
Runtime Verification of C Memory Safety

Grigore Ros,u1, Wolfram Schulte2, and Traian Florin S, erbănut, ă1

1University of Illinois at Urbana-Champaign
2Microsoft Research

grosu@cs.uiuc.edu, schulte@microsoft.com, tserban2@cs.uiuc.edu

Abstract

C is the most widely used imperative system’s implementation lan-
guage. While C provides types and high-level abstractions, its design goal
has been to provide highest performance which often requires low-level
access to memory. As a consequence C supports arbitrary pointer arith-
metic, casting, and explicit allocation and deallocation. These operations
are difficult to use, resulting in programs that often have software bugs like
buffer overflows and dangling pointers that cause security vulnerabilities.
We say a C program is memory safe, if at runtime it never goes wrong
with such a memory access error. Based on standards for writing “good”
C code, this paper proposes strong memory safety as the least restric-
tive formal definition of memory safety amenable for runtime verification.
We show that although verification of memory safety is in general unde-
cidable, even when restricted to closed, terminating programs, runtime
verification of strong memory safety is a decision procedure for this class
of programs. We verify strong memory safety of a program by executing
the program using a symbolic, deterministic definition of the dynamic se-
mantics. A prototype implementation of these ideas shows the feasibility
of this approach.

1 Introduction

Memory safety is a crucial and desirable property for any piece of software. Its
absence is a major source for software bugs which can lead to abrupt termina-
tion of software execution, but also, and sometimes even more dangerous, can
be turned into a malicious tool: most of the recent security vulnerabilities are
due to memory safety violations. Nevertheless most existing software applica-
tions, and especially performance-critical applications, are written in low-level
programming languages such as C, which offer performance at the expense of
safety. Due to C’s support of pointer arithmetic, casting, and explicit allocation
and deallocation, C program executions can exhibit memory safety violations
ranging from buffer overflows, to memory leaks, to dangling pointers.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An important research question is thus the following:

Given a program written in an unsafe programming language like C,
how can one guarantee that any execution of this program is memory-
safe?

Many different approaches and tools were developed to address this problem.
For instance, CCured [7] uses pointer annotations and analyzes the source of
the program, trying to prove it memory safe, introducing runtime checks in the
code to monitor at runtime the parts which cannot be proven; Purify [4] and
Valgrind [8] execute the program in a“debugging”mode, adding metadata to the
program pointers to guarantee a proper separation of the allocation zones, and
use that metadata to monitor and detect anomalies at runtime; DieHard [1] and
Exterminator [9] replace the standard allocation routines by ones using random-
ization, which enables the detection of errors with high probability, attempting
to correct the errors on-the-fly. However, most of these tools arise from ad-hoc
observations and practical experience, without formally defining what it means
for a program to be memory safe.

This paper makes a first step towards bridging this gap, by introducing a
formal definition of memory safety for programs written in a non-memory safe
programming language and execution platform. The language and platform
chosen to this aim is KernelC, a formal definition of the executable seman-
tics of a fragment of the C language including memory allocation/freeing rou-
tines. KernelC only supports one type namely mathematical integers; and
each KernelC location can hold exactly one integer. Nevertheless one can
write many interesting pieces of C code in KernelC. Here are some that we
will refer to in the paper: ALLOCATE allocates a linked list of 5 nodes, in reversed
order, each node having two contiguous locations, one holding a value and the
other a pointer to the next node; REVERSE reverses a list of nodes as above that
starts at p; and DEALLOCATE frees a list starting with p.

ALLOCATE
n = 0;

p = null;

while(n != 5) {

q = malloc(2);

*q = n;

*(q+1) = p;

p = q;

n = n+1;

}

REVERSE
if(p != null) {

x = *(p+1);

*(p+1) = null;

while(x != null) {

y = *(x+1);

*(x+1) = p;

p = x;

x = y;

}

}

DEALLOCATE
while(p != null) {

q = *(p+1);

free(p);

p = q;

}

Informally, memory safety means that the program cannot access a memory
location which it shouldn’t (e.g., exceeding arrays boundaries, addressing un-
allocated memory, and so on). For example, consider the program ALLOCATE’,
obtained from ALLOCATE by removing the second statement, i.e., p = null;.
Then, any of the composed programs ALLOCATE’ DEALLOCATE, or ALLOCATE’

2

REVERSE, is not memory safe, since the list can potentially be non-null termi-
nated, which would lead to an attempt of accessing non-allocated memory upon
deallocating/reversing the list. On the other hand, a compiler might initialize
all local variables with 0 (which in C corresponds to null); if so our example
program would have no memory access error and would terminate.

The principle source of C’s nondeterminism comes from the underspecifica-
tion of C’s memory allocator, which implements the malloc and free functions.
The C language specification guarantees that a call to malloc(n) will, if its
succeeds, return a pointer to a region of n continuous and previously unallocated
locations. These locations now become allocated. When these locations are no
longer needed, the pointer, which was returned from a malloc call, is passed
to free which deallocates the memory. The C language specification provides
no guarantees except for that fact that malloc returns unallocated locations;
free might deallocate the memory or not. To cope with this non-determinism,
memory safety of KernelC programs is defined as a global property on the
entire set of executions of a program, derivable using the KernelC definition.
We say: A KernelC program is memory safe if none of its possible executions
gets stuck in a non-final state.

One might expect that verification of memory safety would be decidable
for terminating programs – after all we have so many checkers addressing the
problem. However, we show that memory safety is undecidable even for closed,
terminating programs. The argument for undecidability comes from the rather
unusual usage of memory allocation, that is, using memory allocation as a source
of nondeterminism in the execution, such as the examples in Fig. 1: INPUT
presents a simulation of non-deterministic input, and CHOICE shows how one
can model nondeterministic choice.

INPUT CHOICE
n=malloc(1);

while (n!=1)

if (n%2) n=3*n+1;

else n=n/2;

x = malloc(1);

y = malloc(1);

if (x<y) {}

else {}

Figure 1: “Accidental” memory safety

Based on the fact that standards
for writing “good” C code [3] advice
against taking advantage of this kind
of non-determinism, we define strong
memory safety as the least restrictive
notion of memory safety amenable
for runtime verification. The run-
time verification works as follows:
we introduce SafeKernelC, an ex-
ecutable definition for the same language, except that it handles memory allo-
cation symbolically; this makes the memory allocator deterministic; and since
SafeKernelC is deterministic, there is only one possible execution of any pro-
gram; therefore, strong memory safety can be monitored along that execution,
obtaining a guarantee for memory safety for all possible (partial) executions of
the program on the KernelC operational semantics. Note that strong mem-
ory safe programs do not only guarantee memory safety, they also enforce good
coding practices and ensure platform portability.

Our contributions are as follows:

• We present KernelC, a formal definition for the dynamic semantics of

3

a fragment of the C language, and formally define memory safety for an
execution, and for a program, in this context. Since our definition is
executable, it yields a procedure for runtime verifying memory safety along
one possible execution of a program.

• We prove that, even if the input program is closed and known to be ter-
minating, the verification of memory safety is undecidable.

• We refine KernelC to SafeKernelC, and introduce in this context
strong memory safety as a meaningful restriction of memory safety.

• We prove that runtime verification of strong memory safety is decidable
for closed, terminating programs. Since SafeKernelC is also executable,
this gives us a sound semi-procedure for checking memory safety of termi-
nating programs.

The remainder of the paper is structured as follows. Section 2 introduces the
KernelC definition and illustrates it through several examples. Section 3 for-
mally defines memory safety, and shows that, although we can monitor memory
safety along any execution path, proving memory safety is generally undecid-
able. Section 4 introduces strong memory safety as a reasonable and decid-
able restriction of memory safety and shows that runtime verification of strong
memory safety yields a sound technique for verifying memory safety. Section 5
concludes.

2 Formal Semantics of KernelC

We here discuss the definition of KernelC using K [10], a technique for defining
languages within the Rewriting Logic Semantics [6, 14]. Within this framework,
languages L are defined as rewrite theories (ΣL, EL,RL), where ΣL is a signature
extending the syntax of L, EL is a set of ΣL-equations, which are thought of
as structural rearrangements preparing the context for rules and carrying no
computational meaning, while RL is a set of ΣL-rules, used to model irreversible
computational steps. Since our base logic, rewriting logic [5], is a conservative
extension of equational logic, terms can be replaced by equal terms in any
context and in any direction. We write R ` t = t′ whenever t can be proved equal
to t′ using equational deduction with the equations in R. Like in term rewriting,
rules can be applied in any context, but only from left-to-right. One way to
think of rewriting logic is that equations apply until the term is matched by the
left-hand-side (lhs) of some rule, which then irreversibly transforms the term.
We write R ` t→t′ when t can be rewritten, using arbitrarily many equational
steps but only one rewrite step in R, into t′. Also, we write R ` t→∗ t′ when t
can be rewritten, using the equations and rules in R, into t′. Rewriting logic
thus captures rewriting modulo equations into a logic, with good mathematical
properties (loose and initial models, complete deduction, proofs = computations,
etc.). It is simple to understand and efficiently executable.

4

K is a modular definitional framework: rules match only what they need
from the configuration, so one can change the configuration (e.g., adding store,
input/output, stacks, etc.) without having to revisit existing rules.

Sequences, bags and maps. Sequences, bags and maps are core to K lan-
guage definitions and are defined as standard (equational) data-structures. We
use notations Seq @

u [S] for sequences and Bag @
u [S] for bags, resp., where u

is their unit and @ is their binary construct. Formally, if added for sort S ′,
these correspond to adding subsorting S <S ′ (i.e., production S ′FS , not needed
when S ′=S), operations u :→ S ′ (a constant) and @ : S ′×S ′→S ′, and appro-
priate unit and associativity equations for sequences, and unit, commutativity
and associativity equations for bags. For example, an environment is a finite
bag of pairs, ρ[X] retrieves the Int associated to the Id X in ρ, ρ[X ← J] updates
the Int corresponding to X in ρ to J, and ρ\X removes pair X 7→ from ρ (if
there is any). One can also define, in the same style, an operation Dom giving
the domain of a map as a bag of elements, as well as an operation checking
whether the map term is indeed a partial function. These operations are easy
to define algebraically and therefore we assume them from here on; in fact, we
assume that each map that occurs in an equation or rule is a well-formed map
(e.g., the maps σ � σ′ in the rules for malloc and free in Fig. 2). In general,
Map @

u [S 1, S 2] corresponds to bags of pairs of elements of sorts S 1 and S 2, re-
spectively, each pair written s17→s2, with additional operations [] : S ′× S1→S2
and [←] : S ′× S1× S2→ S ′ and \ : S ′×S1→ S ′ for lookup, update (adding
a new pair if map undefined on that element) and deletion (i.e., removing an
element binding), respectively, where S ′ is the sort corresponding to the maps.

Abstract Syntax. Fig. 2 shows the complete K definition of KernelC, a C-
like language with dynamic memory allocation and deallocation. K definitions
typically use only one (abstract) syntactic category, K, serving as minimal syn-
tactic infrastructure to define terms; it is not intended to be used for parsing or
type-checking. We make no distinction between algebraic signatures and their
context-free notation: syntactic categories correspond to sorts and productions
to operations in the signature; for example, production “K F Id=K;” is equiv-
alent to defining an operation “ = ; : Id × K → K”. In Fig. 2, op stands for
the various arithmetic and relational operations that one may want to include
in one’s language, and opInt stands for the mathematical counterpart (function
or relation) of op which operates on integers. For example, op can range over
standard arithmetic operator names +, -, *, /, etc., and over standard relational
operator names ==, !=, <=, >=, etc., in which case +Int is the addition operation
on integers (e.g., 3 +Int 7 = 10), etc., and ==Int is the equality on integers (e.g.,
(3 ==Int 5) = 0 and (3 ==Int 3) = 1. Like in C, we assume that boolean values
are special integer values, but, unlike C we assume unbounded integers.

We also assume the C meaning of the language constructs. In particular,
malloc(N) allocates a block of N contiguous locations and returns a pointer to
the first location, and free(P) assumes that a block of N locations has been

5

Nat F naturals, Int F integers (abstract syntax)

Id F identifiers, to be used as variable names
K F Int | Id | null | *K | !K | K1 op K2 | K1 && K2 | K1|| K2 |

| K1=K2 | K; | K1 K2 | {K} | {} | malloc(K) | free(K)
| if (K1) K2 | if (K1) K2 else K3 | while (K1) K2

null = 0 (desugaring of non-core constructs)

! K = if (K) 0 else 1
K1 &&K2 = if (K1) K2 else 0 K1 ||K2 = if (K1) 1 else K2
{K} = K if (K1) K2 = if (K1) K2 else {}

Cfg F 〈Bag· [CfgItem]〉 (configuration)

CfgItem F 〈K〉k | 〈Env〉env | 〈Mem〉mem | 〈Ptr〉ptr

K F ... | Seq y· [K] Mem F Map �
· [Nat+, Int]

Env F Map ,
· [Id, Int] Ptr F Map ,

· [Nat+,Nat]
*K = (K y *�) (computation structural equations)

K1 op K2 = (K1 y � op K2) I1 op K2 = (K2 y I1 op�)
if (K1) K2 else K3 = (K1yif (�) K2 else K3) K; = Ky�;
(K1=K2) = (K2yK1=�) (*K1=K2) = (K1 y *�=K2)
malloc(K)= (Kymalloc(�)) free(K)= (Kyfree(�))
{} = · (semantic equations and rules)

K1 K2 = K1yK2 I;→ ·
I1 op I2 → I1 opInt I2
if (I) K2 else K3 → K3, where I = 0
if (I) K2 else K3 → K2, where I , 0
〈X y K〉k 〈X 7→ I, ρ〉env → 〈I y K〉k 〈X 7→ I, ρ〉env

〈X=I y K〉k 〈ρ〉env → 〈K〉k 〈ρ[X ← I]〉env

〈*Py K〉k 〈P 7→ I�σ〉mem → 〈I y K〉k 〈P 7→ I�σ〉mem

〈*P=I y K〉k 〈P 7→ I′�σ〉mem → 〈K〉k 〈P 7→ I�σ〉mem

〈while(K1)K2 y K〉k = 〈if(K1){K2K1)K2}y K〉k
〈malloc(N)yK〉k〈σ〉mem〈π〉ptr→〈PyK〉k〈σ�σ′〉mem〈π[P←N]〉ptr

where Dom(σ′)=P, P+N−1
〈free(P);yK〉k 〈σ�σ′〉mem 〈P 7→N, π〉ptr → 〈K〉k 〈σ〉mem 〈π〉ptr

where Dom(σ′)=P, P+N−1
(range of variables: X ∈ Id; K,K1,K2 ∈ K; I, I1, I2 ∈ Int; P ∈ Nat+; N ∈ Nat)

Figure 2: KernelC in K: Complete Semantics

6

previously allocated using a corresponding malloc and deallocates it.

Definition 1 A KernelC computation K is well-formed iff it is equal (using
equational reasoning within KernelC’s semantics) to a well-formed statement
list or expression in C. Also, a computation is well-terminated iff it is equal
to the unit computation “·” or to an integer value I ∈ Int.

Syntactic Sugar. The desugaring equations are self-describing; we prefer to
desugar derived language constructs wherever possible. The “boolean” con-
structs && and || are shortcut. Even though the conditional is a statement,
once all syntactic categories are collapsed into one, K, it can be used to desugar
expression constructs as well.

Configurations. We use sequences, bags, maps and abstract syntax as con-
figuration constructors, henceforth just called cells.

The configuration of KernelC is a top 〈...〉 cell containing a “soup” of four
sub-cells: a cell 〈...〉k wrapping the computation; a cell 〈...〉env holding the map-
ping for the stack variables; a cell 〈...〉mem holding the memory (or heap) which
can be dynamically allocated/deallocated; and a cell 〈...〉ptr associating to point-
ers returned by malloc the number of locations that have been allocated (this
info is necessary for the semantics of free).

K definitions achieve context-sensitivity in two ways: (1) by adding alge-
braic structure to configurations and using it to control matching; and (2) by
extending the original language syntax with a special task sequentialization con-
struct, “y” pronounced “then”, as well as frozen variants of existing language
constructs. Frozen operators have a “�” as part of their name and are used to
“freeze” fragments of program until their turn comes.

Definition 2 Let (Σ, E) be the algebraic specification of KernelC configura-
tions: Σ contains all the configuration constructs (for bags, maps, etc.) and E
contains all their defining equations (associativities, commutativities, etc.). Let
T be the Σ-algebra of ground terms; the E-equational classes (i.e., provably equal
using equational reasoning with E) of (ground) terms in T of sort Cfg which have
the form 〈〈K〉k 〈ρ〉env 〈σ〉mem 〈π〉ptr〉 are called (concrete) configurations. We
distinguish several types of configurations:

• Configurations of the form 〈〈K〉k 〈·〉env 〈·〉mem 〈·〉ptr〉 where K is a well-formed
computation, also written more compactly JKK, are called initial config-
urations;

• Configurations 〈〈K〉k 〈ρ〉env 〈σ〉mem 〈π〉ptr〉 whose embedded computation K is
well-terminated (a “·” or an I ∈ Int) are called final configurations;

• Configurations γ∈T which cannot be rewritten anymore (i.e., there is no
configuration γ′ ∈ T such that KernelC ` γ → γ′) are normal form
configurations;

7

• Normal form configurations which are not final are called stuck (or junk,
or core dump) configurations;

• Configurations γ which cannot be rewritten infinitely (i.e., there is no in-
finite set of configurations {γn}n∈Nat such that γ0 = γ and KernelC`γn →

γn+1 for any n ∈ Nat) are called terminating configurations.

Computation structures. Sort K contains computation structures, or sim-
ply computations, obtained by adding to the original abstract syntax computa-
tion sequences (terms in Seq y· [K]) and frozen computations (wrapped by oper-
ators containing a“�” in their name). Intuitively, K1yK2 means“first process K1,
then process K2”. Frozen computations are structurally inhibited from advanc-
ing until their turn comes. For example, “K1 op K2” first processes K1 and in the
meanwhile keeps K2 frozen: “K1 op K2 = K1y� op K2”. After K1 is processed, its
result is placed back in context and K2 is “scheduled”: “I1 op K2=K2yI1 op�”. As
equations, these can be applied forth (to “schedule” for processing) and back (to
“plug” results back). We assume all freezing operators are automatically added
to sort K (i.e., the “...” in “KF ...” in Fig. 2 include “Id=�;” and “� op K |K op�”
for all operations op that one in the language). Computation equations give the
evaluation strategy of each language construct; note the one for the conditional,
which schedules for processing the condition, keeping the two branches frozen.
They accomplish the same role as the context productions of evaluation contexts
[16], but logically rather than syntactically.

Semantic equations and rules. Empty blocks and sequential composition
are dissolved into the unit and the sequentialization of K. The rules for +, ==
and if are clear. The rule for variable assignment updates the environment,
at the same time dissolving the assignment statement. We chose to let lookup
of uninitialized variables be undefined. Pointer lookup and update are similar,
replacing the environment by memory.

The equation of while shows a use of the cell structure to achieve con-
text sensitivity; if replacing it with the simple-minded equation (or rule in case
one prefers to regard loops unrolling as a computational step) while(K1)K2 =

if(K1){K2;while(K1)K2} then there is nothing to prevent the application of
this equation again on the while term inside the conditional, and so on. While
proof-theoretically one could argue that there is no problem with that, opera-
tionally it is problematic as it leads to operational non-termination even though
the program may terminate. Therefore, we chose to restrict the unrolling of
while to only the cases when while is the first computation task.

The rules for free and malloc make subtle use of matching modulo associa-
tivity and commutativity of � . In the case of free(P), a σ′ is matched in the
〈...〉mem cell whose domain is the N contiguous locations P, P+N−1, where N is the
natural number associated to P in the 〈...〉ptr cell (i.e., the number of locations
previously allocated at P using a malloc); then the free statement in cell 〈...〉k,
the memory map σ′ in cell 〈...〉mem and the pointer mapping P7→N in cell 〈...〉ptr

are discarded; this way, the memory starting with location P can be reclaimed

8

and reused in possible implementations of KernelC. Recall that we assume
that all (partial) maps appearing in any context are well-formed; in particular,
the map σ � σ′ in the rule of free is well-formed, which means that there is
only one such matching in the memory cell (P and N are given), which means
that the rule for free is deterministic. Such a compact and elegant definition
is possible only thanks to the strength of matching and rewriting modulo equa-
tions. Maude [2] provides efficient support for these operations, which is what
makes it a very convenient execution vehicle for K. The well-formedness of maps
can either be assumed (one can prove aside that each equation/rule preserves
it) or checked as a condition attached to the rule. Fig. 3 shows a rewriting logic
derivation using the K semantics in Fig. 2; →∗ stands for one or more rewrite
steps, with arbitrarily many equational steps in between.

Let REVERSE be the list reverse program in Introduction, and let
WHILE ≡ while(x!=null){y=*(x+1);*(x+1)=p;p=x;x=y;}
IF ≡ if(�){x=*(p+1); *(p+1)=null; WHILE}.

Also, let us assume the environment and memory maps: (ρ1 ≡ p 7→ 1, x 7→
0, y 7→ 0), (ρ2 ≡ p 7→ 1, x 7→ 5, y 7→ 0), (ρ3 ≡ p 7→ 5, x 7→ 0, y 7→ 0),
(σ1 ≡ 1 7→ 7�2 7→ 5�5 7→ 9�6 7→ 0), (σ2 ≡ 1 7→ 7�2 7→ 0�5 7→ 9�6 7→ 0),
(σ3 = 1 7→ 7�2 7→ 0�5 7→ 9�6 7→ 1). The following derivation shows an
execution reversing a list with the elements 7, 9:

〈REVERSE(p)〉k 〈ρ1〉env〈σ1〉mem = 〈p!=nullyIF〉k 〈ρ1〉env 〈σ1〉mem =

〈!(p==null)y IF〉k 〈ρ1〉env 〈σ1〉mem =
∗

〈if (p==0) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem =

〈p==0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem =

〈py �==0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem →

〈1y �==0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem =

〈1==0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem →

〈0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem =

〈if (0) 0 else 1yIF〉k〈ρ1〉env〈σ1〉mem→〈1yIF〉k 〈ρ1〉env 〈σ1〉mem →
∗

〈x=*(p+1); y *(p+1)=0; y WHILE〉k 〈ρ1〉env 〈σ1〉mem →
∗

〈x=*2; y *(p+1)=0; y WHILE〉k 〈ρ1〉env 〈σ1〉mem →
∗

〈x=5; y *(p+1)=0; y WHILE〉k 〈ρ1〉env 〈σ1〉mem →
∗

〈*(p+1)=0; y WHILE〉k 〈ρ2〉env 〈σ1〉mem →
∗

〈if(x!=0){y=*(x+1);*(x+1)=p;p=x;x=y;WHILE}〉k 〈ρ2〉env 〈σ2〉mem →
∗

〈y=*(x+1); y *(x+1)=p;p=x;x=y;WHILE〉k 〈ρ2〉env 〈σ2〉mem →
∗

〈*(x+1)=p; y p=x; y x=y; y WHILE〉k 〈ρ2〉env 〈σ2〉mem →
∗

〈p=x; y x=y; y WHILE〉k 〈ρ2〉env 〈σ3〉mem →
∗

〈if(x!=0){y=*(x+1);*(x+1)=p;p=x;x=y;WHILE}〉k 〈ρ3〉env 〈σ3〉mem →
∗

〈·〉k 〈ρ3〉env 〈σ3〉mem

Figure 3: Rewriting logic derivation using the KernelC semantics in Fig. 2.

The most intricate rule in Fig. 2 is that of malloc which is an almost exact
dual of the rule for free. Like in the free rule, the σ′ is doubly constrained:
its domain is disjoint from σ’s (because σ�σ′ is well-formed) and its domain

9

is the set of contiguous locations P, P+N−1 with P the returned pointer. How-
ever, the constraints on σ′ are loose enough to allow a high degree of seman-
tic non-determinism. E.g., program “BAD ≡ p=malloc(2);*2=7;” may exhibit
three different types of behavior, two in which it terminates normally but in
non-isomorphic configurations, and one in which it gets stuck looking up for
location 1 which is not allocated. E.g., 〈〈BAD〉k〈·〉env〈·〉mem〈·〉ptr〉 rewrites to any of
the following (each being a normal form):

〈〈·〉k 〈p 7→ 1〉env 〈(1 7→ i) � (2 7→ 7)〉mem 〈1 7→ 2〉ptrwherei ∈ Int〉
〈〈·〉k 〈p 7→ 2〉env 〈(2 7→ 7) � (3 7→ j)〉mem 〈2 7→ 2〉ptrwhere j ∈ Int〉
〈〈*2y �=7;〉k〈p 7→ 5〉env〈(5 7→ k) � (6 7→ −3)〉mem〈5 7→ 2〉ptrwherek ∈ Int〉

In concrete implementations of KernelC, one may see the last type of
behavior more frequently than the other two, as it is little likely that malloc
allocates at the “predicted” location, 2 in our case. We tried this code in gcc on
a Linux machine (casting 2 to (T*)2) and it compiled (but it gave an expected
segmentation fault when run). Thus, we can regard the third normal form term
above as a “core dump”.

We claim that, in spite of this apparently undesired non-determinism, this
is the most general semantics of malloc that a language designer may want
to have. Any other additional constraints, such as “always allocate a fresh
memory region”, or “always reuse existing memory if possible”, etc., may lead to
a restrictive definition of KernelC, possibly undesired by some implementors.
The actual C language makes no specific requirements on memory allocation,
allowing C interpreters or compilers freedom to choose among various memory
allocation possibilities; it is programmers’ responsibility to write programs that
do not rely on particular memory allocation strategies. Note that, for simplicity,
our semantics abstracts from the fact that malloc can fail, in which case a null
pointer is returned; that is similar to saying we assume an unbounded memory.

The language. We can now formally state what KernelC is:

Definition 3 The language KernelC discussed here is the rewrite logic theory
(ΣKernelC, EKernelC,RKernelC) depicted in Fig. 2. If KernelC ` γ →∗ γ′ we say
that, in KernelC, configuration γ rewrites to configuration γ′.

Both the abstract syntax of KernelC and Σ are included in ΣKernelC, and
also both the desugaring equations of derived KernelC constructs and E are
included in EKernelC; recall from Definition 2 that (Σ, E) is the equational defi-
nition of KernelC configurations.

Therefore, the rewrite logic semantics of KernelC, identified with KernelC
from here on, can produce by means of rewriting all the possible complete or in-
termediate executions that the language can yield. In particular, if KernelC `
JKK →∗ γ with K a well-formed computation and γ a well-terminated configu-
ration, then γ contains the (possibly non-deterministic) “result” obtained after
“evaluating” K. In addition to comprising all the good executions, the rewrite
theory KernelC also comprises all the bad executions of KernelC programs,

10

namely all those that can get stuck; as seen shortly, this is very important as it
will allow us to formally define memory safety of KernelC programs.

Note that like in any other formal operational semantics, our rewrite logic
definition of KernelC has the property that informal execution steps and whole
executions of programs become, respectively, formal proof steps and whole
proofs in rewriting logic. Interestingly, unlike in other operational semantic
frameworks, rewriting logic also provides models which are complete for its
proof system, so the very same K definition of KernelC is also a loose “deno-
tational” semantics in addition to being an “operational” one; moreover, since
rewriting logic admits initial models, which are essentially built as a fix point
over the algebra of terms, there is a selected subset of models, the “reachable”
ones, for which induction is valid. In other words, once one has a K definition
of a language, one needs no other formal semantics of that language because its
K definition already provides everything one may need from a formal semantics.
This is also one of the reasons for which we call K semantics executable rather
than operational; the latter may give the wrong impression that the K semantics
can only be used to yield an interpreter for the language.

Even though K is executable by its very nature, here we actually defined,
and not implemented, KernelC. We therefore wanted to keep our semantics
as loose, or unconstrained, as possible. As usual, when implementing non-de-
terministic specifications one needs not (and typically does not) provide all the
non-deterministic behaviors in one’s implementation. In fact, each implemen-
tation of KernelC is expected to be deterministic. The non-determinism of
malloc in our KernelC definition is a result of a deliberate language under-
specification, not a desired non-deterministic feature of the language. General
details on under-specification versus non-determinism are beyond our scope here,
but the interested reader is referred to [15] for an in-depth discussion on these
subjects. An additional advantage of the under-specified malloc in our defini-
tion of KernelC is that it allows us to elegantly yet rigorously define memory
safety in the next section: a program is memory-safe iff it cannot get stuck,
i.e., it cannot be rewritten to a normal form whose computation cell is not
well-termnated.

3 Memory Safety

We here give a formal definition to memory safety in KernelC, capturing
the intuition that a program is memory safe iff it is so under any possible
implementation of KernelC, i.e., under any possible choice the rule for malloc
may make. Due to the undecidability of termination in general, our notion
of memory safety, like any other practical (i.e., not unreasonably restricted)
notion of memory safety, is undecidable in general. In this section we show that
memory safety is actually undecidable even for terminating KernelC programs.
That means, in particular, that KernelC semantics as well as any faithful
implementation of it, cannot detect memory safety violations even on programs
which always terminate, no matter whether that is attempted statically or at

11

runtime.
To check memory safety, one therefore needs either to rely on user help (e.g.,

annotations), as detailed in [12], or to restrict the class of memory safe programs,
which is what we do in next section.

Definition 4 Well-formed computation K is terminating iff JKK is a termi-
nating configuration in KernelC, and is memory safe iff any normal form
of JKK in KernelC is final.

Program “BAD ≡ p=malloc(2);*2=7;” is terminating but not memory safe:
JBADK rewrites, as seen, to normal form 〈〈*2y�=7;〉k〈p7→5〉env〈(5 7→−1)�(6 7→−3)〉mem

〈5 7→2〉ptr〉. Program “GOOD ≡ p=malloc(2);*(p+1)=7;”, on the other hand, is both
terminating and memory-safe: JGOODK rewrites only to normal form configura-
tions of the form 〈〈·〉k 〈p 7→ i〉env 〈(i 7→ j) � (i+1 7→7)〉mem 〈i 7→2〉ptr〉, where i ∈ Nat+

and j ∈ Int. Program “p=malloc(1);while(*p){}” is memory safe but not termi-
nating (when *p , 0), and finally, program“p=malloc(1);while(*1){}” is neither
memory-safe (when p , 1) nor terminating (when p = 1 and *1,0).

For our simple language, memory is the only source of unsafety; for more
complex languages, one may have various types of safety, depending upon the
language construct at the top of the computation in t when t is a normal form,
which tells why the computation got stuck; e.g., if the language has division
and 3/0 is at the top of the computation, then K got stuck because a division
by zero was attempted.

KernelC is Turing complete (we assumed both arbitrarily large integers and
infinite memory), so termination of KernelC programs is undecidable. That
immediately implies that memory safety is also undecidable in general: for any
memory safe program PGM, the program “PGM;BAD” is memory safe iff PGM does
not terminate. What is not so obvious is the decidability or undecidability of
memory safety on terminating programs. In the remaining of this section we
show that this is actually an undecidable problem.

A hasty reader may think that, since programs have no symbolic inputs or
data, memory safety must be decidable on terminating programs: one can simply
run the program and check each memory access. The complexity of the problem
comes from the non-determinism/under-specification of malloc, which makes
any particular execution of the program to mean close to nothing wrt mem-
ory safety. Consider, for example, an execution of the program “x=malloc(1);
free(x); y=malloc(1); *x=1;” in which the second malloc just happens to return
the same pointer as the first malloc. Since this particular execution taking place
on a hypothetical particular implementation of KernelC terminates normally,
one may be wrongly tempted to say that it is memory safe; this program is
clearly not memory safe (gets stuck if second malloc chooses a different loca-
tion) and even the execution itself can be argued as memory unsafe, because of
a memory leak on x (dangling pointer).

Proposition 5 Memory safety of terminating KernelC programs is an unde-
cidable property.

12

Proof. Since KernelC is Turing complete, we can encode any decidable prop-
erty ϕ(n) of input n ∈ Nat as a terminating and memory-safe KernelC program
“x=n;PGMϕ” which writes some variable out, such that ϕ(n) holds iff KernelC `
Jx=n;PGMϕK →∗ 〈〈·〉k〈out 7→ 1, ...〉env...〉 and ϕ(n) does not hold iff KernelC `
Jx=n;PGMϕK →∗ 〈〈·〉k〈out 7→ 0, ...〉env...〉. Since the pointer returned by malloc is
non-deterministic, we can use it to “choose a random” n to assign to x: consider
the program “PGM’ϕ ≡ x=malloc(1);PGMϕ;if(out)GOOD else BAD”. PGM’ϕ ter-
minates because “x=n;PGMϕ” terminates for any n ∈ Nat returned by malloc(1)
and the conditional always terminates. On the other hand, PGM’ϕ is memory
safe iff the variable out is 1 in the environment when PGMϕ terminates, which
happens iff ϕ(n) holds for all n ∈ Nat. The undecidability of memory safety then
follows from the fact that there are decidable properties ϕ for which (∀n)ϕ(n) is
a proper co-recursively-enumerable property [11]. �

Since our notion of memory safety refers to a program rather than a path, the
proposition above says that it is also impossible to devise any runtime checker
for memory safety of general purpose KernelC (and hence C) programs. One
could admittedly argue that such anomalies occur as artifacts of poorly designed
languages like C, that allow for (too) direct memory access and complete free-
dom in handling pointers as if they are natural numbers. However, it is actually
precisely these capabilities that make C attractive when performance is a con-
cern, and performance is indeed a concern in many applications. That memory
unsafe programs may execute just fine is a must feature of any formal semantic
definition of C that is worth its salt, because all C implementations deliberately
“suffer” from this problem.

Since unrestricted use of pointers returned by malloc can lead to non-de-
terministic executions of programs, one could, in principle, introduce some no-
tion of “path memory safety”. For example, one could argue that an execution
of the program“x=malloc(1); y=malloc(1); if (y==x+1) {} else BAD” in which
y just happens to be x+1 is memory safe, or that an execution of the pro-
gram “x=malloc(2); if (*x==*(x+1)) {} else BAD” in which *x just happens to
be *(x+1) is memory safe. Encouraged by the informal so-called “C rules for
pointer operations” [3], we prefer to not introduce such a notion of “path mem-
ory safety” and, instead, to keep our notion of memory safety of programs in
Definition 4; with it, these terminating programs are not memory safe. We will
next introduce a stronger notion of memory safety, supported by an executable
semantics that will always get stuck on these programs.

4 Strong Memory Safety

We propose the semantic notion of strong memory safety: a program is strongly
memory safe iff it does not get stuck in the executable semantics SafeKernelC,
a variant of KernelC semantics with symbolic pointers. Interestingly, our for-
mal definition of strong memory safety includes the informal notion of memory
safety implied by the “C rules for pointer operations” [3]. Strong memory safety
is shown decidable for terminating programs, but, of course, it is undecidable

13

in general.
Note that we are not attempting to fix C’s problems here, nor to propose

a better language design. However, the high degree of non-determinism in the
semantics of malloc may be problematic in formal verification. We prefer to
give a slightly different semantics to our language, one which captures the non-
determinism of malloc symbolically. Fig. 4 shows the formal K semantic def-
inition of SafeKernelC, which essentially adds symbolic numbers and gives
malloc a symbolic semantics. Everything else stays unchanged, like in the defi-
nition of KernelC in Fig. 2.

The first distinction between KernelC and SafeKernelC is that, al-
though both of them are deterministic for all rules except the malloc rule,
KernelC can introduce non-determinism based on the values returned by the
malloc function, while SafeKernelC, using symbolic values, is deterministic
up to symbolic variable renaming.

Proposition 6 For any L ∈ {KernelC,SafeKernelC}, if L ` γ0 →
∗ γ such

that L ` γ = 〈〈K〉k〈ρ〉env〈σ〉mem〈π〉ptr〉, and L 6` K = malloc(N); y K′, then
there exists at most one configuration γ′ such that L ` γ → γ′. SafeKernelC
is deterministic, modulo renamings of the symbols from NatVar.

Proof. First part can be formally proved by induction on the length of the
derivation. Intuitively, the property holds because, at any moment, there exists a
unique way to match a configuration which is reachable from an initial state, and
the rules preserve this invariant. Moreover, except for the malloc rule, which
allows for a choice of the value introduced (but does not violate the invariant),
all other rules have the variables in the right hand side completely determined
by those in the left hand side. For the second part, since the value introduced
by the malloc rule is only operated with symbolically, which corresponds to the
fact that future side conditions must hold for all possible valuations of variable,
it follows that we can choose a canonical way to generate fresh symbols and
thus completely eliminate the non-determinism. �

Therefore, we can choose a representative derivation for any SafeKernelC
derivation of an initial state, say one in which choosing of fresh variables is done
in order from the countable infinite sequence nv1,nv2, . . . ,nvN ,

Definition 7 Well-formed computation K is strongly terminating iff JKK is
terminating in SafeKernelC, and is strongly memory safe iff any normal
form of JKK in SafeKernelC is final.

Since SafeKernelC adds symbolic values (for pointers and initial values
in allocated memory locations), the assumed machinery for naturals and in-
tegers is now expected to work with these symbolic values as well. In par-
ticular, the rule (side) conditions may be harder to check. For example, the
rule “I1==I2 → N” applies only when one proves that I1 = I2, and in that
case N is 1, or when one proves that I1 , I2, and in that case N is 0; if one
cannot prove any of the two, then the term “I1==I2” remains unreduced and

14

NatVar F infinite set of symbolic natural numbers (abstract syntax)

Nat F ... | NatVar
(semantic equations and rules)

〈malloc(N)yK〉k〈σ〉mem〈π〉ptr → 〈pyK〉k〈σ�σ′〉mem〈π[P←N]〉ptr

where P is a fresh symbol in NatVar and Dom(σ′) = P, P + N − 1

Figure 4: Formal semantics of SafeKernelC.
(figure only shows how it differs from the semantics of KernelC in Fig. 2)

the execution of the program may get stuck because of that. For example,
both “p=malloc(1);while(*p){}” and “p=malloc(1);while(*1){}” are now
strongly terminating (but remain memory unsafe, also in the strong sense).
Also, both programs discussed in front of Proposition 5 get stuck when pro-
cessing the conditions of their if statements. On the positive side, programs
obeying the recommended safety rules for pointer operations in C [3], e.g., read-
ing only initialized locations and comparing pointers only if they are within
the same data-structure contiguously allocated in memory, are strongly mem-
ory safe. For example, “n=100;a=malloc(n);x=a;while(x!=a+n){*x=0;x=x+1;}”
is both strongly memory safe and strongly terminating.

Since the side conditions can get arbitrarily complicated (they depend on the
program), the problem of deciding their validity itself can potentially become
undecidable. Therefore, we will assume an oracle for the logic involving the
side conditions, which, given a formula, can give one of the following answers:
YES, if the formula holds, NO, if it does not hold, or MAYBE, if the oracle
cannot decide the problem. For example, this oracle could be a sound automatic
theorem prover, which will attempt to prove/disprove the theorem, but, being
incomplete, might also fail on complex formulas. Since the logic (regarding
pointer comparison) involved in programs following “good coding standards”
should be relatively simple, e.g., Presburger arithmetics, we believe the oracle
will probably act as a decision procedure for the majority of code. Matching
logic [12] shows how one could use the same framework (together with code
annotations), to prove general purpose properties about programs, which would
allow checking memory safety for “bad”coded programs, as well. The advantage
of the technique presented here is that it is fully automatic and requires no
additional user input.

Proposition 8 Let p ∈ K be a program. Then
1. If p is terminating then p is strongly terminating;
2. If p is strongly memory safe then p is memory safe;
3. If p is strongly memory safe then p is terminating iff p is strongly terminat-
ing.

Proof. 1. We will show that, any execution of p in SafeKernelC, can be
step-by-step simulated in KernelC, therefore, any non-terminating execution
in SafeKernelC would have a corresponding non-terminating execution in

15

KernelC. Suppose (γi)i≥0 is a sequence of configurations satisfying that γ0 is
an initial configuration corresponding to p, and, for any i, SafeKernelC `

γi
θi+1(ρi+1)
−−−−−−→ γi+1. Also suppose this derivation sequence is representative, in the

sense that fresh NatVar symbols are generated (in order) from the sequence
(nv j) j≥1. Let (i j) j≥1 be a sequence of positive numbers such that ρi j is the instance
of the malloc rule introducing nv j. If follows that, for any i ≤ i j0 , γi is completely
determined by (nv j)1≤ j≤ j0 ; that is, all values in the environment and store are
algebraic expressions with variables from (nv j)1≤ j≤ j0 . We define the following
sequence of functions V j : {nv1, . . . ,nv j} → Nat, by: V1(nv1) = 1, and Vn+1(nv j) ={

Vn(nv j), j ≤ n
1 + Vn(nvn) + Vn(N), j = n + 1

, where N is the number associated to nvn in

γin , and Vn is the canonical extension of Vn to expressions and configurations
(mapping σ(nv j) to 0). Let V be the limit of (V j) j≥1, i.e., V(nv j) = V j(nv j).
It remains to show that, for any i ≥ 0, V(γi) is a configuration for KernelC,

and KernelC ` V(γi)
V(θi+1(ρi+1))
−−−−−−−−−→ V(γi+1) (whence V(θi+1(ρi+1)) is an instance of

a KernelC rule). For i = 0, V(γ0) = γ0, since γ0 does not contain any NatVar
symbols, whence it also is a configuration for KernelC. Now, suppose V(γi) is

a KernelC configuration, and that SafeKernelC ` γi
θi+1(ρi+1)
−−−−−−→ γi+1. If ρi+1 is

not the malloc rule, then it basically is the same rule schema as in KernelC,
with the difference that it can be instantiated for terms with symbols from
NatVar. Since the NatVar symbols are free variables in the instance θi+1(ρi+1), it
follows that V(θi+1(ρi+1)) is an instance for both KernelC and SafeKernelC;

therefore it must be that KernelC ` V(γi)
V(θi+1(ρi+1))
−−−−−−−−−→ V(γi+1). Similarly, if

θi+1(ρi+1) is an instance of the malloc rule, then V(θi+1(ρ′n)) is an instance of the
malloc rule in KernelC (by the construction of V).

2 and 3. Let γ0 be an initial state and let SafeKernelC ` γi
θi+1(ρi+1)
−−−−−−→ γi+1,

0 ≤ i < n, where n ∈ Nat ∪ {∞}, be the (possibly infinite) canonical derivation
of γ0 in SafeKernelC. Assume γ0 corresponds to a strongly safe program.
This means that if n if finite, then γn is final. We will show that all (complete)
derivations of γ0 in KernelC are valuations of the canonical derivation of γ0 in
SafeKernelC; therefore, they either are non-terminating, or they terminate in

a final configuration. Let KernelC ` γ′i
θ′i+1(ρ′i+1)
−−−−−−→ γ′i+1, 0 ≤ i < n′ be a derivation

such that γ′0 = γ0. Let (i j) j≥1 be the increasing sequence of positive numbers
such that ρ′i j

is an instance of the malloc rule. We then let V(nv j) = θ′i j
(P). It

can be proved by induction on i that V(θi(ρi)) = θ′i (ρi), and therefore V(γi) = γi.
Moreover, if n′ < n, then, using a construction similar to the one used in proving
the claim above, we expand the existing valuation V to one covering all symbols
in the SafeKernelC derivation, say V ′, and use that to expand the existing

KernelC derivation to KernelC ` V ′(γi)
V ′(θi1 (ρi+1))
−−−−−−−−→ V ′(γi+1), n′ ≤ i < n, such

that V ′(γn′) = γ
′

n′
. �

The first two implications in the proposition above are proper. For example,

16

“p=malloc(1);while(*p){}” is a strongly terminating program (but not strongly
memory safe) which is not terminating. We call such programs “accidentally
non-terminating”. There are also programs which are memory safe but not
strongly memory safe, such as “x=malloc(1);y=malloc(1);if(y==x+1){}else{}”.
We call such programs “accidentally memory safe”.

Theorem 9 Strong termination and strong memory safety remain undecidable
in general, but strong memory safety of strongly terminating programs is decid-
able, assuming the oracle used for side conditions is a decision procedure.

Proof. First two claims follow from the fact that SafeKernelC is Turring
complete.

If a program is known to strongly terminate, it means its canonical derivation
is finite, and by constructing it (which we can, given out oracle is a decision
procedure) we can effectively check whether the last configuration obtained in
this derivation is indeed final. �

Theorem 9 gives us an effective procedure for runtime verification of strong
memory safety. Given a closed program, one can simply “execute” it using the
SafeKernelC definition. As long as the symbolic execution in SafeKernelC
can proceed, strong memory safety is guaranteed to hold up to that point. That
means that the execution of the program on a real machine using KernelC is
guaranteed to be memory safe up to the same point. Ultimately, for terminating
programs, this becomes a sound decision procedure for verifying memory safety.

5 Conclusions

We have presented the first (up to our knowledge) formal definition of memory
safety for a language allowing direct allocation and addressing of memory. After
showing that verification of memory safety is not amenable for automation in
general, through a suite of undecidability results, we proposed strong memory
safety, a meaningful restriction of memory safety, and proved that it is runtime
verifiable. Our main result is that runtime verification of strong memory safety
is a sound decision procedure for memory safety. The preliminary executable
definition is available for download (and experimentation) as a part of the K-
Maude distribution K-Maude [13].

References

[1] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory safety for un-
safe languages. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation, pages
158–168, New York, NY, USA, 2006. ACM.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. L. Talcott, editors. All About Maude - A High-Performance Logi-

17

cal Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, volume 4350 of Lecture Notes in Computer Science. Springer, 2007.

[3] S. P. Harbison and G. L. Steele. C: A Reference Manual (5th Edition).
Prentice Hall, 2002.

[4] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Proceedings of the Winter USENIX Conference.

[5] J. Meseguer. Conditioned rewriting logic as a united model of concurrency.
Theor. Comput. Sci., 96(1):73–155, 1992.

[6] J. Meseguer and G. Roşu. The rewriting logic semantics project. Theor.
Computer Science, 373(3):213–237, 2007.

[7] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe retrofitting
of legacy code. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 128–
139, New York, NY, USA, 2002. ACM.

[8] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In J. Ferrante and K. S. McKinley, editors,
PLDI, pages 89–100. ACM, 2007.

[9] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically
correcting memory errors with high probability. Commun. ACM, 51(12):87–
95, 2008.

[10] G. Roşu. K: A Rewriting-Based Framework for Computations – Prelimi-
nary version. Technical Report UIUCDCS-R-2007-2926, University of Illi-
nois, 2007.

[11] H. Rogers Jr. Theory of Recursive Functions and Effective Computability.
MIT press, Cambridge, MA, 1987.

[12] G. Rosu and W. Schulte. Matching logic. Technical Report UIUCDCS-R-
2009-3026, University of Illinois at Urbana-Champaign, 2009.

[13] T. F. Serbanuta. K-Maude web page. http://fsl.cs.uiuc.edu/index.
php/K-Maude.

[14] T. F. Şerbănuţă, G. Roşu, and J. Meseguer. A rewriting logic ap-
proach to operational semantics. Inf. and Comp., 2009. to appear;
http://dx.doi.org/10.1016/j.ic.2008.03.026.

[15] M. Walicki and S. Meldal. Algebraic approaches to nondeterminism: An
overview. ACM Comput. Surv., 29(1):30–81, 1996.

[16] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Inf. Comput., 115(1):38–94, 1994.

18

A KernelC Syntax and Configuration in K-Maude

(k syntax for KERNELC is including GENERIC-EXP-SYNTAX + STRING-SYNTAX .
sorts Stmt StmtList Pgm .
subsort Stmt < StmtList .
op #include<stdio.h>‘#include<stdlib.h>‘void‘main‘(void‘)‘{_‘}

: StmtList -> Pgm [renameTo _] .
op *_ : Exp -> Exp [strict prec 25] .
op !_ : Exp -> Exp [aux] .
vars E E’ : Exp .
eq ! E = E ? 0 : 1 .
ops _&&_ _||_ : Exp Exp -> Exp [aux] .
eq E && E’ = E ? E’ : 0 .
eq E || E’ = E ? 1 : E’ .
op _?_:_ : Exp Exp Exp -> Exp [renameTo if‘(_‘)_else_ prec 39] .
op _:=_ : Exp Exp -> Exp [strict(2) prec 40 gather (e E)] .
op _; : Exp -> Stmt [prec 45 strict] .
op ; : -> Stmt [renameTo .K] .
op __ : StmtList StmtList -> StmtList [prec 100 gather(e E) renameTo _->_] .
op ‘{_‘} : StmtList -> Stmt [renameTo _] .
op ‘{‘} : -> Stmt [renameTo .K] .
op malloc‘(_‘) : Exp -> Exp [strict] .
op free‘(_‘) : Exp -> Exp [strict] .
op if‘(_‘)_ : Exp Stmt -> Stmt [aux prec 47] .
var St St’ : Stmt .
eq if(E) St = if (E) St else {} .
op if‘(_‘)_else_ : Exp Stmt Stmt -> Stmt [strict (1) prec 46] .
op while‘(_‘)_ : Exp Stmt -> Stmt .
op printf‘("%d "‘,_‘) : Exp -> Exp [strict] .
op null : -> Exp [aux] .
eq null = 0 .

k)

(k configuration for KERNELC is
including KMAP{K, K} + FRESH-ITEM{K} .
ops env mem ptr : -> CellLabel [wrapping Map‘{K‘,K‘}] .
op out : -> CellLabel [wrapping K] .
op stream : String -> K .
op void : -> KResult .

k)

19

B KernelC Semantics in K-Maude

(k semantics for KERNELC is including GENERIC-EXP-SEMANTICS + INT-SIMP .
var P : Pgm . var N N’ : Nat . var X : Name . var Env : Map{K,K} .
var V V’ : KResult . var I : Int . var Ptr Mem : Map{K,K} .
var K K1 K2 : K . var S : String .
kcxt * K1 := K2 [strict(1)] . --- evaluating lhs to a lVal
eq <T> P </T> = <T> <k> mkK(P) </k> <env> .empty </env>

<mem> .empty </mem> <ptr> .empty </ptr>
<nextItem> item(1) </nextItem>

<out> stream("") </out> </T> .
eq #(true) = #(1) . eq #(false) = #(0) .
ceq if (#(I)) K1 else K2 = K2 if I eq 0 .
ceq if (#(I)) K1 else K2 = K1 if I neq 0 .
eq V ; = .K . --- discarding the value of an expression statement
keq <k> [[X ==> V]] ...</k> <env>... X |-> V ...</env> .
keq <k> [[X := V ==> V]] ...</k> <env> [[Env ==> Env[X <- V]]] </env> .
keq <k> [[* #(N) ==> V]] ...</k> <mem>... #(N) |-> V ...</mem> .
keq <k> [[* #(N) := V ==> V]] ...</k>

<mem>... #(N) |-> [[V’ ==> V]] ...</mem> .
keq <k> [[while(K1) K2 ==> if(K1) (K2 -> while(K1) K2) else .K]] ...</k> .
op alloc : Nat Nat -> Map{K,K} .
eq alloc(N, 0) = .empty .
eq alloc(N, s(N’)) = (#(N) |-> #(N + 1)) &’ alloc(N + 1, N’) .
keq <k> [[malloc(#(N)) ==> #(var(N’))]] ...</k>

<ptr>... [[.empty ==> (#(var(N’)) |-> #(N))]] ...</ptr>
<nextItem> [[item(N’) ==> item(N’) + s(N)]] </nextItem>
<mem>... [[.empty ==> alloc(var(N’), N)]] ...</mem> .

op freeMem : Map{K,K} Nat Nat -> Map{K,K} .
eq freeMem(Mem, N, 0) = Mem .
eq freeMem((Mem &’ (#(N) |-> V)), N, s(N’)) = freeMem(Mem,N + 1,N’) .
keq <k> [[free(#(N)) ==> void]] ...</k>

<ptr>... [[#(N) |-> #(N’) ==> .empty]] ...</ptr>
<mem> [[Mem ==> freeMem(Mem, N, N’)]] </mem> .

keq <k> [[printf("%d ",#(I)) ==> void]] ...</k>
<out> [[stream(S) ==> stream(S + string(I,10)+ " ")]] </out> .

k)

20

C SafeKernelC Semantics in K-Maude

Since it relies on the same syntax and configuration, it is called a semantics
for KernelC as the previous definition. The only thing that changes is that
the module NAT-VARS is now imported provide symbolic naturals instead of the
simplification module INT-SIMP, and the semantic rule for malloc(including
alloc).

(k semantics for KERNELC is including GENERIC-EXP-SEMANTICS + NAT-VARS .
var P : Pgm . var N N’ : Nat . var X : Name . var Env : Map{K,K} .
var V V’ : KResult . var I : Int . var Ptr Mem : Map{K,K} .
var K K1 K2 : K . var S : String .
kcxt * K1 := K2 [strict(1)] . --- evaluating lhs to a lVal
eq <T> P </T> = <T> <k> mkK(P) </k> <env> .empty </env>

<mem> .empty </mem> <ptr> .empty </ptr>
<nextItem> item(1) </nextItem>

<out> stream("") </out> </T> .
eq #(true) = #(1) . eq #(false) = #(0) .
ceq if (#(I)) K1 else K2 = K2 if I eq 0 .
ceq if (#(I)) K1 else K2 = K1 if I neq 0 .
eq V ; = .K . --- discarding the value of an expression statement
keq <k> [[X ==> V]] ...</k> <env>... X |-> V ...</env> .
keq <k> [[X := V ==> V]] ...</k> <env> [[Env ==> Env[X <- V]]] </env> .
keq <k> [[* #(N) ==> V]] ...</k> <mem>... #(N) |-> V ...</mem> .
keq <k> [[* #(N) := V ==> V]] ...</k>

<mem>... #(N) |-> [[V’ ==> V]] ...</mem> .
keq <k> [[while(K1) K2 ==> if(K1) (K2 -> while(K1) K2) else .K]] ...</k> .
op alloc : Nat Nat -> Map{K,K} .
eq alloc(N, 0) = .empty .
eq alloc(var(NV), s(N’))
= (#(var(NV)) |-> #(var(NV + 1))) &’ alloc(var(NV) + 1, N’) .
eq alloc(var(NV) + N, s(N’))
= (#(var(NV) + N) |-> #(var(NV + N + 1))) &’ alloc(var(NV) + N + 1, N’) .
keq <k> [[malloc(#(N)) ==> #(var(N’))]] ...</k>

<ptr>... [[.empty ==> (#(var(N’)) |-> #(N))]] ...</ptr>
<nextItem> [[item(N’) ==> item(N’) + s(N)]] </nextItem>
<mem>... [[.empty ==> alloc(var(N’), N)]] ...</mem> .

op freeMem : Map{K,K} Nat Nat -> Map{K,K} .
eq freeMem(Mem, N, 0) = Mem .
eq freeMem((Mem &’ (#(N) |-> V)), N, s(N’)) = freeMem(Mem,N + 1,N’) .
keq <k> [[free(#(N)) ==> void]] ...</k>

<ptr>... [[#(N) |-> #(N’) ==> .empty]] ...</ptr>
<mem> [[Mem ==> freeMem(Mem, N, N’)]] </mem> .

keq <k> [[printf("%d ",#(I)) ==> void]] ...</k>
<out> [[stream(S) ==> stream(S + string(I,10)+ " ")]] </out> .

k)

21

