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Real-Time Voice Biometric Speaker Verification 

Inderbir Dhillon1, Jason Rupp1, Aniketh Vankina, Dr. Robert Slater 

1 Master of Science in Data Science, Southern Methodist University, 

Dallas, TX 75275 USA 

Abstract. Automated speaker verification has been an area of increased 

research in the last few years, with a special interest in metric learning 

approaches that compute distances between speaker voiceprints. In this 

paper, three metric learning systems are built and compared in a one-shot 

speaker verification task using contrastive max-margin loss, triplet loss, 

and quadruplet loss. For all the models, spectrograms are created from 

speaker audio. Convolutional Neural Network embedding layers are 

trained to produce compact voiceprints that allow users to be distinguished 

using distance calculations. Performances of the three models were similar, 

but the model with the best EER used triplet loss in this experiment. 

1   Introduction 

Speaker verification is needed whenever someone wants to access an 

account remotely. Many institutions, especially financial institutions, allow 

users to access their accounts via telephone. This method is usually a tedious 

and time-consuming (therefore costly) part of the interaction. Recent advances 

in automated speaker recognition have led to more interest in automating 

speaker verification systems. This paper constructs a speaker verification model 

using different loss functions: contrastive pairwise loss, triplet loss, and 

quadruplet loss. 

Automated speaker verification entails comparing the utterance of an 

unknown speaker to a voiceprint of a single speaker. This is a one-to-one 

comparison where the question is simple: are these two audio segments from the 

same speaker. This differs from speaker identification because identification 

entails a one-to-many comparison between an unknown speaker's utterance and 

multiple voiceprints. Speaker verification is a more straightforward task due to 

the relative simplicity, so there is a real promise that an automated verification 

system can be implemented given the previous success of blacklist speaker 

identification systems [1].  

Successful production systems have traditionally utilized post-hoc processes 

whereby known fraud voices are used to create voice models of known 

fraudsters. High-risk calls can then be screened to identify fraud callers, and the 

institution can put a hold on any transactions related to the call. In this type of 

production system, screening is typically not done in real-time, and knowledge-

based authentication is still needed.  

Additionally, many fraudulent calls are required to continually update the 

fraudster profiles because the quality has a serious impact on system 

performance. Designing an automated system that could effectively screen calls 

without needing a large knowledge bank of fraudulent voices could alleviate 

several of these problems. 

The challenges to implementing speaker verification in the past have been a 

lack of training data and a lack of attention to one-shot learning. Theoretical 

gains have been made in speaker recognition tasks such as the National Institute 

of Standards and Technology (NIST) Speaker Recognition Evaluation providing 
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the underpinning for a production automated speaker verification platform. Still, 

additional work needs to be done to produce a system that is performant enough 

for real applications. 

This paper builds on more recent work, which has produced highly 

performant speaker verification systems using large datasets such as the Vox 

Celeb dataset and sophisticated metric learning loss functions. Of particular 

interest in this paper is comparing the performance of three different loss 

functions: contrastive pairwise loss, triplet loss, and quadruplet loss.  

Additionally, real-world systems don't have the advantage of requiring 

collections of verification voiceprints. A system that requires multiple 

verification voiceprints is more cumbersome and adds marginal utility. This 

study aims to use voice biometrics to build a real-time text-independent speaker 

verification system that can verify identity-based on a single past voiceprint. 

The remainder of this paper is organized as follows: a review is done of past 

techniques in speaker verification in Section 2; a breakdown of the contrastive 

pairwise, triplet, and quadruplet models built in this model is done in Section 3; 

the results of these models are presented in Section 4; Section 5 consists of a 

discussion of the model as well as the ethical concerns of this research; the work 

is concluded in Section 6. The code used in this paper can be found at the 

following link: https://github.com/IndyD/Speaker-Verification-Capstone. 
 

2   Literature Review 

 
The following segments will give an overview of the theory and results of 

previous work in speaker verification. 

 

2.1 Theory 

 

2.1.1 Pre-Processing 

 
One of the keys to finding a meaningful representation of a voice in the data 

pre-processing step. To convert the audio segments for speech recognition, 

Fourier transforms used to covert the data to the frequency space, which is much 

more helpful in evaluating the recurring characteristics in an audio segment than 

the raw signal. From a speech signal, the power of the frequency needs to be 

assessed and can be visualized through spectrograms.  

The Fast Fourier Transform (FFT) is one form of Fourier transform that can 

be used to determine the power of a sampled frame at different frequencies. In 

essence, the Fourier transform is a tool used to reconstruct periodical waveforms 

using series harmonics and their multiples [2]. When mentioning Fourier 

transformation in general, Discrete Fourier Transformation (DFT) is another 

contender. The reason that FFT is used over DFT is that it is more 

computationally efficient [2].   
 

2.1.2 Feature Extraction 

 
Once the data has been pre-processed, the feature extraction process starts, 

and the frequencies are evaluated using FFT and spectrograms. Feature 

extraction is the next step in implementing a successful speech recognition 

system. Feature extraction is one of the most important aspects of speaker 

identification. A well-chosen feature representation can make discrimination of 

speakers much easier.  
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Feature Extraction Algorithms by Alim and Rashid (2017) discuss the 

importance of these techniques, including but not limited to Mel-Frequency 

Cepstral Coefficients, Linear Prediction Cepstral Coefficients, Line Spectral 

Frequencies, Discrete Wavelet Transform, and Perceptual Linear Prediction. 

The main purpose of feature extraction is to illustrate a speech signal by getting 

a predetermined number of signal components [1]. This is done by "…changing 

the speech waveform to a form of parametric representation at a relatively lesser 

data for subsequent processing and analysis" [1].  

MFCC (Mel-Frequency Cepstrum Coefficients) is a technique often used in 

feature extraction before neural network embeddings. When computing MFCC, 

the spacing of Mel-filter banks and choice for the number of Mels becomes a 

key concern. The filter banks are used to capture the energy of a voice into 

different discrete bins.  

MFCCs denote low-frequency regions better than a high-frequency region 

[1]. Hence, it has better compute power for formants in the low-frequency range 

and can describe the vocal tract resonance [1]. In addition, MFCC was 

previously viewed as the technique of choice for general speaker identification 

applications because it has a reduced vulnerability to noise disturbance [1, 3].  

MFCC was the state-of-the-art feature extraction technique for many years 

but eventually got surpassed by Neural Network embeddings partially because 

MFCCs have many parameters that need tuning [6]. Neural Network 

embeddings can use the Mel-filter bank data and find the best transformation for 

feature extraction. 
 

2.1.3 Speaker Identification with Statistical Techniques 

 
Once feature extraction has been done on the audio signal, a model is 

needed to identify speakers. Early success in the field of speech verification was 

achieved using Gaussian Mixture Models (GMM). In this approach, the audio 

signals can be considered a Gaussian mixture of two factors: the audio features 

associated with the particular speaker and the audio features related to the 

channel [8]. Joint Factor Analysis (JFA) was used to model the expected 

variability within the channel and the audio features within a speaker's voice as 

separate subspaces. The JFA models the speech features as a linear combination 

of the channel/session subspace, the speaker subspace, and a Universal Baseline 

Model (UBM) to isolate the unique speaker's variability [8].  

The UBM is generated from a diverse set of baseline voices, which should 

represent the population being screened, so the amount of variability expected in 

a subset of generic speakers is captured. An individual speaker's subspace is 

distinct from the UBM (the portion of the variability in the speaker's voice that 

is not captured in the UBM) and can be used to identify the unique speaker.  

The JFA approach was superseded by a single factor extraction technique 

introduced by Dehak et al. in 2009 called i-vector extraction, which remained 

state-of-the-art until the recent challenge by neural network approaches [8]. 

Analogous to JFA, the i-vector extraction consists of a GMM-UBM. However, 

all the remaining variability is modeled within a single remaining term 

compressed to a lower dimension. The low-dimensional representation of this 

remaining variability term is known as the i-vector. Since the UBM had been 

removed, the i-vector should only contain the features identifying an individual's 

voice and the channel features [8]. 

 

After creating i-vectors, another step is needed to maximize the difference 

between channel variability and speaker variability in the i-vector. Dehak et al. 

initially used Linear Discriminant Analysis (LDA) that projects the i-vector to 

the space with the largest separation [9].  
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Rather than doing LDA, a simple cosine distance scoring can be calculated 

between the channel-compensated i-vectors instead of relying on a classification 

model. This cosine distance approach allows very efficient audio screening 

compared to the JFA approach, which would be very useful in a real-time 

screening application [9]. 

Much work has gone into maximizing the difference between channel 

variability and speaker variability in i-vector speaker verification. Yao et al. 

(2018) explored using different channel compensation techniques using the 

RSR2015 speaker evaluation database. They found marginal improvement over 

LDA when using Gaussian probabilistic LDA (EER 5.14 and 4.79, 

respectively). However, there was a more significant improvement when using 

neural networks. Using a speaker classifier network (SCN), discriminative deep 

metric learning (DDML), and discriminatively learned network (DLN) yielded 

EERs of 4.26, 3.89, and 3.44, respectively [10].  

 

2.1.4 Deep Neural Networks 

 
In recent research, neural networks have significantly outperformed 

traditional channel-compensation techniques for classification, and neural 

networks are increasingly being used to extract the features as well. Using 

neural networks in speaker recognition has grown in popularity, especially now 

that there is ample access to computing power. 

Deep Neural Networks (DNN) can be employed for speaker verification, 

which is are neural networks with several hidden layers. These networks are 

comprised of an input layer, which can be composed of several features. The 

features will have weights applied at each layer, in addition to an activation 

function. Lastly, the neural network will have an output layer, which is exactly 

as the name implies. 

 As described in Richardson et al. (2015), two general ways to apply a deep 

neural network to identify speech are an indirect method and a direct method. In 

the direct method of DNN speaker verification, a trained DNN is used to 

determine the speaker. The indirect method differs in that a second DNN is 

employed. The first DNN is used to extract features from the input data. This 

extraction neural network does not have to be trained specifically for this task; it 

could have another purpose. Once the features have been extracted, they can be 

fed into a secondary classifier, a second DNN trained specifically for speaker 

verification. 

One feature extraction method by a DNN is accomplished by one of the 

hidden layers acting as a speaker representation. This technique employed by 

Richardson et al. (2015) and Kydyrbekova et al. (2020) involves a bottleneck 

layer. This hidden layer of the DNN has fewer nodes than the surrounding 

hidden layers. What this does is force the features to compress. This is not all 

dissimilar to principal component analysis and linear discriminate analysis. 

After the features pass through the bottleneck layer, further transformations 

create new features used for speaker verification.  
Some have taken a hybrid approach with speaker recognition and 

verification. After processing the initial parts of speech and extracting the 

converting the speech into an MFCC feature set [12], these are fed into the 

DNN.  
Pre-processing of the data is not required when using DNNs for speaker 

verification [13]. Unprocessed training datasets can be fed directly into the 

DNN, and the model controls for channel-specific normalization while still 

outperforming traditional statistical modeling techniques. 

 

2.1.4 Convolutional Neural Networks 

4

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 11

https://scholar.smu.edu/datasciencereview/vol5/iss2/11



 

A recent technique that has gained wide adoption is to fit a Convolutional 

Neural Network to spectrograms of short audio segments of speaker utterances 

to perform end-to-end feature extraction and speaker recognition. This can be 

seen as stretching the theoretical foundations of CNNs since the image 

processing techniques were not intended to serve dimensionality reduction on 

spectrograms. Still, Nagrani et al. (2020) were able to achieve state-of-the-art 

performance on the VoxCeleb dataset using a 2-dimensional CNN based on the 

ResNet architecture [14]. 
ResNets are a breakthrough in image classification techniques that allow the 

training of much deeper networks without degradation in performance. They do 

this by adding "shortcut connections" that skip one or more layers, helping 

overcome some of the issues that traditional deep neural networks encounter 

[15]. The shortcut connections are "identity mappings" rather than parameters 

and do not add computational complexity. Due to these "shortcut connections," 

ResNets can build larger, deeper neural networks that are similarly performant 

to other state-of-the-art image techniques like the Visual Geometry Group 

(VGG) and achieved state-of-the-art recognition on ImageNet in 2015 [15]. 

VGG Neural Networks are a type of ConvNet model that uses a small 

convolutional filter (3 by 3) and a Relu activation function in all the layers, 

which allows for deeper ConvNets than were previously possible [16]. VGGs 

achieved state-of-the-art on the ImageNet 2014 challenge and have remained 

one of the most popular computer vision techniques [16]. 

Researchers have studied many techniques for automated speaker detection. 

Still, less attention has been paid to the case where a single verification audio 

sample is used for speaker verification, known in many applications as "one-shot 

learning." One-shot speaker verification can be particularly challenging because 

channel-specific effects aren't averaged out across multiple samples. Velez et al. 

(2018) tested several architectures for one-shot speaker identification using 

Siamese Convolutional Neural Networks that succeeded in applying service 

robots despite requiring a one-to-many comparison [17].  

Siamese Neural Networks are an architecture where a pair of neural 

networks with similar (or the same) weights are constructed [18]. Pairs of audio 

samples from matching and non-matching speakers are fed to the Siamese 

Neural Network. A loss function such as contrastive loss or triplet loss is used to 

minimize the distance between matching pairs and maximize the space between 

non-matching pairs. Siamese Neural Network architectures are particularly well 

suited to one-shot learning because they are inherently designed to compare 

pairs [18]. 
 

2.1.5 Contrastive Loss Functions 

 
As previously mentioned, a metric is needed that calculates the distance 

between voices rather than treat this as a classification problem. To that end, a 

loss function is needed that compares multiple inputs to compute the distance 

between them. An intuitive loss function for this application is max-margin 

contrastive loss.  

Contrastive triplet loss is more complicated but has been used in state-of-

the-art metric learning systems. Contrastive quadruplet loss is an extension of 

triplet loss with another input and will be explored in this paper. 

 

Max Margin Contrastive Pairwise Loss 
 

Max margin contrastive pairwise loss is a loss function that takes two data 

inputs and a label. Here is the formula: 
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𝒍𝒐𝒔𝒔(𝒅, 𝒀) =  
𝟏

𝟐
∗ 𝒀 ∗ 𝒅𝟐 + (𝟏 − 𝒀) ∗

𝟏

𝟐
∗ 𝒎𝒂𝒙(𝟎, 𝒎 − 𝒅)𝟐 

 

Here Y is the label (0 is the inputs are from different speakers, one 

otherwise). The distance calculated between the two inputs is d, and there is a 

margin parameter m [19]. 

The label term is used as an indicator. If the label is 1, the loss is the 

squared distance between the two inputs. Intuitively, distances between audio 

samples from the same speaker are considered a loss since they should be very 

close together. When the label is 0, the inputs should be forced at least m units 

away from each other. If they are closer than m, the loss is the square of the 

extent to which the inputs violate the distance requirement. In this way, audio 

segments for non-matching speakers are punished for being too close together. 

 
Contrastive Triplet Loss 
 

Contrastive triplet loss has a slightly different setup in that no label is 

provided. Instead, every data record contains three inputs. The first input is the 

baseline (called the anchor). The following two inputs are a similar example 

(i.e., another audio from the same speaker) or a dissimilar example (i.e., audio 

from a different speaker). Here is the formula for triplet loss: 

 

𝒍𝒐𝒔𝒔(𝒅𝟏, 𝒅𝟐) =  𝒎𝒂𝒙(𝒅𝟏
𝟐 −  𝒅𝟐

𝟐 + 𝒎, 𝟎)  
 

Here, d1 is the distance between similar inputs and d2 is between dissimilar 

inputs. There is still a margin parameter m as well. This loss function adds loss 

when the dissimilar inputs are less than m units further apart than the similar 

inputs [20]. 
 

Contrastive Quadruplet Loss 
 

The final loss function covered in this paper is contrastive quadruplet loss, 

which has the formula below: 

 

𝒍𝒐𝒔𝒔(𝒅𝟏, 𝒅𝟐, 𝒅𝟑) =  𝒎𝒂𝒙(𝒅𝟏
𝟐 −  𝒅𝟐

𝟐 + 𝒎, 𝟎) + 𝒎𝒂𝒙(𝒅𝟏
𝟐 − 𝒅𝟑

𝟐 + 𝒎, 𝟎)   
 

The d1 and d2 terms represent the distances between similar and dissimilar 

inputs, respectively, like triplet loss. Here, however, there is also a d3 term 

which is the distance between the anchor and a second dissimilar inputs (which 

is dissimilar from input d2) [21]. 

The loss function is essentially the combination of two triplet loss functions, 

one for separating d1 from d2 and another for separating d1 from d3. Both tasks 

have their margin, m1 and m2; they can be set to the same value in practice.   

 

2.2 Models 

 

2.2.1 MFCC 

 
Research into MFCCs and other spectral feature extraction techniques 

generally revolves around tuning the parameters of these features, such as frame 

size and frequency filters. The performance of MFCCs can vary substantially 
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based on the choice of these parameters, which can be seen as a disadvantage of 

using them for feature extraction.  
 Kopparapu and Laxminarayana wrote a 2010 article where they reviewed 

the results of multiple experiments to explore some of these features. The speech 

signal was sampled at 16 kHz and represented by 16 bits. The speech signal was 

then divided into frames of 32 ms and 16 ms. This resulted in 512 and 256 

samples, respectively [22]. Most of the research was done on small speech 

samples.  

The Mel filter banks were then computed for each sample speech frame on 

a 30-band frame from a minimum frequency of 130 Hz to a maximum of 6800 

Hz [22]. A minimum of 26 coefficients are obtained, but only 12-13 coefficients 

are kept for speech recognition. The article does not provide the number of 

MFCC pulled but is implied that it was more than 26 coefficients. The choice of 

the Mel Filter banks computation affected the performance. These results show 

that the nature of MFCCs makes so that there is no single best extraction but 

context-dependent. 

 

2.2.2 Statistical Models 
 

A big advancement in automated speaker recognition was a 2004 study. 

Zheng et al. used a recently introduced GMM-UBM speech recognition 

architecture to significantly improve the existing GMM based text-independent 

speaker recognition model on the 2000 NIST Speaker Recognition Evaluation 

corpus using MFCCs for feature extraction. The GMM-UBM model 

outperformed a baseline model based on GMMs without a Universal 

Background Model, reducing relative error by 31.2%. The GMM-UBM had a 

test error of 29.8%, an impressive level at the time [23]. 

       By 2006, Dehak et al. significantly outperform the GMM-UBM joint factor 

analysis approach with an i-vector approach. They experimented with several 

improvements to the architecture and found that the best results were obtained 

using Within-Class Covariance Normalization (WCCN) and LDA for the final 

classification. In the NIST 2006, Speaker Recognition Evaluation set, the i-

vector with WCCN had an Equal Error Rate (EER) of 2.7%, compared to 3.8% 

with the JFA approach. An advantage of this approach is that a simple cosine 

distance scoring was calculated between the channel-compensated i-vectors, so 

audio screening could be done more quickly than the JFA approach, which 

would be very useful in a real-time screening application [9].  

There is continued research into the i-vector approach.  In a 2017 study, 

Kanrar uses a cosine-based prediction model that used data collected from a 

recording from a railway station in India in Hindi, Bengali, Teague, and Oriya 

[24]. Most of the test was from 45-second intervals, with a list of 30 people. An 

i-vector with 400 dimensions equaled to 39 MFCC features was created for 

automated speaker recognition [24]. The results achieved 80% accuracy in terms 

of verified speakers, which is an impressive result given the model's simplicity.  

 

 

2.2.3 Neural Net Models 

 
While some researchers have continued with i-vector research, the more 

recent effort has gone to CNN approaches. In a 2020 study, Nagrani et al. tested 

various models, including 34-layer ResNets, 50-layer ResNets, and a 

modification of ResNet called ThinNet that has fewer parameters.  In the end, 

the 34-layer ThinNet had the lowest EER of 2.87%, achieving state-of-the-art on 

the VoxCeleb2 dataset [14]. The contrastive loss was used, but due to the 

difficulty of finding convergence when training solely with contrastive loss, the 
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model was trained for identification using a softmax loss function then the 

classification layer was replaced with a fully connected layer and finished 

training with the contrastive loss [14]. 

Velez et al. (2018) tested Siamese CNNs with both ResNet and VGG 

architecture.  A Voice Activity Detector was used for both networks to detect 

when the speaker was speaking, and a one-second audio sample was captured 

and turned into a spectrogram. Speaker identification was then done against a 

verification set chosen from the VoxCeleb dataset [25]. The speaker was 

identified by performing a speaker verification task. Surprisingly, a simple 7-

layer VGG network outperformed a 50-layer ResNet with accuracies of 91% 

and 89%, respectively, in the task of speaker identification [25]. 

A key to this architecture is that the Siamese Network allows for one-shot 

learning where a speaker can be identified based on a single previous speech 

segment. Additionally, a new voice sample can be added for an identification 

task without retraining the whole network. These are the operational concerns 

that are often overlooked in studies. This paper creates an end-to-end real-time 

speaker verification system for the whitelist voice biometric use case that 

requires only one voiceprint per speaker. 

 

3   Methods  

  

3.1 Data  

  
The data used for this paper was the Voxceleb dataset, a compilation of 

audio and video files obtained from interviews of celebrities posted on 

YouTube. This dataset includes over 6000 voice samples of these celebrities and 

over one million utterances encompassing over 2000 hours of audio. This 

dataset has been increasingly used in speech research because it contains more 

speakers than the NIST Speaker Recognition Evaluation dataset and is freely 

available. Voxceleb audio segments were obtained from YouTube videos of 

celebrities giving interviews, often in front of audiences. This means that there is 

potential for the background noise as well as interruptions by other speakers. 

This makes training more complicated but can lead to more robust models for 

real-world applications where these issues must be accounted for.  

  
3.2 Implementation   

 
For speaker validation, a generic speaker embedding model was built based 

on the VGG7 architecture in [17]. For each speech segment, a spectrogram is 

created from 5 seconds of speaker audio. From there, models are trained using 

contrastive pairs loss, triplet loss, and quadruplet loss to compare the 

performance of these different models. These models take various inputs, but 

they all have the same CNN embedding model: the first seven layers of VGG16. 

This method has been successful for researchers in the past [17] [25]. 

This CNN embedding architecture can be seen in Figure 1. There are four 

total convolutional layers, two dropout layers, and one fully connected layer.  
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                                                                           Figure 1.  VGG-7 Embedding Model 

 

The Siamese, Triplet, and Quadruplet models shown in Figures 2-4 use 

these embedding layers as the base and add a layer that compares the Euclidean 

distances between the inputs. The Siamese model takes two input spectrograms 

and a label, the Triplet model takes three spectrogram inputs, and the Quadruplet 

model takes four spectrograms as input.  

 

Figure 2.  Pairwise Contrastive Loss Model  
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Figure 3.  Triplet Loss Model 

 
 Figure 4.  Quadruplet Loss Model 
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The output of the Siamese model trained with contrastive loss is well suited 

for the validation task at hand: two spectrograms are given as input, and the 

model scores the likelihood of matching. A final postprocessing step must be 

done for the Triplet and Quadruplet models to drop the final comparison layer 

and use the last dense layer as a "speaker model." When using the system for 

further identification, the Euclidean distance is taken between speaker 

spectrograms, and a threshold can be chosen for labeling matches. In practice, 

the same thing should be done with the Siamese model to control the specificity 

and sensitivity of the model generates. 

A pre-training step was added since distance metrics such as contrastive 

pairs, triplet loss, and quadruplet loss cannot converge properly. In this pre-

training step, the same VGG-7 embedding is used as the full models, but the last 

layer is a single full connected node with Sparse Cross-Entropy Loss. This 

becomes a multiple classification problem where every user in the corpus is a 

label. The embedding model gets trained to identify the speaker based on their 

spectrogram correctly. Once this is done, the final layer is replaced with the loss 

layer of interest, and further training is done to fine-tune the model. 

Semi-hard mining was added as an enhancement for both triplet mining and 

quadruplet mining. There is some concern that these models over-optimize the 

easy examples and fail on complex, more interesting examples. To combat this, 

these models are first run with a naïve dataset to train. Once the model is 

trained, triplets or quadruplets that are semi-hard can be identified: anchor closer 

to the positive spectrogram, no negative spectrograms with 0 loss. Once a 

dataset of only semi-hard triplets or quadruplets is built, the model is retrained 

with this set. 

 

 

 

3.3 Model Parameters 
The parameters of this model fell into three main groups: spectral 

parameters, model parameters, and training parameters. The spectral parameters 

are the features used to generate the spectrograms (example in fig below) and 

were shared across all the models. Through experimentation, the best spectral 

features were found to be: 130 Mel banks, 512 FFTs, a hop length of 222, 300 

max frames, and a window length of 512.  
 

 

  
Figure 5.  Sample speaker spectrogram 
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Once the spectrograms were created for each speaker, datasets of size 

200,000 were made for each model. Ten percent of the data was held out for a 

test set, and a further 10% of the training set was used for validation during 

training. The speaker in the test set, training set, and validation set were non-

overlapping to avoid overfitting. 

A simple labeled set was generated for the cross-entropy training pre-

training step, but each of the distance-based models required the generation of a 

distinct dataset. A balanced set of matching and non-matching pairs with labels 

was generated for the contrastive pairs model. The Triplet and Auadruplet 

models did not need balancing since each data point contains positive and 

negative examples. 

A batch size of 100 was chosen during training, and training was done until 

there was a lack of improvement in validation loss for three epochs. Stochastic 

Gradient Descent was selected as the optimizer with a learning rate of 0.0001. 

The learning rate decayed by a factor of 0.99 over 100000 steps, and there was a 

momentum term of 0.9. All these values were mirrored in the pre-train phase. 

4 Results 

For the final evaluation of the models, a balanced test set of matching and 

non-matching pairs of spectrograms with labels was used for speaker validation. 

For all three models, the final layer of the model is removed, and only the 

speaker model generation layers are kept. The outputted distances can be 

thought of as scores. The equal error rates (EER) of false positives and false 

negatives can be calculated using these scores and the labels. This will serve as 

the primary success metric in this paper. Below is a table of the performance of 

various models: 

 

 
Figure 6.  Model EER 

 

Contrastive triplet loss is the best performing model in these experiments, with 

an EER of 24.4%. This beat out the cross-entropy classification model with 

produces an EER of 25.3%. The contrastive pairwise loss and quadruplet models 

did perform slightly better than the cross-entropy classification model with 

EERs of 25.1% and 24.8%, respectively. 
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5   Discussion 

The speaker verification system presented in this paper was a successful 

implementation. However, the results were far from state-of-the-art. This was 

mainly due to a lack of tuning in the data pre-processing due to computation 

limitation. 

The primary purpose of this research was to compare the difference 

between contrastive loss, triplet loss, and quadruplet loss. In general, research 

has shown triplet loss to be superior to contrastive pairwise loss, and quadruplet 

loss has certain benefits over triplet loss but has not been primarily adopted. 

Triplet loss did prove to be the most successful model in terms of EER. 

Beyond EER, there is a tradeoff in training time and memory requirements 

when scaling up loss functions. Pairwise loss uses two images for each data 

point, whereas triplet and quadlet use 3 and 4 images, respectively. This means 

that triplet loss training time and memory requirements are 50% higher for 

triplet loss than pairwise loss and 100% higher for quadruplet loss. This 

limitation also supports the idea that triplet loss is a good balance between 

accuracy and computational efficiency. 

 

 

5.1 Implementation  
 

Real-world implementation of an automated speaker verification system 

requires additional components. The model presented in this paper finds 

distances between generic voices. Once a distance is generated, a threshold must 

be set to determine which voice samples are considered a match. Setting this 

threshold depends on the security risk of allowing the wrong speaker through. 

Speakers that are considered a match can be let through, while non-matching 

speakers would require additional verification. 

Collecting audio samples require a database system that checks if the 

account holder has a voiceprint on file. If not, then the voiceprint is collected 

during the account holder's first caller. Subsequent calls can be screened against 

this voiceprint. 

A significant benefit of using a speaker embedding model is that the last 

dense layer of the neural network can be thought of as the voiceprint. In this 

paper, the generated voiceprints are numeric vectors of length 1024. This means 

that speaker voices can be stored on small disks drives. Comparing voices is also 

computationally efficient: simply taking the Euclidean distance between 

voiceprints.  

The proposed system has the advantage of working on top of existing fraud 

prevention solutions such as traditional knowledge-based authentication and 

blacklist screening. Any calls that are not exact matches can go through 

knowledge-based authentication. All high-risk calls can still be screened against 

a blacklist to look for possible matches to blacklisted fraudsters to screen for 

additional screening as well. 

A concern with any automated security feature is the possibility of hostile 

actors. Since the models in this paper were only trained on a closed set of 

speakers and conditions. There is a possibility to produce sounds or that produce 

artificially high scores that fool the model. To some extent, this issue can be 

mitigated by constantly updating the training model with these examples. This 

would be sufficient for most applications, but further interventions can be taken, 

such as having the phone agent manually flag any calls with excessive noise or 

training as a separate model for this task. 

 

 

13

Dhillon et al.: Real-Time Speaker Verification

Published by SMU Scholar, 2021



 

5.2 Ethics  
 

When dealing with the storage and usage of biometric information, consent 

and data security are significant concerns. In most jurisdictions, consent is 

required before recording a person's voice. Financial institutions and call centers 

usually have the infrastructure in place to handle this. Often, there is a pre-

recorded message or a prompt by the phone agent informing the caller of the 

recording.  

Given the existing infrastructure for informed consent in existing call banks, 

gaining consent is not a significant issue in speaker verification. A more 

substantial concern is around data breaches and the ethics of storing biometric 

information. Data breaches are a common occurrence in the modern internet 

landscape. When passwords as leaked, data is compromised, but the password 

can be changed. However, biometric voice data is fundamental to how a person 

speaks and is not changeable. This raises troubling questions about the idea of 

permanently compromised individuals. 

A well-functioning voice biometrics verification system should be able to 

get around some of these thorny issues. First, any entity that stores biometric 

information of any kind should practice the highest level of data security. Even 

in a data breach, the advantage of speaker embedding approaches is that the data 

is not useful in circumventing the system. Even if hackers were to capture the 

voice models for all users, there is no clear way to generate the input to the 

verification system. Additionally, voiceprints are specific to a specific model 

and do not compromise a person's voice in general. 

6 Conclusion 

Overall, this paper successfully implemented real-time voice biometric 

verification comparing contrastive pairwise, triplet, and quadruplet loss. The 

triplet loss model was the best performing, with an EER score of 24.4%. 

Optimizations such as pre-training with cross-entropy loss on a classification 

problem and mining of semi-hard triplets let slight improvements in 

performance but use the last layer of the cross-entropy pre-training step as a 

voice model proved surprisingly effective. The result of this paper is to provide 

lessons about loss function performance in metric learning that can be further 

evaluated in future research. 
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