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Abstract. Hemozoin crystals are the basis of a new approach for efficient, cost-effective malaria detection. Clinical 
success of malaria detection with a magneto-optical device (MOD) motivates quantification of the optical interactions 
forming the basis of the detection mechanism. The MOD is used to measure the intensity of polarized light transmitted 
through a sample of hemozoin suspended in phosphate-buffered saline, subject to a magnetic field, 𝐵, that can be 
turned on and off. According to Beer’s law, ratios of transmitted light with different polarization directions and with 
𝐵 on and off as a function of hemozoin concentration were related to change in absorption cross section, Δ𝜎, an 
important property for quantifying optical interactions. Using two methods, Δ𝜎 was uniquely determined, producing 
similar results, supporting the physical and mathematical theory used to understand MOD’s detection mechanism. 
Successful quantification of Δ𝜎 informs our understanding of the magneto-optical properties of hemozoin, which 
advances malaria detection, and expands potential applications of the MOD. 

INTRODUCTION 

In 2018, 228 million cases of malaria were reported worldwide, leading to roughly 405,000 deaths. 

Additionally, 2.7 billion dollars was spent on prevention and elimination programs in 2018, coupling financial costs 

with already significant human costs.1 Malaria is still highly prevalent in the international community, particularly in 

the developing world. The disease is especially prolific in African, southeast Asian, and central and south American 

nations, many of which are still developing.1 Given the levels of medical infrastructure in these nations, where over 

3.4 billion people live at-risk of developing malaria, traditional diagnostic mechanisms are not financially or 

structurally feasible. A simpler, faster, and more affordable novel approach of detecting malaria is needed.2  

Pathologists tend to be few and far between in at-risk nations and with over a billion tests needed per year, 

expensive and time-consuming diagnostic tests cannot effectively meet the needs of the world’s most vulnerable 

communities. However, malaria parasites produce a physically interesting and a diagnostically invaluable byproduct, 

a pigment known as hemozoin. Hemozoin is produced by all variants of malaria parasites while they consume 

hemoglobin in a host’s blood.3,4 Medical technologies can exploit physical characteristics of hemozoin crystals to 
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detect malaria. The human body on its own will never produce hemozoin, so if hemozoin is detected in a blood sample, 

it must be coming from a malaria parasite.5 

Hemozoin molecules have a top like shape with a porphyrin ring of carbon and nitrogen atoms surrounding a 

central iron atom. A single oxygen atom protrudes from this planar ring of carbon and iron as seen in Figure 1a.6 

Individual molecules stack to form the long, thin, rod-shaped crystals seen in Figures 1b and 1c. The long axis of these 

crystals measures roughly 700 nanometers and is referred to as the hard axis. The short axes of the crystals are 

considerably shorter in length and together defined a plane referred to as the easy plane.6 

Figure 1a. b. c. 

   
a) A single molecule of hemozoin with an outer planar region of carbon (C) known as a porphyrin ring surrounding four nitrogen atoms (N), 
together spatially referend to as falling within the easy plane. The central iron (Fe) atom contributes to hemozoin’s unique magnetic properties 
and, along with the oxygen (O) atom, falls along hemozoin’s hard axis depicted by the dashed, vertical line. From Butykai, et al. b) A simplified 
geometric representation of a hemozoin crystal. The crystal has two distinct geometric features, a planar region referred to as the easy plane, 
and a long, central axis referred to as the hard axis. The easy plane is defined by the short axes of the crystal and contains molecules’ porphyrin 
ring of carbon and nitrogen. The hard axis is defined by the long axis of the crystal and contains molecules’ central, iron-oxygen axis.                           
c) Transmission electron micrograph of hemozoin crystals displaying the pigment’s rod-like structure. From Butykai, et al. 

The geometry and chemical composition of hemozoin gives rise to two properties that make the crystal ideal 

for detection with MOD. The first is magnetic anisotropy. The central iron atom in hemozoin molecules makes its 

magnetic moment stronger in the easy plane of each molecule than along the hard axis.6 The second diagnostically 

invaluable characteristic of hemozoin is the dichroism that the crystals exhibit. Dichroism is a directionally dependent 

efficiency at absorbing light.7 Because hemozoin’s porphyrin ring allows electrons to move more freely within the 

ring than they would along the hard axis, light polarized parallel to the easy plane allows for maximum optical 

interactions between the incident light and the crystals, leading to minimal transmission. Conversely, light polarized 

parallel to the hard axis has minimal optical interactions with the crystals, allowing for maximum transmission. 

MOD uses both of these characteristics of the crystals to detect hemozoin. Because the light used in the MOD 

can be polarized in different directions, hemozoin samples can be tested in the MOD to see how optical interactions 

with the crystals are affected by the application of a magnetic field. The direction of this magnetic field is fixed, but 

the magnets producing the field can be moved on and off the sample. When hemozoin is present and the magnetic 

field is applied, the crystals, free to move in solution, rotate, aligning their easy plane with the magnetic field.6 If the 

polarization direction of light is parallel to the magnetic field, minimal transmission occurs. Maximum transmission 
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occurs when polarization direction is perpendicular to the magnetic field. Without hemozoin present though, the 

transmitted light intensity is unaffected by application of the magnetic field. 

The diagnostic mechanism MOD utilizes to detect malaria via hemozoin works extremely well and can be 

utilized in the detection of other diseases as well. Other crystals associated with various diseases, including gout and 

pseudo gout, exhibit properties similar to hemozoin and can be detected using the MOD.8 Other diseases may even be 

detectable using magnetic nanoparticles rather than physically unique crystals. However, expanding the applications 

of MOD is contingent on a sound physical understanding of the optical interactions underlying the existing hemozoin 

detection mechanism.  

Quantification of hemozoin’s optical properties informs our understanding of the MOD detection mechanism, 

which advances malaria detection and ultimately broadens MOD’s detection capabilities. Absorption cross section, 𝜎, 

was sought as a means of quantifying these properties. Utilizing Beer’s law and Euler angles for a basis transformation, 

two methods for determining the difference in absorption cross section for light polarized along hemozoin’s principal 

axes were developed, tested, and compared. Agreement of these results provides assurance that the theory underlying 

quantification is sound, paving the way to utilize MOD with other crystals and particles for the detection of additional 

diseases. 

THEORY 

In order to demonstrate an understanding of the physical interaction between light and hemozoin, methods 

must be derived to quantify the interaction. Absorption cross section, σ, was utilized as it measures the effective area 

of a material that photons need to interact with in order to be absorbed.9 Given the dichroism exhibited by hemozoin 

molecules, it is important to understand the relative difference in σ along each of the crystal’s three principal axes.  

Figure 2a. b. 

 

 

a) A representation of a hemozoin crystal (left) relative to the unprimed, crystal coordinate system. A copy of Fig. 
1b is added (right) to relate this coordinate system to the easy plane and hard axis. b) Two magnets aligned, as they 
are in the MOD, to produce an external magnetic field between them relative to the primed, laboratory coordinate 
system. 
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(4) 
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(8) 

(2) 
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Given the symmetry of hemozoin crystals, as depicted in Fig. 2a, 𝜎  and 𝜎 , the absorption cross section along the 𝑥 

and 𝑦 axes respectively, are presumed equal. Therefore, ∆𝜎 as in Eq. (1) is sought. 

∆𝜎 = 𝜎 − 𝜎  

Beer’s law seen in Eq. (2), where 𝐼  is incident light intensity, 𝐼 is transmitted light intensity, ℓ is path length 

(𝑐𝑚), and 𝑁 is sample concentration (𝑐𝑟𝑠𝑦𝑎𝑙𝑠/𝑐𝑚 ), contains an absorption cross section term. The exponential 

term that contains 𝜎 is not ideal though. However, given that 𝜎ℓ𝑁 ≪ 1, Eq. (2) can be roughly equated to Eq. (3), an 

approximate linear form of Beer’s law derived using a first-order Taylor series approximation. 

𝐼

𝐼
=  𝑒 ℓ  

 
𝐼

𝐼
≅  1 − 𝜎ℓ𝑁 

Intensity data collected in the primed laboratory frame of reference must be averaged over many crystal 

orientations caused by thermal fluctuations and converted into the unprimed crystal frame of reference to produce a 

measure of a hemozoin crystals’ absorption cross section. Using Euler angles to complete the basis transformation 

and averaging over thermal fluctuations, the relations for absorption cross sections in each reference frame can be 

related for different polarization directions while the magnetic field is applied, 𝜎  and 𝜎 , and without the 

magnetic field applied, 𝜎   (see appendix). 

〈𝜎 〉 =
1

2
𝜎 +

1

2
𝜎  

 
〈𝜎 〉 = 𝜎  

 

〈𝜎  〉 =
2

3
𝜎 +

1

3
𝜎  

With the coordinate systems related, the first method for determining Δ𝜎 can be undertaken. Method 1 

compares intensity ratios as functions of 𝑁. 

𝐼

𝐼  

≅ 1 − 𝑁ℓ(〈𝜎 〉 − 〈𝜎  〉) 

 
𝐼

𝐼  

≅ 1 − 𝑁ℓ(〈𝜎 〉 − 〈𝜎  〉) 

 
𝐼

𝐼  

≅ 1 − 𝑁ℓ(〈𝜎 〉 − 〈𝜎  〉) 

Assuming strong 
magnetic field. 
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(10) 

(11) 

(12) 

(15) 

(13) 

(14) 

(16) 

(17) 

(18) 

(19) 

Because these absorption cross sections correspond to the laboratory frame of reference, each can be converted to the 

crystal frame of reference by plugging Eqs. (4), (5), and (6) into Eqs. (7), (8), and (9). 

𝐼

𝐼  

≅ 1 − 𝑁ℓ
−1

6
(𝜎 − 𝜎 )  

 
𝐼

𝐼  

≅ 1 − 𝑁ℓ
1

3
(𝜎 − 𝜎 )  

 
𝐼

𝐼  

≅ 1 − 𝑁ℓ
−1

2
(𝜎 − 𝜎 )  

Method 2 compares intensity ratios as multiples of a base concentration. If 𝛽 is the base concentration and 𝑚 

is a constant of proportionality, then 𝑁 can be redefined as in Eq. (13).  

𝑁 = 𝑚𝛽 

Eq. (13) can be used to derive a new set of Beer’s law equations.  

𝐼 ,

𝐼 ,

≅ 1 − 𝛽(𝑚 − 1)ℓ〈𝜎 〉 

 
𝐼 ,

𝐼 ,

≅ 1 − 𝛽(𝑚 − 1)ℓ〈𝜎 〉 

 
𝐼 ,  

𝐼 ,  

≅ 1 − 𝛽(𝑚 − 1)ℓ〈𝜎  〉 = 1 − 𝛽(𝑚 − 1)ℓ〈𝜎  〉 

Again, because these absorption cross sections correspond to the laboratory frame of reference, each can be converted 

to the crystal frame of reference by plugging Eqs. (4), (5), and (6) into Eqs. (14), (15), and (16). 
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2
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METHODS 

In 2017, United States Patent No. 9,778,245-B2 was issued to researchers from Case Western Reserve 

University for a diagnostic device that used light and magnets to detect hemozoin in blood samples and ultimately 

detect malaria.10 The device depicted in Fig. 3a is a finalized model of an apparatus that came to be licensed by Hemex 

Health for rapid, cost-effective, and highly accurate detection of malaria.2 The device depicted in Fig. 3b is an earlier 



 6  
 

iteration of the device granted the patent and licensed to Hemex Health. This prototype was provided to the Kara Lab 

at John Carroll University by researchers at Case Western Reserve University, to whom the aforementioned patent 

was issued, for use in this research. 

Figure 3a. b. 
 

 
a) A diagram from United States Patent No. 9,778,245-B2 depicting the major components of the apparatus that has demonstrated 
success of hemozoin and, subsequently, malaria detection. b) A photo from the Kara Lab of the prototype of the final model shown in 
Fig. 3a used in this research. The major components of the device are labeled similar to the device in Fig. 3a to highlight similarities 
between the two apparatuses. 

The complete MOD set-up has three major components, a source of polarized light, control and transmission 

photodetectors, and two strong moveable magnets. To produce the source of polarized light, a monochromatic laser 

sent light through a linear polarizer before the then polarized light entered a beam-splitter. The splitter created two 

roughly equal intensity beams; one beam entered the control photo detector while the other continued to the sample. 

Whatever component of the beam was transmitted through the sample entered the second photodetector. Both 

photodetectors’ output voltages were automatically input into LabView with a data acquisition tool.  

Figure 4. 

 
A diagram of the MOD prototype used for data collection. From left to right, there is a monochromatic 
laser attached to an iris diaphragm that controlled the beam’s shape. Next is a rotatable linear polarizer 
that allowed the polarization direction to be alternated between the 𝑥′ and 𝑦′ directions. Following is 
the beam splitter and the first photodetector (control) which was monitored to ensure the laser’s 
output was steady. Immediately right is the cuvette holder where samples were housed during trials. 
This holder is next to the apparatus’ strong magnets which could be slid along a track so that the 
magnets could be moved directly next to the sample housing. Beyond the magnets is the final 
photodetector (transmission) which is connected to a data acquisition tool and LabView, as is the 
control photodetector. 
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To collect data, samples were produced at several concentrations ranging from 0.5ng/μL to 20ng/μL by 

combining dry Invivogen hemozoin with phosphate-buffered saline (PBS). These solutions were sonicated to evenly 

distribute the hemozoin crystals and randomize their orientation before each trial. Intensity was measured with no 

sample, with no magnetic field applied, and with a magnetic field applied. Data was collected in LabView and 

subsequently analyzed in Excel. 

Figure 5. 

 
Displayed is a graph of the output voltages from each photodetector as a function of a generic index 
representing time. The steady orange line shows the output from the control photodetector and the changing 
blue line shows the output from the transmission photodetector. There are three distinct regions present in the 
transmission detector’s output, the first showing when no sample and no magnetic field are present, the second 
showing when the sample is in the MOD but the magnetic field has not yet been applied (here the hemozoin 
crystals orient themselves totally randomly), and the third showing when the sample is present and the 
magnetic field is applied (here the hemozoin crystals rotate so that their easy plane is parallel to the magnetic 
field). The grey, yellow, and blue rectangles were used to visually show which data points were averaged to 
find an intensity value for each region during data analysis. In this display, there is a drop from the second to 
third region, because the magnetic field and polarization directions are parallel. Although the magnetic field 
direction is fixed, if the polarization direction was instead perpendicular to the field, an increase would be 
observed from the second to third region. The magnitude of the difference between regions increases and 
decreases with sample concentration. 

RESULTS 

Data collected and analyzed using method 1 is shown in Fig. 6. Graphed data is shown in Fig. 6a with the 

accompanying linear best fit equations and R2 values shown in Fig. 6b. Each linear fit has an R2 value very close to 1 

as well as a y-intercept very close to 1, as expected according to theory. Using analysis described in the theory section, 

the values of Δ𝜎 determined using method 1 are shown in Table 1. The graphed data gives three different results for 

Δ𝜎 which are all in relevant agreement with one another. 
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Figure 6a. b. 

 

𝐼

𝐼  
= (3.10 × 10 𝑐𝑚 )𝑥 + 0.999 

𝑅 = 0.99 

𝐼

𝐼  
= (−4.16 × 10 𝑐𝑚 )𝑥 + 0.999 

𝑅 = 0.99 

𝐼

𝐼  
= (8.67 × 10 𝑐𝑚 )𝑥 + 0.966 

𝑅 = 0.98 

                                                                Table 1. 
Intensity Ratio 𝚫𝝈, 𝒄𝒎𝟐 

 
 

 1.86 × 10  

 
 

 1.25 × 10  

  1.73 × 10  

Average 1.61 × 10  
 

a) A graph of light intensity ratios as a function of hemozoin concentration depicting the results of method 1 with linear fits. Each dataset 
appears well suited to the linear fit, converging on a y-intercept of 1. b) The complete linear fit equations for the three intensity ratios graphed 
in Fig. 6a with accompanying R2 values. Table 1. The Δ𝜎 results for each intensity ratio in method 1 individually and an averaged final result 
for Δ𝜎 using method 1.  

Data collected and analyzed using method 2 is shown in Fig. 7. Graphed data is shown in Fig. 7a and 7c with 

the accompanying linear best fit equations and R2 values shown in Fig. 7b and 7d, respectively. Again, each linear fit 

has an R2 value close to 1, but slightly lesser so than in method 1. Using analysis described in the theory section, the 

values of Δ𝜎 determined using method 2 are shown in Table 2. 
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Figure 7a. b. 
𝐼 ,

𝐼 ,
= −0.0239𝑥 + 1.01 

𝑅 = 0.97 

c. d. 
𝐼 ,

𝐼 ,
= −0.0239𝑥 + 1.01 

𝑅 = 0.97 

 

                                                                    Table 2. 
𝝈 Term  

with Source 
𝝈 Term 

Value, 𝒄𝒎𝟐 

𝜎  from 
,

,

 1.25 × 10  

𝜎  from 
,

,

 3.99 × 10  

𝛥𝜎 8.55 × 10  
 

a) A graph of the light intensity ratio for light polarized along 𝑧′ with a magnetic field applied as a function of hemozoin base concentration 
multiple with a linear fit which leads to an estimate of 𝜎 . b) The complete linear fit equation for the intensity ratio graphed in Fig. 7a with an 
accompanying R2 value. c) A graph of the light intensity ratio for light polarized along 𝑥′ with a magnetic field applied as a function of hemozoin 
base concentration multiple with a linear fit which leads to an estimate of 𝜎 . d) The complete linear fit equation for the intensity ratio graphed 
in Fig. 7c with an accompanying R2 value. Table 2. The individual σ terms derived using method 2 and the 𝛥𝜎 term those results produce. 

 

To check method 2’s result for Δ𝜎, Eq. (19) is graphed in Fig. 8a for light polarized along the 𝑥′ and 𝑧′ axes 

with accompanying linear best fit equations and R2 values shown in Fig. 8b. Using analysis from the theory section, a 

𝜎 term can be extracted from each slope and compared to the same term calculated using results for 𝜎 from method 

2. The three results are shown in Table 3 and the agreement of the results, provides assurance that the theory underlying 

method 2 is sound. 
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Figure 8a. b. 

 

𝐼 ,  

𝐼 ,  
= −0.0239𝑥 + 1.01 

𝑅 = 0.97 
𝐼 ,  

𝐼 ,  
= −0.0242𝑥 + 1.02 

𝑅 = 0.93 

                                                                Table 3. 

Source of 𝝈 Term 
Calculation 

𝟐

𝟑
𝝈𝒙 +

𝟏

𝟑
𝝈𝒛 

Estímate, 𝒄𝒎𝟐 

 ,  

,  

 9.95 × 10  

 ,  

,  

 1.01 × 10  

Method 2 Estimate  
of 𝜎  and 𝜎   9.69 × 10  

 

a) A graph of light intensity ratios for light polarized along 𝑥′ and 𝑧  without a magnetic field applied as a function of hemozoin base 

concentration multiple with a linear fit which leads to an estimate of 𝜎 + 𝜎 . Although, two linear fits are shown, as expected, the fits are 

nearly identical and are difficult to distinguish on the graph. b) The complete linear fit equations for the intensity ratios graphed in Fig. 8a with 
accompanying R2 values. Table 3. A comparison of the 𝜎 + 𝜎  terms from both fits alongside with the same term calculated using the 𝜎 

values from method 2. 

The Δ𝜎 results from both methods are compared in Table 4, demonstrating that both methods arrive at a similar 

result for Δ𝜎 of hemozoin crystals. The consistency observed gives further evidence in support of the theory underlying 

the calculations, subsequently lending support to the final result for Δ𝜎, (1.4 ± 0.4) × 10 𝑐𝑚 , as well. 

Table 4. 
Source for 

𝚫𝝈 Estimate 𝚫𝝈, 𝒄𝒎𝟐 

Method 1 1.61 × 10  
Method 2 8.55 × 10  

Average of 
Methods  

(1.4 ± 0.4) × 10  
 

A comparison of the final Δ𝜎 results from 
method 1 and 2 as well as an average of 
the three estimates from method 1 and a 
fourth estimate from method 2 which 
gives a final result for Δ𝜎 plus or minus a 
standard deviation.  

DISCUSSION 

Comparison of Δ𝜎 from each method provides a more accurate assessment of the true Δ𝜎 for hemozoin crystals. 

The results from both methods are in relative agreement with one another though there is a significant standard 
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deviation associated with the final result for Δ𝜎. The similarity to other optical properties of hemozoin numerically 

related to absorption cross section published by Butykai, et al. supports the reported result for Δ𝜎 though.6 

The discrepancy in the final result still warrants discussion. The large standard deviation is likely a result of 

one of two possible sources of experimental error. The laser used with the MOD had potential issues because of the 

laser’s shape. Looking back to Table 1, Δ𝜎 calculated from light polarized in the 𝑧′ direction was consistently lower 

than the other ratios used in method 1. This might be attributable to the width of the beam being too large and it 

subsequently interacting with the cuvette during transmission or potentially to the cuvettes acting as polarizers. 

Another source of error is in the accuracy of the concentrations of each hemozoin sample tested. This arose 

from a combination of human errors as well as limitations of the equipment used. Additionally, older samples tended 

to lose some volume of PBS while in storage due to evaporation which could have disproportionately and 

indiscriminately changed the concentration of samples. Any repeatability studies carried out with hemozoin would 

require further investigation and elimination of these errors and other potential errors to ensure an accurate 

measurement of Δ𝜎. 

CONCLUSION 

The success of the MOD in industry as well as the positive results produced by this research demonstrate the 

diagnostic capabilities of the MOD. This is true of malaria and hemozoin, but this success informs and improves 

ongoing research into MOD’s ability to detect other hemozoin-like crystals. Beyond these physically unique crystals, 

this research also informs the use of MOD in broader diagnostic endeavors using magnetic nanoparticles. With a solid 

physical understanding of the detection mechanism used for hemozoin, the MOD is well positioned to expand its 

applications in the future. 
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APPENDIX 

Intensity data measured in the laboratory and used in Beer’s law is useful in pursuit of Δ𝜎, but it is important 

that the result relate to the correct frame of reference. Data is collected in the laboratory frame which contributes to 

results for 𝜎  and 𝜎 , however, Δ𝜎 is sought in relation to the crystal frame of reference. To unite the two coordinate 

systems, a basis transformation and averaging over many crystal orientations must be done. 

The transformation of bases starts with another physical property related to 𝜎 though, the electric dipole 

moment. The electric diploe moment of a material, 𝑝, can be related to an external electric field, �⃗�, by a polarizability 

tensor, 𝛼. 

𝑝 = 𝛼 �⃗� 
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(2A) 

(3A) 

(4A) 

(5A) 

(6A) 

(7A) 

(8A) 

(9A) 

(10A) 

This polarizability tensor is, in turn, related to the absorption cross section as in Eq. (2A), where 𝜎  is the absorption 

cross section for light polarized in the 𝜖 direction, 𝛼  is the 𝜖𝜖 component of the polarizability tensor 𝛼 , and 𝑘 is a 

constant. 

𝜎 = 𝑘 𝐼𝑚{𝛼 } 

In the crystal frame of reference, the polarizability tensor is diagonal. 

𝛼 =

𝛼 0 0
0 𝛼 0

0 0 𝛼
 

Given the symmetry of hemozoin’s easy plane shown in Fig. 2a, it is expected that the 𝑥𝑥 and 𝑦𝑦 components of the 

polarizability tensor would be equal. 

𝛼 = 𝛼  

Additionally, considering hemozoin’s dichroic nature, it is also expected that the 𝑥𝑥 component of the tensor will be 

greater than the 𝑧𝑧 component. 

𝛼 > 𝛼  

When measuring crystals’ absorption cross section in solution in the laboratory frame though, the measured 

values are an average over many possible crystal orientations related to the polarizability tensor in the laboratory 

frame, 𝛼 ′. 

𝛼 ′ =

𝛼 𝛼 𝛼
𝛼 𝛼 𝛼
𝛼 𝛼 𝛼

 

If light is polarized in the 𝑥′ direction then, an average for 𝜎 , 〈𝜎 〉, is measured. 

〈𝜎 〉 =  𝑘 𝐼𝑚{〈𝛼 〉} 

A similar result is given for light polarized in the 𝑧′ direction. 

〈𝜎 〉 =  𝑘 𝐼𝑚{〈𝛼 〉} 

Here, the averages are taken over random 𝜃 when no magnetic field is applied (measured from the 𝑧 axis) and random 

𝜙 (measured from the 𝑥 axis). 

〈𝑓(𝜃)〉 =
1

2
𝑓(𝜃) sin 𝜃 𝑑𝜃 

 

〈𝑓(𝜙)〉 =
1

2𝜋
𝑓(𝜙) 𝑑𝜙 
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(11A) 

(12A) 

(13A) 

(14A) 

(15A) 

(16A) 

(17A) 

(5) 

(4) 

(3) 

To relate measured values of 𝜎  to the crystal frame that is desired, 𝛼 and 𝛼 ′ need to be related using a basis 

transformation. This basis transformation needs to be applied as in Eq. (11A), where 𝑄 is a transformation matrix. 

𝛼 ′ = 𝑄 𝛼 𝑄  

Euler angles can be used to find 𝑄, but in this transformation, only two rotations are required. The first rotation is by 

an angle, 𝜃, about the 𝑥 axis. Note that when the magnetic field is applied to the sample, 𝜃 = 90° because the 𝑧 and 

𝑧′ axes are perpendicular to one another, but when the magnetic field is not applied, 𝜃 is random because the position 

of the 𝑧 axis relative to the 𝑧  axis is random. 

𝑅 (𝜃) =
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

 

The second rotation matrix, 𝑅 (𝜙), allows for random orientation of the easy plane parallel to the magnetic field. 

𝑅 (𝜙) =
cos 𝜙 sin 𝜙 0

− sin 𝜙 cos 𝜙 0
0 0 1

 

Together, Eqs. (12A) and (13A) define 𝑄. 

𝑄 = 𝑅 (𝜙) 𝑅 (𝜃) 
 

Using this transformation, the polarizability tensor in the laboratory frame can be translated to the crystal frame. 

This gives Eqs. (15A), (16A), and (17A). In the case of 〈𝛼 〉 and 〈𝛼 〉, 𝜃 = 90° and in the case of 〈𝛼  〉, 𝜃 is 

random as was previously mentioned. 

〈𝛼 〉 =
1

2
𝛼 +

1

2
𝛼  

 
〈𝛼 〉 = 𝛼  

 

〈𝛼  〉 =
2

3
𝛼 +

1

3
𝛼  

Given the relationship between the polarizability tensor and the absorption cross section, the translation of 𝛼 from one 

basis to another can be readily applied to 𝜎, completing the derivation of Eqs. (3), (4), and (5).11,12 

〈𝜎 〉 =
1

2
𝜎 +

1

2
𝜎  

 
〈𝜎 〉 = 𝜎  

 

〈𝜎  〉 =
2

3
𝜎 +

1

3
𝜎  
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