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Program generators are most naturally specified using a quote/antiquote facility; the programmer

writes programs with holes which are filled in, at program generation time, by other program
fragments. If the programs are generated at compile-time, analysis and compilation follow gen-

eration, and no changes in the compiler are needed. However, if program generation is done at
run time, compilation and analysis need to be optimized so that they will not overwhelm overall

execution time. In this paper, we give a compositional framework for defining program analyses

which leads directly to a method of staging these analyses. The staging allows the analysis of
incomplete programs to be started at compile time; the residual work to be done at run time

may be much less costly than the full analysis. We give frameworks for forward and backward

analyses, present several examples of specific analyses, and give timing results showing significant
speed-ups for the run-time portion of the analysis relative to the full analysis. Our framework is

defined on abstract syntax trees (AST), because program fragments appear as AST’s. We give

a translation from source-level code to an intermediate representation (IR) and show that our
staging methodology is applicable at the IR-level, too.

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis; D.3.4 [Programming Languages]: Processors—

Code generation

General Terms: Languages, Performance

Additional Key Words and Phrases: runtime program generation, program analysis

1. INTRODUCTION

We are concerned here with languages in which code generators are specified by
embedding quoted program fragments within a larger program (the meta-program)
[Kamin et al. 2003; Oiwa et al. 2001; Poletto et al. 1997; Czarnecki et al. 2004].
These quoted fragments include “holes” — portions of the program that are to
be filled in with other fragments to generate a complete program (see Figure 1).
Such systems provide a natural, easy to understand method of creating program
generators. They raise several kinds of research questions: What properties of
generated programs can be inferred from the initial set of fragments? How quickly
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Code genBody(int n) {

  for(int i=0; i<n; i++){
    c = $< ‘(c) * x >$ ;
  }
  return c;
}

Code genPower5() {
  return $< int power5(int x) {
              return ‘(genBody(5));

}
            }  >$;

  Code c = $< 1 >$ ;
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int power5(int x) {
  return 1*x*x*x*x*x;
}

Fig. 1. Terminology for program generators. When a fragment fills in a hole, we call it a plug.

Note that a fragment is never used as a plug until all of its holes have been filled.

can the generated program be generated? The latter is of most interest when
program generation occurs at run time.

This paper addresses the question: how quickly can static analyses be performed
on generated programs? To be precise: We are given a program P [•, . . . , •] with
holes, and a collection of plugs Q1, . . . , Qn. We want to find the result of some
static analysis when applied to P [Q1, . . . , Qn]. We could, at run time, fill in the
plugs and run the analysis. However, we can save time by preprocessing P and the
Qi, and then combining them at run time to produce the same result.

We present a framework for static analyses which allows us to make a clear
distinction between compile time — when we know all the fragments, but do not
know which fragments will fill in which holes in which other fragments — and run
time — when we create the generated program and can do the analysis. The ability
to stage analyses depends upon finding an accurate representation for the dataflow
functions; we present representations for several analyses. The staging can produce
substantial speed-ups in the analyses.

We begin the technical presentation (Section 3) with our forward analysis frame-
work, illustrating it with a simple analysis, uninitialized variables. We discuss how
the framework allows for efficient staging of analyses, and in Section 4 present a col-
lection of analyses. Section 5 presents the backward analysis framework. Section 6
gives performance results for various analyses and benchmark programs. We give
a translation from the source program to an intermediate representation in Section
7 to show that our framework is also applicable to IR-level code. The proofs of the
main theorems given in the paper are available at the Appendix.

The contributions of this paper are four-fold: (1) We define frameworks for for-
ward and backward analyses of abstract syntax trees (AST), including break state-
ments, which explains how analyses can be staged. Staging requires that dataflow
functions be represented “adequately.” (2) We give representations for several
dataflow problems, and for staged type checking. (3) We provide experimental
evidence of speed-ups from staging. (4) We show that our framework for staging
analyses is also applicable at the intermediate representation (IR) level by giving a
translation from source code to IR-level code.

This paper is an expanded version of [Kamin et al. 2006].
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2. RELATED WORK

Our work shares with several others a concern with representation of dataflow
functions, and some of our representations have appeared previously. In the area
of interprocedural dataflow analysis, Sharir and Pnueli [Sharir and Pnueli 1981]
introduced the idea of summarizing the analysis of an entire procedure. Rountev,
Kagan and Marlowe [Rountev et al. 2006] discuss concrete representations for these
summary functions, to allow for “whole program” analysis of programs that use
libraries; our representation for reaching definitions appears there. Reps, Horwitz,
and Sagiv [Reps et al. 1995] give representations for a class of dataflow problems,
including reaching definitions and linear constant propagation. (Interprocedural
analysis is similar to staged analysis in that one can think of the procedure call as
a “hole,” and the procedure as a “plug.” However, the control flow issues are very
different; that work must deal with the notion of “valid” paths — where calls match
returns — while we must deal with multiple-exit control structures.) To parallelize
static analyses, Kramer, Gupta and Soffa [Kramer et al. 1994] partition programs
and analyze each partition to produce a summary of its effect on the program as a
whole.

In hybrid analysis [Marlowe and Ryder 1990], Marlowe and Ryder partition a
program based on strong components, representing dataflow functions for each
component. A representation for reaching definitions that is “adequate” in our
sense is given there. Marlowe and Ryder also talk about incremental analysis
where the problem is to maintain the validity of an analysis during source program
editing. But note the subtle but important distinction between incremental analysis
and staged analysis: there, any node can change at any time; here, some parts of
the program are fixed and some unknown, and the goal is to fully exploit the fixed
parts.

In approximate analysis [Smith et al. 2003], the meta-program is analyzed to
determine as much as possible about what the generated program will look like.
This approach has the advantage of avoiding run-time analysis entirely, but the
disadvantage that the analysis results are very approximate.

Lastly, we mention the work of Chambers et al. [Chambers 2002]. That work
has the ambitious goal of automatically staging compilers: a user can indicate when
some information will first become available, and the system will produce an opti-
mizer to efficiently perform the optimization at that time. The broad goals of that
work — optimizing run-time compilation — are the same as ours. However, we are
much less ambitious about the use of automation (and, indeed, that work accommo-
dates a limited number of optimizations); we are, instead, providing a mathematical
framework that can facilitate the manual construction of staged analyses.

3. FRAMEWORK FOR FORWARD ANALYSIS

Our framework differs from the standard one [Aho et al. 1986] in that it ana-
lyzes abstract syntax trees (ASTs), not control-flow graphs (CFGs). Since program
fragments appear as ASTs, this is the natural unit of analysis for our purposes.
Note that we are considering only intraprocedural analysis in this paper. However,
as noted above, our techniques have much in common with some interprocedural
analyses; we expect the extension to be relatively straightforward.
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In AST-based static analysis, as in standard control flow graph-based analysis,
each node is, in the end, assigned a value from a lattice Data of dataflow values.
However, in the AST case, the assignment is performed by a traversal of the tree
(rather than by a worklist algorithm), possibly including multiple traversals of some
subtrees. Thus, each node has input data (received from its neighbor to the left or
right, depending upon whether we are considering a forward or backward analysis)
and output data. A key difference is that the AST contains nodes that represent
entire subtrees, so that the calculation of output data from input data may be the
composition of many smaller calculations. Whereas in a CFG, the function from
input data to output data given by any one node is relatively small, in an AST it
can be very large. (AST’s do, of course, contain those ”small nodes” as well; they
just have more nodes overall.)

Given a (hole-free) subtree, taken out of context, we cannot say what its value
is because we do not know its input data. We do know the function from Data
to Data that it represents. Now suppose we have representations for functions
that arise in a particular analysis. Then we can handle staging of the analysis
like this: For all AST’s, calculate this function for every maximal hole-free subtree.
This leaves a prefix of the original AST, with some subtrees pruned and replaced
by function representations. (For hole-free plugs, the entire tree is replaced by its
function representation.) At run time, the code-generating code associated with
each fragment [Kamin et al. 2003] is accompanied by the fragment’s representation
tree. When the fragments are combined to form the entire program, the static
analysis can be performed on the combined tree. Time is saved because there
is no need to traverse the program’s entire AST, and also because there may be
optimizations applicable to the function representations.

The staging process is illustrated in Figure 2.
In this section, we present our framework in three steps. The first framework

covers the language without break statements; the second adds break statements;
and the third — the full framework — adds the feature of assigning a dataflow value
to each node rather than just to the root. For each of these three frameworks, the
plan is the same:

(1) Present an analysis framework F for calculating dataflow values for AST’s in
a lattice Data.

(2) Present a framework R for calculating representations of dataflow functions,
given an “adequate” representation R.

(3) Give a theorem relating representations produced by R to dataflow functions
given by F .

(4) Give an alternative method of calculating representations, called FR, more
efficient than R, which uses the definition of F but applies it to representations
rather than dataflow values.

As a running example in these sections, we use uninitialized variables, an analysis
that calculates a list of variables that may have been used without being initialized.

The first framework contains only simple control structures; the theorems are
trivial in this case, but we introduce notation and explain how staging works.
The second framework handles break statements. These two frameworks calculate
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Fig. 2. Staging a data flow analysis. • is a regular AST node, ◦ is a hole, and � is a representation.

e ∈ Exp

x ∈ Var
` ∈ Label

P ∈ Pgm ::= x = e | skip | if(e) P1 else P2 | P1;P2

| while(e) do P | ` : P | break `

Fig. 3. The language treated in this paper

dataflow values only for the root of an AST; the final framework calculates values
at each node within an AST.

Figure 3 shows the abstract syntax of the language we treat in this paper. We
use a Java-like language for concrete syntax. Keep in mind that this is the language
inside quotations. We do not include holes because these are not proper elements
of the language. To avoid notational complexities, we allow holes only in statement
position; allowing holes in expression position poses no fundamental problems.

Dataflow values are assumed to come from a lattice, called Data. Define DFFun
to be the function space Data→ Data (confined to functions that preserve >Data).

3.1 Simple Control Structures

Our first framework (Figure 4) treats a subset of the full language, programs with
only sequencing and conditionals. F assigns an element of DFFun to every program.
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FJskipK = id

FJx = eK = asgn(x, e)

FJP1;P2K = FJP1K;FJP2K

FJif(e) P1 else P2K = exp(e); (FJP1K ∧ FJP2K)

Fig. 4. First framework.

We use semi-colon (;) for function composition in diagrammatic order. The meet
(∧) operation on functions is defined pointwise, and id is the identity function in
DFFun. asgn and exp are the only functions specific to a particular analysis. The
types of all the names appearing in this definition are:

id : DFFun
asgn : Var× Exp→ DFFun
exp : Exp→ DFFun
; : DFFun×DFFun→ DFFun
∧ : DFFun×DFFun→ DFFun

We earlier stated that we allow only >-preserving functions in DFFun. The identity
function has this property, and function composition and meet preserve it, so we
need only to confirm it for asgn and exp for each analysis.

To get the result of the static analysis of P , apply FJP K to an appropriate initial
value.

As an example, we define an analysis for variable initialization. Here, Data =
P(V ar)2, with ordering

(D,U) v (D′, U ′) if D ⊆ D′ and U ⊇ U ′

The datum (D,U) at a node means that D is the set of variables that definitely
have definitions at this point, and U is the set that may have been used without
definition.

asgn(x, e) = λ(D,U).(D ∪ {x}, (vars(e) \D) ∪ U)
exp(e) = λ(D,U).(D, (vars(e) \D) ∪ U)

vars(e) is the set of variables occurring in e. It is easy to see that asgn(x, e) and
exp(e) preserve >Data (the pair (V ar, ∅)).

Returning to the general case, our task is to find representations of elements of
DFFun for each analysis.

Definition 3.1. Suppose R is a set with the following values and functions (>R
is not used until the next subsection):

>R : R expR: Exp→ R
idR : R ;R : R×R→ R
asgnR: Var× Exp→ R ∧R : R×R→ R

R is an adequate representation of a dataflow problem if there is a homomorphism

abs : R→ DFFun
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RJskipK = idR

RJx = eK = asgnR(x, e)

RJP1;P2K = RJP1K ;R RJP2K

RJif(e) P1 else P2K = expR(e) ;R (RJP1K ∧R RJP2K)

Fig. 5. Representation function for the first framework.

from (R,>R, idR, asgnR, expR, ;R ,∧R) to (DFFun,>DFFun, id, asgn, exp, ; ,∧). Specif-
ically, this requires

abs(>R) = >DFFun = λd.>Data
abs(idR) = id
abs(asgnR(x, e)) = asgn(x, e)
abs(expR(e)) = exp(e)
abs(r ;Rr′) = abs(r); abs(r′)
abs(r ∧R r′) = abs(r) ∧ abs(r′)

Define R : Pgm→ R to be the function in Figure 5.

Theorem 3.2. If R is an adequate representation, then for all P , abs(RJP K)
= FJP K.

Proof. A trivial structural induction.

For uninitialized variables, a natural representation, which is also adequate, is
almost the same as Data:

R = P(V ar)2 ∪ {>R}

For any fragment P , RJP K is the pair containing the set of variables definitely
defined in P and the set possibly used without definition in P . The operations on
this representation are1

idR = (∅, ∅)
asgnR(x, e) = ({x}, vars(e))
expR(e) = (∅, vars(e))
(D,U) ;R (D′, U ′) = (D ∪D′, U ∪ (U ′ \D))
(D,U) ∧R (D′, U ′) = (D ∩D′, U ∪ U ′)

The abs function is defined as

abs(D,U) = λ(D′, U ′).(D′ ∪D,U ′ ∪ (U \D′))

We note that abs(>R) necessarily equals λd.>Data, as required by the definition
of adequacy.

To illustrate the analysis, we show a program annotated with the value of RJP K
for each subtree P :

1Throughout the paper, to avoid clutter, we ignore > when defining functions; in every case, the

definitions of asgn(x, e), exp(e) should check for >Data, and ;R and ∧R should check for >R.
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FRJskipK = idR

FRJx = eK = asgnR(x, e)

FRJP1;P2K = FRJP1K ; FRJP2K

FRJif(e) P1 else P2K = expR(e) ; (FRJP1K ∧R FRJP2K)

Fig. 6. FR for the first framework.

// ({x, y}, {x, z}) (entire fragment)
y = x; // ({y}, {x})
if (z > 10) // ({x}, {x, y, z}) (‘if’ statement)
{ // ({x, w}, {x, y}) (‘true’ branch)

w = 15; // ({w}, ∅)
x = x + y + w; // ({x}, {x, y, w})

} else
x = 0; // ({x}, ∅)

In Figure 3, we included while statements in our language. They can be defined
using a maximal fixpoint in the usual way:

FJwhile(e) do P K = mfxp(λp.exp(e); (FJP K; p ∧ id))

If we were to includeRJwhile(e) do P K in Figure 5, we would define it as whileR(RJeK,
RJP K), where whileR is a function specific to each analysis. We will not mention
this further, however, because in each of our examples, the function whileR is not
very interesting: whileR(r1, r2) is either r1;R r2;R r1 or r1;R r2;R r1;R r2;R r1. That
is, only a fixed number of iterations of the loop body is required.

In principle, we could now move on to staging, using R to calculate the repre-
sentation of fragments. In practice, we calculate them by using the definition of F .
This method will turn out, when applied to the full framework, to be more efficient;
see page 13. The difference is that R is a purely bottom-up algorithm, while F is
more top-down; the situation is similar to the use of an accumulator parameter in
functional programs, which can turn a quadratic algorithm into a linear one [Ireland
and Bundy 1999].

Define FR : Pgm → R → R to be the function in Figure 6, with the relevant
operations defined as follows:

idR = id
asgnR(x, e) = λr.r ;R asgnR(x, e)
expR(e) = λr.r ;R expR(x, e)
f ∧R g = λr.fr ∧R gr

Definition 3.3. Two representation values, r and r′, are equivalent, denoted r ≡
r′, if abs(r) = abs(r′).

Theorem 3.4. If R is adequate, then for all P and r, FRJP Kr ≡ r ;RRJP K.

Proof. The proof is by induction on the structure of P . Details provided in the
Appendix.

Corollary 3.5. FRJP KidR ≡ RJP K.
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FJskipK = id

FJx = eK = λ(η, d).(η, asgn(x, e)(d))

FJbreak `; K = λ(η, d).(η[` 7→ d ∧ η(`)],>Data)

FJ` : P K = λ(η, d). let (η1, d1)← FJP K(η, d)

in (η1[` 7→ >Data], d1 ∧ η1(`))

FJP1;P2K = FJP1K;FJP2K

FJif(e) P1 else P2K = λ(η, d). let (η1, d1)← FJP1K(η, exp(e)(d))
(η2, d2)← FJP2K(η, exp(e)(d))

in (η1, d1) ∧ (η2, d2)

Fig. 7. Framework with break statements

Proof.

abs(FRJP KidR) = abs(idR;RRJP K)
= abs(idR); abs(RJP K)
= id; abs(RJP K)
= abs(RJP K)

If abs is injective — in which case we call R an exact representation — then we
can replace ≡ by = in the above theorems. All the analyses we define in this paper
are exact.

We are now ready to stage static analyses, as depicted in Figure 2. The first
stage calculates values of R, using FR, and the second, run-time, stage uses F to
complete the analysis.

3.2 Break Statements

We expand our analysis now to labelled statements and break-to-label statements.
We will see that an adequate representation in the sense of the previous section can
be extended uniformly to a representation for this case.

Throughout the paper, we assume all programs are legal in the sense that they
do not contain nested labelled statements with the same label.

An environment η is a function in Env = Label→ Data. Now the incoming and
outgoing values are pairs:

FJP K : Env ×Data→ Env ×Data

The extended analysis is shown in Figure 7. asgn and exp have the same types as
in the previous section; semi-colon is again function composition (in the expanded
space), and id is the identity function. We extend meet to environments element-
wise and then to pairs component-wise.

To explain Figure 7: Suppose a statement P is contained within a labelled state-
ment with label `, and we are evaluating FJP K(η, d). d contains information about
the control flow paths that reach P . η contains information about all the control
flow paths that were terminated with a break ` statement prior to reaching P ; since
there may be more than one, η(`) gives a conservative approximation by taking
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RJskipK = (>EnvR
, idR)

RJx = eK = (>EnvR
, asgnR(x, e))

RJbreak `; K = (>EnvR
[` 7→ idR],>R)

RJ` : P K =let (η, r)←RJP K
in (η[` 7→ >R], r ∧R η(`))

RJP1;P2K =let (η1, r1)←RJP1K, (η2, r2)←RJP2K
in (η1 ∧R (r1;R η2), r1;R r2)

RJif(e) P1 else P2K = let (η1, r1)←RJP1K, (η2, r2)←RJP2K
in expR(e);R ((η1, r1) ∧R (η2, r2))

Fig. 8. Representation for framework of Figure 7

the meet of all those paths. Thus, if P is break `, then d is incorporated into the
outgoing environment by taking d ∧ η(`). Furthermore, the “normal exit” from P
is >Data, which ensures that any statement directly following P will be ignored
(since, for any statement Q, FJQK preserves >Data in its second argument). Now
consider labelled statements. FJ` : P K(η, d) first calculates FJP K(η, d). A normal
exit from ` : P can be a normal exit from P or a break to `, so we take the meet
of these two values. Furthermore, the binding of ` in the environment is reset to
>Data, since a subsequent statement could be labelled `.

Representations of these functions are derived from representations of functions
in DFFun. Assume R is an adequate representation of DFFun. It can be extended
to a representation ER of functions in the space Env×Data→ Env×Data. Define
EnvR = Label→ R. Then

ER = EnvR ×R

Figure 8 gives a function to calculate representations. Although very similar
to F , R has one crucial difference. For statement P1;P2, where F simply uses
function composition, R calculates an explicit value. Of particular interest is the
way environments are affected. The environment given by RJP2K incorporates all
the control flow up to any break statements in P2. The new environment augments
each value in that environment by adding r1, which is the dataflow information for
a normal exit from P1. That is, an abnormal exit is either an abnormal exit from
P1 or a normal exit from P1 followed by an abnormal exit from P2. Furthermore,
if there is a break to the same label from both P1 and P2, the total effect is that
two separate paths meet after the statement with that label, so the functions in the
two environments are joined.

Defining the abstraction function:

absE : ER → (Env ×Data→ Env ×Data)
absE(ηR, r) = λ(η, d).(λ`.η(`) ∧ abs(ηR(`))d,abs(r)d)

we have the following theorem.

Theorem 3.6. If R is adequate, then for any legal program P , absE(RJP K) =
FJP K.
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FRJskipK = idR

FRJx = eK = λ(η, r).(η, asgnR(x, e)r)

FRJbreak `; K = λ(η, r).(η[` 7→ r ∧R η(`)],>R)

FRJ` : P K = λ(η, r). let (η1, r1)← FRJP K(η, r)
in (η1[` 7→ >R], r1 ∧R η1(`))

FRJP1;P2K = FRJP1K;FRJP2K

FRJif(e) P1 else P2K = λ(η, r). let (η1, r1)← FRJP1K(η, expR(e)r)

(η2, r2)← FRJP2K(η, expR(e)r)
in (η1, r1) ∧R (η2, r2)

Fig. 9. FR with break statements.

Proof. The proof is by induction on the structure of P . Details are provided
in the Appendix.

Again, we can (and do) calculate R by reinterpreting F using the operators of
R. The function

FR : Pgm→ ER → ER

is defined as given in Figure 9 where asgnR and expR are exactly the same as in
the previous section; idR has the same definition but different type.

Theorem 3.7. Let P be a legal program, and (η, r) = RJP K. Then, for all η′

and r′, as long as η′(L) = >R for any label L that occurs in P , we have

FRJP K(η′, r′) ≡ (λ`′.η′(`′) ∧R (r′ ;R η(`′)), r′ ;R r).

Proof. The proof is by induction on the structure of P . Details are provided
in the Appendix.

Corollary 3.8. FRJP K(>EnvR
, idR) ≡ RJP K.

Proof. Let RJP K = (η, r). Then, by the theorem above,

FRJP K(>EnvR
, idR) ≡ (λ`′.>EnvR

(`′) ∧R (idR ;R η(`′)), idR ;R r)
= (λ`′.>R ∧R (idR ;R η(`′)), idR ;R r)

which means

absE(FRJP K(>EnvR
, idR)) = absE((λ`′.>R ∧R (idR ;R η(`′)), idR ;R r))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(>R ∧R (idR ;R η(`′)))d′′,abs(idR ;R r)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(>R)d′′ ∧ (abs(idR); abs(η(`′)))d′′, (abs(idR); abs(r))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η(`′))d′′,abs(r)d′′)
= absE((η, r))
= absE(RJP K)

Again, ≡ can be replaced by = for all the analyses we present in this paper.
Adding a break statement to our previous example, we show the values of FRJP K(>EnvR

, (∅, ∅))
for each node P .
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// ({L 7→ ({x, y}, {x, z})}, ({x, w, y}, {x, z}))
y = x; // (∅, ({y}, {x}))
if (z > 10) // ({L 7→ ({x}, {z})}, ({x, w}, {x, y, z}))
{ // (∅, ({x, w}, {x, y}))

w = 15; // (∅, ({w}, ∅))
x = x + y + w; // (∅, ({x}, {x, y, w}))

} else
{ // ({L 7→ ({x}, ∅)},>)

x = 0; // (∅, ({x}, ∅))
break L; // ({L 7→ (∅, ∅)},>)

}

Note that in the topmost node, w is in the defined set for normal exit even though it
is not defined in both branches of the if-statement. This is because the flow reaches
the end of the if-statement only if the then-branch where w is defined is taken.

The approach to staging is unchanged.

3.3 The Framework

The frameworks described so far lack one important ingredient: they do not give us
information about each node in the AST, but only about the root node of the AST.
Most static analyses are used to obtain information at each node: What definitions
reach this particular node? What variables have constant values at this particular
point in the program? Etc.

The complete analysis returns a map giving data at each node. Assuming each
node in a Pgm is uniquely identified by an element of Node, we define NodeMap =
Node ◦→Data (partial functions from Node to Data). Now,

FJP K : NodeMap× Env ×Data→ NodeMap× Env ×Data

We also change the type of asgn:

asgn : Node×Var× Exp→ DFFun

for cases (such as reaching definitions) where Node is contained within Data. In
cases such as uninitialized variables, the first argument is ignored. The full forward
analysis is shown in Figure 10.

As in the previous section, we can start with an adequate representation and
create a representation for this analysis. Specifically, define

FR = (Node ◦→R)× EnvR ×R

The abstraction function becomes:
absF : FR → (NodeMap× Env ×Data→ NodeMap× Env ×Data)
absF (ϕR, ηR, r) = λ(ϕ′, η′, d′).(ϕ′ ∪ (λn.abs(ϕR(n))d′), λ`.η′(`) ∧ abs(ηR(`))d′, abs(r)d′)

Representations are calculated by function R as given in Figure 11.

Theorem 3.9. If R is adequate, then for any legal program P , absF (RJP K) =
FJP K.

Proof. The proof is similar to the proof for the intermediate framework (The-
orem 3.6).
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FJn : skipK = λ(ϕ, η, d).(ϕ[n 7→ d], η, d)

FJn : x = eK = λ(ϕ, η, d).let d′ ← asgn(n, x, e)(d)

in (ϕ[n 7→ d′], η, d′)

FJn : break `K = λ(ϕ, η, d).(ϕ[n 7→ >Data], η[` 7→ d ∧ η(`)],>Data)

FJn : (` : (n1 : P ))K = λ(ϕ, η, d). let (ϕ1, η1, d1)← FJn1 : P K(ϕ, η, d)
in (ϕ1[n 7→ d1 ∧ η1(`)], η1[` 7→ >Data], d1 ∧ η1(`))

FJn : (n1 : P1; n2 : P2)K = λ(ϕ, η, d). let (ϕ1, η1, d1)← FJn2 : P2K(FJn1 : P1K(ϕ, η, d))

in (ϕ1[n 7→ d1], η1, d1)

FJn : if(e) n1 : P1 else n2 : P2K = λ(ϕ, η, d). let (ϕ1, η1, d1)← FJn1 : P1K(ϕ, η, exp(e)(d))
(ϕ2, η2, d2)← FJn2 : P2K(ϕ, η, exp(e)(d))

in ((ϕ1 ∪ ϕ2)[n 7→ d1 ∧ d2], η1 ∧ η2, d1 ∧ d2)

Fig. 10. Forward analysis framework

RJn : skipK = ({n 7→ idR},>EnvR
, idR)

RJn : x = eK = ({n 7→ asgnR(n, x, e)},>EnvR
, asgnR(n, x, e))

RJn : break `K = ({n 7→ >R},>EnvR
[` 7→ idR],>R)

RJn : (` : (n1 : P ))K = let (ϕ, η, r)←RJn1 : P K
in (ϕ[n 7→ r ∧R η(`)], η[` 7→ >R], r ∧R η(`))

RJn : (n1 : P1; n2 : P2)K = let (ϕ1, η1, r1)←RJn1 : P1K, (ϕ2, η2, r2)←RJn2 : P2K
in (λn′. if ϕ1(n′) defined then ϕ1(n′)

if ϕ2(n′) defined then r1;R ϕ2(n′)
if n′ = n then r1;R r2 ,

η1 ∧R (r1;R η2),
r1;R r2)

RJn : if(e) n1 : P1 else n2 : P2K = let (ϕ1, η1, r1)←RJn1 : P1K, (ϕ2, η2, r2)←RJn2 : P2K
in (expR(e);R ((ϕ1 ∪ ϕ2)[n 7→ (r1 ∧R r2)]),

expR(e);R (η1 ∧R η2),

expR(e);R (r1 ∧R r2))

Fig. 11. Representation for framework of Figure 10.

We can define FR as in previous sections, and obtain

Theorem 3.10. Let P be a legal program and (ϕ, η, r) = RJP K. Then for all
ϕ′, η′ and r′, as long as η′(L) = >R for any label L that occurs in P , we have

FRJP K(ϕ′, η′, r′) ≡ (ϕ′ ∪ λn.r′ ;R ϕ(n), λl.η(l) ∧R (r′ ;R η(l)), r′ ;R r)

Proof. The proof is similar to the proof for the intermediate framework (The-
orem 3.7).

The importance of FR can now be explained. R calculates the node map ϕ
bottom-up. Suppose RJP K = (ϕ, η, r), and consider ϕ(n), where n is a node in
P . ϕ(n) says how to calculate a data value at n given input data at P ; that is, it
represents the computation from the start of P to n. In calculating RJP1;P2K, the
subcomputation RJP2K returns a node map ϕ2 representing computations within
P2. The result for P1;P2 has to give values for nodes in P2 that represent the
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n1: // entire fragment

n2: y = x;

n3: if (z > 10)

n4: {
n6: w = 15;

n7: x = x + y + w;

} else
n5: {
n8: x = 0;

n9: break L;

}

Fig. 12. The example program with numbered nodes.

computation starting at P1. Thus, it not only produces values for each node in P1,
but also calculates new values for every node in P2. Extending this reasoning to
a list of statements P1; . . . ;Pn, we see that values for all the nodes in Pn will be
calculated n times, for all the nodes in Pn−1 n−1 times, etc. Thus, the complexity
of RJP K is quadratic in the size of the P . F uses, in effect, an accumulator, passing
ϕ through the entire tree, and thus calculates a value for each node just once.

Our previous example with numbered nodes is in Figure 12. We show the value
of RJP K only at the top node. The environment and data values are just as in
Section 3.2: {L 7→ ({x, y}, {x, z})} and ({x, w, y}, {x, z}), respectively. The node
map is:

{ n1 7→ ({x, w, y}, {x, z}), n2 7→ ({y}, {x}), n3 7→ ({x, w, y}, {x, z}),
n4 7→ ({x, w, y}, {x, z}), n5 7→ >R, n6 7→ ({w, y}, {x, z}),
n7 7→ ({x, w, y}, {x, z}), n8 7→ ({x, y}, {x, z}), n9 7→ >R }

Note that the values associated with the nodes are different from those in the
previous analyses. This node map incorporates what is known about each node at
the top node (as in [Sharir and Pnueli 1981]). For example, when we get through
node n6, we will have defined w and y, and will have used x and z possibly without
definition. Thus, suppose we put this fragment into a hole at a position where x
has been defined. We can look at, for example, node n6 and immediately find that
only z may have been used without definition. In general, we have the chance to
query the data of only selected nodes without analyzing the entire tree, which can
have a salutary effect on the run-time performance of the analysis. Note also that
the fragment as a whole definitely defines w, even though it is only defined in one
branch of the conditional; since the else-branch ends in a break, control can only
reach the end of this statement by taking the then-branch.

Again, staging is not fundamentally different in this more complicated framework.
One new wrinkle is that a single plug cannot be used to fill in two holes because its
node names would then not be unique in the larger AST; thus, nodes in plugs need
to be uniformly renamed before insertion in a larger tree, a process that is easily
done.
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4. ADEQUATE REPRESENTATIONS

We now present several analyses. Like variable initialization, all the representations
we present here are exact.

4.1 Reaching Definitions I (RD)

The reaching definitions (RD) at a point in a program include any assignment
statement which may have been the most recent assignment to a variable prior to
this point. Representations for this analysis have been given in [Marlowe and Ryder
1990; Reps et al. 1995; Rountev et al. 2006].

D ∈ Data = P(Node) ∪ {>}

Sets in Data are ordered by reverse inclusion, with ∅ being the element just below
>. The operations are

asgn(n, x, e) = λD.(D \Dx) ∪ {n}
exp(e) = λD.D

where Dx are the definitions of x. The representation is:

R = (P(Var)× P(Node)) ∪ {>R}

Suppose K ∈ P(Var) and G ∈ P(Node). If RJP K = (K,G), K are all the variables
defined in P and G are the assignment statements that define those variables and
may reach the end of P .

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {n})
expR(e) = (∅, ∅)
(K1, G1);R (K2, G2) = (K1 ∪K2, G2 ∪ (G1 \K2))
(K1, G1) ∧R (K2, G2) = (K1 ∩K2, G1 ∪G2)

abs(K,G) = λD.G ∪ (D \K)

where G \K = {n ∈ G |n is not the definition of some x ∈ K}.

Theorem 4.1. R for RD is an exact representation.

Proof. To show that a representation is exact (i.e. abs is an isomorphism
between R and DFFun), we need to prove two claims:

(1) R is adequate (i.e. abs defines a homomorphism)
(2) abs is injective. (i.e. ∀r1, r2 ∈ R, r1 6= r2 ⇒ abs(r1) 6= abs(r2))

Claim 1: R for RD is adequate.
Proof:

· abs(>R) = λD.>Data holds by definition.
· abs(idR) = abs((∅, ∅)) = λD.∅ ∪ (D \ ∅) = λD.D = id
· abs(asgnR(n, x, e)) = abs(({x}, {n})) = λD.{n} ∪ (D \ {x}) = λD.{n} ∪ (D \
Dx) = asgn(n, x, e)
· abs(expR(e)) = abs((∅, ∅)) = λD.∅ ∪ (D \ ∅) = λD.D = exp(e)
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· abs((K1, G1);R (K2, G2)) = abs((K1 ∪K2, G2 ∪ (G1 \K2)))
= λD.G2 ∪ (G1 \K2) ∪ (D \ (K1 ∪K2))
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) ∩ (D \K2)) (1)

abs((K1, G1)); abs((K2, G2)) = (λD.G1 ∪ (D \K1)); (λD.G2 ∪ (D \K2))
= λD.G2 ∪ ((G1 ∪ (D \K1)) \K2)
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) \K2)
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) ∩ (D \K2))
= (1)

· abs((K1, G1) ∧R (K2, G2)) = abs((K1 ∩K2, G1 ∪G2))
= λD.G1 ∪G2 ∪ (D \ (K1 ∩K2)) (2)

abs((K1, G1)) ∧ abs((K2, G2)) = (λD.G1 ∪ (D \K1)) ∧ (λD.G2 ∪ (D \K2))
= λD.G1 ∪ (D \K1) ∪G2 ∪ (D \K2)
= λD.G1 ∪G2 ∪ (D \ (K1 ∩K2))
= (2)

Therefore, R for RD is adequate.
Claim 2: abs is injective.
Proof: By contradiction. Let r1 = (K1, G1), r2 = (K2, G2) and r1 6= r2, which

implies K1 6= K2 and/or G1 6= G2. Assume abs(r1) = abs(r2). Then we have

λD.G1 ∪ (D \K1) = λD.G2 ∪ (D \K2)

which means, for all D ∈ Data,

G1 ∪ (D \K1) = G2 ∪ (D \K2)

Now there are two cases to consider: K1 = K2 and K1 6= K2.

—For the first case, take D to be the empty set. Then we get G1 = G2. But this
conflicts with our initial assumption.

—For the second case, without loss of generality, assume K1 \K2 6= ∅. We can pick
D to be {n} for some n ∈ Node such that n : x = e, x ∈ (K1 \K2) and n 6∈ G1.
Then we end up with the equality

G1 ∪ ∅ = G2 ∪ {n}

which is impossible because G1 does not include n.

4.2 Available Expressions (AE)

Available expressions (AE) are those expressions that have been previously com-
puted, such that no intervening assignment has made their value obsolete. A given
statement makes some expressions available, kills some expressions (by assigning
to the variables they contain), and lets others pass through unmolested.

E ∈ Data = P(Exp) ∪ {>}

Sets in Data are ordered by set inclusion.

asgn(n, x, e) = λE.(E ∪ {e′ | e′ ∈ sub(e)}) \ Ex
exp(e) = λE.E ∪ {e′ | e′ ∈ sub(e)}
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where Ex is the set of expressions in E that contain x, and sub(e) is the set of all
subexpressions of e.

The following seems an obvious representation.

R = (P(Var)× P(Exp)) ∪ {>R}

The R value (K,G) represents that G is the set of expressions made available by
a statement, and K is the set of variables defined by that statement (so that the
statement kills any expressions containing those variables).

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {e′ | e′ ∈ sub(e), x 6∈ vars(e′)}
expR(e) = (∅, {e′ | e′ ∈ sub(e)})
(K1, G1);R (K2, G2) = (K1 ∪K2, G2 ∪ (G1 \K2))
(K1, G1) ∧R (K2, G2) = (K1 ∪K2, G1 ∩G2)

abs(K,G) = λE.G ∪ (E \K)

where G \K = {e ∈ G |none of the variables in e occur in K}.
However, this is not an adequate representation for the analysis. Consider the

statement: if (cond) {a = . . .; . . . = a+ b} else {}. Suppose that a+ b is available
before this statement. It will also be available afterwards. However, since there is
an assignment to a in one branch, the statement kills any expression containing a.
Furthermore, a+ b is not generated in the other branch. Thus, the representation
of if-statement is ({a}, ∅). But this will kill the incoming definition of a+ b.

To obtain an adequate representation, we need to record that some expressions
are guaranteed to survive a statement, even if they contain variables that are in its
kill set, while others will be killed, as usual. We do this by putting annotations on
expressions in the available set:

Definition 4.2. For set S, SAnnot = {smust | s ∈ S}∪{ssur | s ∈ S}. Also define
the operation “·” on annotations: must ·must = must and otherwise α ·α′ = sur,
where α, α′ are annotations.

Our analysis uses the set ExpAnnot. The annotation sur stands for the case
when there is a path in the fragment that lets the incoming expression survive.
The annotation must stands for the case when there is no such path, so that the
statement itself must define the expression if it is to be available. The dot operation
encapsulates the notion that an expression can survive a conditional statement as
long as it can survive at least one of the branches.
Then, this analysis is defined as follows:

R = P(Var)× P(ExpAnnot) ∪ {>R}

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {e′must | e′ ∈ sub(e), x 6∈ vars(e′)}
expR(e) = (∅, {e′must | e′ ∈ sub(e)})
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(K1, G1);R (K2, G2) = (K1 ∪K2,
{emust | emust ∈ G2}∪
{eα | esur ∈ G2, eα ∈ G1}∪
{esur | esur ∈ G2, eα 6∈ G1, vars(e) ∩K1 = ∅}∪
{eα | eα ∈ G1, e

′
α 6∈ G2, vars(e) ∩K2 = ∅})

(K1, G1) ∧R (K2, G2) = (K1 ∪K2,
{eα·α′ | eα ∈ G1, e

′
α ∈ G2}∪

{esur | eα ∈ G1, e
′
α 6∈ G2, vars(e) ∩K2 = ∅}∪

{esur | eα ∈ G2, e
′
α 6∈ G1, vars(e) ∩K1 = ∅})

abs(K,G) = λE.{e | emust ∈ G}∪
{e | esur ∈ G, e ∈ E}∪
{e | e ∈ E, eα 6∈ G, vars(e) ∩K = ∅}

The most interesting case is in the definition of semicolon, when esur ∈ G2 and
e ∈ G1 (with either annotation). In that case, e is included in the available set,
even if it is killed by K2. Looking again at the if statement we discussed above,
the true branch gives ({a}, {(a + b)must}), and the false branch gives (∅, ∅). The
meet of these values is ({a}, {(a+ b)sur}). This value summarizes the effect of the
if statement correctly: if (a+ b) is in the incoming available set, then it will be in
the resulting available set.

Theorem 4.3. R for AE is an exact representation.

Proof. The proof is similar to the proof for RD in Section 4.1.

4.3 Reaching Definitions II (RD2)

Using annotations, we give an alternative representation for reaching definitions.
We will call this analysis RD2. Here we annotate sets of definitions of a variable; a
must subscript indicates that the set includes all possible definitions of the variable,
while a sur subscript indicates that there is some path in this statement through
which a previous definition of the variable might survive.

Let N ∈ P(Node) in the following definitions.

S ∈ R = (Var→ P(Node)Annot) ∪ {>R}

idR = λv.∅sur
asgn(n, x, e) = (λv.∅sur)[x 7→ {n}must]
exp(e) = λv.∅sur

S1;R S2 = λx. let Nα ← S1(x), N ′α′ ← S2(x)
in if α′ = must then N ′α′ else (N ∪N ′)α

S1 ∧R S2 = λx.let Nα ← S1(x), N ′α′ ← S2(x)
in (N ∪N ′)α·α′

We assume that S(x) defaults to ∅sur. Finally, the abstraction function is

abs(S) = λD. {n ∈ D |n : x = e and S(x) = Nsur} ∪
{n ∈ N |n : x = e and S(x) = Nα}

where D ∈ Data = P(Node) ∪ {>} as before.
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Theorem 4.4. R for RD2 is an exact representation.

Proof. The proof is similar to the proof for RD in Section 4.1.

4.4 Constant Propagation (CP)

The framework can be instantiated for constant propagation (CP) with the following
definitions. For simplicity we consider only integers as constant values, and assume
that the expressions in the language are arithmetic operations. A graph-based
representation for this analysis can be found in [Reps et al. 1995; Sagiv et al.
1996]. That representation requires that the set of program variables be available
to construct the representation graphs. By the nature of our context, we cannot,
and do not, make such an assumption.

M ∈ Data = (Var→ Z>⊥) ∪ {>R}

Function values in Data are ordered under the usual pointwise ordering.

asgn(n, x, e) = λM. if isConstant(e,M) then M [x 7→ consVal(e,M)]
else M [x 7→ ⊥]

exp(e) = λM.M

where isConstant(e,M) returns true if the expression e can be shown to have a
constant value based on the values kept in the constant map M , and consVal(e,M)
returns that constant value2.

For the representation, R is a function giving values for variables. However,
these values are actually sets of variables, integer literals, and binary expressions,
meaning “the set will be reduced to a constant c, if every element it contains
eventually reduces to the constant c”. Using this set, we effectively delay the meet
operation, and gradually complete it as information becomes available.

R = V ar → CSAnnot
CS = P (Exp ∪ {⊥})

Implicitly, a C ∈ CS is normalized to {⊥} if it contains ⊥ or two distinct integers.
As in the previous cases, the annotations are used to preserve information in

conditionals. A must annotation on a set of expressions indicates that the variable
they define is definitely assigned one of those expressions; a sur annotation indicates
that some other definition may apply to that variable (but may, of course, assign
the same value to it that these expressions do).

idR = λv.∅sur
asgnR(n, x, e) = (λv.∅sur)[x 7→ {e}must]
expR(e) = λv.∅sur

M1 ∧RM2 = λx.M1(x) ∧RM2(x)
= λx.let Cα ←M1(x), C ′α′ ←M2(x)

in (C ∪ C ′)α·α′

2Precise definitions of isConstant and consVal depend on the kind of constant propagation chosen

(e.g. literal, copy, linear, or non-linear constant propagation [Sagiv et al. 1996]).
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M1;RM2 = λx.semicolon(M1,M1(x),M2(x))
semicolon(M,Cα, C

′
must) = update(M,C ′)must

semicolon(M,Cα, C
′
sur) = (update(M,C ′) ∪ C)α

The function update(M,C) checks the constant map M for each variable found
in the elements of the set C, and if there exists a mapping in M for that variable,
uses it to update C. For example, if M(y) = {w, z} and C = {y+1}, update(M,C)
returns {w + 1, z + 1}.

The abs function, where i ∈ Z, is

abs(M) = λS.λx.let Cmust ← semicolon(S, S(x)must,M(x))
in if C = {i} then i else ⊥

Theorem 4.5. R for CP is an exact representation.

Proof. We provide the sketch of the proof here. We first show that R is ade-
quate.

· abs(>R) = λM.>Data holds by definition.
· abs(idR) = abs(λv.∅sur) = λS.λv. let Cmust ← semicolon(S, S(v)must, ∅sur)

in if C = {i} then i else ⊥
= λS.λv. let Cmust ← S(v)must

in if C = {i} then i else ⊥
= λS.λv.S(v)
= id

· abs(asgnR(n, x, e)) = abs(λv.∅sur[x 7→ {e}must])
= λS.λv. let Cmust ← semicolon(S, S(v)must, (λv.∅sur[x 7→ {e}must])(v))

in if C = {i} then i else ⊥

= λS.λv.

{
S(v) if v 6= x
update(S, {e}) if v = x

= λS.S[x 7→ if isConstant(e, S) then consVal(e,M) else ⊥]
= asgn(n, x, e)

· abs(expR(e)) = abs(λv.∅sur) = λS.S = exp(e)
· abs(M1 ∧RM2) = abs(λv.M1(v) ∧RM2(v))

= λS.λv. let Cmust ← semicolon(S, S(v)must,M1(v) ∧RM2(v))
in if C = {i} then i else ⊥

= (1)
and

abs(M1) ∧ abs(M2) =
(
λS.λv.let Cmust ← semicolon(S, S(v)must,M1(v))

in if C = {i} then i else ⊥
)
∧(λS.λv.let Cmust ← semicolon(S, S(v)must,M2(v))

in if C = {i} then i else ⊥
)

= (2)

Showing that (1) = (2) is a straightforward case analysis based on the annotations
of the values obtained from M1(v) and M2(v).
· abs(M1;RM2) = abs(λv.semicolon(M1,M1(v),M2(v)))

= λS.λv. let Cmust ← semicolon(S, S(v)must, semicolon(M1,M1(v),M2(v)))
in if C = {i} then i else ⊥
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= (3)
and

abs(M1); abs(M2) =
(λS.λv.let Cmust ← semicolon(S, S(v)must,M1(v))

in if C = {i} then i else ⊥
)

;(λS.λv.let Cmust ← semicolon(S, S(v)must,M2(v))
in if C = {i} then i else ⊥

)
= (4)

Showing that (3) = (4) is a straightforward case analysis based on the annotations
of the values obtained from M1(v) and M2(v).

Next step of the proof requires showing that the representations uniquely represent
functions. This part in essence follows the same principles of the corresponding
proof of RD (Section 4.1).

4.5 Loop Invariants (LI)

We take the definition of a loop invariant as given in [Aho et al. 1986]:

A statement inside a loop L is invariant if all the operands of the state-
ment either are constant, have all their reaching definitions outside L, or
have exactly one reaching definition, and that definition is an invariant
statement in L.

As a simplification we will compute the invariance information of a statement only
with respect to the innermost loop that surrounds the statement. We assume that
there exists a function loop(P ) to obtain that innermost loop. We also assume that
the reaching definitions have been computed and are available for use in LI: RD(n, y)
gives the definitions of y that reach the node n; RDR(n) gives the RD representation
for the node n. (Alternatively, RD can be computed on-the-fly.)
Data is defined as a map containing the invariance information:

I ∈ Data = (Node ◦→Bool) ∪ {>}

Data is ordered as follows:

I v I ′ if ∀n.I ′(n) is undefined or
I ′(n) v I(n) in the boolean lattice, where false @ true

The definitions of exp and asgn are

exp(e) = id
asgn(n, x, e) = λI.I[n 7→ ∀y ∈ vars(e).isInv(n, y, I)]

where isInv is defined as

isInv(n, y, I) = loop(n) is defined and
((∀d ∈ RD(n, y) . d is not contained in loop(n))∨
(∃d .RD(n, y) = {d} and I(d)))

isInv directly follows from the definition of loop invariants: Invariance of a node is
dependent on (1) the reaching definitions of a variable, or (2) a single node if there
is only one reaching definition. This also hints at the definition of a representation:
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R = (Node ◦→IV ) ∪ {>R}
IV = P(V ar ∪Node ∪ {true, false})

The invariance information we keep per node, called IV , is a set that contains
variables, nodes, true, or false, where a variable stands for the dependence (1),
and a node stands for the dependence (2). The intuition is that if the IV set of a
statement contains a node, that node must become invariant for the statement to
be invariant; if the set contains a variable, the reaching definitions of that variable
must eventually satisfy the conditions for making the statement an invariant. If the
available information is enough to conclude that the statement is not invariant, the
set contains false; if the only item in the set is true, the statement is invariant. In
other words, the IV is used to delay the computation of invariance of a statement.
As more information becomes available, IV is updated. Below are the necessary
definitions.

expR(e) = idR
asgnR(x, e, n) = {n 7→ vars(e) ∪ {true}}
M1 ∧RM2 = λn.M1(n) ∪M2(n)
M1;RM2 = M1 ] fix

(
λM ′2.λn . {updaten(s,M1 ]M ′2)|s ∈M2(n)}

)
where ] is domain disjoint union of functions, and update is defined as

updaten(true,M) = true
updaten(false,M) = false
updaten(n′,M) = if M(n′) = {true} //n′ is invariant

then true
else if false ∈M(n′) //n′ is not invariant

then false
else n′ //cannot update yet, so keep n′

updaten(x,M) = let (K,G)← RDR(n) in
if there are no definitions of x in G
then x //cannot update yet, so keep x
else if there are multiple definitions of x in G

then if all the definitions are outside loop(n) then true
else false

else if there is a single definition d of x in G
then if d is outside loop(n) then true

else if x ∈ K
then if M(d) = {true} then true else d
else false

Finally, we give the definition of the abs function

abs(M) = λ I. I ∧ I ′ where I ′ is

fix
( λI2.λn. let B ← {isInvR(n, s, I ∧ I2)|s ∈M(n)}

in B = {true}
)

and isInvR is a function that returns a boolean value:
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FJn : int xK = λ(ϕ, η, d). let d′ ← intDecl(n, x)(d)

in (ϕ[n 7→ d′], η, d′)

FJn : {n1 : P}K = λ(ϕ, η, d). let η′ ← map(beginScope(n), η),
(ϕ1, η1, d1)← FJn1 : P K(ϕ, η′, beginScope(n)(d))

in let d′ ← endScope(d1)

in (ϕ1[n 7→ d′],map(endScope, η1), d′)

Fig. 13. Framework extended with declarations and scope.

RJn : int xK = intDeclR(n, x)
RJn : {n1 : P}K = endScopeR(RJn1 : P K))

Fig. 14. Representation for declarations and scope. Because R is strictly bottom-up, there is no
beginScopeR.

isInvR(n, true, I) = loop(n) is defined
isInvR(n, false, I) = false
isInvR(n, n′, I) = loop(n) is defined and I(n′)
isInvR(n, x, I) = isInv(n, x, I)

Note that there is recursion in the definitions of ;R and abs. The recursion
terminates because it is not possible to have in a valid program two nodes which
are solely dependent on each other, or a node whose invariance is only dependent
on itself.

4.6 Type Checking (TC)

To discuss type checking, we will extend the language with declarations and scope.
The framework definitions for these constructs are in Figure 13 and 14. (A fuller
discussion of this analysis can be found in [Katelman 2006].)

To be concrete, we will assume simple typing — no polymorphism, either ad-hoc
or parametric — and a Java-like rule for scope: declarations are scoped, but the
same name cannot be declared twice within one method.

Before proceeding to the technical development, we give some intuition for the
representation for this analysis; for this discussion, we will ignore scope. The ques-
tion, as for all these analyses, is: what might a fragment contain that could affect
the analysis when the fragment is placed in context? For one thing, the fragment
might contain declarations, which would affect type-checking for all subsequent
statements; we will record these in a type environment. Beyond that, it may con-
tain uses which might lead to type errors. These are of three kinds: (1) uses which
constrain a variable to be of a particular type (e.g. x+1); (2) uses which constrain
a variable to be of the same type as another variable (e.g. x = y); and (3) decla-
rations, which entail that there cannot be another declaration for the same name,
either before or after this one. (Note that we need to remember that a variable has
been declared, even when the actual declaration goes out of scope.) Thus, the rep-
resentation for this analysis contains a type environment and a set of “obligations,”
which are constraints imposed by this fragment:
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R = TySt×Oblg
Ω ∈ Oblg = P((V ar × Type) ∪ V ar2 ∪ V ar) ∪ {error}

The obligations represent the constraints listed above. (TySt is a stack of type
environments; the stack is needed to account for scope.)

We can define asgnR, expR, and intDeclR:

asgnR(n, x, e) = ([],mkOblg(x, e))
expR(e) = ([],mkOblg(e,bool))
intDeclR(n, x) = ([(?, {x 7→ int})] , {x})

The ? represents the bottom of the environment stack. expR records the type of an
expression as bool just because expR is only applied to expressions that appear as
conditions. mkOblg is defined by:

mkOblg(x, y) = (x, y)
mkOblg(x, e1 ⊕ e2) = mkOblg(e1, ltype(⊕)) t mkOblg(e2, rtype(⊕)) t (x, type(⊕))
mkOblg(x, T ) = (x, T )
mkOblg(e1 ⊕ e2, T ) = if type(⊕) = T then

mkOblg(e1, ltype(⊕)) t mkOblg(e2, rtype(⊕))
else error

⊕ denotes any binary operation. t is union if both sides are not the special error
value, but when one of the arguments is error, then the error value is propagated.
ltype, rtype, type denote the expected type of the left argument, right argument, and
return value, of the operator.

We now present the formal development of this analysis. The Data values consist
of a stack of type environments, to accommodate different levels of scopes. In the
lattice, a shorter stack appears below a longer one. If the stack frames are of the
same length, ordering is done pairwise among the type environments in the frames.
? denotes the initial frame of the stack.

Γ ∈ Data = TySt ∪ {error} ∪ {>}
TySt = ((Node ∪ {?})× TyEnv)∗

TyEnv = V ar ◦→Type
Type = {int,bool}

asgn(n, x, e) = λΓ. if type(x,Γ) = type(e,Γ) then Γ else error
intDecl(n, x) = λΓ. if type(x,Γ) is defined then error else add(Γ, x, int)
exp(e) = λΓ. if type(e,Γ) = bool then Γ else error
beginScope = λn.λΓ. (n, ∅) ::Γ
endScope = λΓ. let (n, γ) ::Γ′ ← Γ in Γ′

Below are beginScopeR and endScopeR. In the definition of R for scoped state-
ments, there is no occurrence of beginScopeR because R is strictly bottom-up; we
never “enter” into scopes, we only “exit” from them. We still give a definition for
beginScopeR because it is used in FR.

beginScopeR = λn.λ(Γ,Ω). (beginScope(n)Γ, Ω)
endScopeR = λ(Γ,Ω).(endScope(Γ),Ω)
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BJskipK = id

BJx = eK = λ(η, d).(η, asgn(x, e)(d))

BJbreak `K = λ(η, d).(η, η(`))

BJ` : P K = λ(η, d). let (η′, d′)← BJP K(η[` 7→ d], d)

in (η′[` 7→ >Data], d′)

BJP1;P2K = BJP2K;BJP1K

BJif(e) P1 else P2K = λ(η, d). let (η1, d1)← BJP1K(η, d)

(η2, d2)← BJP2K(η, d)

in (η, exp(e)(d1 ∧ d2))

Fig. 15. Intermediate framework for backward analysis.

We define the semicolon operation as

(Γ,Ω);R (Γ′,Ω′) = (concatenate(Γ,Γ′), sequence(Ω,Ω′,Γ))

where sequence : Oblg ×Oblg × TySt→ Oblg is

sequence(Ω1,Ω2,Γ) = {ω | ω ∈ Ω1 or, ω ∈ Ω2 and ω not satisfied by Γ}

Note that as more information becomes available with the ;r operation, satisfied
obligations are removed.

For meet we have

(Γ,Ω) ∧R (Γ′,Ω′) = (longestCommonSuffix(Γ,Γ′),Ω ∪ Ω′)

Finally, in the abs function, if the obligations imposed by the representation are
not satisfied by the incoming type stack, we return error, otherwise we just sequence
the incoming type stack with the stack in the representation.

abs(ΓR,ΩR) = λΓ. let (Γ′,Ω′)← (Γ, ∅);R (ΓR,ΩR)
in if Ω′ = ∅ then Γ′ else error

Theorem 4.6. R for TC is an exact representation.

Proof. This proof follows the same structure as the corresponding proof for CP,
and is omitted.

5. BACKWARD ANALYSIS FRAMEWORK

We can define a similar framework for backwards analysis, although break state-
ments significantly complicate matters. We directly start with the intermediate
framework here. It is presented in Figure 15, and the representation is in Fig-
ure 16. The abstraction function is

absE(ηR, r) = λ(η, d).(η,abs(r)(d) ∧
∧

`∈Label

abs(ηR(`))(η(`)))

Theorem 5.1. For a legal program P , if the DFFun functions are distributive
(i.e. f(d ∧ d′) = f(d) ∧ f(d′)), then absE(RJP K) = BJP K.

Proof. The proof is by induction on the structure of P . Details are provided
in the Appendix.
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RJskipK = (>EnvR
, idR)

RJx = eK = (>EnvR
, asgnR(x, e))

RJbreak `K = (>EnvR
[` 7→ idR], >R)

RJ` : P K = let (η, r)←RJP K
in (η[` 7→ >R], r ∧R η(`))

RJP1;P2K = let (η1, r1)←RJP1K, (η2, r2)←RJP2K
in (η1 ∧R (η2 ;R r1), r2 ;R r1)

RJif(e) P1 else P2K = (RJP1K ∧R RJP2K) ;R expR(e)

Fig. 16. Representation for framework of Figure 15.

BJn : skipK = id

BJn : x = eK = λ(ϕ, η, d).(ϕ[n 7→ asgn(x, e)(d)], η, asgn(x, e)(d))

BJn : break `K = λ(ϕ, η, d).(ϕ[n 7→ η(`)], η, η(`))

BJn : (` : n1 : P )K = λ(ϕ, η, d). let (ϕ′, η′, d′)← BJn1 : P K(ϕ, η[` 7→ d], d)

in (ϕ′[n 7→ d′], η′[` 7→ >Data], d′)

BJn : (n1 : P1;n2 : P2)K = λ(ϕ, η, d). let (ϕ′, η′, d′)← (BJn2 : P2K;BJn1 : P1K)(ϕ, η, d)
in (ϕ′[n 7→ d′], η′, d′)

BJn : if(e) n1 : P1 else n2 : P2K = λ(ϕ, η, d). let (ϕ1, η1, d1)← BJn1 : P1K(ϕ, η, d)

(ϕ2, η2, d2)← BJn2 : P2K(ϕ, η, d)

in ((ϕ1 ∪ ϕ2)[n 7→ exp(e)(d1 ∧ d2)], η, exp(e)(d1 ∧ d2))

Fig. 17. Full framework for backward analysis.

For the full framework which builds a node map at the top node, the intermediate
framework can again be extended naturally as in forward analysis (Figure 10).
However, defining R is not that straightforward. We need to keep an environment
for every node in the node-map. So the type of the representation function is

R : Pgm→ (Node→ (EnvR ×R))× EnvR ×R

Analogous to how RJP1;P2K in the forward representation function of Figure 11
updates the node-map for each node in P1 and P2, RJL : P K and RJP1;P2K in the
full backward representation function update each mapping in their node-maps as
well. Full versions of B and R are given in Figures 17 and 18, respectively. In
Figure 18, closeLabel is defined as

closeLabel(`, ϕ) = λn. let (η, r)← ϕ(n) in (η[` 7→ >R], r ∧R η(`))

The abs function for the full backward framework is defined as

absF (ϕ, η, r) =
λ(ϕ′, η′, d′). let ϕ′′ ← λn. let (η̄, r̄)← ϕ(n)

in abs(r̄)(d′) ∧
∧
`∈Label abs(η̄(`))(η′(`))

in (ϕ′ ∪ ϕ′′, η′, abs(r)(d′) ∧
∧
`∈Label abs(η(`))(η′(`)))

Theorem 5.2. For a legal program P , if the DFFun functions are distributive
(i.e. f(d ∧ d′) = f(d) ∧ f(d′)), then absF (RJP K) = BJP K.
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RJn : skipK = ({n 7→ (>EnvR
, idR)}, >EnvR

, idR)

RJn : x = eK = ({n 7→ (>EnvR
, asgnR(x, e))}, >EnvR

, asgnR(x, e))

RJn : break `K = ({n 7→ (>EnvR
[` 7→ idR],>R)}, >EnvR

[` 7→ idR], >R)

RJn : (` : n1 : P )K = let (ϕ, η, r)←RJn1 : P K
in (closeLabel(`, ϕ[n 7→ (η, r)]), η[` 7→ >R], r ∧R η(`))

RJn : (n1 : P1;n2 : P2)K = let (ϕ1, η1, r1)←RJn1 : P1K, (ϕ2, η2, r2)←RJn2 : P2K
in (λn′. if ϕ2(n′) defined then ϕ2(n′)

if ϕ1(n′) defined then let (η′, r′)← ϕ1(n′)
in (η′ ∧R (η2;R r′), r2;R r′)

if n′ = n then (η1 ∧R (η2 ;R r1), r2 ;R r1),

η1 ∧R (η2 ;R r1), r2 ;R r1)

RJn : if(e) n1 : P1 else n2 : P2K = let (ϕ1, η1, r1)←RJn1 : P1K, (ϕ2, η2, r2)←RJn2 : P2K
in ((ϕ1 ∪ ϕ2)[n 7→ (r1 ∧R r2);R expR(e)],

(η1 ∧R η2);R expR(e),

(r1 ∧R r2);R expR(e))

Fig. 18. Representation for framework of Figure 17.

Proof. The proof is similar to the proof for the intermediate framework (The-
orem 5.1).

5.1 Live Variables (LV)

Data is defined as

L ∈ Data = (P(Var)) ∪ {>}

and is ordered by reverse set inclusion.

asgn(n, x, e) = λL.(L \ {x}) ∪ vars(e)
exp(e) = λL.L ∪ vars(e)

R = P(Var)2

asgnR(n, x, e) = ({x}, vars(e))
expR(e) = (∅, vars(e))

Definitions of idR, ;R, ∧R and abs are the same as in RD (Section 4.1).
Note that LV is a distributive analysis.

5.2 Very Busy Expressions (VBE)

The definitions, except the following, are the same as in AE.

asgn(n, x, e) = λE.(E \ Ex) ∪ sub(e)
asgnR(n, x, e) = ({x}, {e′must | e′ ∈ sub(e)})

Note that VBE is a distributive analysis.

6. PERFORMANCE

We are interested in the run-time costs of two methods of doing static analysis.
One method is to fill in the holes and analyze the complete program at run time
(the base analysis); the other is to use our staged analysis.
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Table I. Benchmarking results. The numbers show the ratio of the base case to the staged case.

HotSpot libgcj Kaffe

Sample Program RD CP TC RD CP TC RD CP TC

Big-plug 2.10 1.19 3.65 7.43 3.78 5.15 9.73 5.23 5.63

Small-plug-A 2.17 1.12 3.50 6.96 3.91 4.28 10.7 4.62 5.55

Small-plug-B 2.40 1.14 2.97 4.78 3.41 4.39 7.03 4.65 5.40

Two-plug 1.67 1.17 1.66 2.59 2.19 2.90 3.83 2.83 3.18

Fib1 ([Kamin 2004]) 1.10 1.07 1.31 1.24 0.93 1.17 1.64 1.26 1.05

Fib2 ([Kamin 2004]) 1.23 1.16 0.67 1.48 0.99 1.18 2.02 1.47 1.05

Sort ([Kamin et al. 2000]) 1.48 1.21 1.92 1.64 1.08 1.59 1.86 1.29 1.66

Huffman ([Kamin 2004]) 1.11 1.29 0.30 1.04 0.93 1.02 1.31 1.30 0.95

Marshalling 1 ([Aktemur et al. 2005]) 12.37 3.93 28.27 34.83 15.42 9.34 49.64 18.92 12.04

Marshalling 2 ([Aktemur et al. 2005]) 2.01 1.75 16.01 1.83 1.33 1.86 2.59 2.27 1.47

The benchmarks we present are of two kinds: artificial benchmarks illustrate how
performance is affected by specific features in a program; realistic benchmarks are
program generators drawn from previous publications.

For some analyses, one needs only the dataflow information for the root node;
examples are uninitialized variables and type-checking. For most, we need the
information at many, though not necessarily all, nodes. (Note that the base case
must visit every node at run-time, even if it is only interested in a subset.)

We implemented the framework in Java. In Table I, we present the performance
of three analyses, on a variety of benchmark programs, as ratios between the base
and the staged analyses; higher numbers represent greater speed-up. We run the
experiments in three different Java runtime environments: Sun’s HotSpot, GNU’s
libgcj, and Kaffe. For reaching definitions (RD) and constant propagation (CP), we
perform the analysis at every assignment statement (roughly half the nodes in the
programs). For type checking (TC), we analyze only the top node. Benchmarking
was done on a Linux machine with 1.5 GHz CPU and 1GB memory.

We briefly describe the benchmarks used in Table I.

—Big-plug is a small program with one hole, filled in by a large plug.

—Small-plug-A is a large program with a hole near the beginning, filled in by a
small plug.

—Small-plug-B is a large program with a hole near the end, filled in by a small
plug.

—Two-plug is a medium-sized program with two holes, filled in by medium-sized
plugs.

—Fib1 and Fib2 are two versions of a Fibonacci function divided into small pieces
for exposition [Kamin 2004].

—Sort is a generator that produces a sort function by inlining the comparison
operation [Kamin et al. 2000].

—Huffman is a generator that turns a Huffman tree into a sequence of conditional
statements [Kamin 2004].

—Marshalling 1 is part of a program that produces customized serializers in Java
[Aktemur et al. 2005]; characteristics much like Big-plug.
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—Marshalling 2 is a different part of the same program; has many holes and
many small plugs.

As often happens, the invented benchmark examples show the best performance
improvements. Our approach does result in slow-downs in some cases; the worst
cases are Fib2 and Huffman, both of which consist of many holes and small plugs.
Overall, the results are quite promising.

7. STAGING AT THE IR LEVEL

In the type of program generation we are considering — what we have called
fragment-oriented program generation in [Aktemur and Kamin ] — fragments are
written in source code. Approaches vary in, among other ways, whether they allow
fragments to be translated to intermediate code. In Jumbo [Kamin et al. 2003],
for example, it is not generally possible to do this; because fragments are nearly
arbitrary, a fragment could introduce a declaration that would affect the transla-
tion of all subsequent code. In most other systems [Poletto et al. 1997; Smith et al.
2003; Oiwa et al. 2001; Taha et al. ], restrictions on fragments ensure that the
context of any fragment is sufficiently known at initial compile time to permit gen-
eration of intermediate code. Furthermore, some of the analyses we have presented
in staged form are the types of analyses normally performed on the intermediate
representation rather than the source.

The question then arises as to whether our approach to staging is applicable
in cases when fragments are presented in IR form. One could adopt a control-flow
graph (CFG) approach, as in [Katelman 2006], in which CFG’s with multiple in- and
out-edges are spliced together. However, here we will present a simpler approach, in
which we use a subset of our source language as the IR. (This amounts to the same
thing as the CFG approach, where the labelled statements and breaks correspond
to the labelling of in- and out-edges of the CFG fragment.) Specifically, we provide
a translation from our source language to a subset of the source language which can
reasonably be considered as an intermediate representation. The most interesting
part of the translation is the short-circuit evaluation of boolean expressions.

The IR subset of our source language has these restrictions:

—All expressions are limited to at most one operator.
—All while statements have the form while(true) do {...}. We will, in fact, write

this as loop {...}.
—All if statements have the form if(variable) break L; else break L′;.

Thus, there is no unstructured goto — loops provide the only backward branches
— but the code is otherwise flattened. We would argue that this is a reasonable
candidate for an IR in the sense that it is just as amenable to translation to target
machine code as an ordinary 3-address, CFG-based IR. It cannot express arbitrary
CFG’s, but it is not clear whether that is a disadvantage; it corresponds strictly to
reducible CFG’s [Aho et al. 1986], which is a large class often thought to contain
all the useful CFG’s. We are not prepared to make any stronger arguments about
the utility of this IR. We simply say that it is not prima facie unsuitable as an IR.

We now present the translation of source code to this IR. The idea of short-circuit
compilation of boolean expressions is explained in numerous compiler textbooks
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[Aho et al. 1986; Cooper and Torczon 2004]. Our translation consists of three
schemes:

JSK : translation of statement S; returns a program.

JeK : translation of non-boolean expression e; returns a program and a variable
name, the latter giving the location of the value of the expression.

JeKLt,Lf
: translation of a boolean expression, in a context in which either break Lt

or break Lf should be executed, depending upon the value of e.

Statements:3

Jx = eK = let (C, v)← JeK
in C;x = v;

Jwhile(e) do SK = L : loop {
L′ : { JeKL′,L }
JSK

}

Jif(e) S else S′K = L1 : {
L2 : {

L3 : { JeKL2,L3 }
JS′K
break L1

}
JSK

}

where L, L′, L1, L2, and L3 are fresh labels.

Non-boolean expressions:

JnK = (t = n , t)

JxK = (ε , x)

Je1 ⊕ e2K = let (C1, t1)← Je1K
(C2, t2)← Je2K

in (C1;C2; t = t1 ⊕ t2 , t)

where t in the first and third rules is a fresh variable.

Boolean expressions:

JtrueKLt,Lf
= break Lt;

JfalseKLt,Lf
= break Lf ;

3Various simple optimizations can be applied to avoid things like translating x = y; to
temp = y; x = temp;, or generating statements of the form L : break L;. For our current purposes,

these would only complicate matters without altering the basic point we are making.
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Je1 = e2KLt,Lf
= let (C1, t1)← Je1K

(C2, t2)← Je2K
in C1;

C2;
t = t1 = t2;
if(t) break Lt; else break Lf ;

J!eKLt,Lf
= JeKLf ,Lt

Je1 || e2KLt,Lf
= L : {Je1KLt,L}

Je2KLt,Lf

Je1&&e2KLt,Lf
= L : {Je1KL,Lf

}
Je2KLt,Lf

8. CONCLUSIONS

We have presented a framework for static analysis of ASTs, including break state-
ments, that allows the analysis to be staged, when the representations are adequate.
The method has application to run-time program generation: by optimizing the
static analysis of programs, it can speed up overall run-time code generation time.
We presented representations for several data-flow analyses, namely reaching defi-
nitions, available expressions, constant propagation, loop invariance, live variables,
very busy expressions, and also type checking. We provided experimental results
to demonstrate that staging can achieve significant runtime performance improve-
ment. We also presented a translation from source code to intermediate code that
shows our methodology for staging can be applied on IR-level code as well.
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A. PROOFS OF THEOREMS

Proof of Theorem 3.4. The proof is by induction on the structure of P .

Case 1. P = skip

abs(FRJskipKr) = abs(idR(r))
= abs(r)
= abs(r) ; id
= abs(r) ; abs(idR)
= abs(r) ; abs(RJskipK)
= abs(r ;RRJskipK)

Case 2. P = x = e

abs(FRJx = eKr) = abs(asgnR(x, e)(r))
= abs(r ;R asgnR(x, e))
= abs(r ;RRJx = eK)

Case 3. P = P1;P2

By the induction hypothesis, we have, ∀r ∈ R,

abs(FRJP1Kr) = abs(r ;RRJP1K)
abs(FRJP2Kr) = abs(r ;RRJP2K)

Now we work on P1;P2:

abs(FRJP1;P2Kr) = abs(FRJP2K(FRJP1Kr))
= abs((FRJP1Kr) ;RRJP2K) (1)
= abs((FRJP1Kr)); abs(RJP2K)
= abs(r ;RRJP1K); abs(RJP2K) (2)
= abs(r); abs(RJP1K); abs(RJP2K)
= abs(r); abs(RJP1K ;RRJP2K)
= abs(r); abs(RJP1;P2K)
= abs(r ;RRJP1;P2K)

Induction hypothesis is used to derive (1) and (2).
Case 4. P = if(e) P1 else P2

By the induction hypothesis, we have, ∀r ∈ R,

abs(FRJP1Kr) = abs(r ;RRJP1K)
abs(FRJP2Kr) = abs(r ;RRJP2K)

Now we work on if(e) P1 else P2:

abs(FRJif(e) P1 else P2Kr) = abs((expR(e) ; (FRJP1K ∧R FRJP2K))r)
= abs((FRJP1K ∧R FRJP2K)(r ;R expR(e)))
= abs(FRJP1K(r ;R expR(e)) ∧R FRJP2K(r ;R expR(e)))
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= abs(FRJP1K(r ;R expR(e))) ∧ abs(FRJP2K(r ;R expR(e)))
= abs((r ;R expR(e)) ;RRJP1K) ∧ abs((r ;R expR(e)) ;RRJP2K) (3)
= abs(r ;R expR(e)); abs(RJP1K) ∧ abs(r ;R expR(e)); abs(RJP2K)
= abs(r); abs(expR(e)); abs(RJP1K) ∧ abs(r); abs(expR(e)); abs(RJP2K)
= abs(r); abs(expR(e)); (abs(RJP1K) ∧ abs(RJP2K))
= abs(r); abs(expR(e)); (abs(RJP1K ∧R RJP2K))
= abs(r); abs(expR(e) ;R (RJP1K ∧R RJP2K))
= abs(r); abs(RJif(e) P1 else P2K)
= abs(r ;R (RJif(e) P1 else P2K))

Induction hypothesis is used to derive (3).

Proof of Theorem 3.6. The proof is by induction on the structure of P .

Case 1. P = skip

absE(RJskipK) = absE((>EnvR
, idR))

= λ(η′, d′).(λ`.η′(`) ∧ abs(>EnvR
(`))d′, abs(idR)d′)

= λ(η′, d′).(λ`.η′(`) ∧ abs(>R)d′, id(d′))
= λ(η′, d′).(λ`.η′(`) ∧ (λd.>Data)d′, d′)
= λ(η′, d′).(λ`.η′(`) ∧ >Data, d′)
= λ(η′, d′).(λ`.η′(`), d′)
= λ(η′, d′).(η′, d′)
= FJskipK

Case 2. P = x = e

absE(RJx = eK) = absE((>EnvR
, asgnR(x, e)))

= λ(η′, d′).(λ`.η′(`) ∧ abs(>EnvR
(`))d′, abs(asgnR(x, e))d′)

= λ(η′, d′).(λ`.η′(`) ∧ abs(>R)d′, asgn(x, e)(d′))
= λ(η′, d′).(λ`.η′(`) ∧ (λd.>Data)d′, asgn(x, e)(d′))
= λ(η′, d′).(λ`.η′(`) ∧ >Data, asgn(x, e)(d′))
= λ(η′, d′).(λ`.η′(`), asgn(x, e)(d′))
= λ(η′, d′).(η′, asgn(x, e)(d′))
= FJx = eK

Case 3. P = break `

absE(RJbreak `K) = absE((>EnvR
[` 7→ idR],>R))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(>EnvR
[` 7→ idR](`′))d′, abs(>R)d′)

= λ(η′, d′).(
(
λ`′.

{
η′(`) ∧ abs(idR)d′ if ` = `′

η′(`′) ∧ abs(>R)d′ if ` 6= `′

)
,>Data)
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= λ(η′, d′).(
(
λ`′.

{
η′(`) ∧ d′ if ` = `′

η′(`′) if ` 6= `′

)
,>Data)

= λ(η′, d′).(η′[` 7→ η′(`) ∧ d′], >Data)
= FJbreak `K

Case 4. P = ` : P ′

Let (η, r) = RJP ′K. By the induction hypothesis we have

FJP ′K = absE(RJP ′K)
= absE((η, r))
= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′)

Now we work on absE(RJ` : P ′K). Note that because we require all the programs
to be legal, the incoming environment has ` mapped to >Data.

absE(RJ` : P ′K) = absE((η[` 7→ >R], r ∧R η(`)))
= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η[` 7→ >R](`′))d′, abs(r ∧R η(`))d′)

= λ(η′, d′).(λ`′.
{
η′(`) ∧ abs(>R)d′ if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r ∧R η(`))d′)

= λ(η′, d′).(λ`′.
{
>Data ∧ >Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r ∧R η(`))d′)

= λ(η′, d′).(λ`′.
{
>Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r ∧R η(`))d′) (4)

And FJ` : P ′K:

FJ` : P ′K = λ(η′, d′). let (η1, d1)← FJP ′K(η′, d′)
in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′). let (η1, d1)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′))(η′, d′)
in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′). let (η1, d1)← (λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′)
in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′).((λ`′.η′(`′) ∧ abs(η(`′))d′)[` 7→ >Data],
abs(r)d′ ∧ (λ`′.η′(`′) ∧ abs(η(`′))d′)(`))

= λ(η′, d′).((λ`′.η′(`′) ∧ abs(η(`′))d′)[` 7→ >Data], abs(r)d′ ∧ η′(`) ∧ abs(η(`))d′)

= λ(η′, d′).(λ`′.
{
>Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r)d′ ∧ >Data ∧ abs(η(`))d′)

= λ(η′, d′).(λ`′.
{
>Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r ∧R η(`))d′)

= (4)

Case 5. P = P1;P2

Let (η1, r1) = RJP1K and (η2, r2) = RJP2K. By the induction hypothesis we have

FJP1K = absE(RJP1K)
= absE((η1, r1))
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= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′)

FJP2K = absE(RJP2K)
= absE((η2, r2))
= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`′))d′, abs(r2)d′)

Now we work on absE(RJP1;P2K).

absE(RJP1;P2K) = absE((η1 ∧R (r1;R η2), r1;R r2))
= λ(η′, d′).(λ`′.η′(`′) ∧ abs((η1 ∧R (r1;R η2))(`′))d′, abs(r1;R r2)d′) (5)

And FJP1;P2K:

FJP1;P2K = λ(η′, d′).(FJP1K;FJP2K)(η′, d′)
= λ(η′, d′).FJP2K(FJP1K(η′, d′))
= λ(η′, d′).FJP2K((λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′))(η′, d′))
= λ(η′, d′).FJP2K(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′)
= λ(η′, d′).(λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`′))d′, abs(r2)d′))(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′)
= λ(η′, d′).(λ`′.(λ`′.η′(`′) ∧ abs(η1(`′))(d′))(`′) ∧ abs(η2(`′))(abs(r1)d′), abs(r2)(abs(r1)d′))
= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))(d′) ∧ abs(η2(`′))(abs(r1)d′), abs(r1;R r2)d′)
= λ(η′, d′).(λ`′.η′(`′) ∧ abs((η1 ∧R (r1;R η2))(`′))d′, abs(r1;R r2)d′)
= (5)

Case 6. P = if(e) P1 else P2

Let (η1, r1) = RJP1K and (η2, r2) = RJP2K. By the induction hypothesis we have

FJP1K = absE(RJP1K)
= absE((η1, r1))
= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′)

FJP2K = absE(RJP2K)
= absE((η2, r2))
= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`′))d′, abs(r2)d′)

Now we work on absE(RJif(e) P1 else P2K).

absE(RJif(e) P1 else P2K) = absE(expR(e);R ((η1, r1) ∧R (η2, r2)))
= absE(expR(e);R ((η1, r1) ∧R (η2, r2)))
= absE((expR(e);R (η1 ∧R η2), expR(e);R (r1 ∧R r2)))
= λ(η′, d′).(λ`′.η′(`′) ∧ abs((expR(e);R (η1 ∧R η2))(`′))d′,

abs(expR(e);R (r1 ∧R r2))d′)
= λ(η′, d′).(λ`′.η′(`′) ∧ abs(expR(e);R (η1(`′) ∧R η2(`′)))d′,

abs(expR(e);R (r1 ∧R r2))d′) (6)

And FJif(e) P1 else P2K:

FJif(e) P1 else P2K = λ(η′, d′). let (η′1, d
′
1)← FJP1K(η′, exp(e)d′)
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(η′2, d
′
2)← FJP2K(η′, exp(e)d′)

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′). let (η′1, d
′
1)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′))(η′, exp(e)d′)

(η′2, d
′
2)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`′))d′, abs(r2)d′))(η′, exp(e)d′)

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′). let (η′1, d
′
1)← (λ`′.η′(`′) ∧ abs(η1(`′))(exp(e)d′), abs(r1)(exp(e)d′))

(η′2, d
′
2)← (λ`′.η′(`′) ∧ abs(η2(`′))(exp(e)d′), abs(r2)(exp(e)d′))

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))(exp(e)d′) ∧ η′(`′) ∧ abs(η2(`′))(exp(e)d′),
abs(r1)(exp(e)d′) ∧ abs(r2)(exp(e)d′))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))(exp(e)d′) ∧ abs(η2(`′))(exp(e)d′),
abs(expR(e);R (r1 ∧R r2))d′)

= (6)

Proof of Theorem 3.7. The proof is by induction on the structure of P .

Case 1. P = skip
For this case, we have (η, r) = (>EnvR

, idR) = RJskipK.

absE(FRJskipK(η′, r′)) = absE(idR(η′, r′))
= absE((η′, r′))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(r′)d′′) (1)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR
(`′)), r′ ;R idR))

= absE((λ`′.η′(`′) ∧R (r′ ;R>R), r′ ;R idR))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>R))(`′))d′′,abs(r′ ;R idR)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>R))d′′,abs(r′)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ >Data,abs(r′)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(r′)d′′)
= (1)

Case 2. P = x = e
For this case, we have (η, r) = (>EnvR

, asgnR(x, e)) = RJx = eK.

absE(FRJx = eK(η′, r′)) = absE((η′, asgnR(x, e)(r′)))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(asgnR(x, e)(r′))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(r′ ;R asgnR(x, e))d′′) (2)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR
(`′)), r′ ;R asgnR(x, e)))

= absE((λ`′.η′(`′) ∧R (r′ ;R>R), r′ ;R asgnR(x, e)))
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= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>R))(`′))d′′,abs(r′ ;R asgnR(x, e))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>R))d′′,abs(r′ ;R asgnR(x, e))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ >Data,abs(r′ ;R asgnR(x, e))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(r′ ;R asgnR(x, e))d′′)
= (2)

Case 3. P = break `
For this case, we have (η, r) = (>EnvR

[` 7→ idR],>R) = RJbreak `K.

absE(FRJbreak `K(η′, r′)) = absE((η′[` 7→ r′ ∧R η′(`)],>R))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′[` 7→ r′ ∧R η′(`)](`′))d′′,abs(>R)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′[` 7→ r′ ∧R η′(`)](`′))d′′,>Data)

= λ(η′′, d′′).(
(
λ`′.

{
η′′(`) ∧ abs(r′ ∧R η′(`))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′))d′′ if ` 6= `′

)
,>Data) (3)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR
[` 7→ idR](`′)), r′ ;R>R)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>EnvR
[` 7→ idR](`′)))(`′))d′′,abs(r′ ;R>R)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>EnvR
[` 7→ idR](`′)))d′′,>Data)

= λ(η′′, d′′).(
(
λ`′.

{
η′′(`) ∧ abs(η′(`) ∧R (r′ ;R idR))d′′ if ` = `′

η′′(`) ∧ abs(η′(`) ∧R (r′ ;R>R))d′′ if ` 6= `′

)
,>Data)

= λ(η′′, d′′).(
(
λ`′.

{
η′′(`) ∧ abs(η′(`) ∧R r′)d′′ if ` = `′

η′′(`) ∧ abs(η′(`′))d′′ if ` 6= `′

)
,>Data)

= (3)

Case 4. P = ` : P ′

Let (η, r) = RJP ′K. By the induction hypothesis, we obtain

absE(FRJP ′K(η′, r′))
= absE((λ`′.η′(`′) ∧R (r′ ;R η(`′)), r′ ;R r))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η(`′)))(`′))d′′,abs(r′ ;R r)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′,abs(r′ ;R r)d′′) (4)

Let (η1, r1) = FRJP ′K(η′, r′). Then we get

absE(FRJP ′K(η′, r′)) = absE((η1, r1))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η1(`′))d′′,abs(r1)d′′) (5)

Since (4) = (5), we obtain

abs(r′ ;R r)d′′ = abs(r1)d′′

and

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ = η′′(`′) ∧ abs(η1(`′))d′′

When `′ = `, using the legality condition, we get

η′′(`) ∧ abs(η′(`) ∧R (r′ ;R η(`)))d′′ = η′′(`) ∧ abs(η1(`))d′′
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⇒ >Data ∧ abs(>R ∧R (r′ ;R η(`)))d′′ = >Data ∧ abs(η1(`))d′′

⇒ abs(r′ ;R η(`))d′′ = abs(η1(`))d′′

Now we work on ` : P ′:

absE(FRJ` : P ′K(η′, r′))
= absE((η1[` 7→ >R], r1 ∧R η1(`)))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η1[` 7→ >R](`′))d′′,abs(r1 ∧R η1(`))d′′)

= λ(η′′, d′′).(λ`′.
{
η′′(`) ∧ abs(>R)d′′ if ` = `′

η′′(`′) ∧ abs(η1(`′))d′′ if ` 6= `′
,

abs(r1)d′′ ∧ abs(η1(`))d′′)

= λ(η′′, d′′).(λ`′.
{
η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R r)d′′ ∧ abs(r′ ;R η(`))d′′)

= λ(η′′, d′′).(λ`′.
{
η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′) (6)

And using the fact that RJ` : P ′K = (η[` 7→ >R], r ∧R η(`)), we have

absE((λ`′.η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)), r′ ;R (r ∧R η(`))))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)))(`′))d′′,

abs(r′ ;R (r ∧R η(`)))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)))d′′,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.
{
η′′(`) ∧ abs(η′(`) ∧R (r′ ;R>R))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.
{
η′′(`) ∧ abs(>R ∧R (r′ ;R>R))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.
{
η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)
= (6)

Case 5. P = P1;P2

Let (η1, r1) = RJP1K, (η2, r2) = RJP2K, (ηa, ra) = FRJP1K(η′, r′), and (ηb, rb) =
FRJP2K(ηa, ra). By the induction hypothesis, we have

absE(FRJP1K(η′, r′)) = absE((ηa, ra))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′, abs(ra)d′′)

and

absE(FRJP1K(η′, r′)) = absE((λ`′.η′(`′) ∧R (r′ ;R η1(`′)), r′ ;R r1))
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= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η1(`′)))(`′))d′′, abs(r′ ;R r1)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`′)))d′′, abs(r′ ;R r1)d′′)

Similarly, for P2

absE(FRJP2K(ηa, ra)) = absE((ηb, rb))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`′))d′′, abs(rb)d′′)

and

absE(FRJP2K(ηa, ra)) = absE((λ`′.ηa(`′) ∧R (ra ;R η2(`′)), ra ;R r2))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.ηa(`′) ∧R (ra ;R η2(`′)))(`′))d′′, abs(ra ;R r2)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`′)))d′′, abs(ra ;R r2)d′′)

These give us the equalities

η′′(`′) ∧ abs(ηa(`′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`′)))d′′

abs(ra)d′′ = abs(r′ ;R r1)d′′

η′′(`′) ∧ abs(ηb(`′))d′′ = η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`′)))d′′

abs(rb)d′′ = abs(ra ;R r2)d′′

Now, returning to P1;P2, we have

absE(FRJP1;P2K(η′, r′)) = absE(FRJP2K(FRJP1K(η′, r′)))
= absE(FRJP2K(ηa, ra))
= absE((ηb, rb))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`′))d′′, abs(rb)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`′)))d′′, abs(ra ;R r2)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′ ∧ abs(η2(`′))(abs(ra)d′′), abs(r2)(abs(ra)d′′))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`′)))d′′ ∧ abs(η2(`′))(abs(r′ ;R r1)d′′),

abs(r2)(abs(r′ ;R r1)d′′))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′); abs(η1(`′)))d′′ ∧ (abs(r′); abs(r1); abs(η2(`′)))d′′,

(abs(r′); abs(r1); abs(r2))d′′) (7)

for the left-hand-side of the equivalence. And using the fact that RJP1;P2K =
(η1 ∧R (r1 ;R η2), r1;R r2), for the right-hand-side of the equivalence we have

absE((λ`′.η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`′)), r′ ;R (r1;R r2)))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`′)))(`′))d′′,

abs(r′ ;R (r1;R r2))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`′)))d′′, abs(r′ ;R (r1;R r2))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′); abs((η1 ∧R (r1 ;R η2))(`′)))d′′,

(abs(r′); abs(r1); abs(r2))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′); abs(η1(`′)))d′′ ∧ (abs(r′); abs(r1); abs(η2(`′)))d′′,

(abs(r′); abs(r1); abs(r2))d′′)
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= (7)

Case 6. P = if(e) P1 else P2

Let (η1, r1) = RJP1K, (η2, r2) = RJP2K, (ηa, ra) = FRJP1K(η′, expR(e)r′), and
(ηb, rb) = FRJP2K(η′, expR(e)r′). By the induction hypothesis, we have

absE(FRJP1K(η′, expR(e)r′)) = absE((ηa, ra))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′, abs(ra)d′′)

and

absE(FRJP1K(η′, expR(e)r′)) = absE((λ`′.η′(`′) ∧R (expR(e)r′ ;R η1(`′)), expR(e)r′ ;R r1))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (expR(e)r′ ;R η1(`′)))(`′))d′′, abs(expR(e)r′ ;R r1)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`′)))d′′, abs(r′;R expR(e);R r1)d′′)

Similarly, for P2

absE(FRJP2K(η′, expR(e)r′)) = absE((ηb, rb))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`′))d′′, abs(rb)d′′)

and

absE(FRJP2K(η′, expR(e)r′)) = absE((λ`′.η′(`′) ∧R (expR(e)r′ ;R η2(`′)), expR(e)r′ ;R r2))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (expR(e)r′ ;R η2(`′)))(`′))d′′, abs(expR(e)r′ ;R r2)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η2(`′)))d′′, abs(r′;R expR(e);R r2)d′′)

These give us the equalities

η′′(`′) ∧ abs(ηa(`′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`′)))d′′

abs(ra)d′′ = abs(r′;R expR(e);R r1)d′′

η′′(`′) ∧ abs(ηb(`′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η2(`′)))d′′

abs(rb)d′′ = abs(r′;R expR(e);R r2)d′′

Now, returning to if(e) P1 else P2, we have

absE(FRJif(e) P1 else P2K(η′, r′)) = absE((ηa ∧R ηb, ra ∧R rb))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R ηb(`′))d′′,abs(ra ∧R rb)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`′)))d′′ ∧

abs(η′(`′) ∧R (r′;R expR(e);R η2(`′)))d′′,
abs(r′;R expR(e);R r1)d′′ ∧ abs(r′;R expR(e);R r2)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ abs(r′;R expR(e);R η1(`′))d′′ ∧
abs(r′;R expR(e);R η2(`′))d′′,

abs(r′;R expR(e);R r1)d′′ ∧ abs(r′;R expR(e);R r2)d′′) (8)

And using the fact thatRJif(e) P1 else P2K = (expR(e);R (η1∧Rη2), expR(e);R (r1∧R
r2)),

absE((λ`′.η′(`′) ∧R (r′ ;R (expR(e);R (η1(`′) ∧R η2(`′)))), r′ ;R (expR(e);R (r1 ∧R r2))))
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R (expR(e);R (η1(`′) ∧R η2(`′)))))d′′,
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abs(r′ ;R (expR(e);R (r1 ∧R r2)))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ abs(r′;R expR(e);R η1(`′))d′′ ∧

abs(r′;R expR(e);R η2(`′))d′′,
abs(r′;R expR(e);R r1)d′′ ∧ abs(r′;R expR(e);R r2)d′′)

= (8)

Proof of Theorem 5.1. The proof is by induction on the structure of P .

Case 1. P = skip

absE(RJskipK) = absE((>EnvR
, idR))

= λ(η′, d′).(η′,abs(idR)d′ ∧
∧

`′∈Label

abs(>EnvR
(`′))(η′(`′)))

= λ(η′, d′).(η′, d′ ∧
∧

`′∈Label

>Data)

= λ(η′, d′).(η′, d′)
= BJskipK

Case 2. P = x = e

absE(RJx = eK) = absE((>EnvR
, asgnR(x, e)))

= λ(η′, d′).(η′,abs(asgnR(x, e))d′ ∧
∧

`′∈Label

abs(>EnvR
(`′))(η′(`′)))

= λ(η′, d′).(η′, asgn(x, e)d′ ∧
∧

`′∈Label

>Data)

= λ(η′, d′).(η′, asgn(x, e)d′)
= BJx = eK

Case 3. P = break `

absE(RJbreak `K) = absE((>EnvR
[` 7→ idR], >R))

= λ(η′, d′).(η′,abs(>R)d′ ∧
∧

`′∈Label

abs(>EnvR
[` 7→ idR](`′))(η′(`′)))

= λ(η′, d′).(η′, >Data ∧ abs(idR)(η′(`)))
= λ(η′, d′).(η′, η′(`))
= BJbreak `K

Case 4. P = ` : P ′

Let (η, r) = RJP ′K. By the induction hypothesis we have

BJP ′K = absE(RJP ′K) = absE((η, r))

= λ(η′, d′).(η′,abs(r)d′ ∧
∧

`′∈Label

abs(η(`′))(η′(`′)))
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Now we work on ` : P ′.

absE(RJ` : P ′K) = absE((η[` 7→ >R], r ∧R η(`)))

= λ(η′, d′).(η′,abs(r ∧R η(`))d′ ∧
∧

`′∈Label

abs(η[` 7→ >R](`′))(η′(`′)))

= λ(η′, d′).(η′,abs(r)d′ ∧ abs(η(`))d′ ∧
∧

`′∈Label,`′ 6=`

abs(η(`′))(η′(`′))) (1)

And

BJ` : P ′K = λ(η′, d′). let (η1, d1)← BJP ′K(η′[` 7→ d′], d′)
in (η1[` 7→ >Data], d1)

= λ(η′, d′). let (η1, d1)← (η′[` 7→ d′],abs(r)d′ ∧
∧

`′∈Label

abs(η(`′))(η′[` 7→ d′](`′)))

in (η1[` 7→ >Data], d1)

= λ(η′, d′).(η′[` 7→ >Data], abs(r)d′ ∧ abs(η(`))d′ ∧
∧

`′∈Label,`′ 6=`

abs(η(`′))(η′(`′))) (2)

Because we require all the programs to be legal, the incoming environment η′ has
` mapped to >Data. This means that η′ = η′[` 7→ >Data]. So

(2) = λ(η′, d′).(η′, abs(r)d′ ∧ abs(η(`))d′ ∧
∧

`′∈Label,`′ 6=`

abs(η(`′))(η′(`′)))

= (1)

Case 5. P = P1;P2

Let (η1, r1) = RJP1K and (η2, r2) = RJP2K. By the induction hypothesis we have

BJP1K = absE(RJP1K)
= absE((η1, r1))

= λ(η′, d′).(η′,abs(r1)d′ ∧
∧

`′∈Label

abs(η1(`′))(η′(`′)))

and

BJP2K = absE(RJP2K)
= absE((η2, r2))

= λ(η′, d′).(η′,abs(r2)d′ ∧
∧

`′∈Label

abs(η2(`′))(η′(`′)))

Now we work on P1;P2.

absE(RJP1;P2K) = absE((η1 ∧R (η2;R r1), r2;R r1))

= λ(η′, d′).(η′,abs(r2;R r1)d′ ∧
∧

`′∈Label

abs((η1 ∧R (η2;R r1))(`′))(η′(`′)))

= λ(η′, d′).(η′,abs(r2;R r1)d′ ∧
∧

`′∈Label

(abs(η1(`′))(η′(`′)) ∧ abs(η2(`′);R r1)(η′(`′)))) (3)
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And

BJP1;P2K = λ(η′, d′).(BJP2K;BJP1K)(η′, d′)
= λ(η′, d′).BJP1K(BJP2K(η′, d′))

= λ(η′, d′).BJP1K(η′,abs(r2)d′ ∧
∧

`′∈Label

abs(η2(`′))(η′(`′)))

= λ(η′, d′).
(
η′,abs(r1)

(
abs(r2)d′ ∧

∧
`′∈Label

abs(η2(`′))(η′(`′))
)
∧
( ∧
`′∈Label

abs(η1(`′))(η′(`′))
))

= λ(η′, d′).
(
η′,abs(r2;R r1)d′ ∧

( ∧
`′∈Label

abs(η2(`′);R r1)(η′(`′))
)
∧
( ∧
`′∈Label

abs(η1(`′))(η′(`′))
))

= λ(η′, d′).(η′,abs(r2;R r1)d′ ∧
∧

`′∈Label

(abs(η2(`′);R r1)(η′(`′)) ∧ abs(η1(`′))(η′(`′))))

= (3)

We note that we used the distributivity property above.
Case 6. P = if(e) P1 else P2

Let (η1, r1) = RJP1K and (η2, r2) = RJP2K. By the induction hypothesis we have

BJP1K = absE(RJP1K)
= absE((η1, r1))

= λ(η′, d′).(η′,abs(r1)d′ ∧
∧

`′∈Label

abs(η1(`′))(η′(`′)))

BJP2K = absE(RJP2K)
= absE((η2, r2))

= λ(η′, d′).(η′,abs(r2)d′ ∧
∧

`′∈Label

abs(η2(`′))(η′(`′)))

Now we work on if(e) P1 else P2.

absE(RJif(e) P1 else P2K) = absE(((η1 ∧R η2);R expR(e), (r1 ∧R r2);R exp(e)))

= λ(η′, d′).(η′,abs((r1 ∧R r2);R exp(e))d′ ∧
∧

`′∈Label

abs(((η1 ∧R η2);R expR(e))(`′))(η′(`′)))

= λ(η′, d′).(η′, exp(e)(abs(r1 ∧R r2)d′) ∧ exp(e)
( ∧
`′∈Label

abs(η1(`′) ∧R η2(`′))(η′(`′))
)

) (4)

Let (η′1, d
′
1) = BJP1K(η′, d′) and (η′2, d

′
2) = BJP2K(η′, d′). Then

BJif(e) P1 else P2K = λ(η′, d′).(η′, exp(e)(d1 ∧ d2))

= λ(η′, d′).(η′, exp(e)((abs(r1)d′ ∧
∧

`′∈Label

abs(η1(`′))(η′(`′))) ∧

(abs(r2)d′ ∧
∧

`′∈Label

abs(η2(`′))(η′(`′)))))

= λ(η′, d′).(η′, exp(e)(abs(r1 ∧R r2)d′ ∧
∧

`′∈Label

abs(η1(`′) ∧R η2(`′))(η′(`′))))
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= λ(η′, d′).(η′, exp(e)(abs(r1 ∧R r2)d′) ∧ exp(e)
( ∧
`′∈Label

abs(η1(`′) ∧R η2(`′))(η′(`′))
)

)

= (4)

We note that we used the distributivity property above.


