniform
assumption that all the nodes are subject to the same
common minimum power, we consider theheteroge-
neous case and allow each node to choose its own
transmission power. Specifically, letWt,i be the critical
transmission power nodei uses, andRt,i the corre-
sponding transmission range of nodei under the power
model Wt,i = Rc

t,i, where2 ≤ c ≤ 4 is the path loss
exponent. Then the critical total power of all the nodes is
Wc =

∑
Wt,i =

∑
Rc

t,i, where the summation is taken
over all the nodes in the network. Under the assumption
that wireless nodes are distributed on a unit square
S = [0, 1]2 according to a homogeneous Poisson point
process with densityλ and with the use of the Toroidal
model (Torus convention) [17], we show that the critical
total powerWc =

∑
Rc

t,i for maintainingk-connectivity

is Θ(Γ(c/2+k)
(k−1)! λ1−c/2) with probability approaching 1 as

λ →∞.
The result is obtained by deriving a lower bound and

an upper bound on the critical total power. The lower
bound is derived based on the necessary condition that
every node must be able to reach itskth nearest neighbor
in order to maintain strongk-connectivity. The upper
bound is derived based on an assertion (which is also
proved in the paper) that the resulting network is strongly
k-connected, if every node can reach at leastk nodes in
each of its four quadrants as long as there are at leastk
nodes in that quadrant. (By “each of its four quadrants”,
we assume that every node has its own coordinate system
which is obtained by shifting the origin of the[0, 1]2

plane to its own location.) In the case that there are less
than k nodes in a quadrant, the transmission power of
the node should be sufficiently large to reach all of them.

Our work differs from (and is perhaps superior to) ex-
isting works in several aspects. Although several existing
works [1], [8], [20], [4] studied the similar problem, none
of them studied the critical total power fork-connectivity
(k > 1). In particular, Bloughet al. [1] and Gomez
et al. [8] derived the critical total power only for 1-
connectivity. As the proof is based on the results on the
asymptotic total weight for weighted minimal spanning
trees, the result cannot be easily generalized to the case
of k-connectivity fork > 1. The work reported in [20]

gives the expectation of (lower bound and upper bound
of) the total power consumption (for 1-connectivity),
while the results in this paper are obtained in the asymp-
totic sense. Obtaining asymptotic results is significantly
more challenging than obtaining expectations. Clementi
et al. [4] showed that given the upper bound on the
number of hopsh, the total power incurred by then
nodes that are independently, uniformly distributed in
a unit square region isΘ(n1/h) with high probability.
Their result only applies to the path loss exponentc = 2
and cannot be readily generalized to the case ofc 6= 2.

Our results are derived under theheterogeneityas-
sumption that different nodes may use different levels
of transmission power, and hence are more general than
those derived under the uniform metric assumptions [7],
[15], [18], [22], [25], [26]. Our results suggest that the
power saved using optimal, non-uniform transmission
ranges is in an order of(log λ)c/2 as compared to that
using optimal uniform transmission ranges. In a rescaled
network where the node density is kept fixed and the size
of the square region goes to infinity, our results indicate
that the average power of each node is bounded if we
allow each node chooses its own transmission power to
maintain (k-)connectivity, while the average power of
each node is unbounded if all nodes have to choose
a common power to maintain (k-)connectivity. These
results are not determined by a specific algorithm, but
rather a fundamental property in wireless networks.

The rest of the paper is organized as follows. In Sec-
tion II, we state the system model, formulate the prob-
lem, and present preliminary material that will be used in
subsequent sections. We then derive in Sections III–IV
respectively, the lower and upper bounds on the critical
total power. Following that, we compare our result with
that derived under the uniform metric assumption and
discuss the issue on the transmission power model in
Section V. Finally, we conclude the paper in Section VI
with a list of future research directions.

II. PRELIMINARIES

In this section we present the system model, and in-
troduce notations that will be used throughout the paper.
We also define two frequently-used random variables:
Rλ,k(α) andRλ,k(d, α) (to be defined in Subsection II-
C), derive their probability distributions and prove two
lemmas that will be used in subsequent sections. Finally
we present, for the completeness of the paper, Palm
theory on Poisson point process.



3

A. System model

We assume nodes are distributed on a unit square
S = [0, 1]2 according to a (homogeneous) Poisson point
processPλ with density λ. It is well accepted thatn
nodes whose locations are independent random variables,
each with a uniform distribution onS, are essentially
a Poisson point process with densityn if the network
size is large ([10], page 39). In addition, we assume the
Toroidal model (Torus convention) [17] to eliminate the
boundary effects. In the Toroidal model, the Euclidean
metric d(i, j) = |Xi − Xj | is replaced withd(i, j) =
minz∈{0,1}2 |Xi−Xj−z|, whereXi is the coordinate of
nodei. Under the Toroidal model assumption, each node
can view the original plane[0, 1]2 as the plane[−1

2 , 1
2 ]2

in a coordinate system centered at itself. Toroidal model
is also widely used when analyzing properties of large
scale networks ([17], [10] (page 22)).

Let Ri denote the (fixed) transmission range of node
i. Different nodes may use different transmission power
and hence have different transmission ranges. Nodei can
directly transmit to nodej if and only if d(i, j) ≤ Ri.
We further assume that the transmission power of node
i is Wi = Rc

i , where2 ≤ c ≤ 4 is the path loss exponent
(although our analysis applies to anyc > 0). Hence the
total power of all nodes is

W =
∑
i∈Pλ

Wi =
∑
i∈Pλ

Rc
i . (2)

The network can be viewed as a directed graph where
each wireless node is a vertex and a directed edge exists
from vertex i to j if and only if node i can directly
transmit to nodej. The network is said to bek-connected
if and only if the corresponding directed graph is strongly
k-connected, i.e., there exists a directed path from any
vertexi to any other vertexj even if we remove anyk−1
nodes from the network. Thecritical total powerWc for
k-connectivityis defined as the minimum total power of
all nodes required to ensure strongk-connectivity in the
formed directed graph. As we are mostly interested in
k-connectivity in this paper, the critical total powerWc

is henceforth by default fork-connectivity.
let Wt,i be thecritical transmission power nodei uses,

and Rt,i the corresponding transmission range of node
i, then Wc =

∑
Wt,i =

∑
Rc

t,i. We are interested in
deriving the asymptotic bound on the critical total power
Wc asλ → +∞.

B. Notations

Table I gives the notations used throughout this paper.
Several comments are in order:

• We envision a (homogeneous) Poisson point process
Pλ on a unit square areaS = [0, 1]2. This is
often related to a binomial point processXn, i.e.,
n independent, uniformly distributed random 2-
dimensional vectors onS. We useXi to denote node
i’s location (coordinate).

• We useCj to represent a (constant) function in-
dependent ofλ. Unless specified,Cj only depends
on the path loss exponentc and sometimesk, both
of which are assumed to be constant in this paper.
We may explicitly expressc as the parameter of
Ci when we need to use the function ofCi with a
different parameter (such as2c).

• Let f(X) be a function on a random variable
X (which can be a vector). By probability the-
ory, the expectation off(X) is simply the inte-
gral of f(X) over the probability space ofX,
i.e., E[f(X)] =

∫
f(X)dP . The expectation,

EG[f(X)], of a functionf(X) under restrictionG
is the integral off(X) over the subsetG of the
probability space, i.e.,EG[f(X)] =

∫
G f(X)dP =∫

1Gf(X)dP , where1G is the indicator function
of G. With this definition, by the law of total
probability, E[f(X)] = EG[f(X)] + EḠ[f(X)],
where Ḡ denotes the complement set ofG; and
by the law of conditional probability,EG[f(X)] =
E[f(X)|G]P (G), where P (G) is the probability
that G occurs.

• We define BX(r) as the ball (disk in a 2-
dimensional space) centered atX with radius r,
and CX(θ, θ + α) as the cone centered atX, with
starting angleθ, ending angleθ + α, where0 ≤
θ, α ≤ 2π. The degree of coneCX(θ, θ + α) is
α. We useC∗X(r, θ, θ + α) to denote the region
CX(θ, θ + α) ∩ BX(r).

• We write g(λ) ≈λ h(λ) if g(λ)/h(λ) → 1 asλ →
∞, g(λ) = o(h(λ)) if g(λ)/h(λ) → 0 as λ → ∞,
andg(λ) = O(h(λ)) if g(λ) ≤ C · h(λ) asλ →∞
for some constantC (which may depend on the path
loss exponentc).

C. Rλ,k(α) and Rλ,k(d, α) and their probability distri-
butions

In an infinite regionR2 with the Poisson point pro-
cessPλ, we defineRλ,k(α) as a random variable that
represents the distance from a node atX to its kth
nearest neighbor in a cone centered atX and with degree
α, i.e., CX(θ, θ + α). (For notational convenience, we
may also useRλ(α) to representRλ,k(α) when the
neighbor referred to is clear from the context.) Clearly
the distribution ofRλ,k(α) is independent of the choices
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TABLE I

NOTATIONS USED

R Real line, (−∞,+∞)
S [0, 1]2

Xn A binomial process (n independent, uniformly distributed random 2-vectors)
Pλ A homogeneous Poisson point process with densityλ; {X1, X2, · · ·XNλ}
Xi Node i’s coordinate/location
Cj (Constant) function that does not depend onλ
Ḡ The complement set ofG
1G The indicator function ofG

E[f(X)] Expectation off(X), i.e., E[f(X)] =
R

f(X)dP
EG[f(X)] Expectation off(X) with the restrictionG, i.e., EG[f(X)] =

R
G

f(X)dP
BX(r) Ball of radiusr centered at locationX
CX(α, β) Cone that is centered atX and with the starting angleα and the ending angleβ
C∗X(r, α, β) BX(r) ∩ CX(α, β)

Rλ,k(α)(= Rλ(α)) Random variable for the distance from a pointX to thekth nearest node inCX(θ, θ + α)
Rλ,k(d,α)(= Rλ(d, α)) Random variable for the distance from a pointX to thekth nearest node inC∗X(d, θ, θ + α)

Γ(s) Gamma function, i.e.,Γ(s) =
R∞
0

ts−1e−tdt
FΓ(s)(x) c.d.f. of the Gamma distribution function, i.e.,FΓ(s)(x) = (Γ(s))−1

R x

0
ts−1e−tdt

≈λ g(λ) ≈λ h(λ) is interpreted asg(λ)/h(λ) → 1 asλ →∞

of X and θ. P (Rλ,k(α) > r) is the probability that
at most k − 1 points in the Poisson point process
Pλ fall in C∗X(r, θ, θ + α), and can be expressed as
exp(−λαr2/2)

∑k−1
i=0

(λαr2/2)i

i! . The cumulative distribu-
tion function (c.d.f.)FRλ,k(α) and the probability den-
sity function (p.d.f.)fRλ,k(α) of Rλ,k(α) can then be
expressed as

FRλ,k(α)(r) = P (Rλ,k(α) ≤ r)

=
{

1− e−λαr2/2
∑k−1

i=0
(λαr2/2)i

i! , if r ≥ 0,
0, otherwise;

(3)

fRλ,k(α)(r)

=
{

(λαr2/2)k−1λαr
(k−1)! e−λαr2/2, if r ≥ 0,

0, otherwise.
(4)

Also, the expectation ofRc
λ,k(α) (for c > 0) can be

calculated as

E[Rc
λ,k(α)] =

∫ ∞

0
fRλ,k(α)(r)r

cdr

=
∫ ∞

0

(λαr2/2)k−1λαr

(k − 1)!
e−λαr2/2rcdr

(changing variablet = λαr2/2)

=
∫ ∞

0
e−t

(
2t
λα

) c

2 tk−1

(k − 1)!
dt

=
Γ(c/2 + k)
(k − 1)!

(
2

λα

)c/2

, (5)

where the Γ function is defined as Γ(k) =∫∞
0 tk−1e−tdt.
Another closely related random variableRλ,k(d, α)

(for d > 0) is defined as

Rλ,k(d, α) =
{

Rλ,k(α), if Rλ,k(α) ≤ d,
0, otherwise.

(6)

Rλ,k(d, α) can be interpreted as the distance from a node
atX to thekth nearest neighbor in a cone centered atX,
with degreeα, and within radiusd, i.e.,C∗X(d, θ, θ +α),
whereθ is a fixed value. In the case that there are less
than k nodes in the cone within radiusd, Rλ,k(d, α)
is defined to be 0. Thus,Rc

λ,k(d, α) is a restriction of
Rc

λ,k(α), under the sub probability space that there are
at leastk nodes inC∗X(d, θ, θ + α). The expectation of
Rc

λ,k(d, α) can be similarly calculated as

E[Rc
λ,k(d, α)] =

∫ d

0
fRλ,k(α)(r)r

cdr

=
Γ( c

2 + k)
(k − 1)!

(
2

λα

)c/2

FΓ(c/2+k)(λαd2/2), (7)

whereFΓ(c/2+k) is the c.d.f. of the Gamma distribution
with parameterc/2+k. With fixed values ofα, d, c, k >
0, FΓ(c/2+k)(λαd2/2) → 1 asλ →∞. Hence, we obtain
the following lemma (that will be used in subsequent
sections).

Lemma 1 For fixed values ofd > 0, c > 0, α > 0 and
k positive integer,

E[Rc
λ,k(d, α)] ≈λ E[Rc

λ,k(α)] =
Γ( c

2 + k)
(k − 1)!

(
2

λα

)c/2

. (8)

Let A,B be two given nodes in the Poisson
point process Pλ in the square regionS, and
RA,λ,k(α)(RB,λ,k(β)) be the distance fromA (B) to its
kth nearest neighbor in a cone of degreeα > 0. Specific
choices of the cones and the locations of nodesA and
B are not important in the following lemma.
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Lemma 2

E[Rc
A,λ,k(α)Rc

B,λ,k(α)] ≤ C0λ
c(−1+δ1) (9)

for someC0 > 0 and any givenδ1 > 0, if λ is sufficiently
large, whereC0 only depends onc and α but not onλ.

Proof. For notational convenience, we denoteRA,λ,k(α)
and RB,λ,k(α) respectively asRA and RB in the fol-
lowing derivation. For any givenδ1 > 0, We can choose
ε > 0 such thatαε2/2 = λ−1+δ1 . We first note that

P (RARB ≤ ε2)
≥ P (RA ≤ ε andRB ≤ ε)
= 1− P (RA > ε or RB > ε)
≥ 1− (P (RA > ε) + P (RB > ε))

≥ 1− 2 exp(−λαε2/2)
k−1∑
i=0

(λαε2/2)i

i!

= 1− 2 exp(−λδ1)
k−1∑
i=0

(λδ1)i

i!
. (10)

Thus,

P (RARB > ε2) ≤ 2 exp(−λδ1)
k−1∑
i=0

(λδ1)i

i!
. (11)

Now E[Rc
ARc

B ] can be expressed as

E[Rc
ARc

B ]
= E[Rc

ARc
B|RARB ≤ ε2]P (RARB ≤ ε2)

+E[Rc
ARc

B |RARB > ε2]P (RARB > ε2)
≤ E[ε2c|RARB ≤ ε2]P (RARB ≤ ε2)

+E[1|RARB > ε2]P (RARB > ε2)

≤ ε2c + 2exp(−λδ1)
k−1∑
i=0

(λδ1)i

i!

≤
(
2λ−1+δ1/α

)c
+ C1λ

c(−1+δ1)

= C0λ
c(−1+δ1), (12)

where the second inequality from the fact that
P (RARB ≤ ε2) ≤ 1 and Eq. (11). The third inequality
results from the choice ofε (αε2/2 = λ−1+δ1) and the
fact that eλδ1 grows much faster than any polynomial
function ofλ. The choice ofC1, C0 is independent ofλ
andδ1 if δ1 is fixed andλ is sufficiently large. �

D. Palm theory on Poisson point process

As Palm theory on the Poisson point process is used in
multiple places in the paper, for the completeness of the
paper, we state the theorem ([16], Theorem 1.6) below.

Theorem 1 (Palm theory for Poisson processes) Let
λ > 0. Supposej ∈ N , and h(Y,X ) is a bounded

measurable function defined on all pairs of the form
(Y,X ) with X being a finite subset ofRd and Y a
subset ofX , satisfyingh(Y,X ) = 0 except whenY has
j elements. Then

E[
∑
Y⊆Pλ

h(Y,Pλ)] =
λj

j!
Eh(Xj ,Xj ∪ Pλ), (13)

where the sum on the left-hand side is over all subsets
Y of the random Poisson point setPλ, and on the right-
hand side the setXj is a binomial process withj nodes,
independent ofPλ.

III. L OWER BOUND ON THE CRITICAL TOTAL POWER

In this section, we derive the lower bound on the crit-
ical total powerWc to maintain networkk-connectivity.

Theorem 2 For any given δ > 0, P (Wc ≥ (1 −
δ)C2λ

1− c

2 ) → 1 as λ →∞, whereC2 = Γ( c

2
+k)

(k−1)! π−
c

2 .

The proof of Theorem 2 will be given through two
propositions. Clearly, in order to maintain strongk-
connectivity, every node must be able to reach at least
k other nodes. Thus a lower bound on the critical total
power is the summation of power incurred by each node
such that each node can exactly reach itskth nearest
neighbor. Specifically, letXi be the location of nodei,
ri the distance fromXi to nodei’s kth nearest neighbor,
Wi = rc

i , and Nλ the number of nodes in the Poisson
point processPλ in [0, 1]2. Then the total powerWL =∑Nλ

i=1 Wi =
∑Nλ

i=1 rc
i serves as a lower bound on the

critical total power required to maintaink-connectivity.
In what follows, we estimateWL. First, we derive the
expectation ofWL.

Proposition 1

E[WL] ≈λ
Γ( c

2 + k)
(k − 1)!

π−
c

2 λ1− c

2 . (14)

Proof. By Palm theory for the Poisson point process,

E[WL] = E[
Nλ∑
i=1

rc
i ] = λE[rc

0], (15)

where the last expectation is taken over the probability
space where node0 is randomly placed with a uniform
distribution onS, together with a set of nodes distributed
according to a Poisson point processPλ and independent
of X0. Under the Toroidal model assumption, node 0
views all the nodes inPλ as if they reside in[−1

2 , 1
2 ]2

of a coordinate system with the origin atX0. Thus the
distribution of r0 is independent of the choice ofX0.
Let s be the distance fromX0 to node 0’skth nearest



6

neighbor inPλ in BX0(1/2) if there are at leastk nodes
in BX0(1/2); and 0 otherwise. Thens has the same
distribution asRλ,k(1

2 , 2π). In addition, if s > 0 (which
means there are at leastk nodes inBX0(1/2)), then
r0 = s. Thus s ≤ r0 and E[sc] ≤ E[rc

0]. Also, since
r0 < 1,

E[rc
0] = E[rc

0|s > 0]P (s > 0) + E[rc
0|s = 0]P (s = 0)

= E[sc|s > 0]P (s > 0) + E[rc
0|s = 0]P (s = 0)

≤ E[sc] + P (s = 0). (16)

SinceP (s = 0) = e−λπ/4
∑k−1

i=0
(λπ/4)i

i! = o(λ−c/2) as

λ →∞ andE[sc] ≈λ
Γ( c

2
+k)

(k−1)! (λπ)−
c

2 (by Lemma 1), we
obtain

E[rc
0] ≈λ

Γ( c
2 + k)

(k − 1)!
(λπ)−

c

2 ,

E[WL] = λE[rc
0] ≈λ

Γ( c
2 + k)

(k − 1)!π
c

2
λ1− c

2 . (17)

�

As has been shown in Lemma 1, the restriction on
the distance to thekth nearest neighbor in a fixed cone
(such as in one quadrant) can be ignored when the node
densityλ approaches infinity. In all the subsequent dis-
cussion, we ignore this restriction and assume, whenever
desirable, the distance to thekth nearest neighbor can go
to infinity (although with a small probability).

In order to bound|WL−E[WL]|, we need to derive the
second moment ofWL (so that Chebyshov’s inequality
can be applied).

Proposition 2

E[W 2
L] ≤ E[WL]2 + C3λ

1−c+δ0 as λ →∞, (18)

whereδ0 > 0 is arbitrary but fixed andC3 is a constant
independent ofλ.

Proof.

E[W 2
L] = E[(

Nλ∑
i=1

Wi)2]

= E[
Nλ∑
i=1

W 2
i ] + 2E[

∑
1≤i<j≤Nλ

WiWj](19)

SinceW 2
i = r2c

i , by Proposition 1 we obtain

E[
Nλ∑
i=1

W 2
i ] = E[

Nλ∑
i=1

r2c
i ] ≈λ

Γ(c + k)
(k − 1)!

π−cλ1−c. (20)

For the second term of Eq. (19), we apply Palm theory
for the Poisson point process again and obtain

2E[
∑

1≤i<j≤Nλ

WiWj ] = λ2E[WAWB ], (21)

where the last expectation is taken over the probability
space whereA and B are uniformly and randomly
distributed onS, together with a set of nodes distributed
according to a Poisson point processPλ.

We first evaluateE[WAWB] conditioning on the lo-
cations,XA andXB , of nodesA andB.

E[WAWB ] = E[E[WAWB |XA,XB ]]. (22)

Given the locationXA and XB , let |XA − XB | ≡ d.
Let GA be the event that there are at leastk nodes in
BXA

(d/2), GB the event that there are at leastk nodes
in BXB

(d/2), andG = GA ∩GB . Then,

E[WAWB |XA, XB]
= EG[WAWB|XA, XB] + EḠ[WAWB |XA, XB]. (23)

The first term of Eq. (23) can be expressed as

EG[WAWB |XA,XB ] = EG[rc
Arc

B |XA,XB ]
= E[rc

Arc
B1G|XA,XB ]

= E[rc
Arc

B1GA
1GB

|XA,XB ]
= E[r̃c

Ar̃c
B |XA,XB ], (24)

where

r̃A = rA1GA
=

{
rA, if rA ≤ d/2,
0, otherwise;

r̃B = rB1GB
=

{
rB, if rB ≤ d/2,
0, otherwise.

Given the locationsXA and XB , r̃A and r̃B are com-
pletely determined by the node distribution inBXA

(d/2)
and that inBXB

(d/2) respectively. Since the two regions
BXA

(d/2) and BXB
(d/2) are disjoint, r̃A and r̃B are

independent. Hence we can evaluate their expectations
separately:

EG[WAWB|XA,XB ]
= E[r̃c

A|XA,XB ]E[r̃c
B |XA,XB ]. (25)

Note that the expectation of̃rc
A conditioned onXA and

XB , EG[WAWB |XA,XB ], is taken over the probability
space of a Poisson point processPλ on S. For each
instance (realization) ofPλ on S, we can definêrA to
be the kth nearest neighbor distance of nodeA with
nodeB removed fromS. Then r̃A ≤ r̂A. Clearly, r̂A is
independent of nodeB’s location.r̂A is also independent
of nodeA’s location because of the homogeneous Pois-
son point process assumption and the Toroidal model
assumption. ThusE[r̃c

A|XA,XB ] ≤ E[r̂c
A|XA,XB ] =

E[r̂c
A]. Finally, r̂A is just the distance between nodeA

(which is uniformly and randomly placed onS) and
its kth nearest neighbor fromPλ on S. ThusE[r̂c

A] =
E[rc

0], where E[rc
0] is given in Eq. (15). Therefore,

E[r̃c
A|XA,XB ] ≤ E[rc

0]. Similarly, E[r̃c
B |XA,XB ] ≤
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E[rc
0]. SinceE[WL] = λE[rc

0] by Eq. (15), we obtain
that

E[EG[WAWB|XA,XB ]]
≤ E[E[rc

0]
2] = E[rc

0]
2 = (E[WL]/λ)2 (26)

It remains to evaluate the second term
EḠ[WAWB |XA,XB ] in Eq. (23). SinceḠ = ḠA ∪ ḠB ,
we have

EḠ[WAWB|XA,XB ]
≤EḠA

[WAWB|XA,XB ] + EḠB
[WAWB |XA,XB ]

=EḠA
[rc

Arc
B |XA,XB ] + EḠB

[rc
Arc

B|XA,XB ]
=2EḠA

[rc
Arc

B |XA,XB ], (27)

where the last equality is by symmetry.
The basic idea to boundEḠA

[rc
Arc

B |XA,XB ] is that
if the distance,d, between nodesA andB is large,ḠA

occurs with low probability, and that the probability that
the distanced is small is low. Specifically, consider the
restriction of |XA − XB | = d > ε where ε is chosen
such thatπε2 = λ−1+δ1 for any fixedδ1 > 0.

E{d>ε}[EḠA
[rc

Arc
B |XA,XB ]]

≤ E{d>ε}[EḠA
[1|XA,XB ]]

≤ P (ḠA ∩ {d > ε})
≤ P (There are less thank nodes inBA(ε/2))

= exp(−λπ(ε/2)2)
k−1∑
i=0

(λπ(ε/2)2)i

i!

= exp(−λδ1/4)
k−1∑
i=0

(λδ1/4)i

i!

≤ C4λ
−(1+c), (28)

for someC4 > 0 whenλ is sufficiently large. Note that
the last inequality results fromexp(λδ1/4) grows much
faster than any polynomial function ofλ asλ →∞.

Next by Lemma 2 (withα = 2π), for any givenδ1 >
0, if λ is sufficiently large, there exists some constant
C5 > 0 such that

EḠA
[rc

Arc
B|XA,XB ]

≤ E[rc
Arc

B |XA,XB ] ≤ C5λ
c(−1+δ1) (29)

Therefore,

E{d≤ε}[EḠA
[rc

Arc
B |XA,XB ]]

≤ E{d≤ε}[C5λ
c(−1+δ1)]

= P (d ≤ ε) · C5λ
c(−1+δ1)

= πε2 · C5λ
c(−1+δ1)

= λ−1+δ1 · C5λ
c(−1+δ1)

= C5λ
−1−c+δ1(1+c) (30)

By settingδ1 = δ0/(c + 1), we obtain

E{d≤ε}[EḠA
[rc

Arc
B|XA,XB ]] ≤ C5λ

−1−c+δ0 . (31)

Combining Eqs. (28) and (31), we obtain

E[EḠA
[rc

Arc
B|XA,XB ]] ≤ C6λ

−1−c+δ0 . (32)

Combining Eqs. (22), (23), (26) and (32), we obtain

E[WAWB ] ≤ (E[WL]/λ)2 + C6λ
−(c+1)+δ0 . (33)

Finally combining Eqs. (19)-(21) and (33), we obtain
Eq. (18). �

We are now in a position to prove Theorem 2.
Proof of Theorem 2.By Chebyshov’s inequality, for any
given δ′ > 0, whenλ →∞,

P (|WL − E[WL]| ≥ δ′E[WL])

≤ V ar(WL)
δ′2E[WL]2

=
E[W 2

L]− E[WL]2

δ′2E[WL]2

≤ C3λ
1−c+δ0

δ′2E[WL]2

≈λ
C3λ

1−c+δ0

δ′2 Γ2(c/2+k)
((k−1)!)2πc λ2−c

, (34)

where the last equation tends to 0 asλ goes to infinity if
we chooseδ0 < 1. HenceP (WL ≥ (1−δ′)E[WL]) → 1
as λ → ∞. SinceWc ≥ WL, we haveP (Wc ≥ (1 −
δ′)E[WL]) → 1 asλ →∞. By Proposition 1,E[WL] ≥
(1 − δ′) Γ( c

2
+k)

(k−1)!π
c
2
λ1− c

2 for sufficiently large values ofλ.
Consequently we have

P

(
Wc ≥ (1− δ′)2

Γ( c
2 + k)

(k − 1)!π
c

2
λ1− c

2

)
→ 1, (35)

as λ → ∞. Given anyδ > 0, we can findδ′ > 0 such
that (1− δ′)2 > (1− δ), and hence asλ →∞,

P

(
Wc ≥ (1− δ)

Γ( c
2 + k)

(k − 1)!π
c

2
λ1− c

2

)
→ 1, (36)

for any givenδ > 0, which completes the proof. �

IV. U PPER BOUND ON THE CRITICAL TOTAL POWER

In this section, we derive an upper bound on the
critical total power required to maintaink-connectivity.
As will be shown later in this section, the upper bound
turns out to be of the same order as the lower bound,
not only in terms ofλ but also in terms ofk.

Given the coordinates of all nodes in the plane[0, 1]2,
each node can define its own coordinate system by only
shifting the origin of the[0, 1]2 plane to its own location.
We use(xi, yi) to represent the coordinate of a nodei
in the original coordinate system (i.e., the plane[0, 1]2),
and define thep-norm distancedp between two nodesA
andB as

dp(A,B) = (|xA − xB|p + |yA − yB |p)1/p. (37)
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(a) Case (i)yB − yA < xB − xA
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(b) Case (ii)yB − yA ≥ xB − xA

Fig. 1. Illustration for Lemma 3

If p = ∞, d∞(A,B) = max(|xA − xB |, |yA − yB |).
Clearly p-norm distance does not change under the
conversion from the original plane to a new coordinate
system with a new origin. Throughout this paper, we
use 2-norm distance as the “distance” unless otherwise
specified, and|AB| to representd2(A,B). We first prove
a geometric result on strong 1-connectivity.

Lemma 3 Given the locations of all nodes on the plane
[0, 1]2, if each node chooses its power level to reach
at least one neighbor in each of the four quadrants in
its own coordinate system as long as there exist one or
more nodes in that quadrant, the resulting network is
strongly (1-)connected. (To eliminate the ambiguity in
which quadrant the axis lines belong to, we assign the
positivex-axis to the first quadrant, the positivey-axis
to the second quadrant, and so on.)

Proof. We prove the lemma by contradiction. If the
resulting network is not strongly connected, there exists
at least a pair of nodes (i, j) such that there exists no
(directed) path from nodei to nodej. Among all the
pairs, we choose the onewith the smallest∞-norm
distance. In case of a tie, we choose the pair with the
smallest 2-norm distance. Let the chosen pair be nodes
(A,B). It suffices to find a pair of disconnected nodes
(Y,Z) such thatd∞(Y,Z) < d∞(A,B), or d∞(Y,Z) =
d∞(A,B) andd2(Y,Z) < d2(A,B).

Without loss of generality, we assume that there is
no directed path fromA to B, and nodeB is in the
first quadrant in nodeA’s coordinate system, i.e.,xA <
xB , yA ≤ yB (note that the first quadrant includes the

positive x-axis but not the positivey-axis). Since there
exists at least one nodeB in the first quadrant of node
A’s coordinate system, nodeA’s power must be able to
reach at least one other nodeC in the first quadrant of its
coordinate system. Clearlyd2(A,C) < d2(A,B) since
node A’s power is not sufficient to reach nodeB. In
addition, there exists no path from nodeC to nodeB;
otherwise there would be a path from nodeA to node
B. Now we consider two possible cases.

a) Case (i) yB − yA < xB − xA (Fig. 1 (a)): In
this cased∞(A,B) = xB − xA ≡ a and |yA − yB | < a.
Let D be the intersection point of the cycle centered at
A with radiusd2(A,B) and the positivey-axis in node
A’s coordinate system. LetE be the intersection point
of the y-axis in A’s coordinate system and a horizontal
line through nodeB. Then |BE| = a. As yC − yA ≤
|AC| < |AB| andyB −yA = |AE|, we haveyC −yB <
|AB| − |AE| ≤ |BE| = a. On the other hand,yC ≥
yA and henceyC − yB ≥ yA − yB > −a. Therefore
|yC − yB| < a,

Similarly, xC > xA, and hencexC − xB > xA −
xB = −a. In addition, asxC − xA ≤ |AC| < |AB|
and xB − xA = |BE|, we havexC − xB < |AB| −
|BE| ≤ |AE| ≤ a. Therefore|xC − xB | < a. As such,
we concluded∞(B,C) = max(|xC −xB |, |yC −yB|) <
d∞(A,B), which violates the assumption on the pair of
nodes(A,B).

b) Case (ii) yB − yA ≥ xB − xA(Fig. 1 (b)):
In this cased∞(A,B) = yB − yA ≡ a ≥ |xB − xA|.
Let D be the intersection point of the cycle centered at
A with radiusd2(A,B) and the positivex-axis in node



9

A’s coordinate system. LetE be the intersection point
of the x-axis in A’s coordinate system and a vertical
line through nodeB. Then|BE| = a. As xC > xA, we
havexC−xB > xA−xB ≥ −a. Also, sincexC−xA ≤
|AC| < |AB| andxB−xA = |AE|, we havexC−xB <
|AB| − |AE| ≤ |BE| = a. Therefore|xC − xB | < a.

Since yC − yA < |AB| and yB − yA = |BE|, we
haveyC − yB < |AB| − |BE| ≤ |AE| ≤ |BE| = a.
Also, sinceyC ≥ yA, we haveyC − yB ≥ yA − yB =
−a. Therefore,|yC − yB| ≤ a. As such, we conclude
d∞(B,C) ≤ a = d∞(A,B) with equality held if and
only if yC = yA. If yC 6= yA, we reach the contradiction.

Now assumeyC = yA. By the way nodesA and
B are selected, we havexC > xB because otherwise
d∞(B,C) = d∞(A,B) and d2(B,C) < d2(A,B),
which violates the assumption on the pair of nodes
(A,B). Now we obtain a disconnected pair of nodes
(C,B) that also has the smallest∞-distance among all
the disconnected node pairs, nodeB is in the second
quadrant in nodeC ’s coordinate system, and

|xC − xB | < |yC − yB| (38)

(as\ACB > π/4). Now we carry out the above analysis
on the node pair (C,B). As the positivey-axis belongs
to the second quadrant and by Eq. (38), we can only go
to case (i). That is, we can find a pair of nodes(G,B)
such that there exists no directed path fromG to B and
d∞(G,B) < d∞(C,B) = d∞(A,B). This violates the
assumption on the pair of nodes(A,B), and completes
the proof. �

The above proof is primarily based on the distance
metrics without use of the Toroidal model. However, it
can be easily extended to the distance metrics under the
Toroidal model by the following two observations. (i)
Under the Toroidal model, each node views all other
nodes on the plane[−1

2 , 1
2 ]2 of its own coordinate

system, and thus the (p-norm) distance between two
nodesA,B under the Toroidal model is the same as the
(p-norm) distance without use of the Toroidal model, in
node A’s coordinate system if nodeB (and all other
nodes) are properly mapped to the plane[−1

2 , 1
2 ]2 of

nodeA’s coordinate system. With this observation and
the above proof, ifA,B are the pair of nodes holding
the extremal property under the Toroidal model, we can
find a pair of nodesY,Z having a smaller∞-norm
distance or the same∞-norm distance but a smaller 2-
norm distance (all) without the Toroidal model in node
A’s coordinate system than nodesA,B; (ii) Distance of
any pair of nodes under the Toroidal model is always not
larger than the distance without the Toroidal model (no
matter under whose coordinate system). Now the found

nodesY,Z must have a smaller∞-norm distance or the
same∞-norm distance but smaller 2-norm distance (all)
under the Toroidal model thanA,B do.

Lemma 3 can be easily extended to accommodate the
case of strongk-connectivity as follows.

Lemma 4 Given the locations of all nodes on the plane
[0, 1]2, if each node chooses its power level to reach at
leastk neighbors in each of the four quadrants in its own
coordinate system, as long as there existk or more nodes
in that quadrant (in the case that there are less thank
nodes in a quadrant, the transmission power of the node
is chosen to reach all of the nodes in that quadrant), the
resulting network is stronglyk-connected.

Proof.After removing anyk−1 nodes from the network,
each node can still reach at least one neighbor in each of
its four quadrants, as long as that quadrant still contains
some nodes. By Lemma 3, the remaining network is
strongly connected. Therefore, the original network is
at least stronglyk-connected. �

Since the above simple topology control mechanism
ensures strongk-connectivity in the underlying graph,
the total power incurred based on this mechanism pro-
vides an upper bound on the critical total power required
for k-connectivity. In what follows, we derive an upper
bound on the critical total power based on the above
topology control algorithm.

Let WU =
∑Nλ

i=1 W ′
i , where W ′

i is the power con-
sumed by nodei under the topology control mechanism
introduced in Lemma 4, and the summation is taken over
all the points generated by a Poisson point process with
density λ on [0, 1]2. Clearly Wc ≤ WU . We have the
following major result.

Theorem 3 P (Wc ≤ (1 + δ)C7(c)λ1−c/2) → 1 as λ →
∞, for any δ > 0, where

C7(c) =
4Γ( c

2 + k)
(k − 1)!

(
4
π

) c
2

. (39)

The proof of Theorem 3 will be given through two
propositions and one lemma. First we evaluate the ex-
pectation ofWU .

Proposition 3 E[WU ] ≤ C7(c)λ1− c

2 as λ →∞, where
C7(c) is given in Eq. (39).

Proof. By Palm theory for the Poisson point process, we
have

E[WU ] = E[
Nλ∑
i=1

W ′
i ] = λE[W ′

1], (40)
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where the last expectation is taken over the probability
space where node 1 is randomly placed with a uniform
distribution on the regionS, together with a set of nodes
that are distributed according to a Poisson point process
Pλ and independent ofX1.

Let R1i
, 1 ≤ i ≤ 4, be the distance from node 1 to

its kth nearest neighbor in theith quadrant of node1’s
coordinate system, andR1 = max{R1i

, 1 ≤ i ≤ 4}.
The power required for node1 is thenW ′

1 = Rc
1. Since

R1i
’s are independent and have the same distribution as

Rλ,k(π/2)1 under the Poisson point process assumption,
the expectation ofW ′

1 can be expressed as

E[W ′
1] = E[Rc

1]
≤ E[Rc

11
+ Rc

12
+ Rc

13
+ Rc

14
]

≈λ 4E[Rc
λ,k(π/2)]

=
4Γ(c/2 + k)

(k − 1)!

(
4

λπ

)c/2

, (41)

where the last equality results from Eq. (5). Thus, by
Eq. (40), we have

E[WU ] = λE[W ′
1] ≤ C7(c)λ1− c

2 . (42)

�

In order to bound|WU−E[WU ]|, we need to estimate
the second moment ofWU .

Proposition 4

E[W 2
U ] ≤ E[WU ]2 + C8λ

1−c+δ0 as λ →∞ (43)

for any givenδ0 > 0 and some constantC8 > 0 that is
independent ofλ.

Proof.

E[W 2
U ] = E[

Nλ∑
i=1

W ′
i ]

2

= E[
Nλ∑
i=1

W ′2
i ] + 2E[

∑
1≤i<j≤Nλ

W ′
iW

′
j].(44)

SinceW ′2
i = R2c

i , by Proposition 3 we have

E[
Nλ∑
i=1

W ′2
i ] = E[

Nλ∑
i=

R′2c
i ] = C7(2c)λ1−c. (45)

It remains to determine the second term of Eq. (44).
Applying Palm theory for the Poisson point process, we
have

2E[
∑

1≤i<j≤Nλ

W ′
iW

′
j ] = λ2E[W ′

AW ′
B ], (46)

1More precisely,R1i is slightly different from Rλ,k(π/2). By
carrying out a proof similar to that in Proposition 1, we can show
that the ratio of the expectations derived usingRλ,k(π/2) to that
using the precise version ofR1i tends to 1 asλ →∞.

where the last expectation is taken over the probability
space where nodesA and B are uniformly randomly
distributed in the regionS, together with a set of nodes
that are distributed as a Poisson point process with
densityλ and is independent of the locations of nodes
A andB.

First we evaluateE[W ′
AW ′

B ] conditioning on the
locations,XA andXB , of nodesA andB, i.e.,

E[W ′
AW ′

B ] = E[E[W ′
AW ′

B |XA,XB ]]. (47)

Given the locationsXA,XB , let d = |XA − XB |. For
eachi ∈ {1, 2, 3, 4}, let TAi

be the event that at least
k nodes fromPλ fall in node A’s ith quadrant within
radiusd/2, andTBi

the event that at leastk nodes from
Pλ fall in nodeB’s ith quadrant within radiusd/2. Let
TA = ∩4

i=1TAi
, TB = ∩4

i=1TBi
, andT = TA ∩ TB . That

is,T denotes the event that at leastk nodes in the Poisson
point processPλ fall in each of the four quadrants within
radiusd/2 in nodeA’s coordinate system and in each
of the four quadrants within radiusd/2 in node B’s
coordinate system. By the law of total probability,

E[W ′
AW ′

B |XA, XB]
= ET [W ′

AW ′
B|XA, XB] + ET̄ [W ′

AW ′
B|XA, XB]. (48)

The first term in the above Eq. (48) can be written as

ET [W ′
AW ′

B|XA,XB ]
= ET [Rc

ARc
B|XA,XB ]

= E[1T Rc
ARc

B |XA,XB ]
= E[1TA

1TB
Rc

ARc
B |XA,XB ]

= E[R̃c
AR̃c

B |XA,XB ], (49)

where R̃A = RA1TA
= RA1{RA≤d/2}, and R̃B =

RB1TB
= RB1{RB≤d/2}. Now, clearlyR̃A and R̃B are

independent because they depend on the node distribu-
tions in two disjoint regions,BXA

(d/2) andBXB
(d/2),

respectively. Therefore, we can evaluate their expecta-
tions separately, i.e.,

ET [W ′
AW ′

B|XA, XB] = E[R̃c
A|XA, XB]E[R̃c

B|XA, XB]. (50)

By a similar argument to that in Proposition 2, we obtain

E[R̃c
A|XA,XB ] ≤ E[Rc

1] = E[WU ]/λ,
E[R̃c

B |XA,XB ] ≤ E[Rc
1] = E[WU ]/λ. (51)

Thus

ET [W ′
AW ′

B|XA,XB ] ≤ (E[WU ]/λ)2. (52)

Combining Eqs. (47), (48) and (52), we obtain

E[W ′
AW ′

B] ≤ (E[WU ]/λ)2 + E[ET̄ [W ′
AW ′

B|XA, XB]] (53)

Now it remains to determine the second term of Eq. (53),
which we denote asI2, i.e.,

I2 ≡ E[ET̄ [W ′
AW ′

B |XA,XB ]]
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= E[ET̄ [Rc
ARc

B|XA,XB ]]. (54)

Since

T̄ = (∪4
l=1T̄Al

) ∪ (∪4
l=1T̄Bl

), (55)

it follows that

I2 ≤ E
4∑

l=1

ET̄Al
[Rc

ARc
B|XA,XB ]

+E

4∑
l=1

ET̄Bl
[Rc

ARc
B |XA,XB ]

= 2E
4∑

l=1

ET̄Al
[Rc

ARc
B |XA,XB ], (56)

where the last equality is by symmetry.
Since RA = max1≤i≤4 RAi

, RB = max1≤j≤4 RBj
,

whereRAi
(RBj

) is the distance from nodeA (B) to
node A’s (B’s) kth nearest neighbor in theith (jth)
quadrant ofA’s (B’s) coordinate system, we haveRc

A ≤∑4
i=1 Rc

Ai
andRc

B ≤ ∑4
j=1 Rc

Bj
. Hence,

I2 ≤ 2E


 4∑

l=1

4∑
i=1

4∑
j=1

ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]


 . (57)

There are a total of 64 possible combinations of (l, i, j)
in Eq. (57). We show in the following lemma that each
of the 64 terms is at most of the orderλ−(1+c)+δ0 .

Lemma 5 For any (l, i, j) ∈ {1, 2, 3, 4}3 ,

E[ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]] ≤ C9λ

−(1+c)+δ0 , (58)

for any δ0 > 0 and some constantC9 if λ is sufficiently
large, whereC9 only depends onc, k and not onλ.

The proof of Lemma 5 pretty much follows that in
Proposition 2. On one hand, if the distanced between
nodesA andB is large, the probability thatTAl

occurs is
low. On the other hand, the probability that the distance
d is small is low. The proof is given in Appendix.

Combining Lemma 5 with Eqs. (53), (54) and (57),
we obtain

E[W ′
AW ′

B] ≤ (E[WU ]/λ)2 + 128C9λ
−(1+c)+δ0 . (59)

With Eqs. (44)–(46) and (59), we obtain Eq. (43).�
With Propositions 3 and 4, We can prove Theorem

3 in a similar manner to Theorem 2. Due to the space
limit, the proof is omitted.

V. DISCUSSIONS

Interpretation of derived results:By Theorem 2 and
3, we reach the following corollary.

Corollary 1 As λ →∞,

Wc = Θ
(

Γ(c/2 + k)
(k − 1)!

λ1− c

2

)
(60)

with probability approaching 1, whereWc is the critical
total power required for maintainingk-connectivity.

In general, the path loss exponent is2 ≤ c ≤ 4, although
our proof applies to anyc > 0. In the case ofc > 2,
Corollary 1 indicates that if the density is sufficiently
large, the increase in the density reduces the critical total
power, and in addition, the critical total power decreases
as the path loss exponent increases.

Comparing with the critical total power derived under
the uniform metric assumption (given in Eq. (1) and a
similar equation in [25]), we conclude that the critical
total power can be reduced by a factor ofΘ((log λ)c/2)
by allowing nodes to optimally choose different levels of
transmission power. This is not subject to any specific
algorithm, but rather a fundamental property in wireless
networks.

Legitimacy of the system model:We claim that the
assumption of a unit area region is an abstraction of the
real world. The unit area is not necessarily 1 meter2,
but instead can be used to model aL2meter2 area. That
is, we can rescale the unit area to a square area with
side lengthL and network densityλ0. In this rescaled
network, every pair of nodes have a small chance to be
very close to each other. A one-to-one correspondence
between the values in the unit-area network and those in
the rescaled network can be made and is given in Table
II.

Consider the average power consumed by each node.
In the unit-area network, the average power consumed by
each node is of orderλ−c/2 (the constant that containsk
is ignored). In the rescaled network, since each edge is
rescaled by a factor ofL, the power consumption should
be multiplied by a factor ofLc. However, if we consider
the side lengthL to be one unit, the node density in
the corresponding unit-area square becomesλ = λ0L

2.
Hence the average power consumption (in the rescaled
network) is nowλ−c/2Lc = (λ0L

2)−c/2Lc = λ
−c/2
0 ,

which only depends on the densityλ0 in the rescaled
network and not on the side lengthL of the area. On the
other hand, if we assume a common critical transmission
power among nodes fork-connectivity in the rescaled
network, each node has to consume power in the order
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TABLE II

ONE-TO-ONE CORRESPONDENCE BETWEEN THE VALUES IN THE

UNIT-AREA SQUARE AND THOSE IN THEL× L SQUARE.

in the unit-area square in the L× L square
1 L
r Lr

λ = λ0L
2 λ0

of λ
−c/2
0 (log λ0L

2)c/2,2 which tends to infinity ifλ0 is
fixed andL →∞.

VI. CONCLUSION

We have shown in this paper that in a heterogeneous
wireless network in which wireless nodes are distributed
in a unit square region[0, 1]2 according to a Poisson
point process with densityλ and nodes may transmit
with different levels of power, the critical total power re-
quired to maintaink-connectivity isΘ(Γ(c/2+k)

(k−1)! λ1−c/2)
with probability approaching 1, wherec is the path loss
exponent. This result is obtained by deriving a lower
bound and an upper bound on the critical total power.
By comparing the result against those obtained when all
nodes use the uniform critical transmission power fork-
connectivity [18], [25], we conclude that with the use
of (optimal) power control, the critical total power can
be reduced by an factor ofΘ((log λ)c/2), irregardless of
the power/topology control algorithm used.

In this paper we assume Torus convention to eliminate
the need to consider boundary effects. As has been
pointed out in [6], boundary effects may affect the
(uniform) critical transmission range fork-connectivity.
We will investigate whether boundary phenomena will
affect the critical total power required for maintainingk-
connectivity in heterogeneous networks. This is a subject
of future research.
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APPENDIX

First consider the restriction of|XA − XB | = d > ε
whereε is chosen such thatπε2 = λ−1+δ1 for any fixed
δ1 > 0.

E{d>ε}[ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]]

≤ E{d>ε}[ET̄Al
[1|XA,XB ]]

≤ P (T̄Al
∩ {d > ε})

≤ P (There are less thank nodes inC∗A(ε/2, (l − 1)π/2, lπ/2))

= exp(−λπ(ε/2)2/4)
k−1∑
i=0

(λπ(ε/2)2/4)i

i!

= exp(−λδ1/16)
k−1∑
i=0

(λδ1/16)i

i!

≤ C10λ
−(1+c), (61)

for someC10 > 0 whenλ is sufficiently large. Note that
the last inequality results fromexp(λδ1/16) grows much
faster than any polynomial function ofλ asλ →∞.

Next by Lemma 2 (withα = π/2), for any givenδ1 >
0, if λ is sufficiently large, there exists some constant
C11 > 0 such that

ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]

≤ E[Rc
Ai

Rc
Bj
|XA,XB ] ≤ C11λ

c(−1+δ1) (62)

Therefore,

E{d≤ε}[ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]]

≤ E{d≤ε}[C11λ
c(−1+δ1)]

= P (d ≤ ε) · C11λ
c(−1+δ1)

= πε2 · C11λ
c(−1+δ1)

= λ−1+δ1 · C11λ
c(−1+δ1)

= C11λ
−1−c+δ1(1+c) (63)

By settingδ1 = δ0/(c + 1), we obtain

E{d≤ε}[ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]] ≤ C11λ

−1−c+δ0 . (64)

Combining Eqs. (61) and (64), we obtain

E[ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]] ≤ C9λ

−1−c+δ0 . (65)
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