
Fordham Law Review Fordham Law Review

Volume 90 Issue 3 Article 5

2021

Cracking the Code: How to Prevent Copyright Termination From Cracking the Code: How to Prevent Copyright Termination From

Upending the Proprietary and Open Source Software Markets Upending the Proprietary and Open Source Software Markets

Grant Emrich
Fordham University School of Law

Follow this and additional works at: https://ir.lawnet.fordham.edu/flr

 Part of the Computer Law Commons, and the Intellectual Property Law Commons

Recommended Citation Recommended Citation
Grant Emrich, Cracking the Code: How to Prevent Copyright Termination From Upending the Proprietary
and Open Source Software Markets, 90 Fordham L. Rev. 1245 (2021).
Available at: https://ir.lawnet.fordham.edu/flr/vol90/iss3/5

This Note is brought to you for free and open access by FLASH: The Fordham Law Archive of Scholarship and
History. It has been accepted for inclusion in Fordham Law Review by an authorized editor of FLASH: The Fordham
Law Archive of Scholarship and History. For more information, please contact tmelnick@law.fordham.edu.

https://ir.lawnet.fordham.edu/flr
https://ir.lawnet.fordham.edu/flr/vol90
https://ir.lawnet.fordham.edu/flr/vol90/iss3
https://ir.lawnet.fordham.edu/flr/vol90/iss3/5
https://ir.lawnet.fordham.edu/flr?utm_source=ir.lawnet.fordham.edu%2Fflr%2Fvol90%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=ir.lawnet.fordham.edu%2Fflr%2Fvol90%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=ir.lawnet.fordham.edu%2Fflr%2Fvol90%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tmelnick@law.fordham.edu

1245

CRACKING THE CODE: HOW TO PREVENT
COPYRIGHT TERMINATION FROM UPENDING

THE PROPRIETARY AND OPEN SOURCE
SOFTWARE MARKETS

Grant Emrich*

Computer software is protected by copyright law through its underlying

code, which courts have interpreted as constituting a “literary work”
pursuant to the Copyright Act. Prior to including software as copyrightable
subject matter, Congress established a termination right which grants
original authors the ability to reclaim their copyright thirty-five years after
they have transferred it. Termination was intended to benefit up-and-coming
authors who faced an inherent disadvantage in the market when selling the
rights to their works. In the near future, many software works will reach the
thirty-five-year threshold, thus presenting courts with a novel application of
termination to computer software.

Software’s inclusion as copyrightable subject matter has long been seen
as a poor fit when compared to other copyrightable works, such as music,
movies, and art. This perceived difference will soon be exacerbated because
termination poses unique threats as applied to software, primarily due to the
functional aspects of software that are necessarily incidental to the protected
code.

Problems stemming from termination will manifest differently in the two
primary software markets known as proprietary software and open source
software. Independent contractors may be able to terminate copyrights held
in software they had previously written for a business’s proprietary
ownership, whereas, in the context of open source software, exercise of
termination could make void perpetual licensing agreements that serve as
the foundation for the open source movement. While statutory and common
law exceptions to termination, such as the work made for hire doctrine, may
mitigate the effects of termination, the degree to which the doctrines may do
so has yet to be determined.

* J.D. Candidate 2022, Fordham University School of Law; B.A., 2018, Binghamton
University. I would first like to thank Professor Ron Lazebnik for his insight and guidance
throughout the writing process. Additionally, thank you to the editors and staff of the
Fordham Law Review for their careful edits and constructive comments. Finally, thank you
to my wonderful family for their unconditional love and support. To my mother, Alecia,
father, Michael, and brothers, Michael, Brendan, Garrett, and Dean, I couldn’t have done this
without you.

1246 FORDHAM LAW REVIEW [Vol. 90

This Note argues that the harmful effects of termination as applied to
proprietary software can be resolved through a novel interpretation of the
work made for hire provision of the Copyright Act. Additionally, the harmful
effects of termination on open source software can be avoided if Congress
adopts a legislative amendment creating a compulsory licensing system for
open source works.

INTRODUCTION .. 1247

I. THE CONVERGENCE OF COPYRIGHT LAW, TERMINATION RIGHTS,
AND THE SOFTWARE INDUSTRY ... 1249

A. The Development of Modern Copyright Law 1250
B. The Termination Right .. 1252
C. The Work Made for Hire Exception 1254
D. Software as Copyrightable Subject Matter 1255
E. Practical Implications on the Software Industry 1257

1. Internal Computer Software 1258

2. Open Source Software ... 1259
3. Proprietary Software .. 1261

II. PREDICTING THE SCOPE AND SEVERITY OF THE EFFECTS OF

SOFTWARE TERMINABILITY ... 1262

A. Will the Courts Find Software to Be Terminable? 1262
B. Will the Courts Find the Works of Freelance Software

Programmers to Be Works Made for Hire? 1265
1. Statutory Definition #1 .. 1265
2. Statutory Definition #2 .. 1268

C. Will Large-Scale Computer Software Programs Be
Terminable? .. 1269

D. Will § 117 of the Copyright Act Mitigate the Effects of
Software Terminability? ... 1271

III. PREVENTING THE INEQUITABLE EFFECTS OF SOFTWARE

TERMINABILITY ... 1273

A. Proposed Statutory Interpretation of the Copyright Act 1273
B. Legislative Amendment to Solve Termination Issues in Open

Source Software .. 1276
CONCLUSION ... 1279

2021] CRACKING THE CODE 1247

INTRODUCTION

Just over twenty years ago, international panic spread as survival supplies
were stockpiled,1 planes were grounded,2 and many prepared for what was
feared to be the end of the world.3 This event, most commonly referred to as
“Y2K,” was borne out of a combination of negligent coding practices and the
absence of oversight.4 Nearly all computers at the time were programmed to
track the current year based on its last two digits, which became problematic
when the imminent change to the year 2000 would appear indistinguishable
from the year 1900 to computer systems.5 Although the ramifications were
speculative at the time, this malfunction had the potential to cause massive
technological failures in all computer-reliant systems ranging from aviation
to financial markets.6 The potential catastrophe led to the creation of the
Senate Special Committee on the Year 2000 Technology Problem, which
oversaw the process of rewriting millions of lines of code.7

The dreaded disaster never came to pass, leading much of the general
public to believe that no genuine threat had ever existed in the first place.8
Although this sentiment may have been true regarding the most hyperbolic
prognostications, hundreds of technological failures were still experienced as
a result of the underlying bug.9 Furthermore, the results that could have been
experienced may never be known due to the preventative steps taken by
countries around the world.10

Regardless of its outcome, the Y2K event exemplified the importance of
the ability to both access and alter computer software code. An
underexplored provision of copyright law, known as the “termination right,”
may introduce a substantial barrier to code accessibility in the coming years.

 1. Kris Epley, Residents Stockpile Supplies in Fear of Y2K Chaos, GRAND ISLAND INDEP.
(Dec. 16, 2011), https://theindependent.com/news/residents-stockpile-supplies-in-fear-of-
y2k-chaos/article_1789cb1b-2e95-5a80-a36a-92fd93cf993e.html [https://perma.cc/JEQ4-
EFY7].
 2. See April F. Robbins, Aviation and the Year 2000: What’s the Big Deal?, 64 J. AIR

L. & COM. 835, 836 (1999).
 3. See Lily Rothman, Remember Y2K?: Here’s How We Prepped for the Non-Disaster,
TIME (Dec. 31, 2014, 12:00 PM), https://time.com/3645828/y2k-look-back/ [https://perma.cc/
4HQD-C82C].
 4. Dylan Mulvin, Distributing Liability: The Legal and Political Battles of Y2K, 42
IEEE ANNALS OF THE HIST. OF COMPUTING, no. 3, 2020, at 26, 28 (“[T]he widely distributed
antecedents to the Y2K crisis include economic imperatives, bureaucratic decisions,
haphazard coding techniques, a lack of managerial oversight, and scant attention paid to
software maintenance.”).
 5. See Zachary Loeb, The Lessons of Y2K, 20 Years Later, WASH. POST (Dec. 30, 2019),
https://www.washingtonpost.com/outlook/2019/12/30/lessons-yk-years-later/
[https://perma.cc/Z7AX-DSDV].
 6. Id.
 7. Id.
 8. Id.
 9. Id. (“And while many believed that ‘nothing happened,’ there were actually hundreds
of Y2K-related incidents. These included problems at more than a dozen nuclear power
plants, delays in millions of dollars of Medicare payments, ATM issues worldwide and
problems with the Defense Department’s satellite-based intelligence system.”).
 10. Id.

1248 FORDHAM LAW REVIEW [Vol. 90

While unlikely to precipitate the end of the world, the termination right does
have the potential to significantly disrupt the computer software industry and
cause issues throughout our modern tech-reliant economy.

The termination right is a powerful tool that allows original authors of
copyrighted work to regain ownership rights thirty-five years from the date
they transferred or licensed the rights to others.11 Given the popularization
of computer software in the 1980s and its subsequent classification as a
“literary work” protectable under the Copyright Act of 197612 (“Copyright
Act”), many software works will soon reach the thirty-five-year threshold,
thus becoming eligible for copyright termination.13

The software industry has flourished in the years since courts began
interpreting the Copyright Act to protect software as copyrightable subject
matter.14 Due to the judicial origins of software copyright protection,
Congress likely did not foresee application of the termination right to
software when enacting the Copyright Act.15 Although Congress included
limitations on termination in the Copyright Act, the limitations’ effectiveness
in mitigating the effects of software terminability are uncertain, as the issue
has yet to reach the courts.16

Software terminability may have markedly different consequences for the
two primary types of software: proprietary software and open source
software (OSS).17 For proprietary software, companies that hired
independent contractors to create their software programs could
unexpectedly have their rights in such programs stripped away when said
contractors exercise their termination rights decades later.18 This is
especially problematic due to the interconnected nature of software
development, which could lead to a chain effect wherein the termination of a
software copyright could jeopardize rights held in current programs, while
simultaneously prohibiting further use of the original code in developing new
programs.19

 11. 17 U.S.C. § 203(a)(3).
 12. Pub. L. No. 94-553, 90 Stat. 2541 (codified as amended in scattered sections of the
U.S.C.); see Apple Comput., Inc. v. Franklin Comput. Corp., 714 F.2d 1240, 1249 (3d Cir.
1983).
 13. See Timothy K. Armstrong, Shrinking the Commons: Termination of Copyright
Licenses and Transfers for the Benefit of the Public, 47 HARV. J. ON LEGIS. 359, 362 (2009)
(explaining that a particular form of software license is too recent to fall within the termination
window).
 14. See Chris Hopfensperger, Software: Growing US Jobs and the GDP, SOFTWARE.ORG
(Sept. 19, 2019), https://software.org/blog/software-growing-us-jobs-and-gdp/
[https://perma.cc/2CB4-N44S].
 15. While legislative history indicates that Congress did intend to include software as
copyrightable subject matter, Congress did not discuss termination. See H.R. REP. NO.
94-1476, at 53–54 (1976); infra note 91.
 16. See Armstrong, supra note 13, at 422–23.
 17. See infra Part I.E.
 18. See Grant C. Yang, The Continuing Debate of Software Patents and the Open Source
Movement, 13 TEX. INTELL. PROP. L.J. 171, 201–02 (2005).
 19. Jon L. Phelps, Copyleft Termination: Will the Termination Provision of the Copyright
Act of 1976 Undermine the Free Software Foundation’s General Public License?, 50
JURIMETRICS 261, 266 (2010) (“[T]he terminated licensee is prohibited from creating further

2021] CRACKING THE CODE 1249

Software terminability presents different complications for OSS, a unique
type of software that is made available to the public for use, alteration, and
overall improvement.20 The OSS movement has thrived due to certain
underlying precepts which run counter to the proprietary model.21 Foremost
among these precepts is that the open availability of code for others to access
and alter in a communal fashion is instrumental toward the progression of
software development.22 The introduction of software termination may
throw the current system into flux, with commentators warning that
“copyright termination may be the Achilles’ heel”23 and a “potential chink in
the armor”24 of many open source programs. If OSS authors exercise
termination rights, previously available code will be rescinded, thus stifling
current use, prohibiting future development, and producing a chilling effect
on programmers’ future reliance on OSS.25

The impending thirty-five-year terminability threshold and the
proliferation of proprietary software and OSS are on a collision course.26 In
anticipation of this conflict, this Note seeks to delineate the scope and
severity of problems created by software terminability and to examine
solutions that could help avoid this collision altogether. Part I of this Note
provides the background necessary to understand the interactions between
copyright law, termination, and computer software. Part II explores potential
statutory and common law exemptions from termination, which will clarify
the types of software most at risk of being terminated. Lastly, Part III
proposes a statutory interpretation solution to mitigate termination’s effect
on proprietary software, as well as a legislative solution to insulate OSS from
termination.

I. THE CONVERGENCE OF COPYRIGHT LAW, TERMINATION RIGHTS, AND

THE SOFTWARE INDUSTRY

Copyright is a form of intellectual property protection granted to “original
works of authorship fixed in any tangible medium of expression.”27
Copyright protection has existed in some form in the United States since the
nation’s founding.28 Although neither software nor termination rights

‘derivative works based upon the copyrighted work covered by the terminated grant.’”
(quoting 17 U.S.C. § 203(b)(1))).
 20. See id. at 263. Although often referred to as “Free and Open Source Software,” this
title does not necessarily mean that the software is free of charge, as licensees may still have
to pay for their use. Rather, it is intended to allude to the various freedoms associated with
open access. See VÍCTOR VÁZQUEZ LOPEZ, INTERNATIONAL IP PROTECTION OF SOFTWARE:
HISTORY, PURPOSE AND CHALLENGES 8 (2007).
 21. See Armstrong, supra note 13, at 361–62.
 22. See Phelps, supra note 19, at 263.
 23. Yang, supra note 18, at 201.
 24. Phelps, supra note 19, at 269.
 25. Id. at 271–72.
 26. See Armstrong, supra note 13, at 422.
 27. 17 U.S.C. § 102(a).
 28. 2 PETER S. MENELL ET AL., INTELLECTUAL PROPERTY IN THE NEW TECHNOLOGICAL

AGE 2020: COPYRIGHTS, TRADEMARKS AND STATE IP PROTECTIONS 508 (2020).

1250 FORDHAM LAW REVIEW [Vol. 90

existed at the time of copyright’s inception, underlying theoretical
justifications and policy rationales for copyright protection are still useful in
elucidating issues stemming from software terminability. Furthermore,
insight into the software industry’s technical and economic intricacies helps
to determine the scope of the impact that software terminability may
eventually have.

Part I of this Note establishes the legal, technical, and economic backdrop
against which the issues posed by software terminability become apparent.
Part I.A explains modern copyright law, including its constitutional basis and
statutory embodiment in the Copyright Act. Part I.B analyzes the legislative
history and theoretical justifications underlying the termination right. Part
I.C examines the work made for hire exception to terminability and its
prospective applicability to software. Part I.D addresses software and its
inclusion as copyrightable subject matter. Finally, Part I.E describes the
current state of the software industry in both its proprietary and open source
sectors.

A. The Development of Modern Copyright Law

The origins of copyright law in the United States can be traced back to the
U.S. Constitution, which grants Congress the power to “promote the Progress
of Science and useful Arts, by securing for limited Times to Authors and
Inventors the exclusive Right to their respective Writings and Discoveries.”29
This clause contains an underlying tension between the interests of individual
authors, who seek to prevent their creative works from being copied, and the
public, which benefits from open accessibility to said creative works.30
Although both interests must be balanced, the U.S. Supreme Court has
interpreted the clause to prioritize the public interest and found that the
protection of authors’ rights is a necessary step in doing so.31 This line of
reasoning has been described as “utilitarian” and posits that the best way to
ensure a robust body of publicly available works is to provide incentives to
authors to create.32 The federal government provides these incentives, which
grant authors copyrights over their works.33 The value of a copyright is
derived from the exclusive rights it entails, as the potential enforcement of
these rights against others grants authors, in essence, a limited monopoly over
the exploitation of their works.34

Congress has exercised the power granted to it by the Constitution by
enacting legislation that defines and protects copyright and its associated

 29. U.S. CONST. art. I, § 8, cl. 8.
 30. See MENELL ET AL., supra note 28, at 514 (“American copyright law can thus be seen
as primarily striving to achieve an optimal balance between fostering incentives for the
creation of literary and artistic works and the optimal use and dissemination of such works.”).
 31. See Sony Corp. of Am. v. Universal City Studios, Inc., 464 U.S. 417, 429 (1984).
 32. See Jeanne C. Fromer, Expressive Incentives in Intellectual Property, 98 VA. L. REV.
1745, 1751 (2012).
 33. Edward C. Walterscheid, To Promote the Progress of Science and Useful Arts: The
Anatomy of a Congressional Power, 43 IDEA 1, 20–21 (2003).
 34. Id.

2021] CRACKING THE CODE 1251

rights.35 Although it has been amended multiple times, the most recent and
currently controlling legislation is the Copyright Act.36 The Copyright Act
contains provisions detailing both the subject matter that is protectable under
copyright37 and the exclusive rights that are to be protected.38 The Copyright
Act also establishes the duration of copyright, which currently lasts for the
life of the author, plus seventy years following the author’s death.39 Once a
copyright expires, the work enters the “public domain,” where it remains free
and open for the public to use indefinitely.40

Whether a work constitutes copyrightable subject matter is a vital
threshold matter because authors of works that do not qualify cannot obtain
a copyright in said work.41 Copyrightable subject matter consists of “original
works of authorship fixed in any tangible medium of expression” which fall
within eight enumerated categories.42 Protectable subject matter is one of
the primary distinguishing features between copyright and patent
protection.43 This is because copyright law protects creative works and
expressions of art, whereas patent law protects inventions that are functional
in nature.44

If a work qualifies as copyrightable subject matter under the Copyright Act
and meets other judicially imposed criteria,45 copyright automatically vests
in the work’s author.46 The exclusive rights conferred by copyright are listed

 35. See WILLIAM F. PATRY, COPYRIGHT LAW AND PRACTICE 26–30 (1994) (describing the
enactment of the Copyright Act of 1790).
 36. Id. at 88.
 37. 17 U.S.C. §  102.
 38. Id. §  106.
 39. Id. §  302(a).
 40. See Jessica D. Litman, The Public Domain, 39 EMORY L.J. 965, 975 (1990).
 41. See Star Athletica, L.L.C. v. Varsity Brands, Inc., 137 S. Ct. 1002, 1008 (2017) (“A
valid copyright extends only to copyrightable subject matter.”).
 42. 17 U.S.C. §  102(a) (“Works of authorship include . . . (1) literary works; (2) musical
works, including any accompanying words; (3) dramatic works, including any accompanying
music; (4) pantomimes and choreographic works; (5) pictorial, graphic, and sculptural works;
(6) motion pictures and other audiovisual works; (7) sound recordings; and (8) architectural
works.”).
 43. See Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 713–14 (2d Cir. 1992)
(discussing whether software should be considered either copyrightable or patentable subject
matter).
 44. See Peter S. Menell, Rise of the API Copyright Dead?: An Updated Epitaph for
Copyright Protection of Network and Functional Features of Computer Software, 31 HARV.
J.L. & TECH 305, 418 (2018). In addition to copyright, computer software can also attain
protection within the United States through patent law. The scope of patent protection and its
differences from copyright protection are beyond the focus of this Note. For more information
regarding software patentability, see generally Bradford L. Smith & Susan O. Mann,
Innovation and Intellectual Property Protection in the Software Industry: An Emerging Role
for Patents?, 71 U. CHI. L. REV. 241 (2004). For information on modern software patentability
requirements, see generally Ognjen Zivojnovic, Patentable Subject Matter After Alice—
Distinguishing Narrow Software Patents from Overly Broad Business Method Patents, 30
BERKELEY TECH. L.J. 807 (2015).
 45. See, e.g., Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 346 (1991)
(establishing a constitutional requirement of originality, which requires a copyrightable work
to be an independent creation containing a modicum of creativity).
 46. See 17 U.S.C. § 201(a).

1252 FORDHAM LAW REVIEW [Vol. 90

in the Copyright Act and include the right to copy, create derivative works,
distribute copies, and perform or display a work publicly.47 Copyright
holders may assign some or all of their exclusive rights to others.48 One
notable absence from the list of exclusive rights is the termination right,
which instead constitutes a separate section of the Copyright Act.49

B. The Termination Right

The termination right allows original authors to regain their copyright over
a work thirty-five years after they have sold, licensed, or otherwise
transferred it.50 This right is unique from other exclusive rights because it
cannot be assigned or otherwise transferred to another,51 and it can be
exercised by the original author without the current owner’s consent.52
Although many contractual agreements contain language indicating a
transfer of all rights held in a copyrighted work in perpetuity, such language
is invalid insofar as it is applied to the termination right due to the
inalienability provision.53

The motivation behind the termination right’s creation was to better enable
authors to reclaim works they sold during transactions of unequal bargaining
power, particularly at the outset of their careers.54 This sentiment is apparent
from legislative history preceding the enactment of the Copyright Act, which
recognized that “a provision safeguarding authors against unremunerative
transfers . . . is needed because of the unequal bargaining position of authors,
resulting in part from the impossibility of determining a work’s value until it
has been exploited.”55

At the time, congressional concerns regarding unremunerative transfers
were not merely hypothetical.56 The creation of the famous comic book
character Superman perhaps best illustrates the justifications for the
termination right.57 The creators of Superman sold the rights to their
character to DC Comics in 1938 for a small sum of $130, yet the character
went on to make billions of dollars for the company throughout its ongoing

 47. Id. § 106.
 48. Id. § 201(d).
 49. Id. § 203(a)(3).
 50. Id.
 51. Compare id. § 203(a)(5) (“Termination of the grant may be effected notwithstanding
any agreement to the contrary”), with § 201(d)(2) (“Any of the exclusive rights
comprised in a copyright, including any subdivision of any of the rights specified by section
106, may be transferred.”).
 52. See id. § 203(a)(5); Richard D. Palmieri, Comment, Who’s the Author?: A
Bright-Line Rule for Specially Commissioned Works Made for Hire, 46 U. RICHMOND L. REV.
1175, 1176–77 (2012).
 53. Palmieri, supra note 52, at 1176–77.
 54. H.R. REP. NO. 94-1476, at 124 (1976).
 55. Id.
 56. See, e.g., Dallas F. Kratzer III, Note, Up, Up & Away: How Siegel & Shuster’s
Superman Was Contracted Away & DC Comics Won the Day, 115 W. VA. L. REV. 1143,
1149–50 (2013).
 57. Id.

2021] CRACKING THE CODE 1253

existence.58 The creators repeatedly tried to regain their copyright through
litigation, yet they saw little success due to weak protections offered by the
Copyright Act of 190959 (“1909 Act”).

Under the 1909 Act, copyright duration only lasted for twenty-eight years,
but was renewable for a second term, extending the overall duration to
fifty-six years.60 Both the renewal right and the termination right (as its
successor) bifurcated the duration of copyright in order to allow original
authors to reclaim ownership for the second duration.61 However, there was
one major difference between the two rights: the 1909 Act did not expressly
make authors’ renewal rights inalienable, and the U.S. Supreme Court
subsequently ruled that “the Copyright Act of 1909 does not nullify
agreements by authors to assign their renewal interests.”62 As a result,
purchasers of copyrighted works under the 1909 Act had the ability to
strong-arm authors into signing away the entire duration of their
copyrights.63 Inequitable scenarios of this sort are precisely what Congress
sought to avoid through the addition of inalienable termination rights in the
Copyright Act.64

Following the enactment of the Copyright Act, the Supreme Court
recognized that the text “termination of the grant may be effected
notwithstanding any agreement to the contrary” was clearly intended to
rectify the impotency of an alienable termination right.65 Thus, it is well
established that the Copyright Act affords far greater protection against
unremunerative transfers than did its previous iteration in the 1909 Act,
largely due to the inalienability of the termination right.66 However, while

 58. Id.
 59. Pub. L. No. 60-349, §§ 23–24, 35 Stat. 1075, 1080–81 (1909); see Kratzer, supra note
56, at 1151, 1160–62.
 60. See Jorge L. Contreras & Andrew T. Hernacki, Copyright Termination and Technical
Standards, 43 U. BALT. L. REV. 221, 232–33 (2014).
 61. Id.
 62. Fred Fisher Music Co. v. M. Witmark & Sons, 318 U.S. 643, 657 (1943).
 63. Cf. Contreras & Hernacki, supra note 60, at 232–34 (explaining the congressional
rationale behind making the termination right inalienable).
 64. See H.R. REP. NO. 94-1476, at 124 (1976).
 65. Mills Music, Inc. v. Snyder, 469 U.S. 153, 186 (1985) (White, J., dissenting) (quoting
17 U.S.C. § 203(a)(5)) (“[A]ssignees were able to demand the assignment of both terms at the
time when the value of the copyrighted work was most uncertain. The termination provisions
of the 1976 Act were designed to correct this situation. They guarantee to an author or his
heirs the right to terminate a grant and any right under it ‘notwithstanding any agreement to
the contrary.’” (quoting 17 U.S.C. § 203(a)(5))).
 66. See id. For a recent example of how the termination right has shifted the power
dynamic between creators and copyright-reliant companies, see Brooks Barnes, Disney Sues
to Keep Complete Rights to Marvel Characters, N.Y. TIMES (Sept. 27, 2021),
https://www.nytimes.com/2021/09/24/business/media/disney-marvel-copyright-
lawsuits.html [https://perma.cc/SY5B-LC4X] (explaining Disney’s recent lawsuit to prevent
copyright termination from being exercised by the heirs of some of its most famous comic
book characters). Even companies as powerful as Disney have some cause for concern
regarding copyright termination, especially given a recent victory for creators in the Second
Circuit. See Horror Inc. v. Miller, No. 18-3123-CV, 2021 WL 4468980, at *19 (2d Cir. Sept.
30, 2021) (holding that the author of the original Friday the 13th screenplay was an

1254 FORDHAM LAW REVIEW [Vol. 90

the rationale behind inalienable termination rights may have been sound as
applied to most copyrightable works, it is likely to have unintended and
arguably undesirable effects as applied to software.67

C. The Work Made for Hire Exception

An important caveat to the termination right is that it does not apply to
works made for hire.68 The term “work made for hire” is defined under § 101
of the Copyright Act as either one of two forms of work. The first form of
work simply must be made by an employee “within the scope of his or her
employment.”69 However, the second form of work contains three
requirements: the work (1) is “specially ordered or commissioned,” (2) falls
within one of nine enumerated categories of works, and (3) is expressly
agreed to be a work made for hire in a signed contract.70

Copyrights in works created under either definition of work made for hire
do not vest in the author.71 Instead, ownership and its associated rights vest
in the author’s employer.72 In whom ownership initially vests is of utmost
importance because ownership carries with it the exclusive rights granted
under the Copyright Act, including the right to transfer and, by extension, the
termination right.73

The two forms of works made for hire operate in different ways.74 The
clearest difference is that the first form specifically applies to employees,
whereas the second can potentially apply to independent contractors, as
well.75 Although status as an employee is a necessary condition for the first
form of work made for hire to apply, the Copyright Act does not define the
word “employee.”76 This notable absence of a statutory definition led to the
landmark case Community for Creative Non-Violence v. Reid,77 in which the
Supreme Court had to decide whether the creator of a commissioned statue
was an independent contractor or an employee.78 In conducting its analysis,
the Court began with the statutory definition of work made for hire under
§ 101.79 Given that statues are not listed among the nine categories within

independent contractor at the time of its creation and could exercise his termination right as a
result).
 67. See infra Part II.
 68. 17 U.S.C. § 201(b).
 69. Id. § 101(1).
 70. Id. § 101(2) (listing the nine categories as “a work specially ordered or commissioned
for use as a contribution to a collective work, as a part of a motion picture or other audiovisual
work, as a translation, as a supplementary work, as a compilation, as an instructional text, as
a test, as answer material for a test, or as an atlas”).
 71. See Matthew R. Harris, Note, Copyright, Computer Software, and Work Made for
Hire, 89 MICH. L. REV. 661, 662 (1990).
 72. Id.
 73. 17 U.S.C. § 201(a), (d).
 74. See Harris, supra note 71, at 667–68.
 75. See id.
 76. Id. at 663.
 77. 490 U.S. 730 (1989).
 78. Id. at 753.
 79. Id. at 732.

2021] CRACKING THE CODE 1255

the second definition80 and that there was no signed agreement between the
parties, the Court instead turned to the first definition of work made for hire.81

The Court adopted a common law of agency meaning of employment and,
in doing so, established twelve nonexclusive factors that indicated whether a
given work is the product of an employee or independent contractor
relationship.82 These factors were drawn from the Restatement (Second) of
Agency83 and included, among other factors, the level of skill required,
location of performance of the work, owner of the tools in use, duration of
the work, and degree of control each party has over determining when and
how long to work.84 The Court noted the fact-intensive nature of such an
inquiry and specified that none of the factors are determinative in isolation.85
Thus, understanding how the Reid factors are likely to apply to programmers’
creation of software is best accomplished by reviewing an appropriately
analogous case.

D. Software as Copyrightable Subject Matter

The history of software development in the United States has been quite
brief, especially considering the substantial length of copyright duration.86
Although the first programming languages were published around 1957, it
was not until the mid-1980s that customer-facing software became popular
among the public through the personal computer and computer programs
such as Microsoft Word.87 Further innovation came about in the 1990s with
the inception of OSS and the World Wide Web, and continued into the 2000s
with the rise of social media and the invention of smartphones.88

 80. See 17 U.S.C. § 101(2).
 81. Reid, 490 U.S. at 736 (“[S]culpture is not one of the nine categories of works
enumerated in that subsection, and the parties had not agreed in writing that the sculpture
would be a work for hire.”).
 82. See id. at 751–52. The Court also established a second requirement: if the hired party
was found to be an employee, the work must have been made within the scope of employment.
See id. at 739–41. This requirement is not relevant to this Note’s analysis, but to learn about
its application, see generally James B. Wadley & JoLynn M. Brown, Working Between the
Lines of Reid: Teachers, Copyrights, Work-For-Hire and a New Washburn University Policy,
38 WASHBURN L.J. 385 (1999).
 83. RESTATEMENT (SECOND) OF AGENCY § 220(2) (AM. L. INST. 1999).
 84. Reid, 490 U.S. at 751–52 (listing the remaining factors as “whether the hiring party
has the right to assign additional projects to the hired party; . . . the method of payment; the
hired party’s role in hiring and paying assistants; whether the work is part of the regular
business of the hiring party; whether the hiring party is in business; the provision of employee
benefits; and the tax treatment of the hired party.” (footnotes omitted)).
 85. Id. at 752.
 86. See 17 U.S.C. §  302(a) (establishing the general copyright duration as the remainder
of the author’s life plus seventy years).
 87. See Micah Yost, A Brief History of Software Development, MEDIUM (Jan. 25, 2018),
https://medium.com/@micahyost/a-brief-history-of-software-development-f67a6e6ddae0
[https://perma.cc/2LE2-27D4].
 88. See id.

1256 FORDHAM LAW REVIEW [Vol. 90

Legislative history indicates that, in passing the Copyright Act, Congress
was considering including software as copyrightable subject matter.89
However, before doing so, Congress created the National Commission on
New Technological Uses of Copyrighted Works (CONTU) to find issues
pertaining to the inclusion of software within copyright law.90 CONTU
issued a final report to Congress containing its recommendations, including
an amendment to the Copyright Act titled: “§ 117: Limitations on Exclusive
Rights: Computer Programs.”91 Although the CONTU report did not
mention termination rights, the limitations contained in § 117 implicate
termination indirectly.92

Even following Congress’s enactment of CONTU’s recommendations, the
extent to which computer programs were considered protectable subject
matter under the Copyright Act remained unclear.93 However, the Third
Circuit’s holding in Apple Computer, Inc. v. Franklin Computer Corp.94
affirmed the now-predominant legal understanding of software as
copyrightable subject matter.95 The court held that software is protectable
subject matter because the code by which it operates is a “literary work”
under § 101 of the Copyright Act.96 The court based its ruling on legislative
history, including CONTU’s creation and Congress’s subsequent adoption of
CONTU’s findings.97

Although the legislative history was supportive of affording copyright
protection to computer programs as a whole, it provided little indication as
to the copyrightability of object code as distinguished from source code.98
Source code constitutes instructions written by programmers in various
programming languages that are readable by humans.99 Object code, on the
other hand, is the output of the source code that takes form as a series of ones
and zeros that, while appearing incomprehensible to humans, can be read by
computers and translated into an executable action.100 Overall, the court’s
holding was important in clarifying that both source and object code are

 89. See H.R. REP. NO. 94-1476, at 53–54 (1976) (“It also includes computer data bases,
and computer programs to the extent that they incorporate authorship in the programmer’s
expression of original ideas, as distinguished from the ideas themselves.”).
 90. Act of Dec. 31, 1974, Pub. L. No. 93-573, tit. II, 88 Stat. 1873, 1873–75.
 91. Computers and Copyright: Recommendations for Statutory Change, in FINAL REPORT

OF THE NATIONAL COMMISSION ON NEW TECHNOLOGY USES OF COPYRIGHTED WORKS (1978)
[hereinafter CONTU Report], http://digital-law-online.info/CONTU/contu6.html
[https://perma.cc/9DA2-4R49].
 92. See infra Part II.D.
 93. See infra note 98 and accompanying text.
 94. 714 F.2d 1240 (3d Cir. 1983).
 95. Id. at 1253–54.
 96. Id. at 1249.
 97. Id. at 1248–49.
 98. See id. at 1246 (explaining that the district court had found congressional intent
regarding the copyrightability of object code to be unclear).
 99. See id. at 1243.
 100. See id.

2021] CRACKING THE CODE 1257

considered “literary works,” thus broadening the understanding of the
definition contained in the Copyright Act.101

E. Practical Implications on the Software Industry

The practical implications of software terminability may not be
immediately apparent given that computer programs tend to retain little
market value after thirty-five years of technological development.102 This
has led one commentator to doubt the practical relevance of software
terminability altogether.103 Yet, this view fails to appreciate that the overall
function of a program is tied to its constituent building blocks of code,104
which may still be in use in various ways even if written decades earlier.105

Although the market value of software is ultimately tied to the overall
function of the program,106 functionality is in turn dependent on the
operability of the program’s code. For programs to remain operational, they
often require maintenance in the form of bug fixes.107 Furthermore, because
nonessential alterations to code constitute making a derivative work,
maintenance and bug fixes may be copyright infringement if performed in
the absence of the copyright owner’s permission.108 Thus, by shifting focus
away from the value of the overall program and toward the code from which
it is made, the true potential value of termination becomes more apparent.109

Source code can take a variety of forms through the “language” in which
it is written and can perform different functions as a result.110 One such
function is the operation of internal computer systems, as opposed to outward
customer-facing software like Microsoft Word.111 Internal computer
software tends to be replaced infrequently due to the associated costs of doing

 101. See id. at 1249 (“[T]he category of ‘literary works’, one of the seven copyrightable
categories, is not confined to literature in the nature of Hemingway’s For Whom the Bell Tolls.
The definition of ‘literary works’ in section 101 includes expression not only in words but also
‘numbers, or other . . . numerical symbols or indicia’, thereby expanding the common usage
of ‘literary works.’”).
 102. See Harris, supra note 71.
 103. See id.
 104. The Second Circuit has developed a three-part test to apply to computer software in
an effort to separate protectable expression from the uncopyrightable elements of a program,
such as ideas, code that is already in the public domain, and functional code. See Comput.
Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 706–712 (2d Cir. 1992). However, this test is
only applicable once an infringement suit has been brought; thus, it will be inapplicable in a
termination context without another program with which to compare it. For more information
on the Second Circuit’s test, see id.
 105. See infra notes 113–17 and accompanying text.
 106. See Yang, supra note 18, at 188.
 107. See Phelps, supra note 19, at 270.
 108. Id.
 109. Id.
 110. See Whelan Assocs. v. Jaslow Dental Lab’y, Inc., 797 F.2d 1222, 1230–31 (3d Cir.
1986).
 111. See generally Credit for Increasing Research Activities, 81 Fed. Reg. 68,299 (Oct. 4,
2016) (to be codified at 26 C.F.R. pt. 1) (defining internal use software).

1258 FORDHAM LAW REVIEW [Vol. 90

so, yet it still requires bug fixes and periodic updates.112 This dynamic makes
internal software a potential hotspot for termination issues, as updates to the
software could constitute infringement if attempted on a terminated
program.113

1. Internal Computer Software

One need not look far to recognize the potential implications of software
termination. The programming language known as COBOL, which stands
for common business-oriented language, powered 43 percent of banking
systems as of 2017114 and continues to be widely used by U.S. federal and
state governments.115 Despite its prevalence, COBOL is roughly
sixty-years-old and has been considered by programmers since the 1980s to
be an obsolete “dead language.”116 Although plenty of new languages have
emerged that are more complex and efficient than COBOL, efforts to
overhaul internal software operations in order to move away from COBOL
have proven to be extremely difficult and expensive.117 The persistence of
COBOL is indicative of the reality that internal software operations are not
in a state of constant innovation like much of the rest of the software
industry.118

Despite the stagnation of internal software systems, they still require
periodic updates, bug fixes, and occasional significant alterations.119
Updates often require modifying the source code, which itself requires the
exclusive right to create derivative works held under copyright.120 Thus,

 112. See John Blyler, COBOL Coders Needed for Coronavirus Fight, DESIGN NEWS
(Apr. 23, 2020), https://www.designnews.com/design-hardware-software/cobol-coders-
needed-coronavirus-fight [https://perma.cc/ZR6E-E5VW] (explaining how major updates to
computer systems were needed both in the lead-up to Y2K and in the wake of the coronavirus
pandemic).
 113. See Phelps, supra note 19, at 270.
 114. COBOL Blues, REUTERS GRAPHICS, http://fingfx.thomsonreuters.com/gfx/rngs/USA-
BANKS-COBOL/010040KH18J/index.html [https://perma.cc/EJ2U-HXLM] (last visited
Oct. 29, 2021).
 115. Mark Sullivan, COBOL, A 60-Year-Old Computer Language, Is in the COVID-19
Spotlight, FAST CO. (Apr. 10, 2020), https://www.fastcompany.com/90488862/what-is-cobol
[https://perma.cc/A6SA-TLFX].
 116. Charles R. Martin, Brush Up Your COBOL: Why Is a 60 Year Old Language Suddenly
in Demand?, OVERFLOW (Apr. 20, 2020), https://stackoverflow.blog/2020/04/20/brush-up-
your-cobol-why-is-a-60-year-old-language-suddenly-in-demand/ [https://perma.cc/F8FU-
TJ3U] (“By the 80’s, students were being told that COBOL was a dead language, and no one
was studying it any more. Now, in 2020, governments and banks are pleading for COBOL
programmers, the language that wouldn’t die.”).
 117. Anna Irrera, Banks Scramble to Fix Old Systems as IT ‘Cowboys’ Ride into Sunset,
REUTERS (Apr. 11, 2017, 9:42 AM), https://www.reuters.com/article/us-usa-banks-
cobol/banks-scramble-to-fix-old-systems-as-it-cowboys-ride-into-sunset-idUSKBN17C0D8
[https://perma.cc/9ZU7-RW9Z] (“Commonwealth Bank of Australia, for instance, replaced
its core banking platform in 2012 with the help of Accenture and software company SAP SE.
The job ultimately took five years and cost more than 1 billion Australian dollars ($749.9
million).”).
 118. See supra notes 87–88 and accompanying text.
 119. See supra note 112 and accompanying text.
 120. See Phelps, supra note 19, at 270.

2021] CRACKING THE CODE 1259

altering the source code in the absence of copyright could risk copyright
infringement.121 COBOL is a prime example of the potential longevity of
internal software, and there is no telling which of the modern programming
languages used today may still be relied on decades from now. Therefore,
the application of termination rights to software has the potential to place
obstacles of significant monetary cost in front of internal software
development.

2. Open Source Software

Similar concerns arise in the OSS context. The open source movement
was founded and promoted based on a unique set of principles that were
intended to maximize accessibility of source code to the public at large.122
The policy goals underlying the movement were summarized by two scholars
as promoting security, affordability, transparency, perpetuity,
interoperability, flexibility, and localization.123 These goals are maintained
by licensing agreements that every user must agree to prior to using the
provided source code.124

Although open source licenses come in various forms,125 they all permit
modification and redistribution of the original program, as long as the user
abides by explicit conditions.126 These conditions are often referred to by
the term “copyleft,” in order to contrast the open nature of OSS with the
proprietary interests associated with copyright.127 A representative example
of such conditions is the General Public License (GPL), a widely used form
of license for OSS, which requires perpetual licensing, under the same terms,
of any subsequent distribution of either the software itself or a derivative
work created using its source code.128 Continued open access to the source
code of both the original software and any additional code present in the
derivative work is a fundamental requirement for a GPL.129 The Federal
Circuit has recognized the legitimacy of these licenses, holding that use of
OSS that does not comply with the licensing agreement constitutes copyright
infringement.130

The open source movement has found great success as hundreds of
millions of people use open source programs such as Linux, Firefox, and

 121. Id.
 122. See generally RICHARD M. STALLMAN, FREE SOFTWARE, FREE SOCIETY: SELECTED

ESSAYS OF RICHARD M. STALLMAN (Joshua Gay ed., 1st ed. 2002).
 123. Tony Casson & Patrick S. Ryan, Open Standards, Open Source Adoption in the Public
Sector, and Their Relationship to Microsoft’s Market Dominance, in THE STANDARDS EDGE:
UNIFIER OR DIVIDER? 87, 91 (Sherrie Bolin ed., 2006).
 124. See Armstrong, supra note 13, at 383–84.
 125. See Arnoud Engelfriet, The Best of Both Worlds, INTELL. ASSET MGMT. MAG., Aug.–
Sept. 2006, at 37, 37–38.
 126. See Armstrong, supra note 13, at 383–84.
 127. Id. at 372.
 128. See Phelps, supra note 19, at 263.
 129. Id.
 130. Jacobsen v. Katzer, 535 F.3d 1373, 1381 (Fed. Cir. 2008).

1260 FORDHAM LAW REVIEW [Vol. 90

Wikipedia.131 Yet, with this success comes a significant amount of reliance
on the continuation of OSS programs.132 Potential exercise of termination
rights could threaten such continuation, especially because termination is
effective not only on the original grant but on all subsequent licenses, as
well.133 Therefore, even derivative programs that may hardly resemble the
original are still hindered by termination as long as they retain some of the
original source code.134 This is problematic given that creation of derivative
works is not only possible under open source licenses but is encouraged as
one of the core beliefs underlying the open source model.135 Furthermore,
practical difficulties arise when attempting to separate the original author’s
contributions from the modern version containing decades of additions and
alterations.136

Perhaps even more damaging to the open source movement would be the
original authors’ ability to legally violate their own guarantee of
perpetuity.137 GPLs expressly state that “[a]ll rights granted under this
License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.”138 Yet, despite its
expressed irrevocability, termination rights are inalienable even by signed
contract.139 As a result, original authors of OSS programs reserve the right
to terminate all licenses after thirty-five years, despite their expression to the
contrary.140 One commentator has expressed concern that exercise of
termination in such a context would “present a clear affront to the community
norms of nonproprietization and mutual sharing that characterize a number
of the most vibrant open-content projects.”141

The likelihood of an original author exercising this right may appear slim
due to an initial willingness to contribute one’s program to the public in lieu
of monetary gain. However, upon the original author’s death, termination
rights are transferred to the author’s surviving spouse, children,
grandchildren, executor, administrator, personal representative, or trustee.142
Naturally, there is no guarantee that a beneficiary will share the same
altruistic motives as the original author.143 Concerns of a potentially rogue
beneficiary are slightly tempered by the temporal limitation contained within

 131. See Armstrong, supra note 13, at 361.
 132. See Phelps, supra note 19, at 262.
 133. See Mills Music, Inc. v. Snyder, 469 U.S. 153, 165 (1985).
 134. See Armstrong, supra note 13, at 407.
 135. See Stallman, supra note 122, at 203 (“Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.”).
 136. See Armstrong, supra note 13, at 363.
 137. Id. at 405.
 138. GNU General Public License, FREE SOFTWARE FOUND. (June 29, 2007),
http://www.gnu.org/licenses/gpl.html [https://perma.cc/2L5F-CVQP].
 139. See 17 U.S.C. 203(a)(5).
 140. See Armstrong, supra note 13, at 374.
 141. Id. at 363.
 142. 17 U.S.C. § 203(a)(2).
 143. See Armstrong, supra note 13, at 362 (describing a hypothetical worst-case scenario
along these lines).

2021] CRACKING THE CODE 1261

the termination statute, as the termination right can only be exercised within
a window of five years.144 Yet, considering that the program is presumably
now known to appeal to a sizable market and that the original author’s
goodwill may not necessarily transfer along with their termination right, OSS
users cannot be truly secure in their perpetual access to the program until the
termination window has elapsed.

3. Proprietary Software

Lastly, proprietary software is also vulnerable to threats posed by
termination.145 Given that the source code within companies’
customer-facing products is kept secret from the public, it is difficult to
estimate the amount of code that is transferred between new iterations of the
product.146 However, as evident from OSS, programs from as many as
twenty years ago still retain a significant amount of original source code
despite thousands of programmers constantly altering and improving the
programs.147 Thus, even well-established programs are at risk of being
stalled by the potential exercise of termination rights depending on the
amount of source code retained from one iteration to the next.

Additionally, proprietary software designed for entertainment purposes
may actually retain value inherent in the program itself. One prominent
example is the video game industry, which is replete with examples of old
games that have been discontinued in production yet later face a resurgence
of demand.148 Thus, video games could prove to be a valuable asset for the
games’ original programmers to terminate and monetize for their own
benefit.149

Large-scale works also fall within the category of proprietary software.
Sometimes referred to as “big code,” large-scale works include programs
such as Windows 10, which contains an estimated fifty million lines of
code.150 Big code is not limited to the software industry, as it is also utilized

 144. 17 U.S.C. § 203(a)(3).
 145. See Phelps, supra note 19, at 272 (“This interpretation, however, would lead to
problematic results even when applied to traditional commercial software.”).
 146. See Sonia K. Katyal, The Paradox of Source Code Secrecy, 104 CORNELL L. REV.
1183, 1207 (2019).
 147. See Phelps, supra note 19, at 270 (“[C]onsidering that fourteen years after its
inception, Linus Torvalds was still ‘one of the main contributors to the Linux kernel project’
it is not inconceivable that a substantial portion of his original code will remain after another
twenty-one years; therefore, the original license may be subject to termination.” (quoting Ilkka
Tuomi, Evolution of the Linux Credits File: Methodological Challenges and Reference Data
for Open Source Research, 9 FIRST MONDAY, June 2004)).
 148. See generally Sean F. Kane, Copyright Assignment Termination After 35 Years: The
Video Game Industry Comes of Age, PILLSBURY (Sept. 23, 2013), https://www.jdsupra.com/
legalnews/copyright-assignment-termination-after-3-37405/ [https://perma.cc/FF63-4KVV].
 149. See id.
 150. Christopher Tozzi, Code Challenges: Coping in the Era of ‘Big Code,’ ITPROTODAY
(Aug. 10, 2020), https://www.itprotoday.com/devops-and-software-development/code-
challenges-coping-era-big-code [https://perma.cc/48QR-ZNXY].

1262 FORDHAM LAW REVIEW [Vol. 90

in industries ranging from telecommunications to transportation151
(exemplified by the fact that a standard car from 2012 relies on
approximately one hundred million lines of code).152 Naturally, creating
works of this scale requires a collaborative effort by a substantial number of
programmers.153 If each programmer’s independent contribution of code
were to be copyrightable, the effects of termination on big code could be
debilitating to the software industry and the economy as a whole. Predicting
how courts are likely to treat the exercise of termination rights in large-scale
software works will help inform an effective solution to the foregoing issues
in proprietary software.

II. PREDICTING THE SCOPE AND SEVERITY OF THE EFFECTS OF SOFTWARE

TERMINABILITY

Software terminability has yet to be addressed by the courts, thus leaving
the current state of the law uncertain.154 Clarifying the law first requires
determining the scope of the problem, namely, how many software works
will be vulnerable to termination. Determining the scope requires analysis
of the work made for hire exception under the Copyright Act, as well as
limitations under relevant case law relating to works created by multiple
authors. In addition to scope, it is also necessary to determine the extent to
which the exercise of termination rights will actually affect vulnerable
software.

Part II addresses both sides of the impending conflicts stemming from
software terminability. Part II.A addresses the question of whether courts
will find the termination right applicable to software by extension of its
inclusion as a literary work under the Copyright Act. Part II.B considers the
extent to which programmers’ termination rights may be stifled by the work
made for hire exception. Part II.C examines whether large-scale software
works will be at risk due to the exercise of termination rights. Finally, Part
II.D analyzes § 117 of the Copyright Act to determine the extent to which it
may mitigate problems posed by software termination.

A. Will the Courts Find Software to Be Terminable?

The threshold question that must be addressed is whether courts will find
the termination right applicable to software. In one respect, this is an open
question because no court has ruled on the issue.155 However, there is no
discernible language within the Copyright Act that would specifically

 151. See SOURCEGRAPH, THE EMERGENCE OF BIG CODE 14 (2020),
https://info.sourcegraph.com/hubfs/CTA%20assets/sourcegraph-big-code-survey-report.pdf
[https://perma.cc/7D9J-SNVV].
 152. See Tozzi, supra note 150.
 153. See Harris, supra note 71, at 694–95.
 154. See Armstrong, supra note 13, at 422.
 155. See id.

2021] CRACKING THE CODE 1263

exempt software from the termination right.156 Furthermore, following
software’s inclusion as a literary work, courts have created common law rules
when rules are necessary to treat software consistently with all other forms
of copyrightable work.157

The primary distinguishing feature of software within the Copyright Act
is that computer programs have limited exceptions to exclusive rights under
§ 117.158 Despite having a separate section of exemptions, the termination
right is not included among them.159 Termination’s absence is particularly
notable given that Congress specifically created CONTU to find issues
pertaining to copyright in software.160 While CONTU made numerous
recommendations to Congress, including the adoption of § 117, termination
was not specifically addressed.161

The lack of a statutory exception for software likely renders terminability
inevitable.162 However, opposing litigators may have strong policy
arguments at their disposal.163 First, software’s absence from the Copyright
Act is arguably indicative of Congress’s lack of intent for termination to
extend to software.164 Both the termination right and the inclusion of
software as a copyrightable work were new additions to the law and did not
immediately interact with each other.165 Therefore, it is unlikely that
Congress anticipated the consequences of termination on software thirty-five
years in the future.166 Strengthening this claim is the apparent incongruence
between the policy justifications underlying the termination right and its
likely effects when applied to software.167

The constitutional justification for copyright protection is to further artistic
progress; yet software termination arguably impedes this goal. Software
differs from other copyrightable works because its creative element of
written code is tied to a functional product in the overall software.168
Termination of a computer program essential to a particular business could
paralyze operations, causing functional harm that far exceeds protection of

 156. Pub. L. No. 94-553, 90 Stat. 2541 (codified as amended in scattered sections of the
U.S.C.).
 157. See, e.g., Comput. Assocs. Int’l v. Altai, Inc., 982 F.2d 693, 706–07 (2d Cir. 1992)
(establishing a test to separate idea from expression within a computer program so as to treat
a computer program consistently with other copyrightable works).
 158. See generally 17 U.S.C. § 117.
 159. See id.
 160. Act of Dec. 31, 1974, Pub. L. No. 93-573, 88 Stat. 201.
 161. See CONTU Report, supra note 91.
 162. Commentators appear to implicitly presume that termination will apply to software.
See generally, Armstrong, supra note 13; Phelps, supra note 19.
 163. See Armstrong, supra note 13, at 362.
 164. See id. at 416–17.
 165. See id. at 422.
 166. See id. at 416–17.
 167. See id.
 168. See Google LLC v. Oracle Am., Inc., 141 S. Ct. 1183, 1198 (2021) (“Generically
speaking, computer programs differ from books, films, and many other ‘literary works’ in that
such programs almost always serve functional purposes.”); LOPEZ, supra note 20, at 7 (“The
controversy is linked to the unique nature of computer software that performs technical
functions through creative expression.”).

1264 FORDHAM LAW REVIEW [Vol. 90

the software’s creative elements, which copyright was intended to secure.
This dynamic is even more pronounced in OSS, as the open accessibility of
code has been the source of substantial progress within the field of
programming.169 Termination of OSS works would have detrimental effects
both in the immediate and long term, as it would “shrink the commons” of
publicly available code while also deterring future reliance by OSS users who
could no longer trust the perpetuity of even the most explicit licensing
agreements.170

Furthermore, the policy concerns regarding unremunerative transfers that
necessitated the termination right are arguably not as salient as applied to
proprietary software programmers and are wholly absent from programmers
of OSS.171 Programmers create software to perform a specific function, and
they do not begin writing code without some idea of what this function will
be.172 From the program’s function, those in the field of work can reasonably
discern its value based on the relevant markets’ needs.173 The ability to
assess the market value of a computer program enables programmers to
negotiate for reasonably fair value at the time of transaction.174 On the other
hand, authors of other copyrightable works, such as art and music, often
create work without knowing its ultimate value.175 When market value is
speculative, the amount purchasers are willing to pay is unlikely to reflect the
fair value of works that become wildly successful.176

The underlying dispute between the “objective” value of software through
its function and the “subjective” value of most other copyrightable works
through their creativity has existed for decades and has implications well
beyond issues related to termination.177 However, differences between the
two types of works are relevant to software terminability, as the “hapless
creator” Congress intended to protect likely does not exist to the same degree
in the software market.178

Constitutional and congressional intent arguments against software
terminability are not without merit. However, courts in a textualist era are
unlikely to read an exception for software in the absence of any statutory

 169. See Jacobsen v. Katzer, 535 F.3d 1373, 1378–79 (Fed. Cir. 2008) (describing the
benefits of open access, which have enabled new forms of software development).
 170. See Armstrong, supra note 13, at 363, 374.
 171. See Harris, supra note 71, at 699.
 172. Id. (“The paradigm of the artist creating art for art’s sake—and later learning of the
need to protect the work—does not appear relevant here.”).
 173. Id. at 688, 697, 699.
 174. Id. at 688, 698.
 175. See Ian McClure, Termination Rights: A Second Bite at the Apple, FED. LAWYER, Jan.
2009, at 16, 16, http://www.ipprospective.com/wp-content/uploads/2009/01/termination-
rights2.pdf [https://perma.cc/PM79-AVHF] (“Most intellectual property is difficult to value
before products embodying the rights are sold on the market. Accurately pricing an exclusive
license to use intellectual property is arbitrary at best.”).
 176. See id.
 177. See Harris, supra note 71, at 697 (“Computer software itself differs significantly from
other copyrightable subject matter. For example, much of the value of software comes from
its utilitarian rather than its aesthetic aspects.”).
 178. Id. at 699.

2021] CRACKING THE CODE 1265

basis for doing so.179 While policy arguments likely will not defeat software
terminability at the threshold question of applicability, they could prove to
be effective in arguing for other judicially imposed limitations or future
legislative amendments.

B. Will the Courts Find the Works of Freelance Software Programmers to
Be Works Made for Hire?

The largest obstacle for programmers who seek to reclaim ownership of
their works is the explicit exclusion of works made for hire.180 The
Copyright Act defines two types of works made for hire,181 yet it is unclear
how these definitions will apply to software.

The first definition is broader in scope because it looks to the nature of the
relationship between contracting parties rather than the type of work being
created.182 Thus, under this definition, software is just as susceptible to being
a work made for hire as any other copyrightable work.183 On the other hand,
the second definition is limited to a select number of specified categories,
and computer software is not among them.184 Yet, if courts were to find that
computer software does fit within this definition, the effects would be far
more consequential, as employers could effectively contract around the
termination right.185

1. Statutory Definition #1

The first definition under § 101 hinges on the meaning of the word
“employee,” which was not defined by Congress within the Copyright Act
but was later clarified by the Supreme Court in Community for Creative
Non-Violence v. Reid.186 The Court established the relevant factors used to
determine whether a hired party was an employee or independent
contractor.187 Predicting how the Reid factors would apply to programmers’
creation of computer software is a difficult task, given the fact-intensive
nature of the inquiry. However, in the wake of Reid, an informal hierarchy
of the Reid factors has emerged as a result of the factors’ application by the
courts. The Second Circuit went as far as expressly stating the five factors it
found to be most frequently relevant and that should be weighed more
heavily as a result.188 Relying on existing case law, one scholar has
conducted a comprehensive study (“Vacca study”) in order to rank the Reid

 179. See Armstrong, supra note 13, at 422–23.
 180. 17 U.S.C. § 203(a)(3).
 181. Id. § 101 (defining “work made for hire”).
 182. See Harris, supra note 71, at 677–78.
 183. See 17 U.S.C. § 101(1) (requiring only that the work is “prepared by an employee
within the scope of his or her employment”).
 184. See id. § 101(2).
 185. See id. § 203(a).
 186. 490 U.S. 730, 738–40 (1989).
 187. Id. at 750–52.
 188. See Aymes v. Bonelli, 980 F.2d 857, 861 (2d Cir. 1992) (listing five of the Reid factors
that will be relevant in nearly every case).

1266 FORDHAM LAW REVIEW [Vol. 90

factors by overall importance.189 These aggregate analyses are likely the best
available method of determining the impact of the Reid factors on the
software industry as a whole.

The Vacca study splits the fourteen Reid factors into five subcategories of
increasing importance.190 The most important category of factors includes
the taxes paid by the hiring party, whether the hired party receives employee
benefits, and whether the employee is paid by time or by completion of the
work.191 Unfortunately, these factors are too fact-specific to be applied to
the work done by programmers in the aggregate without a specific fact
pattern to analyze. However, results indicate that in cases involving a formal,
salaried employment relationship, courts are very likely to find the author to
be an employee.192 Therefore, it is intuitive that the programmers of most
interest in a termination analysis are those who do not receive a formal salary.

The second most important group includes two factors that may be
aggregated: (1) the skill required for the work and (2) the source of
instrumentalities and tools from which the work is created.193 Programmers’
work typically requires a bachelor’s degree in computer science or software
engineering.194 Although a significant amount of programmers identify as
fully or partially self-taught,195 courts have consistently found computer
programming to be a skilled occupation.196 Overall, the expertise required
weighs in favor of programmers being more likely to be deemed independent
contractors than employees. The remaining factors—location of the work
performed and tools used in completing the work—depend on similar facts.
Intuitively, programmers who work at home are far more self-reliant in terms
of the tools used than are programmers who work in an office setting.
Although these factors are less determinative,197 they likely weigh in favor
of an independent contractor relationship given that programmers are among
the occupations most likely to work from home.198

 189. See generally Ryan Vacca, Works Made for Hire—Analyzing the Multifactor
Balancing Test, 42 FLA. ST. U. L. REV. 197 (2014).
 190. Id. at 229.
 191. Id.
 192. See id. at 234.
 193. Id. at 229.
 194. Occupational Outlook Handbook: Computer Programmers, U.S. BUREAU OF LABOR

STATISTICS, https://www.bls.gov/ooh/computer-and-information-technology/computer-
programmers.htm#tab-4 [https://perma.cc/C5FY-C9XS] (last visited Oct. 29, 2021).
 195. Karen Turner, Lots of Coders Are Self-Taught, According to Developer Survey,
WASH. POST (Mar. 30, 2016), https://www.washingtonpost.com/news/the-switch/wp/2016/
03/30/lots-of-coders-are-self-taught-according-to-developer-survey/
[https://perma.cc/V6UA-6ANG].
 196. See, e.g., Aymes v. Bonelli, 980 F.2d 857, 862 (2d Cir. 1992); MacLean Assocs. v.
Wm. M. Mercer-Meidinger-Hansen, Inc., 952 F.2d 769, 777 (3d Cir. 1991).
 197. See Vacca, supra note 189, at 229. These factors may carry even less weight today
considering that the COVID-19 pandemic has greatly increased the number of U.S. workers
who work from home. See May Wong, Stanford Research Provides a Snapshot of a New
Working-from-Home Economy, STANFORD NEWS (June 29, 2020), https://news.stanford.edu/
2020/06/29/snapshot-new-working-home-economy/ [https://perma.cc/E4NS-4Q7R].
 198. Christopher Groskopf, For Programmers, the Ultimate Office Perk Is Avoiding the
Office Entirely, QUARTZ (Apr. 12, 2017), https://qz.com/950973/remote-work-for-

2021] CRACKING THE CODE 1267

Application of the few aggregable Reid factors to programmers’ work
appears to indicate that programmers are slightly more likely to be deemed
independent contractors than employees.199 However, most of the Reid
factors are case-specific and thus difficult to predict, including the three
factors that, according to the Vacca study, make up the most important
category.200 An example of how a court would apply the Reid factors to a
specific instance of a programmer’s work is the case of JustMed, Inc. v.
Byce.201 Although the Ninth Circuit ultimately upheld the district court’s
finding that the creator of the software at issue was an employee,202 the
court’s reasoning is the most noteworthy portion of the case. When
considering each of the Reid factors, the court placed less weight on those
that were attributable to the “nature of the business and the work.”203 This
included factors such as the programmer’s level of skill, ability to work from
home, and ability to set his own hours, all of which are typically indicative
of an independent contractor relationship.204 The court analyzed each factor
“in light of the kind of work” the programmer was doing, which in effect
nullified the generally applicable factors that tend to weigh in favor of
programmers.205 By extension, the court afforded the more particular,
case-specific factors more importance than they would otherwise have.206

The court’s holding in JustMed is by no means preclusive to programmers’
termination rights, as the case-specific factors may still weigh in their favor.
However, the holding makes the Reid factors’ outcome less predictable as
applied to software works. This is because the court’s contextual analysis
effectively nullifies the advantageous factors programmers would otherwise
have by virtue of their line of work.207 The unpredictability of the multifactor
Reid analysis is undesirable for both the hiring party and the worker, as
neither can feel entirely secure in their ownership rights.208 Furthermore,
there are additional practical issues in cases arising from the exercise of
termination given that the facts at issue are more difficult to establish after
thirty-five years have passed.209 Overall, the first definition of work made
for hire fails to provide a clear estimate as to the scope of works that will fall
within the work made for hire exception from termination.

programmers-the-ultimate-office-perk-is-avoiding-the-office-entirely/
[https://perma.cc/5WMM-NDHP].
 199. See supra notes 193–98 and accompanying text.
 200. See Vacca, supra note 189, at 229.
 201. 600 F.3d 1118 (9th Cir. 2010).
 202. Id. at 1128.
 203. Id. at 1127.
 204. See id.; see also supra notes 197–98 and accompanying text.
 205. See JustMed, 600 F.3d at 1128.
 206. Cf. id.
 207. See supra notes 197–201 and accompanying text.
 208. See Harris, supra note 71, at 682.
 209. See Scorpio Music S.A. v. Willis, No. 11CV1557, 2013 WL 790940, at *5 (S.D. Cal.
Mar. 4, 2013) (“Policy arguments can also be made for avoiding the filing of lawsuits decades
after the creation of a work, when witnesses may be dead, documents lost, and memories
faded.”).

1268 FORDHAM LAW REVIEW [Vol. 90

2. Statutory Definition #2

The second definition under § 101 defines works made for hire on the basis
of the type of work at issue, as opposed to the nature of the employment
relationship under the first definition. In doing so, the second definition lists
nine categories under which a work must fall to qualify as a work made for
hire.210 Computer software is not included in the listed categories.211 Given
courts’ general reluctance to stray beyond the specified categories, this
absence has been interpreted by some scholars as an indication that computer
software can only be classified as a work made for hire under the first
definition.212 However, courts have recently been more willing to interpret
the categories expansively enough to include computer software, either in
whole or in part, depending on which aspect of the program was at issue. For
example, courts have considered software programs as a whole to be
“compilations,”213 segments of source code to be a “contribution to a
collective work,”214 and the nonliteral elements to qualify as an “audiovisual
work.”215

If an expansive interpretation of the second definition becomes widely
accepted, it could drastically reduce programmers’ future ability to exercise
their termination right. This is due to the third prong of the definition, which
requires an express agreement signed by the parties that the work is to be
considered a work for hire.216 In effect, the hiring party could circumvent
the inalienability of termination rights by ensuring that the rights never vest
in the programmer to begin with.217 To do so, an individual or company
commissioning the work would have to include a provision specifying that
the work is to constitute a work for hire, which the programmer must then
sign.218 Thus, to avoid running afoul of the inalienability provision of § 203
by assigning the software itself through contract, the hiring party could
instead bind the programmer in a work made for hire relationship, such that
any work created from that point onward would vest in the hiring party.

As the law currently stands, the second definition of work made for hire
presents a potential avenue for employers to circumvent independent
contractors’ termination rights. However, there are two primary difficulties
faced by proponents of an expansive interpretation of § 101. First, there is
an apparent lack of textual basis for including software in the nine categories,

 210. 17 U.S.C. § 101(2).
 211. Id.
 212. See Harris, supra note 71, at 685; Phelps, supra note 19, at 265.
 213. Stanacard, LLC v. Rubard, LLC, No. 1:12-CV-5176, 2016 U.S. Dist. LEXIS 15721,
at *22 (S.D.N.Y. Feb. 3, 2016).
 214. iXL Inc. v. Adoutlet, No. 01 C 0763, 2001 U.S. Dist. LEXIS 3784, at *27 (N.D. Ill.
Mar. 29, 2001).
 215. Breadmore v. Jacobson, No. 4:13-CV-361, 2014 U.S. Dist. LEXIS 97332, at *17 (S.D.
Tex. July 14, 2014).
 216. 17 U.S.C. § 101(2).
 217. See 3 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT § 11.02[A][2]
(1998).
 218. See supra note 70 and accompanying text.

2021] CRACKING THE CODE 1269

which may immediately end any effort to do so before a textualist court.219
Second, the legislative history of the Copyright Act makes no indication that
Congress considered, much less intended, software to be included under the
second definition of work made for hire.220 An interpretation of § 101 that
can overcome these obstacles can potentially be a viable solution to the
problems posed by software terminability.

C. Will Large-Scale Computer Software Programs Be Terminable?

Another important factor in determining the scope of software
terminability is whether large-scale, multiauthor software works will be
terminable. Copyrightable works with more than one author can classify as
either “joint works” or “collective works” under the Copyright Act.221 Joint
works are prepared by multiple authors who share the intent to merge their
respective individual contributions into a unitary and inseparable work.222
An example of a joint work is a book coauthored by two individuals, with
the copyright vesting in both authors as co-owners.223 Collective works also
require multiple authors who each contribute individually copyrightable
works that are assembled into a whole.224 However, collective works are
distinct from joint works in two crucial ways.225 First, collective works do
not require the authors to share the intent to merge the works.226 Second,
although the copyright in the collective work vests in its creator, the
contributing authors each retain a copyright in their own contribution to the
collective work, making the final work separable as a result.227

Large-scale software works could potentially fall within either category
given that they share qualities of both joint works and collective works.228
In order to function, the finished software program must run as a complete
and cohesive unit, which appears analogous to a joint work such as a
co-produced movie.229 On the other hand, programs can be deconstructed
into their individual building blocks of code, which instead seems analogous
to a collective work, such as an encyclopedia.230 Although the Copyright
Act defines and distinguishes the two categories,231 predicting how courts
will apply them to computer software requires looking at relevant case law.

 219. See Armstrong, supra note 13, at 422–23.
 220. See generally H.R. REP. NO. 94-1476 (1976) (containing no discussion or reference to
software’s potential inclusion under § 101(2)).
 221. See Siniouguine v. Mediachase Ltd., No. CV 11-6113, 2012 U.S. Dist. LEXIS 87190,
at *5 (C.D. Cal. June 11, 2012); Harris, supra note 71, at 692–93.
 222. 17 U.S.C. § 101 (defining “joint work”).
 223. H.R. REP. NO. 94-1476, at 121 (explaining how co-owners of copyright in a joint work
are to be treated as tenants in common).
 224. 17 U.S.C. § 101 (defining “collective work”).
 225. H.R. REP. NO. 94-1476, at 121 (distinguishing collective works from joint works).
 226. Id.
 227. Id.
 228. See Siniouguine v. Mediachase Ltd., No. CV 11-6113, 2012 U.S. Dist. LEXIS 87190,
at *5 (C.D. Cal. June 11, 2012); Harris, supra note 71, at 692–93.
 229. See Harris, supra note 71, at 694–95.
 230. Id. at 690 n.159.
 231. 17 U.S.C. § 101.

1270 FORDHAM LAW REVIEW [Vol. 90

The Ninth Circuit addressed issues pertaining to joint works in
Aalmuhammed v. Lee,232 when a substantial contributor to a movie brought
suit in an effort to establish the movie as a joint work of authorship in which
he is entitled co-ownership.233 The court’s analysis focused on the parties’
lack of shared mutual intent for the rights to the movie to vest in both the
director and the contributing plaintiff as co-authors.234 In addition, the court
found the most important factor to be the exercise of control over the work.235
More specifically, the court found that the author is likely to be “the inventive
or master mind” who “creates, or gives effect to the idea.”236 In the context
of a film production, the court determined that the defendants, as producer
and director, exercised sufficient creative control to be considered the sole
authors.237 While the court did recognize that the plaintiff’s contribution
would have been copyrightable in isolation, its relative importance in the
context of the movie as a whole was insufficient to warrant joint authorship,
and thus, co-ownership in the movie’s copyright was denied.238

The court’s holding in Aalmuhammed—that a substantial creative
contribution is necessary but not sufficient to establish joint authorship239—
is relevant to copyrights held in large-scale computer software. From a
public policy perspective, the court argued in a later case that providing every
single contributor to complex works with a copyright interest would “make
Swiss cheese of copyrights.”240 Furthermore, the risks associated with
multitudinous claims of copyright in complex works naturally grow with the
number of contributing parties.241 The Ninth Circuit has not been alone in
its determination, as the Second Circuit has similarly stated that “[w]e agree
with the en banc Ninth Circuit . . . that the creation of ‘thousands of
standalone copyrights’ in a given work was likely not intended.”242 The
above considerations are particularly relevant to the software industry due to
the rapid growth in both the volume and complexity of big code.243 Courts’
opposition to creating excessive amounts of standalone copyrights in a given
work thus appears to foreclose the classification of large-scale works as
collective works.

If programmers who contributed to big-code works attempt to terminate
the assignment of said works, courts would be faced with a similar analysis

 232. 202 F.3d 1227 (9th Cir. 2000).
 233. Id. at 1230.
 234. Id. at 1234–35.
 235. Id. at 1234.
 236. Id.
 237. Id. at 1236.
 238. Id. at 1233–34.
 239. See id. at 1233.
 240. Garcia v. Google, Inc., 786 F.3d 733, 742 (9th Cir. 2015).
 241. See Aalmuhammed, 202 F.3d at 1232 (“But as the number of contributors grows and
the work itself becomes less the product of one or two individuals who create it without much
help, the word is harder to apply.”).
 242. Casa Duse, LLC v. Merkin, 791 F.3d 247, 259 (2d Cir. 2015) (quoting Garcia, 786
F.3d at 743).
 243. See SOURCEGRAPH, supra note 151, at 2 (demonstrating through survey data that big
code has grown substantially in volume, variety, velocity, and value).

2021] CRACKING THE CODE 1271

as the Ninth Circuit was in Aalmuhammed.244 Just as writers, producers,
actors, and stage crews contribute to a movie, project sponsors, project
managers, software developers, and testers are only a few of the different
roles contributing to a complete software project.245 While each of the
parties involved may have made a copyrightable contribution to the overall
work, it is insufficient for copyright to vest if the parties were not also
exercising control over the project as the “master mind.”246 This is true even
if the § 101 intent requirement of joint works is satisfied.247 Thus, following
Aalmuhammed, courts also appear unlikely to classify large-scale software
works as joint works because no individual programmer would satisfy the
“master mind” standard.248

The standard set in Aalmuhammed may be best understood as a de facto
extension of the work made for hire exception through common law.249 This
is because, in large-scale projects involving many individually copyrightable
contributions, ownership of the work may vest in the hiring party even absent
an employment relationship or work made for hire agreement.250 By
analogizing large-scale software works to other multiauthor works, such as
movies, courts can successfully avoid threats of termination that could
otherwise jeopardize the big-code sector of the proprietary software market.

D. Will § 117 of the Copyright Act Mitigate the Effects of Software
Terminability?

Due to the unique aspects of computer programs, which distinguish them
from other copyrightable works, Congress established CONTU to study
issues arising from software copyrightability.251 CONTU summarized its
findings and recommendations in a final report to Congress.252 Congress
acted on the report’s recommendations, most notably by adding § 117 to the
Copyright Act and amending § 101 to include a statutory definition of
“computer program.”253 The CONTU report explains the justifications for
adding § 117, namely, to immunize users of computer programs from
infringement suits that could potentially arise from otherwise innocuous
behavior.254 For example, running a software disk on a computer results in

 244. See Harris, supra note 71, at 667–68.
 245. See Simon Swords, Software Development Project Roles and Responsibilities, ATLAS

COMPUT. SYS. LTD. (Nov. 21, 2017), https://www.atlascode.com/blog/software-development-
project-roles-and-responsibilities/#PROJECT_SPONSOR [https://perma.cc/ULT8-MVHS].
 246. See Aalmuhammed, 202 F.3d at 1232–33.
 247. Id. at 1233.
 248. See id. at 1232.
 249. See id. at 1235–36.
 250. Id. at 1236.
 251. Act of Dec. 31, 1974, Pub. L. No. 93-573, 88 Stat. 201.
 252. See CONTU Report, supra note 91, at 1213.
 253. 17 U.S.C. § 101 (“A ‘computer program’ is a set of statements or instructions to be
used directly or indirectly in a computer in order to bring about a certain result.”); see Natalie
Heineman, Note, Computer Software Derivative Works: The Calm Before the Storm, 8 J.
HIGH TECH. L. 235, 239 (2008).
 254. See CONTU Report, supra note 91, at 12–13.

1272 FORDHAM LAW REVIEW [Vol. 90

making a nominal “copy” of the program that is displayed on the computer
screen, which would constitute infringement under the plain text of the
Copyright Act.255 But CONTU posited that it makes little sense to expose
every end user of software to an infringement suit for taking a necessary step
in the utilization of their rightfully owned software.256

Congress rectified the issue of infringing copies by creating a safe harbor
under § 117(a) for “a new copy or adaptation [that] is created as an essential
step in the utilization of the computer program in conjunction with a machine
and . . . is used in no other manner”257 This safe harbor has been
interpreted by courts as protecting necessary copies through the language
“new copy,”258 as well as minor alterations that are necessary to use the
program through the language “adaptation.”259 In effect, the safe harbor
extends to cover minor bug fixes and alterations to source code, as long as
they are necessary for the use of the software for its intended purpose.260
Therefore, the § 117(a) safe harbor is beneficial for owners of internal
software systems, such as the aforementioned COBOL systems, because
necessary minor changes to source code are immunized from infringement
claims.

Alterations and bug fixes, however, remain a substantial issue for OSS
works.261 Although necessary adaptations are permissible, the lease, sale, or
transfer of those particular adaptations are still prohibited, unless authorized
by the copyright owner under § 117(b).262 If an author of an OSS work were
to terminate a license, individuals would still be able to use the program;
however, it would essentially be “frozen” in place.263 Users would no longer
be able to share and receive improvements to the program with the
community, thus losing one of the open source model’s primary benefits.264
In theory, users would be able to share their improvements if they receive
permission from the original author, as is permitted under the statute.265
However, in practice, this provision is irrelevant because authors or heirs who
terminate their licenses would have no incentive to then allow continued
sharing on an individual basis.266 Much like the Copyright Act as a whole,
Congress presupposed a proprietary incentive structure when drafting § 117,
which is now coming into conflict with the nonproprietary interests of
OSS.267 Therefore, the necessary solution for incorporating OSS works into
the Copyright Act is a legislative amendment.

 255. See id.
 256. Id.
 257. 17 U.S.C. § 117(a)(1).
 258. See, e.g., Krause v. Titleserv, Inc., 402 F.3d 119, 122 (2d Cir. 2005).
 259. See id. at 125–26.
 260. See Phelps, supra note 19, at 270.
 261. Id. at 271.
 262. Id. at 271–72.
 263. Id. at 271.
 264. Id.
 265. See 17 U.S.C. § 117(b).
 266. See Phelps, supra note 19, at 271–72.
 267. See Armstrong, supra note 13, at 416.

2021] CRACKING THE CODE 1273

III. PREVENTING THE INEQUITABLE EFFECTS OF SOFTWARE

TERMINABILITY

Resolving the impending issues that will arise from software terminability
requires a nuanced solution that addresses both proprietary and open source
sectors of the software industry. A viable solution must address the specific
problems at issue in software without making changes that extend beyond the
scope of the problem and cause unintended effects to other copyrightable
works. For this reason, it is prudent to begin with the Copyright Act in its
current form to determine which problems can be dealt with sufficiently
through the law as it currently stands and which others cannot and thus
require further legislative action.

This Note proposes a two-pronged solution that addresses both of the
above considerations. First, this Note advocates for a judicial solution to
termination issues arising in proprietary software. This solution posits that,
through statutory interpretation of the Copyright Act, judges can reasonably
expand the scope of work made for hire, and as a result, narrow the scope of
terminable works. Second, this Note proposes a legislative amendment to
the Copyright Act in an effort to protect OSS works from termination. Unlike
proprietary software, the protection of OSS requires a legislative amendment
because the limitations of works made for hire, large-scale works, and § 117
fail to adequately protect OSS as a nonproprietary work that was not
originally envisioned by Congress when drafting the Copyright Act.

A. Proposed Statutory Interpretation of the Copyright Act

To address issues arising in proprietary software, courts can mitigate the
most harmful effects of termination by employing a series of limiting factors.
These limiting factors consist of works made for hire, common law
exemptions of large-scale works, and § 117 of the Copyright Act.

The work made for hire provision is the most important limiting factor due
to its ability to circumvent the termination right’s inalienability.268 Adoption
of a novel interpretation of work made for hire under § 101(2) will expand
the scope of the limitation and reduce the threat of termination as a result.
The primary issue with § 101(2) is that computer software does not explicitly
appear as one of the nine enumerated categories of works that can be
commissioned as works made for hire.269 Some district courts have already
begun to fit computer software within these categories as a “compilation,”
“contribution to a collective work,” or “audiovisual work.”270 None of the
circuit courts have adopted any of the foregoing interpretations, yet said
interpretations have not been categorically rejected either.271 With the
current status of software’s placement within the § 101(2) categories in

 268. NIMMER & NIMMER, supra note 217, § 11.02[A][2].
 269. See 17 U.S.C. § 101(2).
 270. See supra notes 213–15215 and accompanying text.
 271. Ben Bhandhusavee, Is Your Customized Software a ‘Work for Hire’?, BHANDLAW
(Dec. 31, 2019), https://www.bhandlaw.com/2019/12/31/is-custom-software-a-work-made-
for-hire/ [https://perma.cc/T6BZ-BX2D].

1274 FORDHAM LAW REVIEW [Vol. 90

limbo, an interpretation with a more robust textual basis could successfully
convince the circuit courts on appeal.

This Note proposes that interpreting computer programs as “instructional
text[s]” pursuant to the sixth category listed under § 101(2) can accomplish
this goal.272 Unlike the other eight categories, there is a statutory definition
for “instructional text” within § 101(2) that provides a strong basis for
including computer programs within the statute.273 To begin with, § 101
defines “computer program” as “a set of statements or instructions to be used
directly or indirectly in a computer in order to bring about a certain result.”274
The key term “instructions” appears to align neatly with an “instructional
text” as required by § 101(2).275 The statutory definition of “instructional
text” is “a literary, pictorial, or graphic work prepared for publication and
with the purpose of use in systematic instructional activities.”276 Once again,
a similar issue arises in that computer programs are not explicitly listed as an
instructional text, as they are likewise absent from the nine enumerated
categories of § 101(2). Yet, what is included in the definition of
“instructional text” is “a literary . . . work.”277 Given that courts have
consistently interpreted computer programs as “literary works” pursuant to
§ 102 in establishing their copyrightability,278 a consistent usage of statutory
language also permits their inclusion as a work made for hire under § 101(2).

This proposed course of statutory interpretation is novel as applied to the
words at issue but is representative of two widely recognized canons of
statutory interpretation known as the “whole act rule” and the “presumption
of consistent usage.”279 The whole act rule is employed by courts to interpret
individual words or phrases in the context of the entire act.280 As applied
here, the second definition of work made for hire is being interpreted in light
of two other definitions included under § 101. The presumption of consistent
usage is self-explanatory in that the court will presume that words that are
repeated throughout the act will bear the same meaning as previously and
subsequently used.281 As applied here, the presumption of consistent usage
supplements the whole act rule analysis by presuming that the repetition of
both “instruction” and “literary work” bear the same meaning throughout the
Copyright Act.

The effect of courts’ adoption of the proposed interpretation would be
substantial. Recognizing that computer programs can be contracted into as a

 272. 17 U.S.C. § 101(2).
 273. Id.
 274. Id. (emphasis added).
 275. Id.
 276. Id.
 277. Id. (emphasis added).
 278. See Apple Comput., Inc. v. Franklin Comput. Corp., 714 F.2d 1240, 1249 (3d Cir.
1983).
 279. See Abbe R. Gluck & Lisa Schultz Bressman, Statutory Interpretation from the
Inside—An Empirical Study of Congressional Drafting, Delegation, and the Canons: Part I,
65 STAN. L. REV. 901, 937 (2013).
 280. See id. at 930.
 281. Id. at 937 n.106.

2021] CRACKING THE CODE 1275

work made for hire will essentially circumvent the inalienability of the
termination right.282 The benefits of this solution are that the courts need not
wait for Congress to amend the Copyright Act and that the interpretation is
specifically tailored to computer software, thus avoiding unintended
consequences on other works that may result from a legislative amendment.

Those who may challenge the above method of interpretation would likely
point to the absence of congressional intent indicating that the second
definition of work made for hire was intended to encompass computer
programs. There is merit to this challenge, given that at least one circuit court
has interpreted § 101 as indicative of congressional intent to create both a
broad catchall through the first definition and narrow carveout through the
second definition.283 However, the Supreme Court has long been careful not
to interpret the absence of congressional intent as evidence of congressional
disapproval.284 Thus, while Congress may not have intended to include
software within § 101(2) when enacting the Copyright Act, the language of
“instructional text” is sufficiently broad to encompass computer programs in
light of their statutory definition.

Another critique of this approach is that it may appear inequitable that
programmers can have their termination right circumvented retroactively
through a novel interpretation of § 101(2). Yet, concerns of this nature are
mitigated by the other two requirements of § 101(2): (1) that the work is
specially commissioned and (2) that it is agreed to constitute a work made
for hire through a signed contract.285 Programmers who voluntarily agreed
to sign away their works as works made for hire cannot reasonably claim that
they expected the copyright to nonetheless vest in themselves as the author.
Perhaps programmers who paid careful attention to the enumerated
categories of § 101(2) can plausibly claim as much—yet that would have
required them to sign a contract they believed to be legally unsound, thus
violating the implied duty of good faith and fair dealing inherent in
contractual agreements286 and vitiating any claim of inequity as a result.
Therefore, retroactive application of the novel interpretation of § 101(2) is a
sufficiently equitable result for both contracting parties regardless of their
knowledge of the statute or lack thereof.

 282. NIMMER & NIMMER, supra note 217, § 11.02[A][2].
 283. See Easter Seal Soc’y for Crippled Child. & Adults of La., Inc. v. Playboy Enters.,
815 F.2d 323, 331 (5th Cir. 1987) (“These categories are accorded special treatment, and the
buyer will be the author only if he has complied with the requirement of a written agreement.
In other words, § 101(2) carves out special protections from the expansive old doctrine for a
narrow group of sellers.”).
 284. See Girouard v. United States, 328 U.S. 61, 69 (1946) (“It is at best treacherous to find
in Congressional silence alone the adoption of a controlling rule of law.”). However, the U.S.
Supreme Court has recently engaged in a similar form of statutory interpretation in which the
Court interpreted the word “sex” in light of its plain meaning to include sexual orientation,
despite the absence of congressional intent at the time of enactment. See Bostock v. Clayton
Cnty., 140 S. Ct. 1731, 1737 (2020).
 285. 17 U.S.C. § 101(2).
 286. See U.C.C. § 1–304 (AM. L. INST. & NAT’L CONF. OF COMM’RS ON UNIF. STATE L.
2021).

1276 FORDHAM LAW REVIEW [Vol. 90

In addition to retroactivity concerns, prospective concerns could be raised
about the threat of unremunerative transfers.287 However, programmers are
better suited to overcome this imbalance and negotiate around § 101(2) due
to the distinguishing factors that set them apart from most other authors who
require such protection.288 Given that works made for hire under § 101(2)
must be specially commissioned, it is reasonable to infer that purchasers who
reach out to programmers are doing so because they require a particular
service or expertise. Programmers have far more negotiating power in this
circumstance as opposed to authors of other works because both parties have
a mutual need.289 Therefore, programmers need not sign contracts that
specify that their works are to be made for hire.290 Programmers can weigh
the short-term and long-term benefits of either foregoing or retaining their
termination right in the process of negotiating the terms of contracts. Overall,
the resulting dynamic of the proposed interpretative solution provides more
transparency in the negotiation process, while also providing sufficient
flexibility for programmers to leverage their termination rights.

B. Legislative Amendment to Solve Termination Issues in Open Source
Software

Unlike proprietary software, OSS requires a legislative solution because
the limiting factors on termination contained in the Copyright Act are largely
inapplicable to OSS. The work made for hire doctrine, as the most important
limitation, is largely absent from OSS because contributions are made on a
voluntary basis rather than through an employment relationship.291
Similarly, the de facto exception for large-scale works is essentially a
nonfactor because the use of licensing agreements in OSS precludes
satisfaction of the necessary intent-to-merge requirement.292 Lastly, § 117
fails to protect a vital function of OSS, in that distribution of derivative
works, including bug fixes and updates, constitutes infringement and is thus
prohibited under the Copyright Act.293 The above shortcomings are not
rectifiable through judicial interpretation of the Copyright Act in its current
form, thus making a legislative amendment the necessary solution.

 287. See supra notes 173–17878 and accompanying text.
 288. See supra notes 173–17878 and accompanying text.
 289. See supra notes 171–78 and accompanying text.
 290. This is especially true of proficient and experienced programmers, as expressed by a
quote attributed to Bill Gates: “A great lathe operator commands several times the wages of
an average lathe operator, but a great writer of software code is worth 10,000 times the price
of an average software writer.” See Reed Hastings, Netflix CEO on Paying Sky-High Salaries:
‘The Best Are Easily 10 Times Better Than Average,’ CNBC (Sept. 8, 2020, 10:02 AM),
https://www.cnbc.com/2020/09/08/netflix-ceo-reed-hastings-on-high-salaries-the-best-are-
easily-10x-better-than-average.html [https://perma.cc/8UGX-H4XR].
 291. See ERIC S. RAYMOND, THE CATHEDRAL AND THE BAZAAR: MUSINGS ON LINUX AND

OPEN SOURCE BY AN ACCIDENTAL REVOLUTIONARY 57 (Tim O’Reilly ed., 2d ed. 2001)
(“[O]pen-source developers are volunteers, self-selected for both interest and ability to
contribute to the projects they work on”). But see Armstrong, supra note 13, at 405 n.273
(highlighting the adoption and growth of OSS development in some private companies).
 292. See supra note 222 and accompanying text.
 293. See supra Part II.D.

2021] CRACKING THE CODE 1277

One scholar has advocated for a legislative amendment which would allow
copyright owners to abandon their copyrights by making an express
dedication of their works to the public domain.294 This solution is
particularly attractive because it draws from an existing provision of the
Patent Act of 1952, which enables patent abandonment, to create an
analogous right in the Copyright Act.295 The public policy effects of patent
abandonment are assessable by legislators, thus enabling them to draw
reasonable conclusions about how abandonment would likely play out in
copyright.

However, the proposed amendment is deficient because, while the original
OSS program is placed in the public domain through abandonment, all
subsequent derivative works are free from licensing constraints and may, in
essence, cease to be OSS works. This is because the original author of the
program cannot retain perpetual open access to source code through licensing
arrangements such as the GPL once the author’s program is abandoned. Any
additional code added by a subsequent author can be kept secret from the
public, thus making the closed portion of the derivative work’s code
indistinguishable from other proprietary software. Given that perpetual open
access to code is one of the core features of OSS, its loss makes this solution
less than ideal.

Instead, Congress should enact legislation that creates a voluntary
compulsory licensing scheme for OSS works. Compulsory licensing
schemes already exist within the Copyright Act, though they are mostly
limited to the music industry.296 Under § 115, artists are required to license
the underlying musical compositions of their songs to others who wish to use
the copyrights for permissible purposes, such as creating a cover of said
songs.297 This provision was intended to strike a balance between the
original artists’ rights and subsequent artists’ ability to draw from a well of
existing creativity in the furtherance of their own creative efforts.298 In other
words, the compulsory licensing scheme shares many of the same
justifications underlying the OSS movement.299 Thus, § 115 serves as a
natural starting point in creating a legislative solution for OSS.

Congress should recognize and define OSS by adding a statutory definition
of “open source software” under § 101 of the Copyright Act. Next, a
centralized licensing body should be created to act as the intermediary

 294. See Armstrong, supra note 13, at 419.
 295. Id.
 296. See Paul S. Rosenlund, Note, Compulsory Licensing of Musical Compositions for
Phonorecords Under the Copyright Act of 1976, 30 HASTINGS L.J. 683, 694 (1979) (noting
that, under the Copyright Act, most other types of copyrightable works are not subject to the
same compulsory licensing requirements as music).
 297. See 17 U.S.C § 115(a)(2). However, the license is limited insofar as the licensee
cannot “change the basic melody or fundamental character of the work” and will not obtain
any rights in their cover as a derivative work without first receiving the copyright owner’s
consent. Id.
 298. See Jacob Victor, Reconceptualizing Compulsory Copyright Licenses, 72 STAN. L.
REV. 915, 952 (2020).
 299. See supra notes 21–22 and accompanying text.

1278 FORDHAM LAW REVIEW [Vol. 90

between the original authors of OSS programs and those who wish to use or
alter the program. In practice, the licensing body would function similarly
to the Mechanical Licensing Collective, a nonprofit organization that is
responsible for administering compulsory licenses in the music industry.300
That is, the licensing body would create a database of OSS works,301 enforce
either the default “blanket license”302 or a different license upon which both
parties have agreed,303 and oversee the payment of royalties.304 The
licensing body would not be responsible for regulating the substance of the
agreement, as long as it is consistent with the statutory definition of an OSS
work. Most OSS works today are licensed through standardized agreements
such as the GPL, effectively minimizing transaction costs of the case-by-case
negotiation of terms.305 The licensing body would facilitate this process by
establishing the GPL as the default license to which the licensee and licensor
reserve the right to opt out of for a privately negotiated license.

The benefits of the centralized nature of the licensing body come into play
when considering derivative works. The licensing body will have on file the
information of all users of the original OSS program, such that a programmer
seeking to license a derivative of the original can do so through the same
process. The author of the derivative work could use either the default
licensing agreement, or one that is less restrictive, but could not use a more
restrictive agreement. Thus, perpetual open access to the original program’s
source code is not only guaranteed under this proposal just as it is currently
but also made more accessible and accountable through the centralized
licensing body.

Finally, to rectify the issues posed by termination, Congress should add a
provision to § 203 specifying that OSS works issued through a compulsory
licensing system cannot be terminated. This provision is necessary to ensure
that the OSS works remain accessible to the public in perpetuity. Concerns
regarding unremunerative transfers are moot under a compulsory licensing
system, given that they operate based on a fixed royalty rate from which the
licensors automatically receive payment upon use of their works.306 Absent
the core justification underlying the existence of the termination right, there
is little reason to retain termination in OSS works under a compulsory
licensing system. The one caveat is that transfers of the original work itself
should remain terminable, as such transfers carry with them the royalties
earned through compulsory licenses. Thus, while public access through
compulsory licensing remains open in perpetuity regardless of who owns the
original, the original author of the OSS work is free to maintain ownership,

 300. See Musical Works Modernization Act, U.S. COPYRIGHT OFF.,
https://www.copyright.gov/music-modernization/115/ [https://perma.cc/NP3S-Y8TE] (last
visited Oct. 29, 2021).
 301. See 17 U.S.C. §  115(d)(3)(E).
 302. Id. §  115(d)(1)(B).
 303. Id. §  115(d)(1)(C).
 304. Id. §  115(d)(3)(G).
 305. See Phelps, supra note 19, at 263.
 306. 17 U.S.C. §  115(d)(8).

2021] CRACKING THE CODE 1279

or if the author chooses to transfer it, the author may recover ownership
through termination thirty-five years later. This arrangement would be ideal,
as it would strike the balance between public access and private ownership
while avoiding the issue of unremunerative transfers altogether.

Although a compulsory licensing system may be a viable solution to the
problems posed to OSS by termination, the intricacies of a full amendment
to the Copyright Act will take a substantial amount of time to explore. This
is evident from the music industry, which has seen multiple revisions of its
compulsory licensing system, the most recent of which is the Orrin G.
Hatch-Bob Goodlatte Music Modernization Act.307 It would be prudent to
wait and see how recent changes to the compulsory licensing framework play
out in practice before implementing an analogous system for OSS.
Fortunately for Congress, the gap in time before termination issues arise is
larger for OSS, as it only started to become “mainstream”308 in the early
2000s. Due to the thirty-five-year threshold, as well as the time it may take
for OSS authors to both recognize that they have a termination right and then
proceed to exercise it, Congress may have well over a decade to prepare the
proposed amendment.

In the meantime, perhaps it would be worthwhile for Congress to take the
first step, as advocated by the Second Circuit nearly three decades ago, by
commissioning a “CONTU II” to consider updates to the Copyright Act that
reflect the rapidly evolving software industry.309 At the forefront of such
considerations should be solutions to the intersection of termination and
software. The issues raised and the solutions presented by this Note can
contribute to this ongoing discussion.

CONCLUSION

Technological advancement and the law are rarely, if ever, working in
tandem. By including computer software as copyrightable subject matter,
Congress and the courts alike have treated software much the same as art,
movies, and literature. However, due to the rapid growth of the software
industry and the unforeseen development of OSS, it is time for Congress to
recognize the unique threat that copyright termination poses to software in
particular. The fact that software termination may be years away is not an
excuse for complacency. Rather, Congress should view it as an opportunity
to preemptively rectify the law before its economic consequences are felt.

The solutions presented by this Note address proprietary software and OSS
with the respective levels of urgency they require. Courts can adopt the
proposed interpretation of “instructional texts,” such that proprietary
software may be considered work made for hire, thus making what was

 307. Pub. L. No. 115-264, 132 Stat. 3676 (2018) (codified as amended in scattered sections
of 17, 19, and 28 U.S.C.).
 308. Steve Lohr, Code Name: Mainstream; Can ‘Open Source’ Bridge the Software Gap?,
N.Y. TIMES (Aug. 28, 2000), https://www.nytimes.com/2000/08/28/business/code-name-
mainstream-can-open-source-bridge-the-software-gap.html [https://perma.cc/823C-QH34].
 309. See Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992).

1280 FORDHAM LAW REVIEW [Vol. 90

previously an unalienable termination right a de facto alienable right. A
judicial solution such as this is ideal for proprietary software because the
thirty-five-year termination threshold will be reached much sooner than the
window for OSS. The extended gap of time before OSS reaches the threshold
provides Congress with ample opportunity to consider and draft a solution.
Accordingly, this Note’s legislative proposal for a compulsory licensing
system is tailored to meet Congress’s time frame.

Issues raised by software terminability represent a larger tendency of the
law to lag behind technological development, which is an unfortunate, but
not unavoidable, phenomenon. By preemptively addressing future problems,
the law may finally start to facilitate, rather than hinder, the inevitability of
technological progression.

	Cracking the Code: How to Prevent Copyright Termination From Upending the Proprietary and Open Source Software Markets
	Recommended Citation

	tmp.1638466562.pdf.9Q_xS

