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Abstract—In this paper, we investigate the minimum The research on reducing power consumption while
total power (termed as critical total powej required to  maintaining -)connectivity has been approached inde-
ensure asymptotick-connectivity in heterogeneous wireless pendently along two thrusts. In one thrust, researchers
networks where nodes may transmit using different levels 4im to determine critical conditions on network param-
of power. We show that under the assumptipn that Wireles_s eters (such as the transmission range [19], [15], [17],
nodes form a homogeneous Poisson point process Wlth[18] [22], [25], the number of neighbors [25], [26]
density A on a unit square region [0, 1]?> and the Toroidal voLEsD ’ X 9 ! '

the minimum total power required [1], [4], [8], [20], or

model [17], the critical total power required for maintain- ) !
ing k-connectivity is @(W;&cﬂ) with probability ~ the node failure probability [23]) to ensure network (
approaching one as\ goes to infinity, wherec is the path )connectivity with high probability. Of particular interest
loss exponent. Compared with the result that all nodes use is how these critical conditions scale as the number of
a commoncritical transmission power for maintaining k- wireless devices increases. Take the transmission radius
ConneCtiVity [18], [25], we show that the critical total power as an example_ Consider a wireless network on a unit
can be reduced by an order of(log )*/? by allowing node  gisk on whichn nodes are uniformly and randomly
to optimally choose differ_ent levels of trgnsmission power. placed. Let-, denote as the critical (minimum) common
These results are not subject to any specific power/topology . . .

transmission radius required by all nodes to engure

control algorithm, but rather a fundamental property in o .
wireless networks. connectivity in such a network. Penrose showed in [18]

keywords—Stochastic processes/queuing theory, Graph that under the Torus convention assumption,
theory, Combinatorics P(nmr? —logn — (k — 1) loglogn + log(k — 1)! < 7)
= exp(—e 7). 1)

Wan and Yi further extended the results by considering
boundary effects in [25]. Take the minimum total power
A wireless ad hoc network is a collection of wire-of all the nodes required to maintain asymptotie (

less mobile hosts which communicate with each othgonnectivity (termed asritical total powel) as another
without the support of fixed infrastructure or centralizedxample. Both Blougtet al. [1] and Gomezet al. [8]
administration. It has gained tremendous attentions studied the critical total power for 1-connectivity, based
recent years because of its wide applications in civibn results on the asymptotic total weight for weighted
ian and military fields, and its capability of buildingminimal spanning trees [24], [27]. Rengaragiral. [20]
mobile wireless networks without the need for pregave the expectation of the (lower and upper) bounds on
existing infrastructures. One important issue in suchtlae critical total power for 1-connectivity. Clemesti al.
network is how to minimize power consumption whilg4] studied the problem of assigning transmission ranges
maintaining network connectivity. Minimizing power noffor wireless nodes so as to minimize the total power
only saves energy, but also reduces MAC-level collisiasonsumption in the special case of path loss exponent
and hence increases the network capacity. However, this 2 such that any pair of nodes are withinhops.

has to be performed subject to maintaining network In the other thrust, researchers aim to devise dis-
connectivity. As a matter of fact, in order to enabl&ibuted algorithms in which each node chooses its own
robust communications in the presence of mobility aricansmission power in order to minimize the total trans-
node failures, it is important that the networks dre mission power of all wireless nodes, while maintaining
connected. (k-)connectivity. This problem is, in general, NP hard
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in the Euclidean plane [5], and many researchers hayiges the expectation of (lower bound and upper bound
developed localized heuristics [21], [12], [14], [13], oof) the total power consumption (for 1l-connectivity),
efficient algorithms with bounded approximation ratiowhile the results in this paper are obtained in the asymp-
[11], [3], [9], [2]. totic sense. Obtaining asymptotic results is significantly
In this paper, we address the power consumptiomore challenging than obtaining expectations. Clementi
issue along the first thrust, and investigate tré@i- et al. [4] showed that given the upper bound on the
cal total powerrequired for maintaining asymptotic- number of hopsh, the total power incurred by the
connectivityin a random wireless network on a uninodes that are independently, uniformly distributed in
squareS = [0,1]%. Instead of imposing the uniforma unit square region i©(n'/") with high probability.
assumption that all the nodes are subject to the saffieeir result only applies to the path loss exponeat 2
common minimum power, we consider theteroge- and cannot be readily generalized to the case #f2.

neouscase and allow each node to choose its ownQur results are derived under theeterogeneityas-
transmission power. Specifically, I&¥;; be the critical sumption that different nodes may use different levels
transmission power nodé uses, andR;; the corre- of transmission power, and hence are more general than
sponding transmission range of nodender the power those derived under the uniform metric assumptions [7],
model W;; = Rf;, where2 < ¢ < 4 is the path loss [15], [18], [22], [25], [26]. Our results suggest that the
exponent. Then the critical total power of all the nodes tﬁ)wer saved using optimal, non-uniform transmission
We =Wy, = > Ri,, where the summation is takervanges is in an order dflog \)*/? as compared to that
over all the nodes in the network. Under the assumpti@ging optimal uniform transmission ranges. In a rescaled
that wireless nodes are distributed on a unit squaigtwork where the node density is kept fixed and the size
S = [0,1]* according to a homogeneous Poisson poipf the square region goes to infinity, our results indicate
process with density and with the use of the Toroidalthat the average power of each node is bounded if we
model (Torus convention) [17], we show that the criticalllow each node chooses its own transmission power to
total powerlV. = Rf; for maintainingk-connectivity maintain ¢-)connectivity, while the average power of
is @(%/\1—0/2) with probability approaching 1 aseach node is unbounded if all nodes have to choose
A — 00. a common power to maintaink{)connectivity. These
The result is obtained by deriving a lower bound angsults are not determined by a specific algorithm, but
an upper bound on the critical total power. The loweather a fundamental property in wireless networks.
bound is derived based on the necessary condition thatThe rest of the paper is organized as follows. In Sec-
every node must be able to reachith nearest neighbortion I, we state the system model, formulate the prob-
in order to maintain strong:-connectivity. The upper lem, and present preliminary material that will be used in
bound is derived based on an assertion (which is alsgbsequent sections. We then derive in Sections IlI-IV
proved in the paper) that the resulting network is strongtgspectively, the lower and upper bounds on the critical
k-connected, if every node can reach at ldasbdes in total power. Following that, we compare our result with
each of its four quadrants as long as there are at leashat derived under the uniform metric assumption and
nodes in that quadrant. (By “each of its four quadrantsdiscuss the issue on the transmission power model in
we assume that every node has its own coordinate syst@gttion V. Finally, we conclude the paper in Section VI
which is obtained by shifting the origin of th®,1]*> with a list of future research directions.
plane to its own location.) In the case that there are less
than & nodes in a quadrant, the transmission power of
the node should be sufficiently large to reach all of them.
Our work differs from (and is perhaps superior to) ex-
isting works in several aspects. Although several existing
works [1], [8], [20], [4] studied the similar problem, none In this section we present the system model, and in-
of them studied the critical total power férconnectivity troduce notations that will be used throughout the paper.
(k > 1). In particular, Bloughet al. [1] and Gomez We also define two frequently-used random variables:
et al. [8] derived the critical total power only for 1- Ry («) and Ry x(d, ) (to be defined in Subsection II-
connectivity. As the proof is based on the results on tl@&), derive their probability distributions and prove two
asymptotic total weight for weighted minimal spanningemmas that will be used in subsequent sections. Finally
trees, the result cannot be easily generalized to the case present, for the completeness of the paper, Palm
of k-connectivity fork > 1. The work reported in [20] theory on Poisson point process.

I[l. PRELIMINARIES



A. System model « We envision a (homogeneous) Poisson point process

P, on a unit square are& = [0,1]%. This is

often related to a binomial point process, i.e.,

n independent, uniformly distributed random 2-

dimensional vectors 0. We useX; to denote node

i's location (coordinate).

« We useC; to represent a (constant) function in-
dependent of\. Unless specified;’; only depends
on the path loss exponeatand sometimeg, both
of which are assumed to be constant in this paper.
We may explicitly expressg as the parameter of
C; when we need to use the function @f with a
different parameter (such &g).

o Let f(X) be a function on a random variable

in a coordinate system centered at itself. Toroidal model X (Which can be a vector). By probability the-
is also widely used when analyzing properties of large °7: the expectation off (X) is simply the inte-
scale networks ([17], [10] (page 22)). gral of f(X) over the probability space OK,
Let B, denote the (fixed) transmission range of node €~ EIf(X)] = [ f(X)dP. The expectation,
i. Different nodes may use different transmission power £cLf(X)], of a function f(.X) under restrictions
and hence have different transmission ranges. Nad® is the integral off(X) over the subse of the
directly transmit to nods if and only if d(i, j) < R;. probability space, i.e.Eq[f(X)] = [, f(X)dP =
We further assume that the transmission power of node J 1¢f(X)dP, wherelg is the indicator functlon
i is W; = R, where2 < ¢ < 4 is the path loss exponent of G. With this definition, by the law of total

(although our analysis applies to aay- 0). Hence the probability, E[f(X)] = Eclf(X)] + Ealf(X)],
total power of all nodes is where G denotes the complement set 6f and

by the law of conditional probabilityF¢|[f(X)] =

W=y W,=) R (2) E[f(X)|G]P(G), where P(G) is the probability

i€P i€Px that G occurs.

We define Bx(r) as the ball (disk in a 2-

dimensional space) centered &t with radius r,

andCx (0,0 + «) as the cone centered at, with

starting anglef, ending angled + «, where( <

f,a < 2m. The degree of con€x (6,6 + «) is

a. We useCx(r, 0,0 + «) to denote the region

Cx (0,0 + )N Bx(r).

o We write g(\) =~ h(A) if g(A\)/h(A) — 1 asA —
00, g(A) = o(h(N)) if g(\)/h(X) — 0 asX — oo,
andg(A) = O(h(X)) if g(A\) < C-h(\) asA —
for some constant’ (which may depend on the path
loss exponent).

We assume nodes are distributed on a unit square
S = [0,1]? according to a (homogeneous) Poisson point
processP, with density A. It is well accepted that
nodes whose locations are independent random variables,
each with a uniform distribution o1y, are essentially
a Poisson point process with densityif the network
size is large ([10], page 39). In addition, we assume the
Toroidal model (Torus convention) [17] to eliminate the
boundary effects. In the Toroidal model, the Euclidean
metric d(i,j) = |X; — Xj| is replaced withd(i, j) =
min, ¢ 132 | X; — X; — 2|, whereX; is the coordinate of
node:. Under the Toroidal model assumption, each node

can view the original plané), 1] as the plané—i, §]

The network can be viewed as a directed graph where’
each wireless node is a vertex and a directed edge exists
from vertex: to j if and only if node: can directly
transmit to nodg. The network is said to be-connected
if and only if the corresponding directed graph is strongly
k-connected, i.e., there exists a directed path from any
vertexi to any other vertey even if we remove ang—1
nodes from the network. Theritical total powerW, for
k-connectivityis defined as the minimum total power of
all nodes required to ensure strohgonnectivity in the
formed directed graph. As we are mostly interested in
k-connectivity in this paper, the critical total pow@r.
is henceforth by default fok-connectivity. . e

let I, ; be thecritical transmission power nodeuses, C. .RA”“(O‘) and R, x(d, o) and their probability distri-
and R, ; the corresponding transmission range of no&)émons
i, thenW, = S>W;; = 3. R¢,. We are interested in I an infinite regionR? with the Poisson point pro-

deriving the asymptotic bound on the critical total powei€sSP», we defineR) x(a) as a random variable that
W, as\ — +oo. represents the distance from a nodeJXatto its kth

nearest neighbor in a cone centereXaand with degree
a, i.e., Cx (0,0 + «). (For notational convenience, we
may also useR,(«) to representR) (o) when the
Table | gives the notations used throughout this papaeighbor referred to is clear from the context.) Clearly
Several comments are in order: the distribution ofR) () is independent of the choices

B. Notations



TABLE |
NOTATIONS USED

R Real line, oo, +00)
S [0,1)?
X A binomial process{ independent, uniformly distributed random 2-vectors)
Pa A homogeneous Poisson point process with density X, Xo,--- Xn, }
X Nodes’'s coordinate/location
Cj (Constant) function that does not depend.on
G The complement set off
1¢ The indicator function ofZ
E[f(X)] Expectation off(X), i.e., E[f(X)] = [ f(X
Ec[f(X)] Expectation off(X) Wlth the restrictionG, 1. e EG[f(X)] = [, [(X)dP
Bx (1) Ball of radiusr centered at locatioX’
Cx(a,B) Cone that is centered & and with the starting angle and the ending anglg
Cx(r,a, B) Bx(r) NCx(a, B)
R x(a)(= Ra(e)) Random variable for the distance from a paintto the kth nearest node iGx (6,0 + «)
R x(d,o)(= Rx(d,@)) | Random variable for the distance from a poixitto the kth nearest node iG% (d, 9,0 + «)
I'(s) Gamma function, i.el'(s) = [ t° e "dt
Fres)(z) c.d.f. of the Gamma dlstrlbutlon function, i () (z) = (D(s)) ™" t° e "dt
) g(A) =5 h(\) is interpreted ag(\)/h(N) — 1 asA — oo

of X and . P(Ry (o) > ) is the probability that R, .(d, ) can be interpreted as the distance from a node
at most k — 1 points in the Poisson point processt X to thekth nearest neighbor in a cone centeredat
Py fall in C%(r,0,0 + «), and can be expressed awith degreex, and within radiusi, i.e.,C%(d, 6,0+ ),
exp(— )\ar2/2) Skl M _The cumulative distribu- whered is a fixed value. In the case that there are less
tion function (cdf)FR .(a) @nd the probability den- than k& nodes in the cone within radiug, ) x(d, o)

sity function (p.d. f)fRA,k(a of Ryx(a) can then be is defined to be 0. Thusik§ Sk x(d, @) is a restriction of

expressed as RS ;.(), under the sub probability space that there are
at leastk nodes inC% (d,0,6 + «). The expectation of
FRy ey (r) = P(Ban(a) <7) . R ,.(d, ) can be similarly calculated as
_ 1oy BB it e 20, (g
o, otherwise; . d .
o) PIRS4(d.0)) = [ fi o)
U Qe ar sars2 i s T( + k) ( 2 >0/2
= (k=1 = 4 = 2 2= Fr(. \ad?/2), (7
{s 20 it () Fremaadia, @)
Also, the expectation ofz§ ,(«) (for ¢ > 0) can be whereFr. 2, is the c.d.f. of the Gamma distribution
calculated as with parameter:/2 + k. With fixed values otv, d, ¢, k >
. 00 . 0, Fr(cja+k)(Aad?/2) — 1 asA — oo. Hence, we obtain
B[RS ()] = ; fRy (@) (r)redr the following lemma (that will be used in subsequent
00 2 k—1 i
/ ()\ar(k/Q) o )\are_’\wzﬂrcdr sections).
(ghanging variable — Aar?)/2) Lemme_l 1 _For fixed values ofl > 0,c¢ > 0,a > 0 and
/oo . ( 2 > 5 k-1 k positive integer,
A ) (k—1)! D(S+k) [ 2\
0
 T(e/2+F) ( 2 )C/2 5) E[Ri,k(da a)] =\ B f\,k(a)] = h (E) . (8)
T k-1 \Xa/) _ . :
( _ )_ a_ Let A,B be two given nodes in the Poisson
WDOerke X thte I' function is defined as'(k) = point process P, in the square regionS, and
Jo t e dt. _ Rax(a)(Rpk(B)) be the distance fromt (B) to its
Another closely related random variable, x(d,a)  th nearest neighbor in a cone of degree 0. Specific
(for d > 0) is defined as choices of the cones and the locations of nodeand

Ry a(d, o) Ryi(), if Ryx(a) <d, ©) B are not important in the following lemma.
Ak 0, otherwise.



Lemma 2 measurable function defined on all pairs of the form
. . (146 Y, X) with X being a finite subset oR? and ) a
BlR) x k(@) R 5 k()] < CoX e ©) éubse)t oft, satisfyingh(), X') = 0 except wher)) has
for someCy, > 0 and any givers; > 0, if A is sufficiently J €lements. Then
large, whereCy, only depends or and « but not onA. A
E[ Y h(Y,Py)] = S ER(X;, X;UP),  (13)
Proof. For notational convenience, we denatg » x(«) VTP J:
and Rp ) i(«) respectively ask, and Rp in the fol-
lowing derivation. For any given; > 0, We can choose
¢ > 0 such thatae? /2 = \~1F9, We first note that

where the sum on the left-hand side is over all subsets
Y of the random Poisson point sg%, and on the right-
hand side the set; is a binomial process with nodes,

P(RsRp < €2) independent of°,.
> P(Ry<eandRp <e¢)
= 1—P(Ry>eo0r Rg >¢) [11. L OWER BOUND ON THE CRITICAL TOTAL POWER
> 1-(P(Ra>e€)+ P(Rp>e¢)) In this section, we derive the lower bound on the crit-
— 2/9)t ical total powerl¥, to maintain networkk-connectivity.
> 1—2exp(—Xae?/2) Z 7()\056,'/ ) P ¥
. 2.
pog Y Theorem 2 For any givens > 0, P(W, > (1 —
(A1) 1-¢ T(54k) _e
= 1-2exp(—\) . (10) 0)CoA"z) — 1 as\ — oo, whereCy = G
L
=0 The proof of Theorem 2 will be given through two
Thus, propositions. Clearly, in order to maintain strorig
k—1 (AB)i connectivity, every node must be able to reach at least
P(RARp > €?) < 2exp(—\") ——. (11) K other nodes. Thus a lower bound on the critical total
=0 " power is the summation of power incurred by each node
Now E[R¢.RS] can be expressed as such that each node can exactly reachks nearest
neighbor. Specifically, leX; be the location of node,
E[RY R3] r; the distance fronX; to nodei’s kth nearest neighbor,
= E[R4R§|RaRp < )P(RaRp < €%) W; = r¢, and N, the number of nodes in the Poisson
+E[R4GRG|RaRE > €|P(RaRp > €°) point processP, in [0,1]2. Then the total powelV/; =
< E[¢*|RaRp < €]P(RaRp < €) S Wy = M ¢ serves as a lower bound on the
+E[1|RARE > 62]]€P ERARB > €?) critical total power required to maintaik-connectivity.
—1 \61yi : . )
% 5 (A%) In what follows, we estimatéV;,. First, we derive the
< €4 2Zexp(—A ); il expectation ofiV,.
< (2/\_1+61/Oé> + O Proposition 1
= CA(1H0) (12) LS+ k
: . E[WL] ~y [E+k) )ng)\lfg- (14)
where the second inequality from the fact that (k—1)!

P(R4Rp < ¢*) <1 and Eq. (11). The third inequality proof, By Palm theory for the Poisson point process,
results from the choice of (ae?/2 = A1+ and the

N,
fact thate? grows much faster than any polynomial ~
E =F ‘] = AE[r§ 1
function of A\. The choice ofCy, Cj is independent of\ (W] [; ril = AElro); (15)
andJq if 9, is fixed and\ is sufficiently large. O By

where the last expectation is taken over the probability

space where node is randomly placed with a uniform
D. Palm theory on Poisson point process distribution onS, together with a set of nodes distributed

As Palm theory on the Poisson point process is useddacording to a Poisson point procéasand independent

multiple places in the paper, for the completeness of thé X,. Under the Toroidal model assumption, node O
paper, we state the theorem ([16], Theorem 1.6) beloviews all the nodes irP, as if they reside if—1, 1]

of a coordinate system with the origin &fy. Thus the
Theorem 1 (Palm theory for Poisson processes) Ldlistribution of ry is independent of the choice ofj.

A > 0. Supposej € N, and h(),X) is a bounded Let s be the distance fronX, to node 0'skth nearest



neighbor inP, in Bx,(1/2) if there are at least nodes where the last expectation is taken over the probability
in Bx,(1/2); and 0 otherwise. Thes has the same space whereA and B are uniformly and randomly
distribution asRM(%, 27). In addition, if s > 0 (which distributed onS, together with a set of nodes distributed
means there are at leastnodes inBx,(1/2)), then according to a Poisson point procegs.

ro = s. Thuss < rg and E[s] < E[r§]. Also, since  We first evaluateE[WW,4 W3] conditioning on the lo-

ro < 1, cations,X 4 and Xz, of nodesA and B.

Elrg] = Elrgls > 0]P(s > 0) + E[rG|s = 0]P(s = 0) E[WAWpg| = E[E[WaAWg|X 4, Xp]]. (22)
= FE[s°s > 0]P(s > 0)+ E[rgls=0]P(s=0) _. )
< E[s]+ P(s = 0). (16) Given the locationX 4 and Xp, let | X4 — Xp| = d.

Let G4 be the event that there are at legshodes in

Since P(s = 0) = e /4y k1 (Mi{‘l)i = o(A"%/?) as Bx,(d/2), Gp the event that there are at ledshodes

A — 0o and E[s¢] ~ —F(EJ;;?(M)*? (by Lemma 1), we " Bxs (d/2), andG = G4 N Gp. Then,
obtain EWaWg|X a4, XE]
. L(5+k) e = Eg[WaWp|Xa, Xp] + Eg[WaWp|Xa, Xp]. (23)
E[TO] A (k? N 1)| ()‘W) 2, )
(S + k) The first term of Eq. (23) can be expressed as
E[WL] = AE[T(C)] ~A 273)‘172 (17) c,.c
(k—1)r2 EqWaWpg|Xa, Xp] = Eq[rarplXa, Xs]
. = E[r9r5le|Xa, X5

As has been shown in Lemma 1, the restriction on
the distance to théth nearest neighbor in a fixed cone
(such as in one quadrant) can be ignored when the nQge. o
density A\ approaches infinity. In all the subsequent dis-
cussion, we ignore this restriction and assume, whenever 7, — ralg, = e
desirable, the distance to tiéh nearest neighbor can go 0,  otherwise;
to infinity (although with a small probability). ip=rplg, =4 B if rp < d/2,
In order to boundW, — E[W]|, we need to derive the 0, otherwise.
second moment off’;, (so that Chebyshov’s inequalityGiven the locationsX4 and X, 74 and 7 are com-

B
= E[r4r5lc,16,|Xa, XB]
E[f475| X4, XB],  (24)

ra, If rg<d/2,

can be applied). pletely determined by the node distributionx , (d/2)
- and that inBx, (d/2) respectively. Since the two regions
Proposition 2 By ,(d/2) and Bx,(d/2) are disjoint,74 and 7 are
E[W?) < E[WL]? + CsA“t% asA — 0o,  (18) Independent. Hence we can evaluate their expectations
separately:
wheredy > 0 is arbitrary but fixed and’3 is a constant
independent of\. EcWaWp|Xa, Xp]
= E[F3|Xa, XB]E[F5|Xa, XB]. (25)
Proof.
A Note that the expectation af; conditioned onX 4 and
E[Wf] _ E[(Z Wi)2] Xp, Eg[WaWpg| X4, Xp], is taken over the probability
P space of a Poisson point proceBg on S. For each

Nx instance (realization) oP, on S, we can define*4 to
= E_W7I+2E[ > WW;(19) be thekth nearest neighbor distance of nodewith
i=1 1<i<j<Ny node B removed fromS. Thenr 4 < 74. Clearly, 74 is
SinceW? = ¢, by Proposition 1 we obtain independent of nodB’s location.r 4 is also independent
of node A’s location because of the homogeneous Pois-
E[i W2 — E[i r2] T(c+k¢)ﬂ,c)\1,c (20) son point process assumption and the Toroidal model
T A =) ' assumption. ThusZ[7 | X4, X5] < E[f4|Xa, X5] =
E[r4]. Finally, 74 is just the distance between node
f%hich is uniformly and randomly placed of) and
its kth nearest neighbor fror®, on S. Thus E[r4] =
2F] Z WW;] = N EWaWg], (21) E[rg], where E[r§] is given in Eq. (15). Therefore,
1<i<j<Ny E[f%’XA,XB] < E[TS] Similarly, E[’FB’XA,XB] <

i=1
For the second term of Eq. (19), we apply Palm theo
for the Poisson point process again and obtain



E[r§]. Since E[WL] = AE[r§] by Eg. (15), we obtain Combining Egs. (28) and (31), we obtain
that ElEg, 1| Xa, Xpl] < CaA™1=cH0. (32)
Combining Egs. (22), (23), (26) and (32), we obtain
_ E[WaAWg] < (E[WL]/A)? 4+ CeA~(ctDF0  (33)
It remains to evaluate the second term o _
Ea[WaWg| X4, Xg] in Eq. (23). Sincel = G4 UG, Finally combining Egs. (19)-(21) and (33), we obtain

E[EgIWaWg|Xa, X5]]
< BIE[(]?) = E[rg]* = (B[WL]/N)?  (26)

we have Eq. (18). O
We are now in a position to prove Theorem 2.
EqWaWp|X 4, X] Proof of Theorem 2By Chebyshov’s inequality, for any

<Eq,[WaWp|Xa, Xp] + Eq,[WaWs|Xa,X5]  givens > 0, when) — oo,
=Eq,[rarg|Xa, Xl + Eq,[rarg|Xa, Xs]

o e C P(|Wy — E[WL]| > & E[WL])
2Eq, [rarplXa, X5, (27) - Var(Wg,
where the last equality is by symmetry. —  02E[WL]?
The basic idea to bound , [r7;|X 4, Xp] is that _ EW} - EW.)?
if the distance(, between nodesl and B is large,G 4 N S2E[WL)?
occurs with low probability, and that the probability that - CaA1—eF
the distancel is small is low. Specifically, consider the ~  §2E[WL)?
restriction of | X4 — Xp| = d > € wheree is chosen N Cy\1—ctdo 34
such thatre? = A=+ for any fixedd; > 0. Th s (fz(c/)?;%) \2—¢’ (34)
k—1)!)2me
Eli>aEq,[rarp|Xa, Xs]] where the last equation tends to 0)agoes to infinity if
< Brasqlfg, [1Xa, Xp]] we choose), < 1. HenceP(W, > (1-¢")E[W]) — 1
< P(Gan{d>e}) _ as\ — oo. SinceW, > Wy, we haveP(W, > (1 —
< P(There are Iesks 'ghala nodes inB(e/2)) §')E[Wy]) — 1 asA — oco. By Proposition 1E[W;] >
— (\(e/2)2)" Y M 1-¢
_ exp(—/\w(e/Q)Q)Z( ( { )7) (18" gy A for sufficiently large values of.
& Consequently we have
k— 1 5
(N0 /4) S+ k
= exp(—\"/4) Z / P (Wc > (1— 5’)2gx"> 1, (35)
i=0 (k — 1)'7T2
< A0t (28) as\ — co. Given anys > 0, we can findd’ > 0 such
2
for someCy > 0 when \ is sufficiently large. Note that that (1 —¢")° > (1 - d), and hence a& — oo,

. . 61 E kj
the last inequality results_ fromxp_(/\ /4) grows much W.> (1-4) I'(5+k) NE) L (36)
faster than any polynomial function of as A — oo. (k — 1)z

Next by Lemma 2 (witho = 2r), for any givens, > for any givend > 0, which completes the proof. O
0, if X\ is sufficiently large, there exists some constant

Cs > 0 such that IV. UPPER BOUND ON THE CRITICAL TOTAL POWER
Eg , [rarg|Xa, XB] In this section, we derive an upper bound on the
< E[r4r$|Xa, Xg] < CsAC1H9) (29)  critical total power required to maintaitconnectivity.
As will be shown later in this section, the upper bound
Therefore, turns out to be of the same order as the lower bound,
Elg<g (B, [rars| X a, X]] not pnly in terms QfA but also in term's of. ,
< Bi<q [CAc(=1H01)) Given the coordinates of all nodes in the plaogl ],
_ P(d_< ) - CA(=1+0) eaph node can _deflne its own coordlqate system py only
S ,65/\c(71+51) shifting the origin of thg0, 1] plane to |'Fs own location.
= AL g e 1) We use(z;,y;) to represent the coordinate of a node
o N R0 (30) in the original coordinate system (i.e., the pldfgl]?)
and define thg@-norm distancel, between two noded
By settingd; = dp/(c + 1), we obtain and B as

Efg<e|Eq, [rarg|Xa, Xp]] < CsA™17¢t%. (31) dp(A, B) = (lwa — xP + lya —ysP)"?.  (37)
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Fig. 1. lllustration for Lemma 3

If p = 00, do(A,B) = max(|xa — xpl|,|lya — yp|). positive z-axis but not the positivg-axis). Since there
Clearly p-norm distance does not change under thexists at least one nodg in the first quadrant of node
conversion from the original plane to a new coordinaté’s coordinate system, nodé's power must be able to
system with a new origin. Throughout this paper, weeach at least one other noden the first quadrant of its
use 2-norm distance as the “distance” unless otherwisaordinate system. Clearlys(A, C') < da(A, B) since
specified, andAB| to representlz (A, B). We first prove node A’'s power is not sufficient to reach nodg. In
a geometric result on strong 1-connectivity. addition, there exists no path from nodéto nodeB;
otherwise there would be a path from nodeto node
Lemma 3 Given the locations of all nodes on the plané3. Now we consider two possible cases.
[0,1]%, if each node chooses its power level to reach a) Case () ys — ya < x5 — x4 (Fig. 1 (@) In
at least one neighbor in each of the four quadrants ifhis cased. (A4, B) = 25 — 24 = a and|y4 — y5| < a.

its own coordinate system as long as there exist one |Gt P be the intersection point of the cycle centered at
more nodes in that quadrant, the resulting network ig \ith radiusdy (A, B) and the positivej-axis in node
strongly (1-)connected. (To eliminate the ambiguity in's coordinate system. LeE be the intersection point
which quadrant the axis lines belong to, we assign th the y-axis in A’s coordinate system and a horizontal
positive z-axis to the first quadrant, the positiveaxis |ine through nodeB. Then |BE| = a. As yo — ya <

to the second quadrant, and so on.) |AC| < |AB| andyp —y4 = |AE|, we haveyc —yp <

Proof. We prove the lemma by contradiction. If théAB’ — |AE| < |BE| = a. On the other handyc >
4 and henceyc — yg > ya — yg > —a. Therefore

resulting network is not strongly connected, there exiﬁ{ =
at least a pair of nodeg,(j) such that there exists no yc —ys| <a,
(directed) path from nodé to nodej. Among all the ~ Similarly, zc > x4, and hencerc — zp > wa —
pairs, we choose the onwith the smallesto-norm %8 = —a. In addition, aszc — x4 < [AC| < |AB|
distance In case of a tie, we choose the pair with thend 2z — x4 = |BE|, we havezc — zp < [AB| —
smallest 2-norm distance. Let the chosen pair be nod&F| < [AE| < a. Thereforelzc — x| < a. As such,
(4, B). It suffices to find a pair of disconnected noded® concludel (B, ') = max(|zc — 2|, lyc —ysl) <
(Y, Z) such thatds (Y, Z) < doo(A, B), or doo (Y, Z) = d~ (A, B), which violates the assumption on the pair of
doo (A, B) anddy(Y, Z) < da(A, B). nodes(4, B).

Without loss of generality, we assume that there is b) Case (i) yp — ya > xp — xza(Fig. 1 (b))
no directed path from4d to B, and nodeB is in the In this cased.(A,B) = yp —ya = a > |xp — x4|.
first quadrant in nodel’s coordinate system, i.e,4 < Let D be the intersection point of the cycle centered at
zp,ya < yp (note that the first quadrant includes thel with radiusds(A, B) and the positiver-axis in node



A’s coordinate system. Lell be the intersection point nodesY, Z must have a smallex-norm distance or the

of the z-axis in A’s coordinate system and a verticasameoco-norm distance but smaller 2-norm distance (all)
line through nodeB. Then|BE| = a. As x¢ > x4, we under the Toroidal model thad, B do.

havexg —xp > x4 —ap > —a. Also, sincerg —x 4 < Lemma 3 can be easily extended to accommodate the
|AC| < |AB| andzp—z4 = |AE|, we haverc —zp < case of strong:-connectivity as follows.

|AB| — |AE| < |BE| = a. Thereforelz¢c — 25| < a.

Sinceyc —ya < |AB| andyp — ya = |BE|, we Lemma 4 Given the locations of all nodes on the plane
haveyc — yp < |AB| — |BE| < |AE| < |BE| = a. [0,1]?, if each node chooses its power level to reach at
Also, sinceyc > ya, we haveyc —yp > ya — yp = leastk neighbors in each of the four quadrants in its own
—a. Therefore,|yc — yp| < a. As such, we conclude coordinate system, as long as there ekist more nodes
deo(B,C) < a = dx(A, B) with equality held if and in that quadrant (in the case that there are less than
only if yo = ya. If yo # ya, we reach the contradiction.nodes in a quadrant, the transmission power of the node

Now assumeyc = ya. By the way nodesA and is chosen to reach all of the nodes in that quadrant), the
B are selected, we havec > xp because otherwiseresulting network is stronglj-connected.
doo(B,C) = doo(A,B) and dy(B,C) < da(A, B),
which violates the assumption on the pair of nodd¥oof. After removing anyk—1 nodes from the network,
(A, B). Now we obtain a disconnected pair of nodegach node can still reach at least one neighbor in each of
(C, B) that also has the smalless-distance among all its four quadrants, as long as that quadrant still contains
the disconnected node pairs, noffeis in the second some nodes. By Lemma 3, the remaining network is

quadrant in nod&"’s coordinate system, and strongly connected. Therefore, the original network is
at least stronglyk-connected. O
e — x| <lyc —ys| (38) Since the above simple topology control mechanism

(as/ACB > r/4). Now we carry out the above alnalysisensures strong-connectivity in the underlying graph,
on the node pair@, B). As the positivey-axis belongs the total power incurred based on this mechanism pro-

to the second quadrant and by Eq. (38), we can only 'Bies an upper bound on the critical total power required
to case (i). That is, we can find a pair of nodes B) or k-connectivity. In what follows, we derive an upper
such that there exists no directed path fr6io B and bound on the critical total power based on the above
doo (G, B) < doo(C, B) = doo(A, B). This violates the topology control algorithm.

_ Ny ;
assumption on the pair of nodéd, B), and completes L€t Wu = 32,2y Wj, where W} is the power con-
the proof, [ sumed by node under the topology control mechanism

The above proof is primarily based on the distan&@tmduced in Lemma 4, and the summation is taken over
metrics without use of the Toroidal model. However, @l the points generated by a Poisson point process with

can be easily extended to the distance metrics under HRISIY A on [0, 1]?. Clearly W, < Wy. We have the
Toroidal model by the following two observations. (if°llowing major result.

Under the Toroidal model, each node views all other /2

nodes on the plané—L 112 of its own coordinate 'N€0reM 3 P(We < (1+0)C7(c)A/%) — 1 asA —
system, and thus thep-horm) distance between two™’ for any4 > 0, where
nodesA, B under the Toroidal model is the same as the AT(S + k) (4 3
(p-norm) distance without use of the Toroidal model, in Cr(c) = k-1 (W>
node A’s coordinate system if nod& (and all other _ _
nodes) are properly mapped to the plapel, 1]? of The .p'roof of Theorem 3 will 'be given through two
node A’s coordinate system. With this observation an@fOPOSitions and one lemma. First we evaluate the ex-
the above proof, ifA, B are the pair of nodes holdingPectation ofi¥.

the extremal property under the Toroidal model, we can i

find a pair of nodesY,Z having a smallersc-norm Proposition 3 E[Wy] < C7(c)A'~% as A — oo, where
distance or the samso-norm distance but a smaller 2-C7(c) is given in Eg. (39).

norm distance (all) without the Toroidal model in nOd%ro
A’s coordinate system than nodds B; (ii) Distance of

(39)

of. By Palm theory for the Poisson point process, we

any pair of nodes under the Toroidal model is always nB?Ve N,
larger than the distance without the Toroidal model (no E[Wy] = E[Z Wi = AE[W], (40)

matter under whose coordinate system). Now the found 1
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where the last expectation is taken over the probabilityhere the last expectation is taken over the probability
space where node 1 is randomly placed with a uniforspace where noded and B are uniformly randomly
distribution on the regioty, together with a set of nodesdistributed in the regiory, together with a set of nodes
that are distributed according to a Poisson point procehat are distributed as a Poisson point process with
P, and independent ok . density A and is independent of the locations of nodes
Let Ry, 1 < i < 4, be the distance from node 1 toA and B.
its kth nearest neighbor in th#h quadrant of nodé’s First we evaluateE[W/ W] conditioning on the
coordinate system, an®®; = max{R;,,1 < ¢ < 4}. locations,X4 and X, of nodesA and B, i.e.,
The power required for nodeis thenWW, = RS. Since
R;.’s are independent and have the salme dilstribution as E[WAWp] = E[E[WiWp|Xa, Xp]] (47)
Ry k(m/2)* under the Poisson point process assumptioBjven the locationsX 4, X, let d = | X4 — Xp|. For

the expectation off/] can be expressed as eachi € {1,2,3,4}, let T4, be the event that at least
k nodes fromP, fall in node A’s ith quadrant within

E[W{] = E[Rf] radiusd/2, andTp, the event that at leagt nodes from
< E[R], +Rj, + R, + R{] P, fall in node B’s ith quadrant within radiug/2. Let
~y AE[RS . (7/2)] Ta =N T, Tg =N Tg, andT = Ta N Tp. That

AT(c/2 + k) [ 4 c/2 is, T denotes the event that at ledstodes in the Pois_so_n
e <E> ; (41) point proces$, fall in each of the four quadrants within

, radiusd/2 in node A’s coordinate system and in each
where the last equality results from Eq. (5). Thus, byf the four quadrants within radiug/2 in node B’s

Eq. (40), we have coordinate system. By the law of total probability,
EWy] = AE[W{] < Cr(c)A' 5. (42) E[W,\W5|X A, X5]
0 = Ep[W\Wh|Xa, Xp] + Es[WiWh| X, X5 (48)

In order to boundWy — E[Wy]|, we need to estimate The first term in the above Eq. (48) can be written as
the second moment di/;. R
Er[WiWg|Xa, X5]

Proposition 4 = Er[RyRp|Xa, Xp]
E[WE] < E[Wy]? + Cs\! =+ as \ 43 = E[lrR}Rp[Xa, Xp]
for any giveny, > 0 and some constartts > 0 that is = E[RGR%| X4, X5l (49)
independent oA. - -
where Ry = Ralp, = RAl{RASd/Qj’ and @B =
Proof. Rplr, = Rpl{g,<4/2- Now, clearly Ry and Ry are
N independent because they depend on the node distribu-
EWg] = ED_ WP tions in two disjoint regionsBy, (d/2) and Bx,, (d/2),
i—1 respectively. Therefore, we can evaluate their expecta-
N tions separately, i.e.,
= E[Z W% + 2E[ Z W/ W7).(44) o N N
— i Er[W/\ Wg|Xa, XB] = E[R|X 4, XB|E[R%|X 4, XB]. (50)
(2 SU<JS IV
SinceW/? = R%, by Proposition 3 we have By a similar argument to that in Proposition 2, we obtain
al Al E[R}|X4,Xp] < E[R{] = E[Wy]/A
2 27 1—c - ’ = 1 Ulr 4
E[Z; Wi = B[} RP] = Cr(2)N'™. (45) E[RG| XA, Xp] < E[RS] = E[Wyl/A.  (51)
It remains to determine the second term of Eq. (44)hus
ﬁg\?elymg Palm theory for the Poisson point process, we Er[W,\Wh| X4, X5] < (E[WU]/)\)Q. (52)
Combining Egs. (47), (48) and (52), we obtain
2E[ ) W/Wj = NE[W,Wp], (46) 9 Fas. (47), (48) and (52)
1<i<j <Ny BWiWp] < (E[Wy]/N)? + BIBEf[WAWg|Xa, X5]] (53)

More precisely, R:, is slightly different from Ry (r/2). By NOW it remains to determine the second term of Eq. (53),
carrying out a proof similar to that in Proposition 1, we can showhich we denote a$,, i.e.,
that the ratio of the expectations derived usiRg ;(7w/2) to that
using the precise version dt;, tends to 1 as\ — oo. I, = E[EfWi{Wg5| X4, X5]]
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= FE[Ef[RGR%| X4, XB]]. (54) V. DISCUSSIONS

Interpretation of derived resultsBy Theorem 2 and

Since 3, we reach the following corollary.

T = (U?:ITAL) U (U?:ITBz% (55)

Corollary 1 As\ — oo,
it follows that

I'(c/2+k .

. W.=6 (7&/_ B, ))\15> (60)

I, < EY B, [RGRE|Xa, X5 | . o o
=1 with probability approaching 1, wher@’, is the critical

4 total power required for maintaining-connectivity.

+EY " B, [RGRE|Xa, X5)
=1 In general, the path loss exponentist ¢ < 4, although
4

our proof applies to any > 0. In the case ot > 2,
Corollary 1 indicates that if the density is sufficiently
large, the increase in the density reduces the critical total
where the last equality is by symmetry. power, and in addition, the critical total power decreases
Since Ry = maxi<i<4 Ra,, Rp = maxi<j<4 Rp, 8 the path loss exponent increases. _

where R4, (Rp,) is the distance from node (B) to Comparing with the critical total power derived under
node A's (B's) kth nearest neighbor in théh (jth) the uniform metric assumption (given in Eq. (1) and a
quadrant ofA’s (B’s) coordinate system, we have, < similar equation in [25]), we conclude that the critical
4 R andRS < Z?ZI RS, . Hence, total power can be reduced by a factor@f(log \)*/?)

' ! by allowing nodes to optimally choose different levels of
transmission power. This is not subject to any specific

4 4 4
I, < 2F ZZ ZETA, (RS R% |Xa,X5]| . (B57) algorithm, but rather a fundamental property in wireless
=1 i=1 j=1

= 2E) Er, [RARB|Xa, X5, (56)
=1

networks.
Legitimacy of the system modalNe claim that the
There are a total of 64 possible combinationsiof,(j) assumption of a unit area region is an abstraction of the
in Eq. (57). We show in the following lemma that eacheal world. The unit area is not necessarily 1 nmgter

of the 64 terms is at most of the ordir (1+¢)+d but instead can be used to modelamete? area. That
is, we can rescale the unit area to a square area with
Lemma 5 For any (1,1, j) € {1,2,3,4}3 side lengthZ, and network density\q. In this rescaled

network, every pair of nodes have a small chance to be
E[Eg, [RS, R% | Xa, Xp] < Cor~(Fato — (58) very close to each other. A one-to-one correspondence
oo between the values in the unit-area network and those in
for any 8, > 0 and some constartty if ) is sufficiently the rescaled network can be made and is given in Table
large, whereCy only depends om, k& and not on. 1.
Consider the average power consumed by each node.
The proof of Lemma 5 pretty much follows that inln the unit-area network, the average power consumed by
Proposition 2. On one hand, if the distanédetween each node is of ordex—¢/2 (the constant that contairs
nodesA andB is large, the probability thafs, occurs is is ignored). In the rescaled network, since each edge is
low. On the other hand, the probability that the distan¢escaled by a factor af, the power consumption should

d is small is low. The proof is given in Appendix. be multiplied by a factor of.¢. However, if we consider
Combining Lemma 5 with Egs. (53), (54) and (57)the side lengthL to be one unit, the node density in
we obtain the corresponding unit-area square becommes \oL>.

Hence the average power consumption (in the rescaled
E[W4Wp] < (E[Wy]/M\)? +128CoA~ 1+ (59) network) is nowA=¢/2L¢ = (A\gL2)~¢/2L¢ = X\;/?,
which only depends on the density in the rescaled
With Egs. (44)—(46) and (59), we obtain Eq. (43).00 network and not on the side lengihof the area. On the
With Propositions 3 and 4, We can prove Theorewther hand, if we assume a common critical transmission
3 in a similar manner to Theorem 2. Due to the spapewer among nodes fok-connectivity in the rescaled
limit, the proof is omitted. network, each node has to consume power in the order



TABLE I
ONE-TO-ONE CORRESPONDENCE BETWEEN THE VALUES IN THE
UNIT-AREA SQUARE AND THOSE IN THEL x L SQUARE

(3]

in the unit-area square in the L x L square [4]
1 L
r Lr

A= AL? Ao (5]

of )\gC/Q(log Mo L?)¢/2 2 which tends to infinity if\g is  [6]

fixed andL — oc.
[7]
(8]

We have shown in this paper that in a heterogeneous
wireless network in which wireless nodes are distributeé!
in a unit square regiori0, 1]> according to a Poisson
point process with densitph and nodes may transmit
with different levels of power, the critical total power re:
quired to maintaink-connectivity is@(%/\l—cﬂ) [11]
with probability approaching 1, whekeis the path loss
exponent. This result is obtained by deriving a loweiy
bound and an upper bound on the critical total power.
By comparing the result against those obtained when all
nodes use the uniform critical transmission powerkfor
connectivity [18], [25], we conclude that with the usé3l
of (optimal) power control, the critical total power can
be reduced by an factor & ((log \)*/?), irregardless of [14]
the power/topology control algorithm used.

In this paper we assume Torus convention to elimingtes]
the need to consider boundary effects. As has been
pointed out in [6], boundary effects may affect thepg;
(uniform) critical transmission range fdrconnectivity.
We will investigate whether boundary phenomena wil
affect the critical total power required for maintainihg [18]
connectivity in heterogeneous networks. This is a subj%cé]
of future research.

VI. CONCLUSION

[20]
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APPENDIX

First consider the restriction dfX4 — Xp| =d > ¢
wheree is chosen such thate? = A~1*9 for any fixed
o1 > 0.

Etasey[Br, [RGB, | Xa, XB]]
E{d>e}[ETA [1|XA7XBH
P(Ta, N {d > €})
P(There are less thakh nodes inC}(e/2, (I — 1)w /2,17 /2))

K=l N (e/2)2 /4)
_ exp(—)\w(e/2)2/4)z—()\ LR

k-1

exp(—A%/16) Z

1=0
< Cror~ 19, (61)

A

<
<

)\51 /16

for someCyy > 0 when \ is sufficiently large. Note that
the last inequality results frorxp(\%* /16) grows much
faster than any polynomial function of as A — oo.

Next by Lemma 2 (withn = 7/2), for any givend; >
0, if X\ is sufficiently large, there exists some constant
C11 > 0 such that

< E[RY,R,|1Xa, Xp] < Cod ™) (62)

Therefore,

Ela<qlEr,, [RA, Rp, | Xa, X5]]
Epgeg[C1 A1)
P(d<e)- CH)\C(—H&)
me? - Cll)\c(ipﬂsl)

_ )\—1—}—51 i Cll)\c(_1+61)

Cﬂ)\—l—c-l-&(l-l-c) (63)

I IA

By settingd; = dp/(c + 1), we obtain
Era<glEr, [RG, R | Xa, Xp]] < Cid™' =%, (64)
Combining Egs. (61) and (64), we obtain
BBy, (RS R, |Xa, Xp]] < CoA™1 ¢4, (65)
O



