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CHAPTER 1: INTRODUCTION  

U.S. educators strive to prepare students to meet the demands and expectations of an 

ever-evolving world and a globalized 21st-century community. Educator accountability has 

increased under the Elementary and Secondary Education Act (ESEA; 1965), the No Child Left 

Behind Act (NCLB; 2001), and the Every Student Succeeds Act (ESSA; 2015). Teachers and 

principals are expected to make informed instructional decisions using a variety of data, and state 

officials must set goals for all schools under their jurisdiction and provide intervention plans for 

schools needing improvement. In an age of accountability and school reform, the call to improve 

the quality of education so that all students in America be taught to high academic standards that 

will prepare them to succeed in college and careers is prevalent (ESSA, 2015). It is essential that 

teachers and principals understand the fundamental nature of data-driven decision-making 

(DDDM) and remain committed to the values of DDDM.  

Teachers and administrators may feel that they understand the importance of using data 

to make informed educational decisions; however, effective implementation remains challenging 

even under the best of conditions, in the best of schools, and with the best teachers. The NCLB 

Act of 2001 resulted in the measurement of student learning and achievement relying heavily on 

specific summative standardized testing data (Earl & Fullan, 2003; Park & Datnow, 2009). The 

NCLB Act placed the focus on meeting adequate yearly progress (AYP) and avoiding punitive 

actions as a result of low performance. Accountability for educators was limited to data that 

reflected compliance, with limited impact on improving teaching and learning (Mandinach, 

2009); thus, a large disconnect was produced between the data used to demonstrate compliance 

and the data designed to inform teaching practices (Smith, 2009). The NCLB Act increased 

teacher accountability; however, the act failed to help educators understand how to use vital 
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information to make gains with individual students over time. Educators’ and policymakers’ 

recognition of the NCLB Act’s strict mandates initiated a shift, resulting in the adoption of the 

ESSA by the Obama administration. The ESSA upholds that all students—regardless of 

background, location, or socioeconomic standing—should receive an education that is connected 

to high standards and measured by statewide assessments designed to measure students’ progress 

toward those standards (ESSA, 2015). The NCLB Act’s strict policies have resulted in state 

officials providing rigorous plans to close the achievement gap and increase quality of 

instruction, equity, and learning outcomes. 

This paradigm shift transferred the focus from only using data to hold educators 

accountable to prompting educators to engage in a continuous cycle of improvement using 

multiple sources of data (Mandinach, 2012). Paradigm shifts are complex and require that 

educators maintain a mindset that can be cultivated and redefined over time (Fullan, 2001). This 

change in thinking is paramount if educators are to implement DDDM practices into their daily 

work, thus influencing the learning outcomes of all students.  

Background of the Study 

DDDM is defined as “the systematic collection, analysis, examination, and interpretation 

of data to inform practice and policy in educational settings” (Mandinach, 2012, p. 1). The 

notion of using data to inform educational decisions is not novel; in fact, teachers and school 

leaders have used data in various forms and for a variety of reasons for decades. Educators face 

many changes, and reform efforts are designed to have a positive impact on student achievement 

while addressing teacher accountability and performance (Cramer et al., 2014). It is important to 

use evidence from relevant data to guide decision-making and espouse a conceptual framework 

for DDDM that embraces “an iterative inquiry cycle” (Mandinach, 2012 p. 4). Due to federal and 
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state accountability mandates, school officials nationwide have increased their capacity to 

collect, analyze, and distribute data and make decisions based on collected data. Using data for 

the purpose of school improvement is not just an option, but a necessary part of school 

improvement (Earl & Katz, 2002); however, challenges remains with the timely availability of 

data, accessibility to the data, and teacher understanding of how these data can be transformed 

into action that impacts instructional decisions. 

Prior scholars have focused on using data to assist with guiding organizational change 

that leads to school improvement (Fullan & Steigelbauer, 1991; Massell, 1998; Schmoker, 2000). 

Limited data are available on how teachers use DDDM to inform instruction; most prior 

literature addressed the administrative use of data (Schifter et al., 2014). The National 

Assessment for Educational Progress (NAEP) and the NAEP Mathematics and Reading 

Highlights report assessment results every 2 years for Grades 4, 8, and 12. In 2017, 40% of 

fourth-grade students performed at or above the proficient level in mathematics, whereas 37% of 

fourth-grade students performed at or above the proficient level in reading and 28% of fourth-

grade students performed at or above the proficient level in writing (The Nation’s Report Card, 

n.d.-b). Of the 149,400 students assessed, most states reported no significant change in students’ 

math, reading, and writing scores. Moreover, the NAEP 2019 report indicated that 41% of 

fourth-grade students performed at or above the proficient level in mathematics, which illustrated 

no change between 2017 and 2019 (The Nation’s Report Card, n.d.-a). Thirty-five percent of 

fourth-graders performed at or above the proficient level in reading, indicating a decrease in 

reading scores between 2017 and 2019. A large majority of U.S. students are not meeting the 

standard if solid academic performance and competency are measured by demonstrating at or 

above the proficient level on NAEP assessments. In particular, students performing at the 10th 
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and 25th percentiles demonstrated a decrease in performance compared to subsequent 

assessment years. For example, scores of fourth-grade students in specific groups—such as 

students who participated in the national school lunch program, students attended city or public 

schools, and students with disabilities—decreased between 2017 and 2019.  

The disparity between the standards-based and evidence-based efforts put forth over the 

past decades and the results of these efforts as measured by student achievement deserves 

continued attention. Although more studies are now addressing how educators use student data to 

improve instructional practices, most do not reflect causal links between the use of data and 

student achievement (Wayman et al., 2012). It is essential that educators contemplate their 

attitudes, understandings, and actions related to effective DDDM practices and consider how 

these actions impact student learning outcomes.  

Problem Statement 

Using data to support decision-making in schools is an essential practice in the United 

States. DDDM is the “systematic collection, analysis, and application of many forms of data 

from myriad sources in order to enhance student performance while addressing student learning 

needs” (Marsh et al., 2006, p. 1). As a result of the NCLB Act (2001) and ESSA (2015), schools 

are accountable to ensure a quality education for all students. Schools are provided with an 

abundance of data designed to support educators in improving instruction and increasing student 

learning outcomes. Data are provided to teachers; however, teachers may not understand how to 

use data effectively to improve instruction (Massell, 2001). Many teachers have not received 

training on how to use assessment data (Mandinach & Gummer, 2013). Without appropriate 

professional development, support, and leadership, teachers may struggle to use data to make 

sound decisions and take action in their classrooms. 
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Analyzing and using data for decision-making is not intuitive, and most published 

resources that provide guidance are designed for administrators (Schifter et al., 2014). Teachers 

are required to analyze state assessment data and use the findings to inform their instructional 

decisions; however, teachers’ lack of training in how to use data to improve student learning 

outcomes is a long-term problem (Schifter et al., 2014). This study examines DDDM practices of 

elementary teachers and the relationship between student achievement; thus, the study findings 

could impact the structure and systems schools use to support the DDDM process. 

Significance of the Study 

This study provides additional insight into how teachers use data to inform classroom 

instruction. The importance of using evidence from relevant data to guide decision-making 

continues to be at the forefront of school reform and accountability; however, the degree to 

which teachers may be supported in a data-driven school culture, have access to relevant and 

timely data, or have the knowledge to act upon data effectively is unknown. The use of data is 

paramount, and educators must engage in a cycle of quality improvement and reflection. Despite 

this understanding, student achievement in the United States is mediocre at best. This mediocre 

achievement is reflected in the New Jersey Partnership for Assessment of Readiness for College 

and Careers (PARCC) spring state summary reports. PARCC results between 2015 and 2019 

indicated limited improvement; the percentage of third-grade and fourth-grade students who 

meet or exceeded expectations hovered around 50% in both mathematics and English language 

arts (ELA). The results of this study will assist school administrators and teachers with 

implementing effective DDDM practices in their schools and facilitate teachers’ use of DDDM 

practices to inform instruction that results in greater student learning outcomes.  
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Research Questions 

The purpose of this quantitative survey study was to investigate elementary teachers’ 

readiness for DDDM in four areas: assessments, acting upon data, school support systems, and 

school culture. Survey results were analyzed to address the study’s five research questions. The 

research questions that guided this study were as follows: 

1. Is there a relationship between overall teacher readiness with DDDM practices 

and New Jersey School Performance Report ELA and mathematics proficiency 

levels?  

2. Is there a relationship between teacher readiness with assessment use and New 

Jersey School Performance Report ELA and mathematics proficiency levels?  

3. Is there a relationship between teacher readiness to act upon data and New Jersey 

School Performance Report ELA and mathematics proficiency levels? 

4. Is there a relationship between teacher readiness with the use of school support 

systems available for DDDM and New Jersey School Performance Report ELA 

and mathematics proficiency levels?  

5. Is there a relationship between teacher readiness with DDDM school culture and 

New Jersey School Performance Report ELA and mathematics proficiency 

levels? 

The purpose of this quantitative correlation study was to examine elementary school 

teachers’ levels of readiness regarding DDDM practices. The study also determined the 

relationship between school achievement with schools that report high and low levels of DDDM 

practices. 
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This study provides insight into the self-reported levels of DDDM by elementary school 

teachers in noncharter suburban public elementary schools in northern New Jersey. The focus of 

this quantitative study was to examine the DDDM practices of elementary teachers and 

determine if DDDM practices impact school achievement. The knowledge gained from this 

study provides insight that will inform educational leaders and policymakers, add to the existing 

research base, and facilitate change.  

Methodology 

This quantitative survey research study included teachers currently employed in 

noncharter suburban public elementary schools in Morris and Somerset Counties, New Jersey. 

All schools selected for this study were listed as a public noncharter elementary school and 

offered third-grade through fifth-grade classes. I obtained permission to administer the Statewide 

Data-Driven Readiness Study Teacher Survey authored by McLeod and Seashore (2006; see 

Appendix A). The survey was transposed into the digital survey tool SurveyMonkey to safeguard 

and manage collected confidential survey data, and no identifiable personal information was 

collected from participants. Only certified noncharter public elementary school teachers who 

directly provided instruction in ELA and/or mathematics during the 2018–2019 school year were 

considered for this study. The 2018–2019 New Jersey School Performance Report ELA and 

mathematics proficiency percentage scores for each school were collected from the New Jersey 

Department of Education website; these scores are part of the public record. I used ANOVA 

analysis to measure the strength of variables for all research questions and investigated 

descriptive statistics using Statistical Package for the Social Sciences (SPSS) software.   

Study Limitations  

The following lists describe the inherent limitations and delimitations in this study. 



 

8 

1. The participants in this study were limited to public noncharter school elementary 

teachers in suburban public elementary schools in Morris and Somerset Counties, 

New Jersey. All schools offered third-grade through fifth-grade classes.  

2. Participants must have taught ELA and/or mathematics in their current school 

during the 2018–2019 school year.  

3. The study was limited to the sample size of the respondents in the study group. 

4. The responses of participants were voluntary, self-reported beliefs. 

5. School achievement data were collected from the 2018–2019 New Jersey School 

Performance Report. The ELA and mathematics proficiency scores used to 

measure overall school performance are published annually and posted on the 

New Jersey Department of Education website for public access.  

Study Delimitations  

1. This study did not include teachers who did not teach ELA and/or mathematics in 

their current school during the 2018–2019 school year.  

2. This study focused specifically on surveying teachers’ use of DDDM practices. 

Superintendents, principals, and other school administrators were not included in 

this study. 

3. Teachers who did not have a valid New Jersey teaching certification were not 

included in this study. 

4. Secondary school teachers were excluded from this study. 

5. Mendham Township Elementary School teachers were not included in this study. 
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Definition of Terms  

Accountability - The ESSA requires states to use a set of indicators to measure the 

performance of all schools. Under the ESSA, New Jersey is required to use the data contained in 

the accountability profiles to identify schools in need of support or improvement (New Jersey 

Department of Education, ESSA Accountabilities Profile Companion Guide, 2018). 

Achievement gap - Achievement gaps occur when one group of students—such as 

students grouped by race, ethnicity, or gender—outperforms another group and the difference in 

average scores between the two groups is statistically significant (that is, larger than the margin 

of error; National Assessment of Educational Progress, n.d.). 

AYP - AYP is the amount of yearly improvement each Title I school and district are 

expected to make to enable low-achieving children to meet high performance levels expected of 

all children (U.S. Department of Education, 2009a). 

DDDM - DDDM refers to the systematic collection, analysis, examination, and 

interpretation of data to inform practice and policy in educational settings (Mandinach, 2012). 

Data literacy - Data literacy for teaching refers to the knowledge and skills educators 

need to effectively use data to transform information into actionable instructional knowledge and 

practices (Ebbeler et al., 2016; Mandinach & Gummer, 2016). 

Data teams - A data team is a group of teachers focused on collaborative learning by 

sharing experiences and critical reflections related to data use (Ebbeler et al., 2016). 

Data systems - Data systems are electronic, computer-based tools that help educators 

examine and manage student data (Wayman et al., 2012). 

Data warehouse - A data warehouse is where data are collected and organized into one 

electronic repository (Wayman et al., 2005). 
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New Jersey Student Learning Standards - New Jersey Student Learning Standards were 

adopted in 2016 and provide school districts with clear and specific benchmarks for student 

achievement in nine content areas. 

New Jersey School Performance Reports - New Jersey developed a school accountability 

system required by the ESSA. The New Jersey School Performance Reports are published yearly 

for every public school in New Jersey. School demographics, student growth, academic 

achievement, climate, staff, and accountability indicators are published in the report. 

PARCC - PARCC is a collaboration of states that share a commitment to developing 

new-era assessments that measure students’ readiness for college and careers. Statewide 

assessment data for students in Grades 3–10 are aggregated to calculate participation and 

proficiency rates in two content areas: ELA/literacy and mathematics (New Jersey Department of 

Education, ESSA Accountabilities Profile Companion Guide, 2018).   

Professional learning community (PLC) - A PLC is a group of teachers that is focused on 

collaborative learning by sharing experiences and critical reflections (Ebbeler et al., 2016). 

NCLB Act – The NCLB Act was signed into law in 2002. This federal mandate clearly 

delineates benchmarks in achievement for all students to close the achievement gap with 

accountability, flexibility, and choice (NCLB, 2001). 

ESSA - The ESSA was passed in December 2015 with bipartisan congressional support. It 

replaced the NCLB Act of 2002 and reauthorized the ESEA of 1965 (ESSA, 2015). The purpose 

of the ESSA is to ensure that all students have equitable access to high-quality educational 

resources and opportunities and to close educational achievement gaps (ESSA, 2015). 
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Student information system - Student information systems are computer-based tools that 

manage basic student information such as scheduling, course grades, and demographic 

information (Wayman et al., 2012).  

Organization of Remaining Chapters 

This dissertation is organized into five chapters. In Chapter 2, I provide a review of the 

relevant literature as it relates to the significance of the study and theoretical framework 

described in Chapter 1. The literature discussed in Chapter 2 is organized under specific themes 

that provide the basis of the research argument. The theoretical framework of DDDM, school 

uses of data, data literacy, leadership, data-driven culture, teacher capacity for data use, and the 

barriers to effectively using data are analyzed. In Chapter 3, I outline the research methodology 

and procedures required for conducting this study. In Chapter 4, I present the data analysis and 

significant findings. In Chapter 5, I summarize the findings, discuss implications of the findings, 

and provide recommendations for future research, policy, and practice. 

Chapter Summary 

The purpose of this study was to examine the DDDM practices of elementary teachers 

and determine if a relationship exists between these practices and student achievement. This 

study adds to the current body of research focused on the DDDM practices of elementary school 

teachers. Previous studies by Teigen (2009) and White (2008) investigated principals’ beliefs 

related to DDDM; however, more recent studies by Anderson (2015) and Immen (2016) focused 

on teacher perceptions of DDDM to inform instructional practices. 

In the current study, I examined elementary teachers’ use of assessments and teachers’ 

level of acting on data along with school support systems for using data and school data culture. 

Teachers must demonstrate high levels of data literacy to make sound instructional decisions; 
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teachers use data literacy skills to turn raw data into knowledge that drives classroom instruction 

and improves student learning outcomes.
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CHAPTER 2: REVIEW OF THE LITERATURE  

This review of the literature provides insights into the existing body of research on 

DDDM and teachers’ readiness and use of DDDM practices. The review addresses (a) the 

historical overview and context of school reform and accountability, (b) the theoretical 

framework for DDDM, (c) teacher capacity for data use, (d) data literacy, (e) data use, and (f) 

factors that influence data use. I examine research that addressed these topics in more detail and 

thus support the purpose of the current study. The literature review closes with a discussion 

regarding the importance of prioritizing DDDM practices and data literacy in schools to support 

instructional improvement and student achievement. The literature review also addresses the gap 

in the research that exists regarding teachers’ DDDM practices and school achievement. 

Historical Overview of School Reform and Accountability 

U.S. schools are required to monitor and assess the learning outcomes of students and 

analyze data to drive instructional decisions. These efforts continue to grow as the need to use 

data effectively remains paramount in an era of reform and accountability. The NCLB Act of 

2001, the American Recovery and Reinvestment Act of 2009, and general 21st century 

educational policy and practice have shifted toward meeting AYP to measure student success 

and close the achievement gap (Mandinach et al., 2006). The focus on student outcomes and 

high-stakes standardized assessments requires educators to collect, analyze, and use data 

purposefully to improve overall instructional outcomes (Datnow & Hubbard, 2015). DDDM is 

an essential part of the educational process and has received a tremendous amount of attention 

through policymaking and financial support. DDDM was included within the four pillars of the 

American Recovery and Reinvestment Act of 2009 and the Race to the Top program (U.S. 

Department of Education, 2009b); this inclusion of DDDM signaled the importance of using data 
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to inform practice and policy to improve learning outcomes and close the achievement gap 

(Mandinach, 2012; Young & Kim, 2010). The increasing focus on evidence-based practice and 

the use of DDDM is more complex than ever. For over a decade, DDDM has been a developing 

reform initiative both nationwide and internationally. DDDM is a vital component to the learning 

process (Mandinach, 2012; Mandinach & Gummer, 2013).  

Using data is not a novel concept; currently, teachers must engage in the systematic 

analysis of data collected from a variety of sources, including high-stakes statewide standardized 

assessments, and incorporate their findings into their instructional decision-making (Kennedy & 

Datnow, 2011; Mandinach, 2012). The use of data for school improvement is no longer a choice 

yet teachers are not trained to use data to reflect on instruction or student progress (Earl & Katz, 

2002). This increased focus on DDDM partially evolved out of the emphasis on rigor and the 

notion that it is no longer acceptable for teachers to base instructional decisions on opinions or 

experience alone. The art and science of teaching calls for the use of evidence to inform practice 

(Gage, 1978). The U.S. Department of Education mandates educators to use data to inform 

policy and practice; thus, teachers must also become data literate to use data effectively 

(Mandinach, 2012).  

The ESSA was signed with bipartisan support in December 2015 and replaced the NCLB 

Act of 2001, subsequently reauthorizing the ESEA of 1965. The federal government set the long-

term academic proficiency standards under the NCLB Act; however, the ESSA allows state 

officials to set their own standards regarding academic proficiency, high school graduation rates, 

and English language proficiency. One of the most significant changes made under ESSA was 

the requirement that state officials develop a school accountability system. State accountability 

systems must include the following elements. 
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• academic proficiency;  

• graduation rates for high school;  

• academic growth or another statewide indicator of academic progress for K–8;   

• progress toward English language proficiency; and 

• at least one other state-determined indicator of school quality or student success. 

Annual state assessments are one source of information that can be used to make 

instructional decisions; however, annual state assessments do very little in helping teachers 

improve teaching and learning because summative assessments are typically administered toward 

the end of the academic year (Young & Kim, 2010). Data use and its impact on student 

achievement is of growing importance; thus, it is essential that teachers have the ability to 

transform numbers and statistics into instructional decisions that meet the needs of students 

(Love et al., 2008). A continuous cycle of improvement can be maintained through the use of 

relevant data. The process of transforming raw data into usable knowledge that will inform 

instructional decision-making in the classroom is crucial (Mandinach et al., 2006).  

In 2002, the U.S. Department of Education created the Institute of Education Science 

with the purpose of providing scientific evidence on which to ground education and policy, 

(Institute of Education Science, 2011). Subsequently, the What Works Clearinghouse was 

created as a storehouse for high-quality research studies that educators could use when making 

decisions about intervention or practices. School officials were faced with the pressures of 

meeting AYP and meeting accountability benchmarks rather than improving individual students’ 

knowledge and skills (Mandinach, 2012). This accountability data were seen as having no 

connection to improving teaching and learning (Mandinach, 2009; Smith, 2009). The gap 

between using data for compliance and using data to inform teaching and learning emerged and a 
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call for balance ensued. The way educators looked at data shifted from data use for 

accountability to data use for the purpose of continuous improvement; teachers began using data 

to inform decisions that are aligned with appropriate strategies and the needs of individual 

students. The complex process of taking raw data and transforming it into actionable knowledge 

became prominent in education reform efforts.  

Theoretical Framework for DDDM 

The shift to standards-based education and high-stakes accountability led to the NCLB 

Act. In recent years, the ESSA has pushed school officials to think differently about how to 

collect, analyze, and use data. Policymakers, administrators, and teachers are challenged to 

embrace a basic understanding of how data can inform decision-making for the purpose of 

raising student achievement. Mandinach et al. (2006) defined DDDM as the “systematic 

collection, analysis, examination, and interpretation of data to inform practice and policy in 

educational settings” (p. 8). The purpose of the DDDM process is to improve instruction and 

learning outcomes. DDDM intersects with all levels of the educational system and can be applied 

to classroom instruction and the development of school policy (Mandinach et al., 2006). Prior 

literature on the use of data in K–12 instructional settings has indicated that just making data 

available does not automatically improve teaching and learning. DDDM is more complex and 

involves translating evidence into information and actionable knowledge that administrators and 

teachers can use to address future problems (Spillane, 2012).  

Multiple conceptual frameworks can be used to assist educators with the complex task of 

transforming raw data into usable information. The models included in this review used one of 

the following frameworks: management theory, organizational psychology, and social 

organization management theory (Ackoff, 1989; Breiter, 2003; Choo, 2002; Thorn, 2002).  
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Certain frameworks illustrate the process required to interpret, analyze, and act upon 

data. Mandinach et al. (2006) created a model framework for DDDM based on organization and 

management theory in the use of data. The framework is supported by the work of Ackoff 

(1989), Breiter (2003), Brunner et al. (2005), and Drucker (1989). Data, information, and 

knowledge move through a continuum (Ackoff, 1989). Data can be interpreted and translated 

into actionable knowledge that can be applied to making decisions. Data alone in any form do 

not have meaning until the person examining the data understand and make meaning of it. Data 

become information when meaning is realized. This information can illuminate the relationship 

between data and context, but does not result in further action. Knowledge is the relevant 

information collected that can be used to make decisions in the classroom (Mandinach et al., 

2006). Figure 1 illustrates the process of moving data to knowledge. 

Figure 1 

Framework for DDDM 

 
Note. From “A Theoretical Framework For Data-Driven Decision Making” [Paper presentation], 

by E. B. Mandinach, L. Rivas, D. Light, C. Heinze, and M. Honey, 2006, The Annual Meeting of 

the American Educational Research Association, San Francisco, CA, United States, p. 7. 

Copyright 2006 by the American Education Research Association.  
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The continuum illustrated in Figure 1 relies on six essential skills. In the data stage, the 

two skills are (a) collect and (b) organize. At the information stage, the two skills are (a) analyze 

and (b) summarize. At the knowledge stage, the two skills are (a) synthesize and (b) prioritize. 

The process within the framework may be applied at the district, building, or classroom levels 

when a problem is identified and data are needed to inform decisions. For example, a teacher can 

decide which data are meaningful to collect and then organize the data systematically. 

Organizing the data allows the teacher to understand and make sense of the data. After 

organizing the data, the teacher can analyze the information on either a micro or macro level 

depending on the issue. The analysis of information is summarized before synthesizing and 

prioritizing the new knowledge. Mandinach et al. (2006) described the outcome of this six-step 

process as a decision. Teachers may or may not implement changes based on a variety of 

reasons. The final stage of the framework indicates that the result of implementing a decision is 

the impact. The teacher must evaluate the impact of the decision and decide if it is necessary to 

revisit any of the six steps in the process. DDDM is an iterative process that requires the 

decision-maker to move through and possibly revisit the six steps to reach the results that will 

ultimately solve the educational problem (Mandinach et al., 2006). 

Transforming data into knowledge is at the heart of the decision-making process; 

however, little is known about the ways in which teachers and administrators use data to inform 

educational practices (Light et al., 2005). The Grow Network study examined how teachers 

working in the New York City school system used data to inform their decisions about teaching 

and learning. The Grow Network study was contracted by the New York City Board of 

Education to provide print and web-based reports for Grades 3–8 in ELA and mathematics to 

transform assessment results into instructional tools for teachers, principals, and parents 
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(Brunner et al., 2005). The Grow Network study was the largest study conducted on improving 

the quality of decision-making at multiple levels of a school system and included 1,200 schools, 

500,000 students, 30,000 teachers, and 5,000 district and building leaders. The study results 

indicated that teachers used the data from the Grow Reports® to (a) plan lessons, (b) start 

conversations with students, parents, and administrators, and (c) plan their own professional 

development. Teachers also used the data to make decisions about the amount of instructional 

time, resources needed, practice opportunities, and homework. The Grow Network study 

provided important insights into the role of standardized assessments and DDDM in education 

(Light et al., 2005).  

Light et al. (2005) presented a framework that illustrated how teachers should take the 

lead regarding DDDM to improve teaching and learning practices. Light et al.’s framework is 

built upon organization and management theory (Ackoff, 1989; Breiter, 2003; Choo, 2002; 

Thorn, 2002) and illustrates the process a teacher goes through to transform raw data into 

actionable knowledge (see Figure 2).  
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Figure 2 

The Process of Transforming Data Into Knowledge 

 
Note. Adapted from “Keeping Teachers in the Center: A Framework of Data-Driven Decision 

Making” [Paper presentation], by D. Light, D. H. Wexler, and J. Heinze, 2005, The Annual 

Meeting of the Society for Information Technology and Teacher Education, Phoenix, AZ, United 

States, p. 3. Copyright 2005 by the Association for the Advancement of Computing in Education.  

 

The educator moves through six steps, beginning with collecting and organizing data and 

summarizing, analyzing, and synthesizing information. These steps guide the educator toward 

decision-making. Light et al.’s (2005) model highlights the teacher as the essential element in 

DDDM and their relationship with the tools that help shape this process. These decision making 
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steps include five areas of instructional practice: (an) instruction and lesson planning, (b) 

differentiation, (c) supporting conversation about students’ learning, (d) teacher reflection on 

professional development, and (e) student self-directed learning (Brunner et al., 2005).  

Data support the tools and technologies that affect the process of converting data into 

knowledge. Light et al. (2005) identified six traits that impact how teachers use data tools for 

educational decisions: (a) access and ease of use, (b) length of feedback loop, (c) 

comprehensibility of the data, (d) manipulation of the data, (e) utility and quality of the data, and 

(f) links to instruction. Light et al. indicated that data reports may help teachers better understand 

the data, thus moving the data into the information stage. Light et al.’s framework supported the 

Grow Network’s findings; both Light et al. and the Grow Network asserted that teachers play an 

important role in the final stages of the data knowledge process. Educators’ decisions are 

primarily guided by their own knowledge and pedagogy and data are used to help educators 

understand students’ performance in the classroom.  

It is assumed that DDDM improves teaching and learning; however, the process is not 

necessarily straightforward, and little attention has been paid to the various ways that educators 

use data to make decisions about teaching and learning. Ikemoto and Marsh (2007) developed a 

framework based on two RAND Corporation studies that examined the various ways educators 

use data to make decisions about teaching and learning. Ikemoto and Marsh discussed how 

DDDM varies based on the type of data and how educators analyze and act upon data. The 

authors used the data knowledge continuum modeled by Mandinach et al. (2006) to form their 

framework (see Figure 3). 



 

22 

Figure 3 

Ikemoto and Marsh Framework for Describing DDDM Process in Education 

 
Note. From “Cutting Through the ‘Data-Driven’ Mantra: Different Conceptions of Data-Driven 

Decision Making,” by G. S. Ikemoto and J. A. Marsh, 2007, p. 109. Copyright 2007 by RAND. 

Reprinted with permission  

 

Ikemoto and Marsh’s (2007) framework is thorough in its design; however, the 

framework does not address the diversity and subtleties of making decisions in real-life 

circumstances. The practice of DDDM can be messy and not as continuous as this framework 

outlines. Ikemoto and Marsh discussed how types of data can be simple or complex and posited 

that the types of analysis used in decision-making also varies from simple to complex. Figure 4 

illustrates the four quadrants of DDDM models, and Figure 5 provides examples of DDDM 

models. 
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Figure 4 

Ikemoto and Marsh Framework for Simple vs. Complex DDDM 

 
Note. From “Cutting Through The “Data-Driven” Mantra: Different Conceptions Of Data-

Driven Decision Making,” by G. S. Ikemoto and J. A. Marsh, 2007, p. 111. Copyright 2007 by 

RAND. Reprinted with permission.  

Figure 5 

Examples of DDDM Models 

 
Note. From “Cutting Through The “Data-Driven” Mantra: Different Conceptions Of Data-

Driven Decision Making,” by G. S. Ikemoto and J. A. Marsh, 2007, p. 113. Copyright 2007 by 

RAND. Reprinted with permission.  
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Ikemoto and Marsh named four types of DDDM models: basic (quadrant I), analysis-

focused (quadrant II), data-focused (quadrant III), and inquiry-focused (quadrant VI). Basic 

DDDM uses simple data and simple analysis whereas inquiry-focused DDDM uses complex data 

and complex analyses.  

Ikemoto and Marsh (2007) studied 10 school districts and identified common conditions 

that were most likely to support the use of data in schools. These conditions included (a) the 

accessibility and timeliness of data, (b) the perceived validity of data, (c) staff capacity and 

support for considering data, (d) the time available to interpret and act on evidence, (e) 

partnership with external organization in analyzing and interpreting data, (f) tools for both data 

collection and interpretation, and (g) an organizational culture and leadership that support the 

systematic collection of data (Ikemoto & Marsh, 2007). 

Anderson et al. (2010) further explored the conditions and practices that influence data 

use. Anderson et al. focused on the use of data and conditions that influence data use by 

principals and teachers and reported on the strength of the relationship between data use and 

student achievement. Student learning was the dependent variable in Anderson et al.’s 

framework for understanding evidence-informed processes (see Figure 6). The types of evidence 

and conditions that impact the use of evidence are the variables. The variables influence the 

interpretation of evidence, which in turn impacts the decisions and actions of teachers and 

principals. 
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Figure 6 

Framework for Understanding Evidence-Informed Processes 

 
Note. From “Leading Data Use in Schools: Organizational Conditions and Practices at the 

School and District Levels,” by S. Anderson, K. Leithwood, & T. Strauss, 2010, Leadership and 

Policy in Schools, 9(3), p. 292. (https://doi.org/10.1080/15700761003731492). Copyright 2010 

by Routledge.  

 

Anderson et. al. (2010) indicated that principal leadership shapes data use culture and 

impacts teachers’ data use. However, a weak positive relationship was reported between student 

achievement and school and district data use. Gill et al. (2014) developed a framework for the 

process of DDDM based on strategic data use and previous findings regarding data use in 

education. Gill et al.’s framework was built to support the belief that the main goal of DDDM is 

improved student achievement and college readiness. DDDM includes three cohesive steps for 

improving student learning outcomes (see Figure 7). 



 

26 

Figure 7 

DDDM The Theory of Action for DDDM in Education 

 
Note. From “A Conceptual Framework for Data-Driven Decision Making” by B. Gill, B. C. 

Borden, and K. Hallgren, 2014, Mathematica Policy Research, p. 2. 

(https://www.mathematica.org/download-media?MediaItemId={953F2E9F-3195-47FD-BA06-

2CAB60BB132E}). In the public domain.  

 

The data infrastructure portion of Figure 7 illustrates the theory of action: assemble high 

quality raw data, conduct analysis that ensures resulting data are relevant and diagnostic, and use 

relevant and diagnostic data to inform instructional and operational decisions. These actions 

cannot take place without the organizational support of data infrastructure, analytic capacity, and 

a culture of DDDM (Gill et al., 2014). The framework illustrates that improved data 

infrastructure that includes technical hardware, internet connections, computers, and servers 

must be established for an educational institution to collect high-quality data. Connections must 

be made between different types of data to promote analysis. Easy access to data and timely 
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delivery improves educators’ ability to use data to support decisions. Educational institutions 

should establish technical support assistance and professional development training for teachers 

and principals who are using the data to make decisions. Professional development training may 

include how to access, analyze, and use data to improve instructional practices. Establishing a 

strong DDDM culture of leadership and accountability systems are key to facilitating DDDM 

actions (Gill et al., 2014).  

All of the frameworks presented in this review follow the theory that data become 

information that transforms into actionable knowledge that can be applied to a continuous cycle 

of improvement (Anderson et al., 2010; Brunner et al., 2005; Gill et al., 2014; Ikemoto & Marsh, 

2007; Light et al., 2005; Mandinach et al., 2006). The remaining sections of this literature review 

address the themes that have emerged from the literature that significantly impact the success of 

DDDM in schools: teacher capacity for data use, data literacy, data use, acting upon data, and 

factors influencing data use.  

Teacher Capacity for Data Use 

Evidence-based practice continues to be at the forefront of education reform. Educators 

are required to use multiple data sources to collect student information. Accountability 

requirements and meeting the needs of an increasingly diverse population of learners compounds 

the challenges of improving student achievement. It is believed that analyzing evidence 

regarding student learning will help teachers prioritize time and focus instruction on the 

individual needs of students (Hamilton et al., 2009). DDDM requires educators to effectively use 

data to inform their practice; however, teacher capacity for data use is dependent on teachers’ 

beliefs and attitudes. Teachers’ beliefs and capacity for data use are not always connected to 

practice; however, teachers’ beliefs about data seem to be the conduit between data and 
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instructional decisions (Datnow & Hubbard, 2015). To use data effectively, teachers must 

develop the knowledge and skills needed to analyze and act upon knowledge to improve 

instruction. Not all educators are comfortable engaging with data, and many teachers lack the 

training needed to fully understand how to use data successfully to bring about positive student 

learning outcomes (Dunlap & Piro, 2016). The amount and type of data that are available to 

educators has increased over the past 2 decades, while developing teachers’ capacity for and 

beliefs about using data has remained sluggish at best. Many teachers may feel unprepared, 

unconfident, and reluctant due to lack of support and lack of appropriate training on data use.   

Teacher efficacy is defined as “teachers’ beliefs in their abilities to organize and engage 

in the necessary behaviors to attain desired student outcomes” (Tschannen-Moran & Hoy, 2001, 

p. 783). Teacher’s sense of efficacy for DDDM is defined as “teachers’ beliefs in their abilities to 

organize and execute the necessary courses of action to successfully engage in classroom-level 

DDDM to enhance student performance” (Dunn et al., 2013). Teachers who have a strong sense 

of efficacy for teaching tend to overcome challenges associated with adopting new practices such 

as DDDM (Dunn et al., 2013). Teachers’ confidence in their data skills impacts how teachers use 

data to inform their decisions in the classroom (U.S. Department of Education, 2019a). Knowing 

how to interpret data and knowing how to use data are two separate skills that must be supported 

and addressed in teacher training and professional development; however, few studies have 

addressed how leaders can support teachers’ capacity for data use. District and school 

administrators face challenges in supporting teachers due to lack of expertise, tools, and time 

(Anderson et al., 2010; Cosner, 2011; Park & Datnow, 2009). Principals have difficulty 

supporting teachers’ data use by proving general guidance and not examining past practice as a 

response to making improvements to future instruction (Cosner, 2011). Stronger theoretical 



 

29 

frameworks are needed to understand educational interventions and actions that support teacher 

capacity for data use (Marsh & Farrell, 2015; Spillane, 2012; Young & Kim, 2010). 

Marsh and Farrell (2015) developed a framework for understanding how to build teacher 

capacity for data use. The framework is built upon the foundation of sociocultural theory, 

meaning that learning is social. Learning takes place when individuals interpret information and 

make connections to experiences, attitudes, and beliefs in everyday situations (Vygotsky, 1978). 

A mentor–apprentice relationship supports learning by modeling and discussing activities that 

will improve the learner’s capacity and performance (Collins et al., 1991). Marsh and Farrell 

suggested that it is beneficial to look through the lens of sociocultural learning when deciding 

how to best support teachers’ use of data. March and Farrell’s framework uses three types of 

capacity-building interventions that play a significant role in developing teachers’ skills and 

knowledge of data use (see Figure 8). The three interventions are literacy coach, data coach, and 

data team. A literacy coach is a trained master teacher who can support small groups or one-on-

one instruction at the building level to help teachers improve their students’ literacy skills.  
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Figure 8 

Capacity Building for DDDM 

 
Note. From “How Leaders Can Support Teachers With Data-Driven Decision Making: A 

Framework For Understanding Capacity Building,” by J. A. Marsh and C. C. Farrell, 2015, 

Educational Management Administration & Leadership, 43(2), p. 272. 

(https://doi.org/10.1177/1741143214537229). Copyright 2015 by Sage.  

 

Data support may be one of the responsibilities of a literacy coach. A data coach provides 

school-based support with interpreting and using data (Lachat & Smith, 2005; Love et al., 2008). 

Data teams function similarly to PLCs, where teachers can work in small collaborative work 

groups typically led by a knowledgeable teacher. Working in small groups promotes increased 

data interpretation (Means et al., 2011). Data teams may also have a positive impact on teachers’ 

beliefs, understanding, and practice (Gallimore et al., 2009; McDougall et al., 2007). Capacity-

building interventions help teachers to (a) collect data, (b) organize and analyze into information, 

(c) transform information into actionable knowledge, (d) respond and adjust instruction, and (e) 

evaluate the effectiveness of the results. Marsh and Farrell’s (2015) model suggests that capacity 

https://doi.org/10.1177/1741143214537229
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building is based on a learning process that allows educators to construct knowledge through 

social interaction, beliefs, prior knowledge, and experiences.  

Data Literacy 

The process of DDDM includes a complex series of steps that transform data into 

actionable knowledge. Instructional decisions are based on the knowledge and skills a teacher 

has to use the data effectively. However, the level of knowledge and skills a teacher needs to be 

considered data literate is unclear. Mandinach and Gummer’s (2016) definition of data literacy is 

as follows.  

Data literacy for teaching is the ability to transform information into actionable 

instructional knowledge and practices by collecting, analyzing, and interpreting all types 

of data (assessment, school climate, behavioral, snapshot, longitudinal, moment-to 

moment, etc.) to help determine instructional steps. It combines an understanding of data 

with standards, disciplinary knowledge and practices, curricular knowledge, pedagogical 

content knowledge, and an understanding of how children learn. (p. 367) 

Over the past 40 years, school accountability in the United States has evolved from establishing 

basic minimum testing requirements for graduation to a large nationwide effort to improve 

learning outcomes through standardized state and federal testing requirements (Wayman & 

Jimerson, 2014). Educators are required to use data to inform instructional practice for the 

purpose of accountability and improving student learning outcomes; however, teachers have 

difficulty using data for this purpose and face issues such as lack of principal leadership, 

knowledge, data systems, and time (Anderson et al., 2010; Wayman et al., 2012; Mandinach & 

Jackson, 2012). DDDM has become part of the evaluation criteria for effective teaching 

(Ikemoto & Marsh, 2007), yet it is evident that teachers still feel unprepared to use data when 
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making instructional decisions, and teachers often demonstrate low knowledge and skills 

regarding data use (Huguet et al., 2014). The following knowledge and skills are associated with 

data literacy. 

• collecting and comparing multiple data points; 

• using multiple sources of data and monitoring outcomes; 

• using various types of assessment data to inform decisions; 

• asking questions of the data to gain deeper understanding; 

• working in data teams to examine data; 

• identifying student learning gaps and adjusting instruction to fill gaps; and 

• using student data to adjust instruction and practice (Mandinach & Gummer, 

2013). 

Gummer and Mandinach (2015) explained the nature of data literacy for teaching as 

complex and discussed the interconnectedness of disciplinary knowledge, teaching practices, and 

pedagogical content knowledge. Figure 9 illustrates the organization of the data literacy 

conceptual framework. Data use for teaching “incorporates knowledge and skills from other 

broad domains of teaching, including disciplinary content and pedagogical content knowledge” 

(Gummer & Mandinach, 2015, p. 13). Data literacy is demonstrated through the relationship 

between data use for teaching, disciplinary knowledge and practice, and pedagogical content 

knowledge. Within the domain of data use for teachers are the components of the inquiry 

process. The subcomponents and elements for each component of the inquiry process are 

presented in Figure 10.  
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Figure 9 

Organization of Data Literacy Conceptual Framework 

 
Note. From “Building a Conceptual Framework for Data Literacy, “by E. Gummer and E. 

Mandinach, 2015, Teachers College Record, 117(4), p. 13. Copyright 2015 by Teachers College, 

Columbia University.  
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Figure 10 

Components of Inquiry Cycle in the Domain of Data Use for Teaching, 

 
Note. From “Building a Conceptual Framework for Data Literacy, “by E. Gummer and E. 

Mandinach, 2015, Teachers College Record, 117(4), p. 15. Copyright 2015 by Teachers College, 

Columbia University. 

 

DDDM continues to emerge as an essential component of effective teaching practice. The 

importance of data literacy is reflected in the increased need to demonstrate student learning and 

growth to meet state standards. Standards for teachers and educational leaders now require the 

use of data and data literacy skills and knowledge in addition to using assessment to improve 

instruction. Data literacy is now embedded in policy and standards. For example, the most 

updated standards for teachers developed from the Interstate Teacher Assessment and Supports 

Consortium (InTASC; CCSSO’s Interstate Teacher Assessment and Support Consortium, 2010) 
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stated that “Effective instructional practice requires that teachers understand and integrate 

assessment, planning, and instructional strategies in coordinated and engaging ways” (p. 9). In 

the InTASC Model Core Teaching Standards Standard 6, the term “assessment” includes seven 

understandings of data use that are considered to be essential knowledge for teachers (CCSSO’s 

Interstate Teacher Assessment and Support Consortium, 2010). These seven understandings are 

as follows.  

• 6(j). The teacher understands the differences between formative and summative 

applications of assessment and knows how and when to use each. 

• 6(k). The teacher understands the range of types of multiple purposes of 

assessment and how to design, adapt, or select appropriate assessments to address 

specific learning goals and individual differences, and to minimize sources of 

bias. 

• 6(l). The teacher knows how to analyze assessment data to understand patterns 

and gaps in learning, to guide planning and instruction, and to provide meaningful 

feedback to all learners. 

• 6(m). The teacher knows when and how to engage learners in analyzing their own 

assessment results and in helping to set goals for their own learning. 

• 6(n). The teacher understands the positive impact of effective descriptive 

feedback for learners and knows a variety of strategies for communicating this 

feedback. 

• 6(o). The teacher knows when and how to evaluate and report learner progress 

against standards. 
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• 6(p). The teacher understands how to prepare learners for assessments and how to 

make accommodations in assessments and testing conditions, especially for 

learning with disabilities and language learnings needs. 

By definition, data literacy is the ability to understand and use data effectively to inform 

decisions (Mandinach et al., 2008). DDDM is important for school improvement, yet teachers 

are underprepared to use data to make effective educational decisions (Ikemoto & Marsh, 2007; 

Reeves & Chiang, 2018; Schildkamp et al., 2014; van Geel et al., 2016).  

Data Use 

Data use is now an essential characteristic of high-performing schools (Schaffer et al., 

2012) because data use leads to increased student achievement (Datnow & Park, 2009; Lai et al., 

2014). Formative and summative assessment data are the most common type of data used in 

education however, other data related to teacher observation, student demographics, 

questionnaires, and interviews are also used (Jimerson, 2014). Data literacy plays a critical role 

in effective data use and DDDM. Educators’ data literacy is paramount for successfully 

implementing data use in schools (Schildkamp & Poortman, 2015). Data use is impacted by 

teachers’ ability to (a) access, collect, and analyze data; (b) transform data into information; (c) 

transform information into action; and (d) evaluate outcomes (Ebbeler et al., 2016). In-service 

teachers often do not have adequate data literacy skills and require professional development 

regarding the use of data in schools (Marsh, 2012).  

Four conditions facilitate teachers’ use of data: collaboration, common understandings, 

triangulation, and time (Datnow et al., 2007; Wayman et al., 2012; Wayman & Jimmerson, 

2014). Collaboration allows teachers to share perspectives and interpret data. PLCs, grade-level 

teams, and data teams are common examples of collaboration (Ebbeler et al., 2016; Schildkamp 
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& Kuiper, 2010). Educators who share a common understanding about the goals of data use can 

build a foundation that leads to mutual learning and agreed upon outcomes. Additionally, using 

more than one method to collect data and multiple data elements allows for triangulation (Louis 

et al., 2010; Marsh et al., 2009). Adequate time to perform these collection tasks is essential for 

effective data use (Ikemoto & Marsh, 2007). 

Acting Upon Data 

Data use is an iterative process that is dependent on teachers accessing data, collecting 

data, analyzing data, and transforming data into useful information (Coburn & Turner, 2011; 

Marsh & Farrell, 2015). Ebbeler et al. (2016) examined the effects of a data use intervention on 

educators’ use of knowledge and skills and developed a data use theory of action and addressed 

the factors that influence data use. Ebbeler et al.’s framework illustrates the connection between 

educators and data that leads to interventions that are implemented in the classroom (see Figure 

11).  
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Figure 11 

Data Use Theory of Action and Factors Influencing Data Use 

 
Note. From “Data use theory of action, and factors influencing data use,” by K. Schildkamp and 

C. Poortman, 2015, Teachers College Record, 117(4), p. 2. Copyright 2015 by Teachers College, 

Columbia University. 

 

The starting point for data use is identifying the problem or purpose. Data are then 

accessed, collected, and examined for quality. Next, the data team transforms data into 

information. The newly acquired knowledge can be applied to interventions and action related to 

classroom instructional practice. The data team evaluates the outcomes.  

Educators act upon data in three areas: accountability, instruction, and school 

development (Breiter & Light, 2006; Coburn & Talbert, 2006; Schildkamp et al., 2019; Spillane 

et al., 2004; Wayman & Stringfield, 2006; Wohlstetter et al., 2008). Data can be used for 

accountability purposes as a result of state-mandated policy requirements. These data typically 

highlight overall school performance based on standardized test results; however, these types of 
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data alone do not always equate to school improvement (Ebbeler et al., 2016). Data can be used 

to support instruction, bolster student achievement, and identify students’ strengths or 

weaknesses. Data can also be used to differentiate lessons and follow student progress (Hamilton 

et al., 2009). Data use for school development can be applied to curriculum revisions, building 

goals, and identifying instructional methods (Breiter & Light, 2006; Coburn & Talbert, 2006).  

Factors Influencing Data Use 

Data use is influenced by organizational characteristics, data, and user characteristics 

(Coburn & Turner, 2011; Datnow et al., 2013; Schildkamp & Kuiper, 2010; Schildkamp & Lai, 

2013). School organizational characteristics that impact data start with a shared vision of 

learning, assessment, and good teaching practices. Data use is a priority in schools when strong 

structures for analyzing and interpreting data are evident (Datnow et al., 2007; Earl & Katz, 

2006). It is important that school leadership and culture support data use in schools and that 

leaders provide opportunities for teachers to work with and collaborate on DDDM (Knapp et al., 

2007; Wohlstetter et al., 2008; Young, 2006). Data teams, data coaches, and providing teachers 

with sufficient time to ask questions and consult with data experts are effective methods for 

improving teacher data use (Marsh et al., 2009).  

The user characteristics of teachers also influence data use (Schildkamp et al., 2017). 

Teachers’ knowledge, skills, and attitudes toward data (data literacy) impact how teachers 

analyze and interpret various forms of data. Data characteristics also influence use of data. 

Quality of data, usability, and accessibility of timely data all impact teachers’ use of data to 

improve instruction (Breiter & Light, 2006; Halverson, 2010; Wayman & Stringfield, 2006). 

Figure 12 illustrates the factors that influence data use for accountability, school development, 

and instruction. 
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Figure 12 

Types of Data Use and Influential Factors 

 
Note. From “Factors Promoting and Hindering Data-Based Decision Making in Schools,” by K. 

Schildkamp, C. Poortman, H. Luyten, and J. Ebbeler, 2017, School Effectiveness and School 

Improvement, 28(2), p. 244. (https://doi.org/10.1080/09243453.2016.1256901). Copyright 2010 

by Routledge.  

 

Professional Development 

Scholars have repeatedly found that in-service educators are not equipped with the 

knowledge and skills to effectively use data in schools (Marsh, 2012), and colleges provide little 

training for preservice teachers on data use and DDDM (Mandinach & Gumme, 2015). A PLC is 

a leading intervention used to improve teachers’ ability to use data. A PLC is a group of teachers 

learning through collaboration and sharing of experiences and reflections. PLC’s that focus on 

data are referred to as data teams (Ebbeler et al., 2016; Marsh & Farrell, 2015). PLCs are 

effective because teachers benefit from professional learning that is collaborative, engaging, 

contextual, job-embedded, intense, and coherent (Wayman & Jimerson, 2014). Additionally, 

teachers learn well collaboratively. Positive changes are more likely to take place when 

educators have the opportunity to exchange ideas and learn from one another (Desimone et al., 

https://doi.org/10.1080/09243453.2016.1256901
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2002; Elmore, 2004). Engaging in professional learning is associated with implementation 

efforts and systemic changes in instructional practice (Desimone et al., 2002; Garet et al., 2001). 

Job-embedded learning allows teachers to experiment and use new learning immediately. The 

ability to apply new learning is vital, as because teachers make permanent changes in their 

practice when they experience positive outcomes (Fullan, 2007). Intensity refers to the duration 

and span of time needed for new learning to take hold. Longer duration of learning allows for 

increased learning within a sufficient time frame (Desimone et al., 2002; Elmore, 2004; Wei et 

al., 2009). Finally, professional learning that is connected to prior knowledge and aligned with 

teaching practice provides teachers with coherent learning experiences (Desimone et al., 2002). 

Technology 

It is essential that schools use data systems and develop strong data infrastructure for 

educators to effectively collect and use relevant and diagnostic data to support instructional 

practice (Gill et al., 2014). A data system is defined as any technology-based tool that assists 

educators with examining student data (Wayman et al., 2012). Wayman et al. (2012) examined 

how attitudes, leadership, and computer data systems influence data use. Three main types of 

data systems were used in the school districts studied: (a) student information systems that 

included basic demographic information, schedules, and grades; (b) assessment systems that 

organized test data; and (c) data warehouses that integrated data from many systems and 

provided longitudinal data on student performance. The educators in Wayman et al.’s study saw 

the value in using data to improve practice and viewed principal leadership and computer data 

systems as the two most common barriers. Difficulties relating to inefficient computer data 

systems affected attitudes toward data and use of data in all of the districts studied (Wayman et 

al., 2012).  
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Educators need integrated data that are easily accessible (Lachat & Smith, 2005; 

Mandinach et al., 2005; Means et al., 2011; Wayman & Stringfield, 2006). Effective data 

systems greatly improve data access and save time. Furthermore, efficient data systems increase 

collaboration and promote a common understanding of student achievement (Wayman & 

Stringfield, 2006). District policy must support the use of data systems and detail how data 

systems will be used to support classroom practice. Teachers with an improved access to data are 

able to use data in a timelier and relevant way (Gill et al., 2014). School district officials who 

prioritize the use of data must develop strong data systems, policy, and easily accessible and 

integrated data to support DDDM for school improvement (Wayman et al., 2012).  

Summary 

DDDM and data use in education have become essential to school improvement. 

Educators are required to collect, analyze, and transform data into information and actionable 

knowledge to support continuous improvement (Mandinach, 2012). Data use has shifted from 

using data only for compliance (NCLB, 2001) to using data for ongoing improvement and 

improved student outcomes (ESSA, 2015). This movement from accountability to a cycle of 

continuous improvement requires that data-driven practices be used at all levels of education. 

The availability and volume of accessible data is growing, and educators today must possess 

proficient data literacy skills to inform their teaching practice. Teachers must integrate data with 

context knowledge and experience and are expected to use evidence to determine instructional 

action (Shulman & Elstein, 1975).  

This study addressed the gap in the literature regarding teacher readiness levels related to 

DDDM, assessment, school support systems, acting upon data, and school culture. The demand 

on educators to make sound, evidence-based decisions for school improvement has increased; 
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thus, educators’ data literacy and decision-making processes are more important than ever. 

Additionally, this study examined the relationship between teachers’ DDDM practices and 

school achievement. Through this study, I endeavored to provide additional insight to the 

existing body of research on DDDM and support future professional development initiatives in 

schools.
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CHAPTER 3: METHODOLOGY 

Intent of Study 

The purpose of this nonexperimental, quantitative comparison research study was to 

examine the relationship between K–5 elementary school teachers’ DDDM practices and school 

proficiency levels in math and ELA. The current study explored if significant differences exist 

between the level of school achievement (i.e., high, medium, and low achievement) and K–5 

elementary teachers’ level of readiness for implementing DDDM with assessment, acting upon 

data, and within support systems and school culture. The study findings provide insight that will 

facilitate and inform educational leaders and policymakers and add to the existing research base. 

This study also facilitates a greater understanding of elementary teachers’ DDDM practices and 

the relationship between teachers’ levels of data literacy and school achievement. More data are 

being made available to teachers in an effort to produce higher levels of learning and overall 

achievement; thus, a study that examines levels of overall school achievement and teachers’ 

DDDM practices will support educators’ understanding of how data literacy can impact the 

educational process. This chapter includes a description of the study’s research design, 

population, research instruments, and methods for data collection and analysis. 

Research Design 

I used a nonexperimental, quantitative comparison research design to determine if group 

differences existed between teachers’ levels of DDDM practices and overall school achievement. 

For the purpose of this study, the independent variables under study were teachers’ level of 

DDDM practices in four subareas: assessment, acting upon data, support systems, and school 

culture. Data for these variables were supplied by the correlational design, and I used the survey 

tool to collect and assess teachers’ levels of readiness for DDDM in each subarea. I then 
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calculated an overall teacher readiness score for each school participating in the study. The 

overall school achievement in mathematics and ELA served as the dependent variables. Data for 

these variables were composed of the proficiency scores for mathematics and ELA for the 2018–

2019 academic year. These data are archived and made available by the New Jersey Department 

of Education. These percentile data were grouped into three categories: high, medium, and low 

performance. I calculated an average score for each category. 

Population 

I selected the study participants from multiple noncharter suburban public elementary 

schools in Morris and Somerset Counties, New Jersey. Qualified participants held a valid New 

Jersey teaching certificate and had provided direct instruction in mathematics and/or ELA to 

students in any Grades K-5 during the 2018–2019 school year.  

Teachers received an email invitation in the fall of 2020, along with a letter of consent and link 

to the electronic survey (see Appendix B). Introductory emails were also sent to 

superintendents/and or principals to assist in the recruitment of teacher participants from the 

elementary schools in their school district. One-hundred-ten teachers participated in this study, 

representing 56 schools in 30 school districts in Somerset and Morris Counties. 

Research Instruments 

I used the Statewide Data-Driven Readiness Study Teacher Survey to collect and assess 

participants’ levels of DDDM practices. This survey tool was developed by Dr. Scott McLeod 

and Dr. Karen Seashore from the University of Minnesota. The tool was successfully used in 

McLeod and Seashore’s (2006) Minnesota Statewide Data-Driven Decision Making Readiness 

Study, which included teachers, principals, superintendents, and school technology coordinators 

with a total participation of 4,267 Minnesota educators. In McLeod and Seashore’s study, only 
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28% of the total population of teachers responded to the survey. This was the lowest percentage 

of respondents out of the four groups solicited.  

The teacher survey included four subscales: assessment, acting upon data, support 

systems, and school culture (see Appendix C). The survey used a Likert-type scale rating ranging 

from disagree strongly to agree strongly. The Likert-type scale measured the respondents’ 

opinions and asked respondents to rate items based on levels of agreement. I assigned a value to 

each level as follows: disagree strongly (1), disagree moderately (2), disagree slightly (3), agree 

slightly (4), agree moderately (5), and agree strongly (6). I then calculated and compared the 

sum of each subscale to answer Research Questions 2 through 5. I also calculated the total score 

for all four subscales to obtain an overall teacher data-driven readiness score. I answered 

Research Question 1 by analyzing the overall survey readiness score to teachers’ school 

proficiency scores in math and ELA from the 2018–2019 New Jersey School Performance 

Report. 

ELA and mathematics proficiency scores are reported annually on the New Jersey School 

Performance Reports. These reports are released and published by the New Jersey Department of 

Education and are a part of public record. I used the ELA and mathematics proficiency scores to 

inform this study. The proficiency scores reflect the percentage of students who meet or exceed 

expectations on the 2018–2019 New Jersey Student Learning Assessment.  

Data Collection 

I emailed the Statewide Data-Driven Readiness Study Teacher Survey to qualifying 

noncharter public suburban elementary schools in Morris and Somerset Counties, New Jersey 

during the fall of 2020. The survey was transposed into SurveyMonkey®. Participants received 

an email invitation that included a description of the study, a letter of solicitation/consent, and a 
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link to the electronic survey. In addition, introductory emails were forwarded to district 

superintendents and/or principals to increase teacher participation in the study. The survey used a 

Likert-type scale of 77 items; three additional questions were included to ensure teacher 

respondents were qualified (see Appendix C). Teacher and administrators’ emails were obtained 

using the New Jersey Department of Education School Directory and school district websites. 

The survey remained open until the desired number or participants was reached (N = 110). 

Reminder emails were forwarded to improve participation.  

The New Jersey School Performance Reports are published annually in late winter and 

reflect data from the previous school year. I used the 2018–2019 New Jersey School 

Performance Report for all participating schools to inform this study. More current test data were 

not available due to the cancellation of standardized testing during the 2019–2020 school year 

due to the global pandemic. 

Data Analysis 

All teacher survey responses were collected using SurveyMonkey®. The survey data 

were retrieved and organized in a spreadsheet to reflect name of school, district, and number of 

participants. School proficiency scores in math and ELA were retrieved from the New Jersey 

School Performance Summary Reports and added to the spreadsheet for all schools. Math 

proficiency scores were grouped into the following categories: high (80%–100%) medium 

(44.5%–79.9%), and low (0%–44%). ELA proficiency scores were grouped into the similar 

categories: high (80%–100%), medium (57.9%–79.9%), and low (0%–57.8%). Proficiency 

bands are set by the New Jersey Department of Education and appear on the school’s summary 

report. The Statewide Data-Driven Readiness Study Teacher Survey (McLeod & Seashore, 

2006) includes four sub areas: assessments, acting upon data, support systems, and school 
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culture. The survey measured the participants’ responses to statements based on six levels of 

agreement. A value was assigned to each level as follows: disagree strongly (1), disagree 

moderately (2), disagree slightly (3), agree slightly (4), agree moderately (5), and agree strongly 

(6). A total score for all four subareas was calculated to obtain an overall teacher data-driven 

readiness score to answer Research Question 1. The data were uploaded in the statistical 

software IBM® SPSS® and a series of one-way ANOVAs were performed to determine if there 

was a significant difference between teacher readiness with DDDM practices and levels of 

school achievement in mathematics and ELA. 
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CHAPTER 4: RESEARCH FINDINGS 

The purpose of this nonexperimental, quantitative comparison research study was to 

examine the relationship between K–5 elementary school teachers’ level of DDDM practices and 

overall school achievement. Specifically, the study explored whether statistically significant 

differences existed between K–5 elementary teachers’ readiness for implementing DDDM 

practices and level of school achievement in ELA and mathematics. I used the Statewide Data-

Driven Readiness Study Teacher Survey (McLeod & Seashore, 2006) to determine teachers’ 

DDDM readiness levels, which were treated as the continuous or interval variables. I used the 

2018–2019 New Jersey School Performance Report ELA and math proficiency levels to 

determine high, medium, and low school achievement. The intent of this quantitative study was 

to examine if high DDDM readiness scores were related to high proficiency levels and if low 

DDDM readiness scores were related to low proficiency levels. In this chapter, I present the 

results and analysis of data for each of the following five research questions: 

1. Is there a relationship between overall teacher readiness with DDDM practices 

and New Jersey School Performance Report ELA and mathematics proficiency 

levels?  

2. Is there a relationship between teacher readiness with assessment use and New 

Jersey School Performance Report ELA and mathematics proficiency levels?  

3. Is there a relationship between teacher readiness to act upon data and New Jersey 

School Performance Report ELA and Mathematics proficiency levels? 

4. Is there a relationship between teacher readiness with the use of school support 

systems available for DDDM and New Jersey School Performance Report ELA 

and mathematics proficiency levels?  
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5. Is there a relationship between teacher readiness with DDDM school culture and 

New Jersey School Performance Report ELA and mathematics proficiency 

levels? 

Results and Analysis of Findings 

Sample 

The sample for this study included 110 (n = 110) K–5 elementary teachers employed in 

noncharter public elementary schools in Morris County and Somerset County, New Jersey. 

Teacher participants represented 56 elementary schools in 30 school districts. All teacher 

participants provided direct instruction in mathematics and/or ELA to students in any grade from 

Grades K–5 during the 2018–2019 school year. 

Results 

I performed a series of one-way ANOVAs to determine if there was a significant 

difference between teacher readiness with DDDM practices and levels of school achievement in 

mathematics and ELA. The teacher survey used a Likert-type scale rating that ranged from 

disagree strongly to agree strongly. The Likert-type scale measured teachers’ perceptions and 

asked respondents to rate items based on levels of agreement. A numerical value was assigned to 

each level of agreement as follows: disagree strongly (1), disagree moderately (2), disagree 

slightly (3), agree slightly (4), agree moderately (5), and agree strongly (6). I calculated the total 

score for all four subscales to obtain an overall teacher data-driven readiness score. I then 

calculated and compared the sum of each subarea to answer Research Questions 2 through 5. I 

answered Research Question 1 by analyzing the overall teacher readiness survey scores and their 

school’s proficiency levels in math and ELA from the 2018–2019 New Jersey School 

Performance Report.  
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I performed a one-way ANOVA to determine if there was a significant difference 

between overall teacher readiness with DDDM practices and levels of school achievement in 

mathematics. The independent variable, school proficiency in mathematics, had three levels: 

low, medium, and high. The dependent variable, overall teacher readiness with DDDM practices, 

was treated as a continuous variable. Table 1 presents the descriptive statistics, and Table 2 

indicates that there was no significant difference between overall teacher DDDM readiness 

practices and math proficiency level. 

Table 1 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of Overall Data Practices  

Proficiency levels N Mean SD Std. error 

Low 12 292.42 41.069 11.855 

Medium 76 296.09 43.890 5.035 

High 22 312.09 51.828 11.050 

Total 110 298.89 45.370 4.326 

 

Table 2 

ANOVA: Mathematics Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 4931.601 2 2465.800 1.202 .305 

Within groups 219439.090 107 2050.833   

Total 224370.691 109    

 

Next, I performed a one-way ANOVA to determine if there was a significant difference 

between overall teacher readiness with DDDM practices and levels of school achievement in 

ELA. The independent variable, school proficiency scores in ELA, had three levels: low, 

medium, and high. The dependent variable, overall teacher readiness with DDDM practices, was 

treated as a continuous variable. Table 3 presents the descriptive statistics, and Table 4 indicates 
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that there was a significant difference between overall teacher DDDM readiness and school ELA 

proficiency levels (F[2], 6.570, p = .002). Multiple comparison tables revealed that the 

significant difference was between high- and low-performing schools. Teacher survey scores in 

the high achievement group had a higher mean (M = 323.81, SD = 46.830) compared to teacher 

survey scores in the low achievement group (M = 277.00, SD = 35.555). Examination of Eta2 

revealed an effect size of .10, representing a large effect size (Cohen, 1988). According to Cohen 

(1988), .01 equals a small effect size, .05 equals a medium effect size, and .14 equals a large 

effect size. 

Table 3 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of Overall Data Practices 

Proficiency levels N Mean SD Std. error 

Low 24 277.00 35.555 7.258 

Medium 65 298.92 44.527 5.523 

High 21 323.81 46.830 10.219 

Total 110 298.89 45.370 4.326 

 

Table 4 

ANOVA: ELA Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 24540.837 2 12270.419 6.570 .002* 

Within groups 199829.853 107 1867.569   

Total 224370.691 109    

Note. *p < .05. 

I answered Research Question 2 by analyzing teacher readiness with assessment use and 

their school’s proficiency levels in math and ELA from the 2018–2019 New Jersey School 

Performance Report. I performed a one-way ANOVA to determine if there was a significant 

difference between teacher readiness on assessment use and levels of school achievement in 
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mathematics. The independent variable, school proficiency in mathematics, had three levels: 

low, medium, and high. The dependent variable, teacher readiness with assessment use, was 

treated as a continuous variable. Table 5 presents the descriptive statistics, and Table 6 indicates 

that there was no significant difference between teacher readiness regarding assessment use and 

levels of school math proficiency levels. 

Table 5 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of Assessment Use 

Proficiency levels N Mean SD Std. error 

Low 12 46.58 21.981 6.345 

Medium 76 40.16 17.591 2.018 

High 22 43.82 20.866 4.449 

Total 110 41.59 18.728 1.786 

 

Table 6 

ANOVA: Mathematics Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 564.296 2 282.148 .802 .451 

Within groups 37666.295 107 352.021   

Total 38230.591 109    

 

Next, I performed a one-way ANOVA to determine if there was a significant difference 

between teacher readiness with assessment use and levels of school achievement in ELA. The 

independent variable, school proficiency in ELA, was conditional and had three levels: low, 

medium, and high. The dependent variable, teacher readiness with assessment use, was treated as 

a continuous variable. Table 7 presents the descriptive statistics, and Table 8 indicates that there 

was no significant difference between teacher readiness regarding assessment use and levels of 

school ELA proficiency scores. 
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Table 7 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of Assessment Use 

Proficiency levels N Mean SD Std. error 

Low 24 36.17 17.690 3.611 

Medium 65 41.05 18.104 2.246 

High 21 49.48 20.032 4.371 

Total 110 41.59 18.728 1.786 

 

Table 8 

ANOVA: ELA Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 2031.158 2 1015.579 3.002 .054 

Within groups 36199.433 107 338.312   

Total 38230.591 109    

 

I answered Research Question 3 by analyzing teacher readiness with acting upon data and 

their school’s proficiency levels in math and ELA from the 2018–2019 New Jersey School 

Performance Report. I performed a one-way ANOVA to determine if there was a significant 

difference between teacher readiness with acting upon data and levels of school achievement in 

mathematics. The independent variable, school proficiency in mathematics, had three levels: 

low, medium, and high. The dependent variable, teacher readiness with acting upon data, was 

treated as a continuous variable. Table 9 presents the descriptive statistics, and Table 10 indicates 

that there was no significant difference between teacher readiness regarding acting upon data and 

levels of school math proficiency levels. 
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Table 9 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of Acting Upon Data 

Proficiency levels N Mean SD Std. error 

Low 12 77.42 7.501 2.165 

Medium 76 80.36 10.383 1.191 

High 22 84.36 10.896 2.323 

Total 110 80.84 10.329 .985 

 

Table 10 

ANOVA: Mathematics Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 431.639 2 215.820 2.062 .132 

Within groups 11197.415 107 104.649   

Total 11629.055 109    

 

Next, I performed a one-way ANOVA to determine if there was a significant difference 

between teacher readiness with acting upon data and levels of school achievement in ELA. The 

independent variable, school proficiency in ELA, had three levels: low, medium, and high. The 

dependent variable, teacher readiness with acting upon data, was treated as a continuous variable. 

Table 11 presents the descriptive statistics, and Table 12 demonstrates that there was a 

significant difference between teacher readiness with acting upon data and levels of school ELA 

proficiency levels (F[2], 5.942, p = .004). Multiple comparison tables revealed that the 

significant difference was between high- and low- performing schools. Teacher survey scores in 

the high achievement group had a higher mean (M = 86.43, SD = 10.225) compared to teacher 

survey scores in the low achievement group (M = 76.25, SD = 9.176). Examination of Eta2 

revealed an effect size of .09, representing a medium to large effect size (Cohen, 1988).  
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Table 11 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of Acting Upon Data 

Proficiency levels N Mean SD Std. error 

Low 24 76.25 9.176 1.873 

Medium 65 80.72 10.030 1.244 

High 21 86.43 10.225 2.231 

Total 110 80.84 10.329 .985 

 

Table 12 

ANOVA: ELA Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 1162.396 2 581.198 5.942 .004* 

Within groups 10466.658 107 97.819   

Total 11629.055 109    

Note. *p < .05  

I answered Research Question 4 by analyzing teacher readiness with support systems and 

their school’s proficiency levels in math and ELA from the 2018–2019 New Jersey School 

Performance Report. I performed a one-way ANOVA to determine if there was a significant 

difference between teacher readiness with support systems for DDDM practices and levels of 

school achievement in mathematics. The independent variable, school proficiency in 

mathematics, was conditional and had three levels: low, medium, and high. The dependent 

variable, teacher readiness with support systems for DDDM practices, was treated as a 

continuous variable. Table 13 presents the descriptive statistics, and Table 14 indicates that there 

was no significant difference between teacher readiness with support systems for DDDM 

practices and school math proficiency levels. 
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Table 13 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of Support Systems  

Proficiency levels N Mean SD Std. error 

Low 12 77.17 14.070 4.062 

Medium 76 79.32 16.424 1.884 

High 22 84.00 15.988 3.409 

Total 110 80.02 16.102 1.535 

 

Table 14 

ANOVA: Mathematics Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 483.876 2 241.938 .932 .397 

Within groups 27776.088 107 259.590   

Total 28259.964 109    

 

Next, I performed a one-way ANOVA to determine if there was a significant difference 

between teacher readiness with support systems for DDDM practices and levels of school 

achievement in ELA. The independent variable, school proficiency in ELA, was conditional and 

had three levels: low, medium, and high. The dependent variable, teacher readiness with support 

systems for DDDM practices, was treated as a continuous variable. Table 15 presents the 

descriptive statistics, and Table 16 indicates that there was a significant difference between 

teacher readiness with support systems for DDDM practices and levels of school ELA 

proficiency levels (F[2], 3.806, p = .025). Multiple comparison tables revealed that the 

significant difference was between high- and low-performing schools. Teacher survey scores in 

the high achievement group had a higher mean (M = 87.38, SD = 14.361) compared to teacher 

survey scores in the low achievement group (M = 74.50, SD = 14.981). Examination of Eta2 

revealed an effect size of .06, representing a medium effect size (Cohen, 1988). According to 



 

58 

Cohen (1988), .01 equals a small effect size, .05 equals a medium effect size, and .14 equals a 

large effect size. 

Table 15 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of Support Systems 

Proficiency levels N Mean SD Std. error 

Low 24 74.50 14.981 3.058 

Medium 65 79.68 16.344 2.027 

High 21 87.38 14.361 3.134 

Total 110 80.02 16.102 1.535 

 

Table 16 

ANOVA: ELA Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 1876.796 2 938.398 3.806 .025* 

Within groups 26383.168 107 246.572   

Total 28259.964 109    

Note. *p < .05  

I answered Research Question 5 by analyzing teacher readiness with school culture for 

DDDM practices and their school’s proficiency levels in math and ELA from the 2018–2019 

New Jersey School Performance Report. I performed a one-way ANOVA to determine if there 

was a significant difference between teacher readiness regarding school culture for DDDM 

practices and levels of school achievement in mathematics. The independent variable, school 

proficiency in mathematics, was conditional and had three levels: low, medium, and high. The 

dependent variable, teacher readiness regarding school culture for DDDM practices, was treated 

as a continuous variable. Table 17 presents the descriptive statistics, and Table 18 demonstrates 

that was no significant difference between teacher readiness regarding support systems for 

DDDM practices and school math proficiency levels. 
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Table 17 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of School Culture 

Proficiency levels N Mean SD Std. error 

Low 12 91.25 11.177 3.227 

Medium 76 96.26 13.242 1.519 

High 22 99.91 14.593 3.111 

Total 110 96.45 13.405 1.278 

 

Table 18 

ANOVA: Mathematics Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 590.368 2 295.184 1.663 .195 

Within groups 18996.805 107 177.540   

Total 19587.173 109    

 

Next, I performed a one-way ANOVA to determine if there was a significant difference 

between teacher readiness regarding school culture for DDDM practices and levels of school 

achievement in ELA. The independent variable, school proficiency in ELA, had three levels: 

low, medium, and high. The dependent variable, teacher readiness regarding school culture on 

DDDM practices, was treated as a continuous variable. Table 19 presents the descriptive 

statistics, and Table 20 indicates that there was a significant difference between teacher readiness 

regarding school culture for DDDM practices and levels of school ELA proficiency levels (F[2], 

4.086, p = .019). Multiple comparison tables revealed that the significant difference was between 

high- and low-performing schools. Teacher survey scores in the high achievement group had a 

higher mean (M = 100.52, SD = 14.476) compared to teacher survey scores in the low 

achievement group (M = 90.08, SD = 11.832). Examination of Eta2 revealed an effect size of .07, 
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representing a medium effect size (Cohen, 1988). According to Cohen (1988), .01 equals a small 

effect size, .05 equals a medium effect size, and .14 equals a large effect size. 

Table 19 

Descriptive Statistics: Levels of Achievement and Teacher Agreement of School Culture 

Proficiency levels N Mean SD Std. error 

Low 24 90.08 11.832 2.415 

Medium 65 97.48 12.982 1.610 

High 21 100.52 14.476 3.159 

Total 110 96.45 13.405 1.278 

 

Table 20 

ANOVA: ELA Proficiency Levels 

Groups Sum of squares df Mean square F Sig. 

Between groups 1389.886 2 694.943 4.086 .019 

Within groups 18197.287 107 170.068   

Total 19587.173 109    

Note. *p < .05 

Summary 

This study explored whether statistically significant relationships existed between K–5 

elementary teachers’ readiness for implementing DDDM practices and levels of school 

proficiency in ELA and mathematics. I performed a series of one-way ANOVAs to determine if 

there was a significant difference between teachers’ readiness with DDDM practices and levels 

of school achievement in mathematics and ELA.  

A significant relationship was present between teachers’ reporting high levels of overall 

DDDM practices and high levels of school achievement in ELA in all subareas of the survey 

except assessment. The relationship was significant at p < .002. Further analysis of the 

descriptive data indicated that the greatest difference existed between the mean scores in ELA 
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for high- and low-performing schools. The data revealed no significant relationship between 

teachers’ overall DDDM readiness practices and mathematics proficiency level.
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CHAPTER 5: DISCUSSION AND CONCLUSION 

The purpose of this nonexperimental, quantitative comparison research study was to 

examine the relationship between K–5 elementary school teachers’ DDDM practices and school 

proficiency levels in ELA and mathematics. Mandinach (2012) defined DDDM as the systematic 

collection, analysis, examination, and interpretation of data to inform practice and policy in 

educational settings. Similarly, Marsh et al. (2006) defined DDDM as the “systematic collection, 

analysis, and application of many forms of data from myriad sources in order to enhance student 

performance while addressing student learning needs” (p. 8). Using data to support decision-

making in schools is an essential practice in the United States. Data are provided to teachers; 

however, teachers may not understand how to use data effectively to improve instruction 

(Massell, 2001). Analyzing and using data for decision-making is not intuitive, and most 

published resources that provide guidance are designed for administrators (Schifter et al., 2014). 

Although teachers are required to analyze state assessment data and use the findings to inform 

their instructional decisions, teachers’ lack of training in how to use data to improve student 

learning outcomes is a long-term problem (Schifter et al., 2014).  

The research questions in this study focused on investigating elementary teachers’ 

DDDM practices, specifically in the areas of assessment, acting upon data, use of support 

systems, and school culture. The study results indicated that teachers reporting overall high 

levels of DDDM practices had high student achievement in ELA; however, no significant 

relationship existed between teachers’ levels of DDDM practices and student achievement in 

mathematics. The study results also revealed a significant positive relationship between teachers’ 

DDDM practices and ELA proficiency in all subareas, (acting upon data, use of support systems, 
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school culture) except assessment. Interestingly, no significant relationships were found between 

teachers’ DDDM practices in any subareas and mathematics.  

This chapter provides a discussion of the implications of the study findings that answer 

the five research questions, the connections related to the theoretical framework and existing 

research on DDDM in schools, and the study conclusions. The conclusions discussed are 

grounded in the study findings reported in Chapter 4 and either support or add to the existing 

research presented in the literature review. The chapter concludes with (a) a discussion of the 

limitations of the study; (b) recommendations for further research, policy, and teacher practice; 

and (c) a concluding summary.  

Research Questions 

This section details the answers to each of the study’s research questions using the study 

findings. The results and analysis appear after each research question.  

Research Question 1 

Research Question 1 was as follows: Is there a relationship between overall teacher 

readiness on DDDM practices and New Jersey School Performance Report ELA and 

mathematics proficiency levels?  

Using the New Jersey School Performance Report proficiency levels, the Statewide Data-

Driven Readiness Study Teacher Survey, and descriptive statistics, results from this analysis 

revealed a significant relationship between overall teacher readiness with DDDM practices and 

ELA proficiency. The relationship was significant at the .002 level between high- and low-

performing schools; therefore, the null hypothesis was accepted. The data suggest that teachers 

with overall high use of DDDM practices have high ELA performance. Teacher data readiness 

survey scores in the high ELA achievement group had a higher mean (M = 323.81, SD = 46.830) 
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compared to teacher survey scores in the low ELA achievement group (M = 277.00, SD = 

35.555). From these results, it can be inferred that as teachers’ overall understanding and use of 

data increases, so does student achievement in ELA. These results correspond with the 

theoretical frameworks presented in Chapter 2, particularly the theory that data become 

information that transform into actionable knowledge that can be applied to a continuous cycle of 

improvement (Anderson et al., 2010; Brunner et al., 2005; Gill et al., 2014; Ikemoto & Marsh, 

2007; Light et al., 2005; Mandinach et al., 2006). 

The results of the ANOVA analysis suggest that no significant relationship exists 

between overall teacher readiness with DDDM practices and mathematics proficiency. Analysis 

of the descriptive statistics indicated that although teachers with overall high use of DDDM 

practices and high math proficiency level have the highest mean, no significance was found 

between high and low groups. Therefore, the null hypothesis was rejected. 

Research Question 2 

Research Question 2 was as follows: Is there a relationship between teacher readiness 

with assessment use and New Jersey School Performance Report ELA and mathematics 

proficiency levels?  

Using the New Jersey School Performance Report proficiency levels, the Statewide Data-

Driven Readiness Study Teacher Survey, and descriptive statistics, results from this analysis 

revealed no significant relationship between teachers’ readiness with assessment use and ELA or 

mathematics proficiency levels; therefore, the null hypotheses were accepted for both. Data 

literacy plays a critical role in effective data use and understanding how to use assessments to 

improve student achievement. The absence of a significant relationship between ELA and 

mathematics proficiency levels and teachers’ assessment use may indicate a gap in knowledge, 
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lack of skills, and general attitudes towards assessment use. This disparity may also indicate that 

the quality, usability, and accessibility of timely data impact teachers’ use of data to improve 

instruction (Breiter & Light, 2006; Halverson, 2010; Wayman & Stringfield, 2006). 

Research Question 3 

Research Question 3 was as follows: Is there a relationship between teacher readiness to 

act upon data and New Jersey School Performance Report ELA and mathematics proficiency 

levels? 

Using the New Jersey School Performance Report proficiency levels, the Statewide Data-

Driven Readiness Study Teacher Survey, and descriptive statistics, results from this analysis 

revealed a significant relationship between teachers’ readiness to act upon data and ELA 

proficiency levels. The difference was significant at the .004 level between high- and low-

performing schools; therefore, the null hypothesis was accepted. This finding supports the data 

use theory of action and factors influencing data use framework (Schildkamp & Poortman, 

2015), which illustrates the connection between educators and data that leads to interventions 

implemented in the classroom. The study data imply that schools with high levels of teacher 

readiness to act upon data may possess the ability to access, collect, and examine the quality of 

data and then transform the data into information that can be applied to interventions and action 

related to classroom instructional practice. In addition, the data imply that teachers reporting 

high levels of readiness to act upon data may meet more regularly in teams to review data, 

review effectiveness of instructional practices, and make changes to instruction to improve 

student learning outcomes. To the contrary, no significant relationship was found between 

teacher readiness to act upon data and mathematics proficiency levels; therefore, the null 

hypothesis was accepted.  
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Research Question 4 

Research Question 4 was as follows: Is there a relationship between teacher readiness 

with the use of school support systems available for DDDM and New Jersey School Performance 

Report ELA and mathematics proficiency levels?  

Using the New Jersey School Performance Report proficiency levels, the Statewide Data-

Driven Readiness Study Teacher Survey, and descriptive statistics, results from this analysis 

revealed a significant relationship between teachers’ readiness with the use of school support 

systems and ELA proficiency levels. The relationship was significant at the .025 level between 

high- and low-performing schools; therefore, the null hypothesis was accepted. This finding may 

indicate that schools that frequently use support systems for DDDM may have a shared vision on 

learning, assessment, and good teaching practices. This study finding supports the findings of 

Ikemoto and Marsh (2007), who identified common conditions that are most likely to support the 

use of data in schools. These conditions include (a) the accessibility and timeliness of data, (b) 

the perceived validity of data, (c) staff capacity and support for considering data, (d) the time 

available to interpret and act on evidence, (e) partnership with external organization in analyzing 

and interpreting data, (f) tools for both data collection and interpretation, and (g) an 

organizational culture and leadership that supports the systematic collection of data (Ikemoto & 

Marsh, 2007). In addition, the data suggest that teachers with high levels of use of support 

systems for DDDM have (a) easy access to multiple sources of high quality and accurate 

assessment data and (b) the ability to monitor student progress with adequate technology. 

Teachers with high levels of use of support systems for DDDM may also understand how to 

create effective assessments and interpret data appropriately. To the contrary, no significant 
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relationship was found between teachers’ readiness with the use of school support systems and 

mathematics proficiency levels; therefore, the null hypothesis was accepted.  

Research Question 5 

Research Question 5 was as follows: Is there a relationship between teacher readiness 

with DDDM school culture and New Jersey School Performance Report ELA and mathematics 

proficiency levels? 

Using the New Jersey School Performance Report proficiency levels, the Statewide Data-

Driven Readiness Study Teacher Survey, and descriptive statistics, results from this analysis 

revealed a significant relationship between teachers’ readiness with DDDM school culture and 

ELA proficiency. The relationship was significant at the .019 level between high- and low-

performing schools; therefore, the null hypothesis was accepted. This result indicates that 

teachers reporting high levels of DDDM school culture may routinely use data to uncover 

problems and inform instructional practice to make improvements. In addition, the results 

suggest that supportive leadership exists and there is a strong sense of trust among teachers and 

administrators. The results also imply that establishing a strong DDDM culture of leadership and 

accountability systems are key to facilitating DDDM actions (Gill et al., 2014). Teachers 

reporting high levels of DDDM school culture may also have easy access to data, which 

improves their ability to use data to support decisions. In addition, schools with high levels 

DDDM school culture may have received technical support assistance and professional 

development training for teachers and principals who are using the data to make decisions. For 

these reasons, more study is needed to further examine the impact of these conditions on 

teachers’ DDDM practices. To the contrary, no significant relationship were found between 
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teachers’ readiness with DDDM school culture and mathematics proficiency levels; therefore, 

the null hypothesis was accepted. 

The purpose of this study was to examine the relationship between teachers’ DDDM 

readiness and student achievement in both ELA and mathematics. The findings indicate different 

results in these two subject areas, which is intriguing because both subjects are highly prioritized 

in elementary curriculum. This prioritization may be related to mandatory state standardized 

testing and accountability requirements. Elementary teachers are considered generalists, meaning 

they are required to teach all subjects: ELA, mathematics, science, and social studies. The length 

of the school day and number of days per year is set by the state, whereas the amount of 

instructional time teachers spend on each subject is typically determined by the local board of 

education and school administration. Interestingly, the amount of instructional time spent on 

ELA and mathematics is not equal. This discrepancy indicates that the average instruction time 

allocated for ELA at the elementary level is much greater than math instruction (Milyutin, 2019). 

This trend may reveal an intriguing bias toward ELA versus mathematics instruction. According 

to a study from the Illinois Department of Education (2017), the average daily third-grade ELA 

instructional time in Illinois public schools was 132 minutes compared to 72 minutes in math (as 

cited in Rado, 2017). Although instructional time may be a factor that contributes to a teachers’ 

overall DDDM readiness, further study would be needed to examine this idea.  

Another consideration is the focus on instructional methods and use of assessments with 

mathematics. There are significant differences in the way teachers assess ELA and mathematics. 

Elementary teachers may have more training and skills with assessing reading and writing than 

math. The New Jersey Student Learning Standards for math require teachers to teach math 

differently than how they may have learned it themselves. Furthermore, the New Jersey Student 
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Learning Standards for math focus on engaging students in multistep problem solving, adaptive 

reasoning, fluency, and conceptual understanding. This shift in pedagogy has changed the 

methods teachers use to teach math, which may also impact how teachers use math assessment 

data to make instructional decision. Additional research on how teachers are responding to the 

shifts in math standards, best practices in elementary math instruction, and how best to support 

math teachers is warranted.  

Conclusions 

The results of this study revealed that significant relationships existed between K–5 

elementary teachers’ self-reported readiness on overall DDDM practices and high student 

achievement levels in ELA. These findings also indicated that teachers reporting high levels of 

DDDM practices also had high student achievement in ELA; therefore, the null hypothesis was 

rejected, and the alternative hypothesis was accepted.  

Further inquiry and analysis determined that no significant relationships existed between 

teachers’ readiness with overall DDDM practices and achievement in mathematics. Based on this 

finding, the null hypothesis was accepted. Additional analyses examined subareas of DDDM 

practices and their relationships to ELA and mathematics performance. The results of this study 

indicated that there significant relationships did exist between ELA achievement and teachers’ 

levels of acting upon data, using school support systems, and school culture. Therefore, the null 

hypothesis was rejected, and the alternative hypothesis was accepted. No significant relationship 

was discovered between ELA achievement and the subarea of assessment. Therefore, the null 

hypothesis was accepted. Additionally, no significant relationships were discovered between 

mathematics achievement and teachers’ readiness levels of assessment, acting upon data, using 
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school support systems, and school culture. Therefore, the null hypotheses for all subareas were 

accepted.  

Limitations of the Study 

This research study was limited to quantitative data collected from one survey: The 

Statewide Data-Driven Readiness Study Teacher Survey (McLeod & Seashore, 2006). All data 

gathered from the participants were self-reported. Additional qualitative methods such as focus 

groups, interview, or observation were not used and may be considered for further research.  

Participants were limited to K–5 elementary teachers who provided direct instruction in 

ELA and/or math during the 2018–2019 school year to students in any Grades K–5. Although the 

teachers’ perceptions were valid, a time gap existed due to the lack of standardized testing data 

for the 2019–2020 school year; all state standardized testing was suspended as a result of the 

global pandemic. More recent standardized testing data coupled with more timely survey 

responses would help reduce this time gap and therefore provide more immediate reflection. 

Teacher survey data were collected from a relatively small group of teachers representing 

56 New Jersey elementary schools in 30 school districts in two counties. The study did not 

account for a school’s special characteristics, teachers’ experience or educational levels, 

enrollment size, English language learners, special education population, or other school 

demographics. 

Recommendations for Further Study 

This study adds to the existing body of research on DDDM practices and supports the 

foundational work of previous studies and theoretical frameworks on DDDM. The following are 

recommendations for further study not addressed within the confines of this research. 
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1. The participants in this study were solicited from two neighboring New Jersey 

suburban counties of similar size and demographics. Of the total number of 

participants (n = 110), teacher survey responses represented 56 elementary 

schools in 30 school districts. Future studies with a larger sample size would 

improve the reliability of the results. Additionally, researchers of future 

studies should include urban school districts to add to the existing research. 

2. This study revealed significant relationships between high levels of teachers’ 

DDDM readiness and ELA achievement in all subareas except assessment. 

This variation in the research deserves further investigation to examine how 

teachers use assessment and transform that information into practice. 

3. No significant relationships existed between teachers’ readiness with DDDM 

practices and mathematics. This is a compelling discovery that is worthy of 

further examination. Elementary teachers predominantly teach all subject 

areas, including ELA and mathematics. A mixed-methods study using focus 

groups, interviews, or observations to gain more qualitative data about 

teachers’ readiness with DDDM practices in the area of mathematics may 

provide additional insight to help determine what influences teachers’ DDDM 

practices with mathematics. 

4. This study focused specifically on surveying teachers’ readiness with DDDM 

practices. Superintendents, principals, and other school administrators were 

not included in this study. As discussed in the review of the literature, 

developing a DDDM school culture is an essential component of successful 

DDDM practice. School leadership has a significant role in this process. 
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Further study to examine the DDDM practices of principals using the 

Statewide Data-Driven Decision Making Principal Survey (McLeod & 

Seashore, 2006) would provide greater insight into the relationship between 

school leadership and DDDM practices. 

5. As illustrated by Gill et al. (2014), strong data infrastructure is needed to 

support DDDM practices. Gill et al.’s framework illustrates that improved 

data infrastructure that includes technical hardware, internet connections, 

computers, and servers must be established for an educational institution to 

collect high-quality data. Connections must be made between different types 

of data to promote analysis. Easy access to data and timely delivery improves 

educators’ ability to use data to support decisions. Educational institutions 

should establish technical support assistance and professional development 

training for teachers and principals who are using the data to make decisions. 

Further study of the current state of technical data infrastructure in elementary 

and secondary schools should be conducted.  

6. According to the existing research on DDDM, data literacy for teaching is the 

ability to transform information into actionable instructional knowledge and 

practices by collecting, analyzing, and interpreting all types of data. However, 

the level of knowledge and skills a teacher needs to be considered data literate 

is unclear. Further study on data literacy in schools and levels of teacher data 

literacy would provide additional insight. 

7. Developing teachers’ capacity for DDDM is an essential part of effective 

practice. Knowing how to interpret data and how to use data are two separate 
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skills that must be supported and addressed in teacher training and 

professional development; however, few studies have addressed how leaders 

can support teachers’ capacity for data use. Further study on how school 

leaders can support teachers’ capacity for data use would provide more 

information to help guide educational leaders. 

8. Examining the relationship between instructional time provided for 

mathematics in elementary schools and mathematics proficiency would help 

educators and policymakers better understand the impact instruction time has 

on teachers’ use of DDDM practices. 

9.  The New Jersey Student Learning Standards for math require teachers to 

teach math differently than how they may have learned it themselves. The 

New Jersey Student Learning Standards for math focuses on engaging 

students in multistep problem solving, adaptive reasoning, fluency, and 

conceptual understanding. This shift in pedagogy has changed the methods 

teachers use to teach math, which may also impact how teachers use math 

assessment data to make instructional decisions. Additional research on how 

teachers are responding to the shifts in math standards, professional 

development opportunities on best practice in elementary math instruction, 

and how best to support math teachers is warranted. 

Recommendations for Policy and Practice 

Current research on DDDM strongly emphasizes the importance of data literacy. 

Standards for teachers and educational leaders now require data literacy skills and knowledge in 

addition to using assessment to improve instruction. Data literacy is now embedded in policy and 
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standards at the higher levels of the educational spectrum; however, data literacy must also exist 

at the district and building levels. Educational leaders who desire to improve teaching and 

learning must develop the essential skills and knowledge needed to engage in effective DDDM 

practices and provide professional development opportunities that foster the acquisition of these 

skills in their teachers.   

Educators are required to use data to inform instructional practice for the purpose of 

accountability and improving student learning outcomes; however, teachers have difficulty using 

data for this purpose and face issues such as lack of knowledge, data systems, time, and principal 

leadership (Anderson et al., 2010; Mandinach & Jackson, 2012; Wayman et al., 2012). To 

provide teachers with the appropriate support, building principals would benefit from adopting 

strategies that help develop data literacy among staff.  

The ability to understand and use data effectively to inform decisions is a complex 

process and is important for school improvement. Creating collaborative space and time for 

teachers is a vital part of successful DDDM. Teachers learn well together and would benefit from 

professional learning that is collaborative, engaging, and meaningful. Creating collaborative data 

teams to provide opportunities for teachers to ask questions, examine quality data, identify 

problems or learning gaps, and adjust instruction will help to improve instructional practice and 

increase students’ learning outcomes.



 

75 

REFERENCES 

Ackoff, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16(2), 3–9. 

American Recovery and Reinvestment Act of 2009, Pub. L. No. 111–5. (2009).  

Anderson, S., Leithwood, K., & Strauss, T. (2010). Leading data use in schools: Organizational 

conditions and practices at the school and district levels. Leadership and Policy in 

Schools, 9(3), 292–327. https://doi.org/10.1080/15700761003731492 

Breiter, A. (2003). Information - Knowledge - Sense-making: A theoretical analysis from 

management / business literature [Unpublished manuscript].  

Breiter, A., & Light, D. (2006). Data for school improvement: Factors for designing effective 

information systems to support decision-making in schools. Educational Technology & 

Society, 9(3), 206–217.  

Brunner, C., Fasca, C., Heinze, J., Honey, M., Light, D., Mandianach, E., & Wexler, D. (2005). 

Linking data and learning: The Grow Network Study. Journal of Education for Students 

Placed at Risk, 10(3), 241–267. https://doi.org/10.1207/s15327671espr1003_2 

CCSSO’s Interstate Teacher Assessment and Support Consortium. (2010). Model core teaching 

standards: A resource for state dialogue (ED566116). ERIC. 

https://eric.ed.gov/?id=ED566116 

Choo, C. W. (2002). Information management for an intelligent organization: The art of 

environmental scanning (3rd edition). Information Today. 

Coburn, C. E., & Turner, E. O. (2011). Research on data use: A framework and analysis. 

Measurement: Interdisciplinary Research & Perspective, 9(4), 173–206. 

https://doi.org/10.1080/15366367.2011.626729  

Coburn, C., & Talbert, J. (2006). Conceptions of evidence use in school districts: Mapping the 

terrain. American Journal of Education, 112(4), 469–495. https://doi.org/10.1086/505056 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. L. Erlbaum Associates.  

Collins, A., Brown, J., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible. 

American Educator, 15(3), 6–11, 38–46. 

Cosner, S. (2011). Teacher learning, instructional considerations and principal communication: 

Lessons from a longitudinal study of collaborative data use by teachers. Educational 

Management Administration & Leadership, 39(5), 568–589. 

https://doi.org/10.1177/1741143211408453  

https://doi.org/10.1080/15700761003731492


 

76 

Cramer, E. D., Little, M. E., & McHatton, P. A. (2014). Demystifying the data-based decision-

making process. Action in Teacher Education, 36(5–6), 389–400. 

https://doi.org/10.1080/01626620.2014.977690 

Datnow, A., Park, V., & Wohlstetter, P. (2007). Achieving with data: How high performing 

school systems use data to improve instruction for elementary students. Los Angeles: 

University of Southern California, Rossier School of Education, Center on Education, 

Center on Educational Governance. 

Datnow, A., Park, V., & Kennedy‐Lewis, B. (2013). Affordances and constraints in the context 

of teacher collaboration for the purpose of data use. Journal of Educational 

Administration, 51(3), 341–362. https://doi.org/10.1108/09578231311311500  

Datnow, A., & Hubbard, L. (2015). Teachers’ use of assessment data to inform instruction: 

Lessons from the past and prospects for the future. Teachers College Record, 117(4), 1–

26.  

Desimone, L. M., Porter, A. C., Garet, M. S., Yoon, K. S., & Birman, B. F. (2002). Effects of 

professional development on teachers’ instruction: Results from a three-year longitudinal 

study. Educational Evaluation and Policy Analysis, 24(2), 81–112. 

https://doi.org/10.3102/01623737024002081  

Drucker, P. F. (1989). The new realities: In government and politics, in economics and business, 

in society and world view. Harper & Row. 

Dunlap, D., & Piro, J. S. (2016) Diving into data: Developing the capacity for data literacy in 

teacher education. Cogent Education, 3(1), Article 1132526. 

https://doi.org/10.1080/2331186X.2015.1132526 

Dunn, K. E., Airola, D. T., Lo, W. J., & Garrison, M. (2013). What teachers think about what 

they can do with data: Development and validation of the data driven decision-making 

efficacy and anxiety inventory. Contemporary Educational Psychology, 38(1), 87–98. 

https://doi.org/10.1016/j.cedpsych.2012.11.002 

Earl, L. M., & Katz, S. (2002). Leading schools in a data rich world. In K. Leithwood, P. 

Hallinger, G. C. Furman, K. Riley, J. MacBeath, P. Gronn, & B. Mulford (Eds.), Second 

international handbook of educational leadership and administration (pp. 1003–1022). 

Springer. http://dx.doi.org/10.1007/978-94-010-0375-9_34 

Earl, L. M., & Katz, S. (2006). Leading schools in a data-rich world: Harnessing data for school 

improvement. Corwin Press.  

Earl, L., & Fullan, M. (2003). Using data in leadership for learning. Cambridge Journal of 

Education, 33(3), 383–394. https://doi.org/10.1080/0305764032000122023 

Ebbeler, J., Poortman, C. L., Schildkamp, K., & Pieters, J. M. (2016). Effects of a data use 

intervention on educators’ use of knowledge and skills. Studies in Educational 

Evaluation, 48, 19–31. https://doi.org/10.1016/j.stueduc.2015.11.002 

https://doi.org/10.1080/2331186X.2015.1132526
https://doi.org/10.1080/0305764032000122023
https://doi.org/10.1016/j.stueduc.2015.11.002


 

77 

Elementary and Secondary Education Act of 1965, Pub. L. No. 89–10. (1965). 

Elmore, R. F. (2004). School reform from the inside out: Policy, practice, and performance. 

Harvard Education Press.  

Every Student Succeeds Act. 20 U.S.C. § 6301 (2015).  

Fullan, M. (2001). Leading in a culture of change. Jossey-Bass 

Fullan, M. (2007). Leading in a culture of change: Personal action guide and workbook. Jossey-

Bass.  

Fullan, M., & Stiegelbauer, S. (1991). The new meaning of educational change. School 

Effectiveness and School Improvement, 2(4), 336–343. 

https://doi.org/10.1080/0924345910020406 

Gage, N. L. (1978). The scientific basis of the art of teaching. Teachers College Press. 

Gallimore, R., Ermeling, B., Saunders, W., & Goldenberg, C. (2009). Moving the learning of 

teaching closer to practice: Teacher education implications of school-based inquiry 

teams. Elementary School Journal, 109(5), 537–553. https://doi.org/10.1086/597001 

Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What makes 

professional development effective? Results from a national sample of teachers. 

American Educational Research Journal, 38(4), 915–945. 

https://doi.org/10.3102/00028312038004915  

Gill, B., Borden, B. C., & Hallgren, K. (2014). A conceptual framework for data driven decision 

making [Report]. Mathematica Policy Research. https://www.mathematica.org/download-

media?MediaItemId={953F2E9F-3195-47FD-BA06-2CAB60BB132E} 

Gummer, E., & Mandinach, E. (2015). Building a conceptual framework for data literacy. 

Teachers College Record, 117(4), 1–22.  

Halverson, R. (2010). School formative feedback systems. Peabody Journal of Education, 85(2), 

130–146. https://doi.org/10.1080/01619561003685270  

Hamilton, L., Halverson, R., Jackson, S. S., Mandinach, E., Supovitz, J. A., & Wayman, J. C. 

(2009). Using student achievement data to support instructional decision making. IES 

practice guide. NCEE 2009-4067 (ED506645). ERIC. 

https://files.eric.ed.gov/fulltext/ED506645.pdf 

Huguet, A., Marsh, J., & Farrell, C. (2014). Building teachers’ data-use capacity: Insights from 

strong and developing coaches. Education Policy Analysis Archives, 22, 52–54. 

https://doi.org/10.14507/epaa.v22n52.2014 

Ikemoto, G. S., & Marsh, J. A. (2007). Cutting through the “data-driven” mantra: Different 

conceptions of data-driven decision making. RAND.  

https://doi.org/10.1080/0924345910020406
https://files.eric.ed.gov/fulltext/ED506645.pdf
https://doi.org/10.14507/epaa.v22n52.2014


 

78 

Immen, K. C. (2016). Making data-driven decisions: Teacher perceptions about using student 

assessment data to inform instruction (Publication No. 10167992) [Doctoral dissertation, 

Seattle University]. ProQuest Dissertations & Theses Global. 

Institute of Education Sciences. (2011). WWC procedures and standards handbook. What Works 

Clearinghouse.  

Jimerson, J. B. (2014). Thinking about data: Exploring the development of mental models for 

“data use” among teachers and school leaders. Studies in Educational Evaluation, 42, 5–

14. https://doi.org/10.1016/j.stueduc.2013.10.010  

Kennedy, B. L., & Datnow, A. (2011). Student involvement and data-driven decision making. 

Youth & Society, 43(4), 1246–1271. https://doi.org/10.1177%2F0044118X10388219 

Knapp, M. S., Copland, M. A., & Swinnerton, J. A., (2007). Understanding the promise and 

dynamics of data-informed leadership. Yearbook of the National Society for the Study of 

Education, 106(1), 74–104. https://doi.org/10.1111/j.1744-7984.2007.00098.x  

Lachat, M. A., & Smith, S. (2005). Practices that support data use in urban high schools. Journal 

of Education for Students Placed at Risk, 10(3), 333–349. 

https://doi.org/10.1207/s15327671espr1003_7 

Lai, M. K., Wilson, A., McNaughton, S., & Hsiao, S. (2014). Improving achievement in 

secondary schools: Impact of a literacy project on reading comprehension and secondary 

schools qualifications. Reading Research Quarterly, 49(3), 305–334.  

Light, D., Wexler, D. H., & Heinze, J. (2005, March 1). Keeping teachers in the center. A 

framework of data-driven decision-making [Paper presentation]. The Annual Meeting of 

the Society for Information Technology and Teacher Education, Phoenix, AZ, United 

States.  

Louis, K. S., Dretzke, B., & Wahlstrom, K. (2010). How does leadership affect student 

achievement? Results from a national US survey. School Effectiveness and School 

Improvement, 21(3), 315–336. https://doi.org/10.1080/09243453.2010.486586  

Love, N., Stiles, K. E., Mundry, S., & DiRanna, K. (2008). A data coach’s guide to improving 

learning for all students: Unleashing the power of collaborative inquiry. Corwin Press. 

Mandinach, E.B., Friedman, J.M., & Gummer, E.S. (2015). How can schools of education help 

to build educators’ capacity to use data: A systematic view of the issue. Teachers College 

Record, 117(4). 

Mandinach, E. B. (2009, October). How LEAs use data to inform practice: The opportunities for 

and challenges to use in schools and districts [Conference session]. NEI Research and 

Evaluation that Inform Leadership for Results Conference, Louisville, KY, United States. 

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1207%2Fs15327671espr1003_7


 

79 

Mandinach, E. B. (2012). A perfect time for data use: Using data-driven decision making to 

inform practice. Educational Psychologist, 47(2), 71–85. https://doi.org/10.1080/ 

00461520.2012.667064 

Mandinach, E. B., & Gummer, E. (2013). A systematic view of implementing data literacy in 

educator preparation. Educational Researcher, 42(1), 30–37. https://doi.org/10.3102/ 

0013189X12459803 

Mandinach, E. B., & Gummer, E. S. (2016). What does it mean for teachers to be data literate: 

Laying out the skills, knowledge, and dispositions. Teaching and Teacher Education, 60, 

366–376. https://doi.org/10.1016/j.tate.2016.07.011  

Mandinach, E. B., & Jackson, S. S. (2012). Transforming teaching and learning through data-

driven decision making. Corwin Press. 

Mandinach, E. B., Honey, M. Light, D., Heinze, C, & Nudell, H. (2005, April 1). Data-driven 

instructional decision-making using technology-based tools [Paper presentation]. The 

Annual Meeting of the American Educational Research Association, Montreal, Quebec. 

Mandinach, E. B., Honey, M., Light, D., & Brunner, C. (2008). A conceptual framework for 

data-driven decision-making. In E. Mandinach & M. Honey (Eds.), Data-driven school 

improvement: Linking data and learning (pp. 1331). New York, NY: Teachers College 

Press. 

Mandinach, E. B., Rivas, L., Light, D., Heinze, C., & Honey, M. (2006, April 1). The impact of 

data-driven decision making tools on educational practice: A systems analysis of six 

school districts [Paper presentation]. The Annual Meeting of the American Educational 

Research Association, San Francisco, CA, United States. 

Mandinach, Ellen & Gummer, Edith. (2015). Data-Driven Decision Making: Components of the 

Enculturation of Data Use in Education. Teachers College Record. 117. 1-8.  

Marsh, J. A., & Farrell, C. C. (2015). How leaders can support teachers with data-driven decision 

making: A framework for understanding capacity building. Educational Management 

Administration & Leadership, 43(2), 269–289. 

https://doi.org/10.1177%2F1741143214537229 

Marsh, J. A., Pane, J. F., & Hamilton, L. S. (2006). Making sense of data-driven decision making 

in education: Evidence from recent RAND research. RAND Corporation. 

https://www.rand.org/pubs/occasional_papers/OP170.html 

Marsh, J. A., Sloan McCombs, J., & Martorell, F. (2009). How instructional coaches support 

data-driven decision making. Educational Policy, 24(6), 872–907. 

https://doi.org/10.1177/0895904809341467  

Marsh, J.A. (2012). Interventions promoting educators’ use of data: Research insights and gaps. 

Teachers College Record, 114(11), 1-48 

https://www.rand.org/pubs/occasional_papers/OP170.html


 

80 

Massell, D. (1998). State strategies for building capacity in education: Progress and continuing 

challenges (ED426490). ERIC. https://files.eric.ed.gov/fulltext/ED426490.pdf 

Massell, D. (2001). The theory and practice of using data to build capacity: State and local 

strategies and their effects. In S. H. Fuhrman (Ed.), From the capitol to the classroom: 

Standards-based reform in the states (pp. 148–169). University of Chicago Press.  

McDougall, D., Saunders, W., & Goldenberg, C. (2007). Inside the black box of school reform: 

Explaining the how and why of change at getting results schools. International Journal of 

Disability Development and Education, 54(1), 51–89. 

https://doi.org/10.1080/10349120601149755  

McLeod, S., & Seashore, K. (2006). Data driven decision making readiness survey. Teachers. 

Minneapolis, MN: University of Minnesota. 

Means, B., Padilla, C., DeBarger, A., & Padilla, C. (2011). Teachers’ ability to use data to 

inform instruction: Challenges and supports (ED516494). ERIC. 

https://files.eric.ed.gov/fulltext/ED516494.pdf 

Milyutin, E. (2019, August 19). Why don’t we spend more time teaching math? District 

Administration. https://districtadministration.com/da-op-ed-why-dont-we-spend-more-

time-teaching-math/ 

National Assessment of Educational Progress. (n.d.). Achievement gaps. Retrieved September 1, 

2021, from https://nces.ed.gov/nationsreportcard/studies/gaps/ 

The Nation’s Report Card. (n.d.-a). Explore results for the 2019 NAEP reading assessment. 

Retrieved September 1, 2021, from https://www.nationsreportcard.gov/reading/?grade=4 

The Nation’s Report Card. (n.d.-b). 2017 NAEP mathematics & reading assessments: 

Highlighted results at grades 4 and 8 for the nation, states, and districts. Retrieved 

September 1, 2021, from https://www.nationsreportcard.gov/reading_math_ 

2017_highlights/  

New Jersey Department of Education, ESSA Accountabilities Profile Companion Guide. 

ESSA Accountability. 

(2018).https://www.state.nj.us/education/title1/accountability/progress/18/.  

New Jersey Department of Education. New Jersey Student Learning Standards: Mathematics. 

(2020, June). http://www.njintouch.state.nj.us/education/aps/cccs/math/.  

No Child Left Behind Act of 2001, Pub. Law No. 107-110. (2001).  

Park, V., & Datnow, A. (2009). Co-constructing distributed leadership: District and school 

connections in data-driven decision-making. School Leadership and Management, 29(5), 

477–494. https://doi.org/10.1080/13632430903162541 

https://www.nationsreportcard.gov/reading/?grade=4
https://doi.org/10.1080/13632430903162541


 

81 

Rado, D. (2017). Teaching time in Math on the rise, while English declines. Chicago Tribune. 

www.chicagotribune.com/news/breaking/ct-met-math-english-instruction-time-

20171128-story.html 

Reeves, T. D., & Chiang, J.-L. (2018). Online interventions to promote teacher data-driven 

decision making: Optimizing design to maximize impact. Studies in Educational 

Evaluation, 59, 256–269. https://doi.org/10.1016/j.stueduc.2018.09.006  

Schaffer, E., Reyonolds, D., & Stringfield, S. (2012). Sustaining turnaround at the school and 

district levels: The high reliability schools project at Sandfields Secondary School. 

Journal of Education for Students Placed at Risk, 17(1–2), 108–127. 

https://doi.org/10.1080/10824669.2012.637188 

Schifter, C. C., Natarajan, U., Ketelhut, D. J., & Kirchgessner, A. (2014). Data-driven decision 

making: Facilitating teacher use of student data to inform classroom instruction. 

Contemporary Issues in Technology and Teacher Education, 14(4), 419–432. 

https://citejournal.org/volume-14/issue-4-14/science/data-driven-decision-making-

facilitating-teacher-use-of-student-data-to-inform-classroom-instruction/ 

Schildkamp, K., & Lai, M. K. (2013). Conclusions and a data use framework. Data-Based 

Decision Making in Education, 177–191. https://doi.org/10.1007/978-94-007-4816-3_10  

Schildkamp, K., & Kuiper, W. (2010). Data-informed curriculum reform: Which data, what 

purposes, and promoting and hindering factors. Teaching and Teacher Education, 26(3), 

482–496. https://doi.org/10.1016/j.tate.2009.06.007  

Schildkamp, K., & Poortman, C. (2015). Factors influencing the functioning of data teams. 

Teachers College Record, 117(4).  

Schildkamp, K., Karbautzki, L., & Vanhoof, J. (2014). Exploring data use practices around 

Europe: Identifying enablers and barriers. Studies in Educational Evaluation, 42, 15–24. 

https://doi.org/10.1016/j.stueduc.2013.10.007 

Schildkamp, K., Poortman, C. L., Ebbeler, J., & Pieters, J. M. (2019). How school leaders can 

build effective data teams: Five building blocks for a new wave of data-informed 

decision making. Journal of Educational Change, 20(3), 283–325. 

https://doi.org/10.1007/s10833-019-09345-3 

Schildkamp, K., Poortman, C., Luyten, H., & Ebbeler, J. (2017). Factors promoting and 

hindering data-based decision making in schools. School Effectiveness and School 

Improvement, 28(2), 242–258. https://doi.org/10.1080/09243453.2016.1256901 

Schmoker, M. J. (2000). The results we want. Educational Leadership, 57(5), 62–65. 

Shulman, L. S., & Elstein, A. S. (1975). Studies of problem solving, judgment, and decision 

making: Implications for educational research. Review of Research in Education, 3, 3–42. 

https://doi.org/10.2307/1167252  

https://citejournal.org/volume-14/issue-4-14/science/data-driven-decision-making-facilitating-teacher-use-of-student-data-to-inform-classroom-instruction/
https://citejournal.org/volume-14/issue-4-14/science/data-driven-decision-making-facilitating-teacher-use-of-student-data-to-inform-classroom-instruction/
https://doi.org/10.1007/s10833-019-09345-3


 

82 

Smith, N. (2009, October). Data accuracy in longitudinal data systems [Conference Session]. 

The Special Education Data Accountability Center Retreat, Rockville, MD, United 

States. 

Spillane, J. P. (2012). Data in practice: Conceptualizing the data-based decision-making 

phenomena. American Journal of Education, 112(2), 113–241. 

https://doi.org/10.1086/663283 

Spillane, J. P., Halverson, R., & Diamond, J. B., (2004). Towards a theory of leadership practice: 

A distributed perspective. Journal of Curriculum Studies, 36(1), 3–34. 

https://doi.org/10.1080/0022027032000106726  

Teigen, B. N. (2009). A systematic examination of data-driven decision-making within a school 

division: The relationships among principal beliefs, school characteristics, and 

accreditation status [Doctoral dissertation, Virginia Commonwealth University]. VCU 

Scholars Compass. https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article 

=2956&context=etd 

Thorn, C. (2002). Data use in the classroom: The challenges of implementing data-based 

decision-making at the school level. In I. D. Selwood, A. Fung, & C. D. O’Mahoney 

(Eds.), Management of education in the information age (pp. 21–30). Springer.  

Tschannen-Moran, M., & Hoy, A. W. (2001). Teacher efficacy: Capturing an elusive construct. 

Teaching and Teacher Education, 17(7), 783–805. https://doi.org/10.1016/s0742-

051x(01)00036-1  

 U.S. Department of Education (2009a). Guidance on standards, assessments, and 

accountability. 

https://www2.ed.gov/policy/elsec/guid/standardsassessment/guidance_pg5.html 

U.S. Department of Education. (2009b). Race to the Top program: Executive summary 

(ED557422). ERIC. https://files.eric.ed.gov/fulltext/ED557422.pdf 

U.S. Department of Education. (n.d.). Every Student Succeeds Act (ESSA). Retrieved September 

1, 2021, from https://www.ed.gov/essa?src=ft.%20(2018).%20 https://www.nj.gov 

/education/title1/accountability/progress/18/ESSACompanionGuide.docx. 

U.S. Department of Health, Education, and Welfare, Office of Education, Profile of ESEA: The 

elementary and secondary Education act of 1965, titles I, II, III, IV, V (1967). 

Washington, D.C.  

van Geel, M., Keuning, T., Visscher, A. J., & Fox, J. (2016). Assessing the effects of a school-

wide data-based decision-making intervention on student achievement growth in primary 

schools. American Educational Research Journal, 53(2), 360–394. 

https://doi.org/10.3102/0002831216637346 

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. 

Harvard University Press. 

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1086%2F663283
https://www2.ed.gov/policy/elsec/guid/standardsassessment/guidance_pg5.html
https://files.eric.ed.gov/fulltext/ED557422.pdf
https://www.ed.gov/essa?src=ft.%20(2018).%20
https://doi.org/10.3102%2F0002831216637346


 

83 

Wayman, J. C., & Jimerson, J. B. (2014). Teacher needs for data-related professional learning. 

Studies in Educational Evaluation, 42, 25–34. https://doi.org/10.1016/j.stueduc. 

2013.11.001  

Wayman, J. C., & Stringfield, S. (2006). Technology‐Supported involvement of entire faculties 

in examination of student data for instructional improvement. American Journal of 

Education, 112(4), 549–571. https://doi.org/10.1086/505059  

Wayman, J. C., Cho, V., & Spikes, D. D. (2012). District-wide effects on data use in the 

classroom. Education Policy Analysis Archives, 20(25), 1–28. 

Wayman, J. C., Stringfield, S., & Yakimowski, M. (2005). Teachers using data to improve 

instruction: Exemplary practices in using data warehouse and reporting systems [Paper 

presentation]. The 2005 Annual Meeting of the American Educational Research 

Association, Montreal, Canada. . 

Wei, R. C., Darling-Hammond, L., Andree, A., Richardson, N., & Stelios, O. (2009). 

Professional learning in the learning profession: A status report on teacher development 

in the United States and abroad. National Staff Development Council.  

White, V. C. (2008). Relationships among principals’ beliefs about data-driven decision making, 

principal and school characteristics, and student achievement in elementary schools 

(Publication No. 3347189) [Doctoral dissertation, University of Florida]. ProQuest 

Dissertations & Theses Global.  

Wohlstetter, P., Datnow, A., & Park, V. (2008). Creating a system for data-driven decision-

making: Applying the principal-agent framework. School Effectiveness and School 

Improvement, 19(3), 239–259. https://doi.org/10.1080/09243450802246376  

Young, V. M., & Kim, D. H. (2010). Using assessments for instructional improvement: A 

literature review. Education Policy Analysis Archives, 18(19), 1–40. 

Young, V.M. (2006). Teachers’ use of data: Loose coupling, agenda setting, and team norms. 

American Journal of Education, 112(4): 521-548.



 

84 

Appendix A: Statewide Data-Driven Readiness Study Teacher Survey Permission 

Julianne Kotcho <jkotcho@mendhamtwp.org>

Request:Survey Tool 

Scott McLeod <dr.scott.mcleod@gmail.com> Mon, Sep 17, 2018 at 11:50 PM
Reply-To: dr.scott.mcleod@gmail.com
To: jkotcho@mendhamtwp.org

Hi Julianne,

You are welcome to use one or more of the DDDM surveys and/or modify them as desired with proper attribution.
Please see http://www.dangerouslyirrelevant.org/copyright. I would like to request a PDF copy of any writings (articles,
dissertation, etc.) that emerge from your use of the surveys. See the attached. Also, several dissertations have used
the DDDM surveys so make sure you find those for your literature review! 

Thanks for the kind words about my last book. My next one comes out this week!   :) 

Good luck with your study!
[Quoted text hidden]
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MNPrincipalSurvey.pdf 
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MNSuperintendentSurvey.pdf 
21K

MNTeacherSurvey.pdf 
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MNTechCoordinatorSurvey.pdf 
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Appendix C: Statewide Data-Driven Readiness Study Teacher Survey 

 

STATEWIDE DATA-DRIVEN READINESS STUDY

- Teacher Survey -

Yes No

1. I receive state assessment results each year. IF NO, 

SKIP TO QUESTION 6
o o

STATE ASSESSMENTS Disagree 

Strongly

Disagree 

Moderately

Disagree 

Slightly

Agree 

Slightly

Agree 

Moderately

Agree 

Strongly

2. State assessment results are timely enough to 

adequately inform my instruction
o o o o o o

3. State assessment results are detailed enough to 

adequately inform my instruction
o o o o o o

4. State assessments are aligned with state curriculum 

standards
o o o o o o

5. State assessment results are easy to understand and 

interpret
o o o o o o

Yes No

6. I receive other yearly assessment results (e.g., 

Terranova, ITBS, NWEA) each year. IF NO, SKIP TO 

QUESTION 11

o o

OTHER YEARLY ASSESSMENTS Disagree 

Strongly

Disagree 

Moderately

Disagree 

Slightly

Agree 

Slightly

Agree 

Moderately

Agree 

Strongly

7. Results from these other yearly assessments are timely 

enough to adequately inform my instruction
o o o o o o

8. Results from these other yearly assessments are detailed 

enough to adequately inform my instruction
o o o o o o

9. These other yearly assessments are aligned with state 

curriculum standards
o o o o o o

10. Results from these other yearly assessments are easy to 

understand and interpret
o o o o o o

Yes No

11. I collaborate with other teachers to create and use 

common periodic assessments to monitor student 

progress during the school year. IF NO, SKIP TO 

QUESTION 16

o o

COMMON PERIODIC ASSESSMENTS Disagree 

Strongly

Disagree 

Moderately

Disagree 

Slightly

Agree 

Slightly

Agree 

Moderately

Agree 

Strongly

12. Results from these common assessments are timely 

enough to adequately inform my instruction
o o o o o o

13. Results from these common assessments are detailed 

enough to adequately inform my instruction
o o o o o o

14. These common assessments are aligned with state 

curriculum standards
o o o o o o

15. Results from these common assessments are easy to 

understand and interpret
o o o o o o

Thank you for participating in this survey. Please note that Questions 1 to 20 ask you about four different kinds of assessment s: A) 

yearly assessments from the state, B) yearly assessments from other sources, C) common periodic assessments created in 

conjunction with other teachers, and D) other (i.e., not teacher-created) periodic assessments.
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STATEWIDE DATA-DRIVEN READINESS STUDY

- Teacher Survey -

Yes No

16. I use other (i.e., not teacher-created) periodic 

assessments (e.g., Scantron, STAR, DIBELS, CBM) to 

monitor student progress during the school year. IF 

NO, SKIP TO QUESTION 21

o o

OTHER PERIODIC ASSESSMENTS Disagree 

Strongly

Disagree 

Moderately

Disagree 

Slightly

Agree 

Slightly

Agree 

Moderately

Agree 

Strongly

17. Results from these other periodic assessments are timely 

enough to adequately inform my instruction
o o o o o o

18. Results from these other periodic assessments are 

detailed enough to adequately inform my instruction
o o o o o o

19. These other periodic assessments are aligned with state 

curriculum standards
o o o o o o

20. Results from these other periodic assessments are easy 

to understand and interpret
o o o o o o

ACTING UPON DATA Disagree 

Strongly

Disagree 

Moderately

Disagree 

Slightly

Agree 

Slightly

Agree 

Moderately

Agree 

Strongly

21. Teacher teams meet regularly to look at student data and 

make instructional plans
o o o o o o

22. When I meet with other teachers, we usually focus on 

student learning outcomes
o o o o o o

23. Teachers in this school work collaboratively to improve 

curriculum and instruction

24. Teachers are given adequate time for collaborative 

planning
o o o o o o

25. Teachers in this school regularly discuss assumptions 

about teaching and learning
o o o o o o

26. I use assessment data to identify students who are not 

experiencing academic success
o o o o o o

27. I know what instructional changes to make when data 

show that students are not successful
o o o o o o

28. I use assessment results to measure the effectiveness of 

my instruction
o o o o o o

29. In this school I am encouraged to try out new teaching 

strategies
o o o o o o

30. I use data to verify my assumptions about the causes of 

student behavior and performance
o o o o o o

31. I have clear criteria for determining the success of 

instructional activities
o o o o o o

32. If I propose a change, I bring data to support my proposal o o o o o o
33. I make changes in my instruction based on assessment 

results
o o o o o o

34. Our district's goals are focused on student learning o o o o o o
35. Our school improvement goals are clear, specific, 

measurable, and based on student data
o o o o o o

36. Teachers and principals have access to good baseline 

data from which to set annual instructional goals
o o o o o o

37. I use data from student assessments to set instructional 

targets and goals
o o o o o o
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STATEWIDE DATA-DRIVEN READINESS STUDY

- Teacher Survey -

SUPPORT SYSTEMS Disagree 

Strongly

Disagree 

Moderately

Disagree 

Slightly

Agree 

Slightly

Agree 

Moderately

Agree 

Strongly

38. I can easily access the information I need from school 

and district data systems
o o o o o o

39. Teachers and parents communicate frequently about 

student performance data
o o o o o o

40. Student performance data available to me are accurate 

and complete
o o o o o o

41. Student performance data are easily available to the 

individuals that need them
o o o o o o

42. Parents and community members know what our school 

is doing and what is needed to improve student 

achievement

o o o o o o

43. Successful educational practices are widely shared in the 

district
o o o o o o

44. My school uses multiple data sources to assess the 

effectiveness of educational programs
o o o o o o

45. Teachers have significant input into data management 

and analysis practices
o o o o o o

46. I know how to use technology to monitor student progress o o o o o o
47. I have adequate access to the technology necessary to 

monitor student progress
o o o o o o

48. My professional development has helped me use data 

more effectively
o o o o o o

49. I have received adequate training to effectively interpret 

and act upon yearly state assessment results
o o o o o o

50. Professional development has improved my skill in 

developing classroom assessments
o o o o o o

51. Teachers have significant input into plans for professional 

development and growth
o o o o o o

52. Student achievement data are used to inform school and 

district improvement initiatives
o o o o o o

53. Whole-school staff meetings focus on measured progress 

toward data-based improvement goals
o o o o o o

54. Student achievement data are used to determine teacher 

professional development needs and resources
o o o o o o

55. School and classroom improvement efforts are aligned 

with state standards
o o o o o o

56. Student achievement data are used to determine 

resource allocation
o o o o o o
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STATEWIDE DATA-DRIVEN READINESS STUDY

- Teacher Survey -

SCHOOL CULTURE Disagree 

Strongly

Disagree 

Moderately

Disagree 

Slightly

Agree 

Slightly

Agree 

Moderately

Agree 

Strongly

57. As a school we have open and honest discussions about 

data
o o o o o o

58. I have the knowledge and skills necessary to improve 

student learning
o o o o o o

59. Student achievement data are used primarily for 

improvement rather than teacher evaluation
o o o o o o

60. Administrators in this school trust the professional 

judgments of teachers
o o o o o o

61. Administrators model data-driven educational practices o o o o o o
62. My school adequately supports teachers' use of data to 

improve classroom instruction
o o o o o o

63. My building's administrator(s) buffer my school from 

distractions to our school improvement efforts
o o o o o o

64. My success as an educator should be determined 

primarily by my impact upon student learning
o o o o o o

65. I routinely use data to inform my instructional practices 

and understand student needs
o o o o o o

66. Teachers in this school have a sense of collective 

responsibility for student learning
o o o o o o

67. My school uses data to uncover problems o o o o o o
68. I conduct self-assessments to continuously improve 

performance
o o o o o o

69. I am a valued member of my school's data-driven reform 

efforts
o o o o o o

70. I have access to high-quality student assessments to 

evaluate student progress
o o o o o o

71. My success or failure in teaching students is primarily due 

to factors beyond my control rather than to my own efforts 

and ability

o o o o o o

72. Using data has improved the quality of decision-making in 

my school
o o o o o o

73. By trying different teaching methods, I can significantly 

affect my students' achievement levels
o o o o o o

74. There is a strong sense of trust among teachers and 

administrators in my school
o o o o o o

75. If we constantly analyze what we do and adjust to get 

better, we will improve
o o o o o o

76. I feel some personal responsibility when our school 

improvement goals are not met
o o o o o o

77. Students in our school believe that they will succeed at 

learning if they keep trying
o o o o o o
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