
Bucknell University Bucknell University 

Bucknell Digital Commons Bucknell Digital Commons 

Faculty Journal Articles Faculty Scholarship 

9-10-2021 

Simulating Influenza Epidemics with Waning Vaccine Immunity Simulating Influenza Epidemics with Waning Vaccine Immunity 

Chun-Miin Chen 
Bucknell University 

Alia C. Stanciu 
Bucknell University, acs023@bucknell.edu 

Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ 

 Part of the Disease Modeling Commons, Epidemiology Commons, Influenza Virus Vaccines 

Commons, and the Virus Diseases Commons 

Recommended Citation Recommended Citation 
Chen, Chun-Miin and Stanciu, Alia C.. "Simulating Influenza Epidemics with Waning Vaccine Immunity." 
(2021) : e27169. 

This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It 
has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital 
Commons. For more information, please contact dcadmin@bucknell.edu. 

https://digitalcommons.bucknell.edu/
https://digitalcommons.bucknell.edu/fac_journ
https://digitalcommons.bucknell.edu/faculty-scholarship
https://digitalcommons.bucknell.edu/fac_journ?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/814?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1070?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1070?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1823&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu


D
ow

nloaded
from

http://journals.lw
w
.com

/m
d-journalby

BhD
M
f5ePH

Kav1zEoum
1tQ

fN
4a+kJLhEZgbsIH

o4XM
i0hC

yw
C
X1AW

nYQ
p/IlQ

rH
D
3i3D

0O
dR

yi7TvSFl4C
f3VC

4/O
AVpD

D
a8K2+Ya6H

515kE=
on

10/13/2021

Downloadedfromhttp://journals.lww.com/md-journalbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC4/OAVpDDa8K2+Ya6H515kE=on10/13/2021

Simulating influenza epidemics with waning
vaccine immunity
Chun-Miin (Jimmy) Chen, PhD

∗
, Alia C. Stanciu, PhD

Abstract
Observational studies indicate that vaccine-induced immunity can decline over time. However, few researchers have incorporated
this kind of waning effect into their virus spread models. In this study, we simulate an influenza epidemic that considers the effects of
waning immunity by fitting epidemiological models to CDC secondary historical data aggregated on a weekly basis, and derive the
transmission rates at which susceptible individuals become infected over the course of the influenza season. Using a system of
differential equations, we define four groups of individuals in a population: susceptible, vaccinated, infected, and recovered.We show
that a larger number of initially infected individuals might not only bring the influenza season to an end sooner but also reduce the
epidemic size. Moreover, any influenza virus that entails a faster recovery rate does not necessarily lead to a smaller epidemic size. We
illustrate how simulation helps in understanding the effects of influenza epidemiological model in the presence of waning influenza
vaccine immunity.

Abbreviations: CDC = Centers for Disease Control and Prevention, SIR = Susceptible-Infectious-Recovered, SVIR =
Susceptible, vaccinated, infectious, recovered.

Keywords: influenza, simulation, vaccine, waning immunity

1. Introduction

Influenza is a contagious disease around the world. Year after
year, influenza viruses cause illness to people of all ages, which
can lead to influenza-related complications or even trigger more
severe inflammation in the body. In fact, influenza has been
ranked as the eighth leading cause of death in 2017.[1] According
to the World Health Organization,[2] annual influenza-related
death tolls ranged from 290,000 to 650,000 worldwide. Since
1997, the Centers for Disease Control and Prevention (CDC)
have been tracking influenza activity and influenza-related
illnesses. In the United States, CDC produces influenza surveil-
lance data, such as the percentage of specimens testing positive
for an influenza virus. Every week, all clinical laboratories report

to CDC the total number of respiratory specimens tested and the
number that tested positive for influenza viruses.
Recently, researchers have started to thoroughly investigate

and give special attention to the waning effectiveness of
vaccination-induced immunity in the human body. In the 2017
to 2018 influenza season, there were as many as 50 viruses
identified for vaccine productions.[3] Given the selected viruses
for the new formulation, vaccine manufacturers are racing
against time as they produce, test, and distribute the vaccine
under a tight schedule.[3–5] Unfortunately, antigenically variable
pathogens, such as influenza viruses, are living organisms and are
capable of continuously altering the proteins or carbohydrates on
their surface and mutating to different strains, thereby potentially
escaping from the immunity induced by vaccination.[6] Many
studies have reported that vaccine effectiveness within a single
influenza season can decrease over time. Kissling et al[7] stated
that the decreasing influenza vaccine effectiveness could be the
result of virus changes through the season or waning immunity.
Pebody et al[8] and Belongia et al[9] advocated the need for
developing influenza vaccines that provide better and longer-
lasting protection in view of the occurrence of late past-season
outbreaks. Hill et al[10] developed a multi-strain transmission
model to predict the chronological interactions between the
influenza viruses and waning immunity among the population.
In this study, we aim to update classic epidemiological models

by explicitly accounting for waning vaccine immunity over time,
as well as to examine the effects that various parameters have on
the size of the influenza epidemic. Methodologically, we employ
simulation, which has been one common approach for
understanding the course of an influenza epidemic both in
practice and in the literature.[11,12] Goeyvaerts et al[13] developed
a seasonal influenza transmissionmodel for evaluating the impact
of vaccination on the incidence of infection, disease, and
mortality. The authors proposed to directly estimate the values
of the seasonal influenza model parameters by fitting the model to
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influenza data over multiple influenza seasons. To empirically
ground themodel, we follow the literature and present a simplified,
yet accurate way of fitting influenza seasonal transmission models
to publicly available data.[13,14] Using a system of differential
equations, we simulate the dynamics of the infection in the
population compartmentalized into several groups. The differen-
tial equations allow us to define the rates at which susceptible
individuals become infectious or infected individuals recover from
the disease. Lastly, we conduct an extensive sensitivity analysis to
validate our model by varying a wide range of common
experimental parameters discussed in the extant literature. This
study visualizes the progress of the influenza epidemic not only
when vaccine effectiveness wanes, but also when some seemingly
favorable change of conditions counter-intuitively contributes to a
worsening of the spread of influenza.
The remainder of this article is organized as follows: Section 2

presents the classic susceptible-infectious-recovered (SIR) model
that is often used for segmenting a population into groups during
an influenza epidemic. In Section 3, we conduct simulation
studies using various scenarios for investigating the implications
of the empirically based periodic transmission rate, waning
vaccination effectiveness, and viciousness of the influenza virus
on the size of the epidemic. Finally, in Section 4, we conclude with
a summary of our findings.

2. Methods

In this section, we present an approach for fitting a model to
influenza data. First, we define the groups that each individual in
a population will belong to during an influenza epidemic. Then,
using differential equations, we devise a deterministic epidemic
model to investigate the implications of varying model parameter
values on the severity of the influenza epidemic in the population.

2.1. Model design

Using a sinusoidal function for simulating influenza transmission
is not uncommon in epidemiological research.[15–17] For a given
empirical data set, we fit the following sinusoidal function to the
weekly percentage of the positive laboratory specimens test
results over the course of a year:

f ðtÞ ¼ Asin
2p

Bðt � CÞ
� �

þD: ð1Þ

whereA specifies the amplitude of the oscillation, B defines the time
horizon of a complete season, C determines the starting week in a
season, D shifts f(t) such that it is positive for all integers
t∈ 1; 2; . . . ; 51; 52f g, and t indexes theweek number in a given year.
We then construct the following optimization problem to get

the fitted parameter values for modeling the seasonal influenza
phenomenon:

Minimize
X52
t¼1

xðtÞ � f ðtÞ½ �2

subject to A;B;C;D≥ 0
B � 52
f ðtÞ≥0; 8t∈ 1; 2; . . . ; 51; 52f g:

ð2Þ

We use x(t) to denote the weekly percentage of specimens with
positive results in any available historical data set. Once we

obtain the optimal parameter values for the decision variables A,
B, C, and D, we can use the optimized sinusoidal to derive a
contact function that will simulate the rate at which an infected
individual transmits the disease to other susceptible individuals.
The contact function shows how soon individuals in the
population can move between the susceptible, infectious, and
recovered groups. In particular, the contact (transmission) rate at
which a susceptible individual becomes infected can be obtained
by taking the first derivative of Eq. (1) with respect to t. The
contact rate, denoted by bðtÞ ¼ f

0 ðtÞ, is a cosinusoidal function of
time that informs the various rates of transmission during the
influenza season.

2.2. Epidemiological groups

Many studies have used differential equation-based simulation
models for simulating the course of influenza.[18–20] Typically,
these models place individuals in a predetermined number of
groups. In this study, we assume that, at any given time, each
individual in the population (N) belongs to one (and only one) of
the following groups: susceptible (S), vaccinated (V), infectious
(I), or recovered (R).[11,21–24] In particular, S includes those who
are healthy but exposed to the risk of contracting influenza from
any infectious individuals; V refers to the proportion of
individuals in N who are being vaccinated but who can also
continuously leak to group S; I denotes those who are infectious
agents of influenza to those in S; and R denotes those who have
contracted influenza, recovered, and are therefore immune for the
remainder of the season. Figure 1 exhibits a flowchart that
conceptually illustrates to which group the individuals in a
population could belong during an influenza epidemic. Note that
the dotted line between V and S is the connection that has not yet
been considered in most of the influenza-related research so far.

2.3. Differential equations

Given the definition of the SVIR epidemic model, we developed a
system of deterministic differential equations that characterizes
the rates at which any individual in one group can move to
another group[25]:

dSðtÞ
dt

¼ �bðtÞSðtÞ IðtÞ
N

þ zVðtÞ ð3Þ

dVðtÞ
dt

¼ �zVðtÞ ð4Þ

dIðtÞ
dt

¼ bðtÞSðtÞ IðtÞð Þ
N

� gIðtÞ ð5Þ

dRðtÞ
dt

¼ gIðtÞ: ð6Þ

We use z to denotes the rate of the decreasing vaccine
effectiveness (i.e., waning effect). Studies showed that the vaccine-
induced antibody titers can decrease, within a year after the
inoculation, to levels encountered in those without protection.[26]

Chen and Stanciu Medicine (2021) 100:36 Medicine

2



Another biological definition of the waning effect is that the
antigens on the influenza virion surface (i.e., the target of
protective immunity) continually evolves and mutates in the
human population. Hence, the influenza strain increasingly
differs from its progenitor so that the vaccine-induced immunity
against the progenitor can diminish over time.[27] Mathematical-
ly, we assume some percent of the vaccinated group can lose the
immunity protection and rejoin to the susceptible group.
Additionally, g denotes the inverse of the average length of time
an individual stays infectious until moving to the R group. For
example, if infected individuals take, on average, four days to
recover, then g ¼ 0:25. To solve the differential equations, we
need the following initial conditions:

Sðt0Þ ¼ 1� að Þ N� I0ð Þ
Vðt0Þ ¼ a N� I0ð Þ
Iðt0Þ ¼ I0
Rðt0Þ ¼ 0:

where t0 denotes the time when the pathogen is introduced in the
population, and a represents the level of population immunity
given the vaccine’s effectiveness and the proportion of susceptible
individuals being vaccinated.
Admittedly, some more advanced, complex influenza trans-

mission models with additional parameters will be able to better
capture other temporal or systematic variations in the time series
data. For example, while the differential equations are popular in
simulating the course of influenza transmission, they tend to
focusmore onmodeling the behavior of the groups as a whole. To
focus on modeling the probability of individuals being infected
given their demographic or community information, agent-based
models are capable of considering the stochastic nature of the
transmission rate between individuals.[11,24] For more discus-
sions on the differential equations and the agent-based simulation
models, see Paleshi et al[12] Our parsimonious mathematical
models and differential equations are meant for capturing the
main patterns that are evident in the empirical data for the
following numerical study.

3. Results

3.1. Empirical data

From the various publicly available data sets on the CDC’s
website, we focus on the weekly percentage of the positive
laboratory specimens test results and use those as a proxy for the
fraction of the population that is infected. The data were collected
from ∼300 clinical laboratories located throughout all 50 states,
Puerto Rico, Guam, and the District of Columbia. Prior to the
2015 to 2016 influenza season, the weekly influenza update from
public health and clinical laboratories were not separately
reported. Compared to the clinical laboratories, public health

laboratories often receive samples that have already tested
positive for an influenza virus at a clinical laboratory.[3]

Relatively speaking, the data from clinical laboratories are less
distorted than those from public health laboratories in terms of
truthfully representing the situations in the population. There-
fore, we chose to use data from four influenza seasons, starting
with the 2015 to 2016 season, to inform the estimates for our
epidemiological model. Figure 2 displays the time-series data of
four (over-imposed) influenza seasons consisting of 208 (52 � 4)
weekly fractions of the positive laboratory specimens test results.
Overall, the percentages rise rather quickly at the beginning of the
season before declining to some low levels starting with week 24.
Note that every plot has peaks between week 52 and week 12 and
a small uptick before the end of the season, at around week 36.
Because we use only deidentified statistical data aggregated by

the CDC at the national level on a weekly basis, no information
can be used to uniquely identify each individual. Thus, this study
does not involve human subjects in a way that would require
review or approval by Bucknell University’s Institutional Review
Board.

3.2. Model fitting

As opposed to directly imposing some function for the influenza
contact (transmission) rate,[20] we derive the cosinusoidal contact
rate from the empirical data. To this end, we solved the
minimization problem in Eq. (2) using MATLAB to obtain A, B,
C, and D and specify Eq. (1) (solver sequential quadratic
programming; www.mathworks.com). In the definition of x(t) in
Eq. (2), we use the average of the percentages in Figure 2, that is,
52weekly average ratios across the four influenza seasons. (e.g., x
(1) is the average of the four first-week percentages from the data
sets.) For the given empirical data set, we fit the sinusoidal
function (1), using the model specified in (2) and the parameters x
(t) as defined above. The optimized parameter values of A, B, C,
and D are 9.4215, 43.0102, 139.2729, and 9.3964, respectively
R2 ¼ 0:8992;RMSE ¼ 2:4671
� �

. Figure 3 compares the average
weekly percent of positivity tests with Eq. (1) given the fitted
values of the parameters.
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Figure 2. Seasonality of annual incidence of influenza, 2015 to 2019.

Figure 1. Flowchart of the SVIR model for simulating an influenza epidemic.
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Next, we derive the estimated contact rate function at which a
susceptible individual becomes infected when contacting an
infectious individual. Intuitively, the contact rate determines the
instantaneous rate of change to the weekly positivity rate. We
propose a novel approach for finding the contact rate by
borrowing a fundamental concept from Physics: the contact rate
is to the weekly positivity rate as the acceleration is to velocity.
That is, if we view the positivity rate in a week as velocity, then
the contact rate should be the instantaneous rate of acceleration
in the given week. Thus, we take the first derivative of the sine
function f(t) with respect to t to find the contact rate as a cosine
function:

b̂ðtÞ ¼ 1:3764 cos
2p

43:0102
ðt� 139:2729Þ þ 1

� �
: ð7Þ

As such, the contact function Eq. (7) has a maximum at week 2
(in January) and a minimum at week 24 (in June) for a given year,
matching the empirical observation that influenza activity often
begins in October, peaks sometime between December and
February, and lasts as late as May.[3] Note that the constant 1 in
Eq. (7) is added to keep the function b̂ðtÞ realistic for all integer
t∈ 1; 2; . . . ; 51; 52f g. Without the added constant, Eq. (7)
oscillates between +1.3764 and �1.3764 over t. If adding any
constant <1, then Eq. (7) might render some negative contact
rate. If the added constant is >1, then Eq. (7) might render some
increasing infection rate for the population even during the
summertime.

3.3. Experiment parameters

This study also examines the impact of the length of the infectious
period on the size of the epidemic. According to CDC,[3] infected
people can be contagious one day before experiencing symptoms,
which typically last 3 to 7 days, and can stay contagious for up to
7 days after becoming sick. The contagious period can be longer
than 7 days for children and some people with weakened immune
systems. Cori et al[28] pointed out that it is impossible to directly

observe the duration of the infectious period. The authors
reviewed the literature and found that the 95% probability
intervals of the mean duration of the infectious period can be any
number of days up to 12days, while the majority of cases having
an infectious period are shorter than 2.9days. Thus, we consider
g, the recovery rate of infected individuals, to vary between 1

12 and
1
2. Since it is of interest, we also tracked and observed during our
simulations the total number of recovered individuals, as a proxy
for the size of the epidemic.
Another uncertainty that we bring into the study is the

proportion of people who gain immunity, at least in the beginning
of the season. Statistics from the 2018 influenza season showed
that, depending on age group, the percentage of people who
received an influenza vaccination varies between 30% and 70%,
with vaccine effectiveness ranging from 10% to 60%.[29,30] Thus,
we let a, the proportion of susceptible individuals fully protected
by the vaccine, vary between 3% and 42%. Moreover, we vary
I0, the initial number of infected individuals, between 1 and 100.
Lastly, Grohskopf et al[31] pointed out that the observed waning
effect might not consistently manifest itself across all age groups,
virus subtypes, or seasons. Nonetheless, Ferdinands et al[32]

examined the association between influenza vaccine effectiveness
and time since vaccination among patients in the United States.
The authors found significant evidence that influenza vaccine
protection could decline by 6% to 11% per month since the time
of vaccination, depending on influenza type. Thus, we vary z, the
rate at which the number of (newly) vaccinated individuals
decreases over time, from 6% to 11%.

3.4. Numerical experiments

We code the system of differential Eqs. (3) to (6) inMATLAB and
solve them numerically for the values of a given t under different
scenarios (solver ode45; www.mathworks.com). When comput-
ing, we begin by assigning the initial values of the groups of the
population, withN and R0 being always held constant at 106 and
at 0, respectively. In addition, every influenza season spans 52
weeks, starting at week 40 of 1 year and ending at week 39 of the
following year. During the season, individuals continuously
interact with each other, and the size of the four groups changes
at the rates defined by the differential equations.
Figure 4 shows the impact of the recovery rate on the

number of individuals in the four groups over the course of
the influenza season. We observe that an influenza virus that
requires a longer recovery time tends to cause the population to
experience another uptick in the number of infected individuals at
around week 36. We also note that the longer the time the
infected individuals take to recover, the larger the epidemic size
is—that is, the total number of recovered individuals at the end
of the season.
Figure 5 shows that if the population has a larger number of

initially infected individuals (I), then the peak of the seasonwould
not only arrive sooner but also be smaller. A subtle and counter-
intuitive observation is that the epidemic size—that is, the total
number of recovered individuals at the end of the season—is
actually smaller when I is larger. We will examine this
phenomenon in more detail shortly.
Figure 6 shows the impact of the proportion of the vaccinated

population on the number of individuals in the four groups over
the course of the influenza season. The greater the proportion of
individuals receiving the vaccination at the beginning of the
season, the smaller the epidemic size (the total number of
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recovered individuals) at the end of the season. An increase in a

seems to lead to a decrease in the size of the epidemic, but it also
delays the peak of the season, as well as leading to an uptick in
infected individuals toward the end of the season.
Figure 7 highlights the missing link in the literature—the effect

of the individuals leaking from V to S when the vaccination is
subject to the waning effect. Even with a slight increase in the
waning effect, for example, z from 0 to 6% (i.e., top-left panel to
top-right panel), the size of the epidemic could increase by more
than 100%. Therefore, researchers studying related topics should
not disregard the waning effect. Although a higher waning rate
leads to a larger epidemic size, the peak of the season takes place
roughly in the same week. The implication is that researchers or
practitioners may not be able to tell if the effectiveness of a given
vaccine can wane over time by observing the timing of the peak of
the season.
Figure 8 shows the epidemic size given four different values for

the number of initially infected individuals. Counter-intuitively,
relatively faster recovery rates, roughly between 1/12 and 1/7, can
actually make the epidemic worse. Another interesting observa-

tion is that, for the cases where the recovery rate is greater than
about 15%, the greater the number of initially infected
individuals, the smaller the epidemic (i.e., the smaller the total
number of recovered individuals at the end of the season). Note
that for influenza that entails a recovery period of 7 days or fewer,
a greater number of initially infected individuals can lead to a
decrease in the season’s epidemic size. But for influenza that
entails a recovery period of 7 days or more, a greater number of
initially infected individuals can lead to an increase in the season’s
epidemic size.
Figure 9 illustrates that the higher the waning rate, the larger

the epidemic size. The implication is that the effectiveness of the
vaccine must be made as good as possible to effectively mitigate
the potential outbreak of an epidemic. Similar to the phenome-
non observed in Figure 8, a faster recovery rate might increase the
epidemic size, and the phenomenon holds even under different
rates of the waning effect.
To conduct a sensitivity analysis, we separately fitted the

models using the data of the individual seasons and obtained four
different sets of values of the parametersA, B,C, andD as shown
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Figure 5. Evolution of the SVIR groups as a function of the size of the initial infected population.
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in Table 1. Not reported here, all of the results using the
parameter values led to the same conclusions as do those using
the average of the four seasons’ data.

4. Discussion

Influenza has been a leading cause of death in the United States.
Despite vaccination, the number of susceptible, infected, and
recovered individuals seems to follow similar patterns year after

year.[24] In this study, we combined multiple approaches to better
capture the complexities of the influenza epidemic phenomenon.
The theoretical contribution of our study lies in fitting empirical
influenza data to the models that capture the periodic phenomena
of influenza infections and the oscillating contact rate over time.
Moreover, we extended the classic SIR model to the SVIR model
by incorporating the effect of waning vaccination immunity to
better reflect the course and spread of influenza infections. The
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Figure 6. Evolution of the SVIR groups as a function of the proportion of the vaccinated population.
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practical implication of the study lies in simulating the size of the
influenza epidemic when varying several model parameters. In
particular, we show how an uptick in influenza cases toward the
end of the season or even a delay in the peak of the season might
be caused by scenarios involving an influenza virus that entails a
longer recovery time, or when a greater portion of the population
gets vaccinated. The rather counter-intuitive results suggest that a
larger number of initially infected individuals might not only
bring the influenza season to an end sooner but also reduce the
size of the epidemic. Moreover, an influenza virus that entails
a faster recovery rate does not necessarily lead to a smaller
epidemic size.
One limitation of the studymay be attributed to the availability

of the less distorted data we chose to use, which was unavailable
on the CDC website until 2015. In addition, the differential
equation model assumes that all subjects are directly connected

with each other, and as likely to get or spread the disease, which
may not be true for populations that are sparsely connected.
Nevertheless, the numerical experiments present a number of
interesting phenomena that are worth pursuing further.
Future research and extensions of the investigations in this

study can consider different types of influenza viruses. According
to CDC,[3] both type A and type B influenza viruses are
responsible for causing seasonal epidemics of the disease every
winter.[10] It has been reported that different types of the
influenza virus could show up at different times in an influenza
season.[33] Thus, the implications of the waning effect over time
we discussed in this study may pan out differently for different
types of the influenza virus. Another direction for future research
is to consider the group of immunosuppressed individuals in the
model.[34] Individuals with immune dysfunctionmay not respond
to the vaccine as well as people without immune dysfunction.[35]

Furthermore, people who are severely immunocompromised
(e.g., HIV-infected people, organ transplant recipients, or people
who undergo immunosuppressive treatments) tend to prolong
influenza virus shedding, increase morbidity or mortality
following infection, and be reinfected with the same virus
strain.[36,37] Thus, researchers can study the impact of immuno-
suppression on the SVIR model. Finally, researchers may
consider applying the framework of this study and analyze
influenza data from other countries or regions, for additional
insights.
As the entire world is increasingly inoculated with COVID-19

vaccines, we anticipate that many more studies will be underway
to further model the immunity provided by the vaccines. The
waning effect we consider in this article, even though introduced
in the context of an influenza epidemic, could become especially
relevant in modeling and understanding the COVID-19 pan-
demic immunity-related parameters. At the same time, the
reliability and the frequency of data reporting will have a
direct effect on gaining a better understanding of vaccine
administration.
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