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Abstract

The stability of the Internet depends on the presence of well-behaved flows. While TCP forms the majority of the
traffic over the Internet, the Internet user community is also dedicated to supporting mobile devices over wireless
networks. However, TCP is not well suited to support applications over lossy wireless networks. Ideally, these
applications require a protocol that adapts to network conditions with the ability to discriminate congestion-based
and transmission-based losses.

In this paper, we present a rate-based transport protocol that is designed to support communication for mobile
nodes using infrastructure-based wireless networks. We propose an end-to-end approach to loss discrimination based
on network state estimation at the receiver. Discrimination is achieved by correlating short-term history of packet
inter-arrival times with the loss. We also integrate a congestion avoidance algorithm to react to pending network
congestion. Simulations of our protocol prototype show that rate-based protocols can provide better correlation to
network conditions than ACK-clocked protocols. We provide extensive evaluation through simulation demonstrating
that our protocol is well-behaved over a wide range of scenarios.
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I. INTRODUCTION

Advances in communication technology have increased the reliability of wired networks to the point where
transmission losses are rare. As a result, losses in the Internet are generally due to congestion caused by path
overuse. Such specific knowledge about network reliability has enabled TCP to be tuned to assume that all losses
are caused by congestion. The introduction of technologies such as radio networks with higher loss rates breaks this
assumption. Some losses can be handled by making the lossy link appear reliable. For example, wireless technologies
like IEEE 802.11 [1] provide link-layer error correction to mask packet loss due to transmission errors. Such an
approach assumes that the transmission losses can be recovered locally in a fashion that does not adversely affect
the end-to-end transmission of data. These approaches do not, however, guarantee that no transmission losses will
occur. Therefore, it is necessary to adapt transport protocols to handle transmission losses while retaining important
transport protocol behavior such as congestion control and fairness to other flows. The challenge to designing such
a protocol lies with the fact that a communication channel may span both wired and wireless links, introducing
both congestion and transmission losses into the channel.

In general, transport protocols should react to congestion losses in a fashion that helps to alleviate congestion
in the network. If congestion losses are treated as transmission losses, the sender does not decrease its offered
load and more congestion builds up in the network. On the other hand, losses due to transmission do not indicate
congestion. Therefore, if transmission losses are treated as congestion losses, the sender unnecessarily reduces its
offered load, reducing the throughput of the stream. Either type of misclassification of losses can have detrimental
effects on the communication flow and on the network. These limitations demand the design of a protocol that
enables distinguishing congestion losses from transmission losses.
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Recently, there have been several proposals to optimize TCP for wireless networks [2], [3], [4], [5]. Some of
these solutions [2], [3] try to maintain the semantics of TCP congestion control by hiding transmission losses from
the end hosts by modifying the underlying infrastructure. Techniques like Explicit Loss Notification (ELN) [6] and
Explicit Congestion Notification (ECN) [7] can be integrated into an end-to-end approach to provide almost perfect
knowledge of the cause of a loss. However, such an approach requires the expensive replacement of routers and
other support infrastructure making deployment impractical. Therefore, a precise end-to-end loss discrimination
scheme is necessary to maximize the performance of a transport protocol in dynamic wired-wireless networks
without infrastructure support.

In this paper, we propose and analyze the eXtendend Rate-based Transport Protocol (XRTP). The rate-based
nature of XRTP provides regularity of packet transmission that enables the tracking of congestion in the network,
allowing XRTP to discriminate packet losses effectively. Additionally, XRTP reacts appropriately to varying network
conditions by incorporating congestion avoidance. Both loss discrimination and congestion avoidance are achieved
through estimation of available bandwidth using a combination of packet-pair [8] and measurements of jitter (i.e.,
the difference between inter-arrival times of packets at the receiver and inter-sending times at the sender), enabling
XRTP to dynamically adapt its parameters to the current network conditions. Short term jitter enables XRTP to
effectively distinguish congestion losses from transmission losses, allowing XRTP to react appropriately. XRTP
also incorporates a novel congestion avoidance algorithm that adapts its level of rate increase in the presence of
congestion in the network. Essentially, XRTP is more aggressive when there is no congestion allowing it to compete
with other aggressive protocols such as TCP, but is less aggressive in the presence of congestion, supporting the goal
of good congestion avoidance. Given the potential inaccuracies in bandwidth estimation using packet-pair, XRTP
integrates non-parametric density estimation [9] to filter out irrelevant measurements. These combined mechanisms
allow XRTP to achieve good throughput in wired/wireless environments while maintaining fairness to competing
traffic.

The XRTP design supports both bulk data transfer and multimedia traffic. However, in this paper, we present a
prototype targeted at bulk data transfer. An extension to multimedia traffic would not impact the flow control or
congestion control mechanisms, but simply require different reliability support with knowledge of priorities and
timeliness. In addition, the rate-based nature of XRTP naturally supports multimedia traffic.

The rest of this paper is organized as follows. Section II discusses transport protocol design in the context of
current research in the area. Section III presents the design of the XRTP. Section IV presents the performance
evaluation of the protocol through simulations. Finally, in Section VI, we present conclusions and directions for
future research.

II. T RANSPORTPROTOCOLS FORWIRED/ WIRELESSNETWORKS

Without explicit loss or congestion notification from the network, successful loss discrimination is dependent on
implicit mechanisms available at the transport layer to classify losses. Since transport protocols implicitly monitor the
transmission stream for indications of congestion, similar techniques can be used to determine if there is congestion
when a loss occurs. Designing an end-to-end transport protocol for wireless networks that enables effective loss
discrimination requires four separate components: flow control, bandwidth estimation, congestion avoidance and
loss discrimination. This section describes various issues involved with these mechanisms, providing insight into
the design decisions of XRTP.

A. Flow Control

Current transport protocols use either ACK-clocked or rate-based mechanisms to control the transmission flow
of a stream. ACK-clocked protocols have dominated in wired environments due to their self-clocking nature and
ease of implementation. However, rate-based protocols, such as RAP [10] and TFRC [11] have become popular
due to their smoother transmission when compared to the burstiness of ACK-clocked protocols. Essentially, rate-
based flow control provides a regularity in transmission that supports improved monitoring of network conditions.
Additionally, packet losses due to congestion are reduced since router queues are uniformly filled by regular packet
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transmissions instead of overflowing from bursts. While rate-based protocols have been proposed for wired networks,
current protocols are not directly applicable to wireless networks. RAP mimics the additive increase/multiplicative
decrease congestion control scheme of TCP. However, this approach inhibits RAP from reacting to rapidly changing
bandwidth as expected in wireless networks. TFRC is a TCP throughput equation-based rate-control protocol that
includes packet loss rate and round trip time in the congestion control algorithm. The losses experienced by a flow
shapes the throughput of TFRC. Without explicit loss discrimination, high loss rates degrade the performance of
TFRC.

There have also been several protocols proposed to enhance TCP with packet-spacing to exploit the advantages
obtained by transmitting packets at regular intervals while maintaining the semantics of TCP [12], [13]. Even
though packet-spacing alleviates the bursty nature of TCP, it does not decouple the protocol’s reliability mechanisms
from congestion control. Retransmissions in TCP for reliability could potentially stop the transmission of packets,
limiting the benefits gained by packet spacing. Wireless-TCP [14] is a reliable end-to-end rate-based transport
protocol designed to operate on wireless wide-area networks. WTCP tracks the ratio of inter-packet separation at
the receiver to inter-packet separation at the sender. This ratio corresponds to the ratio of available bandwidth and
actual bandwidth used by the flow. WTCP tries to achieve the target available bandwidth by keeping this ratio close
to one. WTCP uses long-term jitter to track congestion and damp the rate of protocol. However, long-term jitter
is not an accurate metric since channel conditions in wireless networks change too rapidly to correlate channel
conditions with long-term jitter. In XRTP, we take an approach similar to WTCP, but use observations about short-
term jitter which provide a closer correlation to the current state of congestion in the network.

Any rate-based protocol is sensitive to the precision of the operating system’s internal clock, (i.e., the clock
granularity), which determines the maximum transmission rate of the protocol. Current non-realtime operating
systems typically provide granularity of 1-10ms, which supports data rates from 12Mbps to 1.2Mbps respectively
for packets of size of 1500 bytes. To achieve higher data rates, it is necessary to send multiple packets per clock
tick, which may decrease the benefits gained form using a rate-based protocol. We are currently investigating the
effects of such packet streams on XRTP’s congestion avoidance and loss discrimination mechanisms.

B. Bandwidth Estimation

The goal of a well-behaved transport protocol is to target its rate at a level close to the available bandwidth in
the network. In general, the available bandwidth, and so the target rate, to a flow is a dynamic value, constantly
changing with channel usage. Transport protocols can monitor the transmission stream to infer information about
bandwidth in the network. However, such information may track two very different parameters: bottleneck bandwidth
and available bandwidth. Bottleneck bandwidth can be defined as the maximum throughput that can be obtained
between two hosts in the absence of any cross traffic. Available bandwidth is a flow’s fair share of the bandwidth
in the presence of other flows.

Ideally, transport protocols use estimates of available bandwidth to prevent unfair use. However, measuring
available bandwidth or fair share is a non-trivial task in the current Internet where most routers use a first-come
first-serve (FCFS) scheduling policy. Keshav [15] observed the intrinsic difficulty in measuring available bandwidth
in FCFS routers when looking at the use of packet-pair in congestion control. Essentially, packet-pair always
measures bottleneck bandwidth instead of available bandwidth. Protocols like Streaming Media Congestion Control
(SMCC) [16] use packet-pair to determine an estimate of available bandwidth. However, their approach assumes
the use of RED [17] enabled routers that are not common in today’s Internet. Dovrolis [18] showed that available
bandwidth could be estimated for FCFS routers in a one hop network using packet-pair along with an estimate of
cross-traffic utilization of the bottleneck link. By extending this to an infrastructure-based wireless network with
the last hop to the mobile node as the bottleneck link, XRTP estimates the available bandwidth using packet-pair
in conjunction with jitter measurements (which indicate cross-traffic utilization) and packet loss. This approach is
limited by the number of jitter measurements observed in a round-trip time. Thus, XRTP can use packet-pair to
estimate available bandwidth, provided it is able to maintain sufficient packets in flight to gauge network conditions.
We are currently investigating how XRTP should behave when a sufficient number of jitter measurements is not
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received.

The first step to estimating available bandwidth is to accurately determine the bottleneck bandwidth. Techniques
like packet-pair have been widely used by off-line tools that measure bandwidth (e.g.,tcpanaly[19], bprobe[20]).
However, measurements from packet-pair often include erroneous values and the data filtering techniques used
by these tools lack statistical robustness. Lai et. al. [21] suggest the use of kernel density estimation (KDE) to
filter data for estimating the bandwidth of all hops from a source to a destination. The disadvantage of directly
incorporating such estimation algorithms from these bandwidth measurement tools into a transport protocol lies in
the computational complexity of the algorithms. Essentially, offline measurement tools can afford time and resource
intensive computations to converge onto accurate estimates, while transport protocols need to be fast and efficient
to maximize performance. XRTP uses an optimized KDE algorithm that provides efficient filtering without loss of
accuracy using techniques like finite differencing.

C. Loss Discrimination

Solutions for adapting transport protocols for networks with heterogeneous loss characteristics can be classi-
fied into three approaches: transparent or infrastructure-based, hybrid or infrastructure-assisted and end-to-end.
Infrastructure-based approaches try to hide losses from the transport protocol, which is most often TCP, by adding
changes along the path, either at the link layer [22] (i.e., TCP-SNOOP [2]) or at the transport-layer (i.e., indirect-
TCP [3]). Such solutions either blindly recover all losses, which may negatively impact some protocols, or require
explicit knowledge of the transport protocol, which may not be extendable to new transport protocols. Additionally,
infrastructure-based approaches like I-TCP violate the end-to-end semantics of TCP by allowing an intermediate
node to acknowledge data that has not yet been acknowledged by the receiver. Finally, all infrastructure-based
approaches require the extensive deployment of these intermediate nodes, most likely at the base stations, which
limits the feasibility of deployment.

In infrastructure-assisted or hybrid approaches, the transport protocol is modified along with support from the
underlying network to indicate congestion losses (explicit congestion notification (ECN)) [7] or transmission losses
(explicit loss notification (ELN)) [6]. Krishnan et. al. [5] have extensively analyzed the potential performance
benefits of using ELN. While such protocols approach ideal behavior due to the accurate classification of losses,
deployment of such hybrid approaches is limited by the necessity to change routers in the network.

The final approach tries to classify losses using purely end-to-end mechanisms (i.e., no support from or changes
to the infrastructure) [5], [23], [24], [25]. While end-to-end approaches require changes to the end hosts, deployment
can be incremental, falling back on traditional TCP if one of the end hosts does not support the enhanced protocols.
A number of protocols have been proposed that enhance TCP to achieve loss discrimination. TCP Westwood [4]
does not have an explicit scheme to discriminate losses, but the authors claim that rate estimation can account for
wireless losses. Bandwidth estimates are based on information about the rate at which ACKs are received. After
a packet loss indication (i.e., three duplicate ACKs), which could be due to either congestion or link errors, the
sender uses the estimated bandwidth to properly set the congestion window and the slowstart threshold. However,
this scheme does not accurately account for all types of losses making it too conservative to discriminate all
transmission losses. Biaz et. al. [23] distinguish between congestion and wireless losses using packet inter-arrival
times at the receiver. Barman et. al. [24] assume that the variation in the round trip time and the nature of the
loss are correlated. Essentially, congestion losses cause the RTT to vary over the standard deviation but random
losses do not. Samaraweera [25] correlates the round trip time with the throughput-load graph of the flow. They
assume that a packet loss about a certain threshold is usually due to congestion, otherwise it is due to wireless or
random loss. The limitations of all these end-to-end approaches are due to the fact that they propose their heuristics
for TCP-like ACK-clocked protocols that are bursty in nature. However, these heuristics are better suited for rate-
based protocols that transmit at regular intervals [13], providing better correlation of actual network conditions
with heuristic parameters like round-trip time, variance of round-trip time or the throughput-load graph of the
flow. In the context of rate-based flow control, XRTP can correlate inter-packet spacing or measured jitter with
network conditions to discriminate congestion-based losses from transmission-based losses. To be conservative in
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discrimination and reduce misclassification of losses, XRTP also incorporates the relative one-way trip time and its
variance into the heuristic to better gauge network conditions.

D. Congestion Avoidance

While bandwidth estimation provides a target transmission rate for transport protocols, the estimates may be too
high, resulting in congestion in the network. Therefore, all transport protocols must be able to react to an indication
of congestion (i.e., congestion control). However, it may be beneficial for the protocol to react to pending congestion
with the goal of alleviating the problem before it gets too severe (i.e., congestion avoidance). Although it is certainly
beneficial to avoid congestion, this benefit might come at the expense of reduced throughput even in the absence
of congestion in the network. Therefore, congestion avoidance plays a crucial role in the ideal behavior expected
from transport protocols.

One of the first transport protocols to use congestion avoidance was TCP Vegas [26], which tracks congestion in
the network by looking at the difference between the expected throughput and the actual throughput. The baseline
for expected throughput is an estimate of the minimum round trip time between the sender and the receiver. If the
difference between the estimated and actual throughput is too small, TCP Vegas infers that it is operating close to
the capacity and backs off to avoid causing congestion. Similarly, if the difference is too high, TCP Vegas infers
that there is extra capacity in the network and increases its rate. The biggest problem with the congestion avoidance
algorithm in TCP Vegas is that it uses constant parameters making it unsuitable for dynamic environments [27]. The
result is that TCP Vegas is either too aggressive in some situations or not aggressive enough in others. Additionally,
while TCP Vegas works well when only TCP Vegas flows are present in the network, it can get shut out by flows
using other TCP variations, including TCP Reno and TCP Newreno. To address these problems, XRTP dynamically
adapts its congestion avoidance parameters to ensure effective use of network resources and fairness to competing
flows.

While TCP Vegas uses explicit congestion avoidance mechanisms, TCP Westwood [4] uses implicit feedback.
TCP Westwood performs an end-to-end estimate of the bandwidth available along a TCP connection by measuring
the rate of returning acknowledgments. This estimate is used to determine the transmission rate of the protocol.
Unfortunately, this implicit scheme is not reactive enough to changes in dynamic environments including wireless
networks.

III. E XTENDED RATE-BASED TRANSPORTPROTOCOL

To support data transmission in combined wired/wireless environments, we present XRTP, a rate-based protocol
that supports discrimination between congestion and transmission losses. The rate-based component of XRTP
provides smooth transmission of data, while supporting effective estimation of network conditions. The XRTP
receiver closely monitors available bandwidth through a combination of packet-pair and measured jitter. This
monitoring allows the receiver to react to pending congestion (i.e., congestion avoidance) and classify losses. The
bandwidth estimation techniques are enhanced with a non-parametric density estimator to filter out anomalies. In
this section, we present the protocol architecture followed by the main mechanisms of XRTP: bandwidth estimation,
congestion avoidance and rate control, loss discrimination and reliability.

A. Protocol Architecture

XRTP is targeted at environments where losses caused by transmission errors are orders of magnitude greater
than for current wired links. XRTP reduces the transmission rate based on measured positive jitters to avoid network
congestion. In a lossy environment, XRTP stabilizes the throughput with a loss discriminating heuristic by breaking
the fundamental assumption that all packet losses are due to congestion. The protocol relies on the fact that loss
of any type creates an anomaly in the jitter. By classifying the anomaly accurately, XRTP categorizes the packet
loss, achieving better throughput compared to protocols without loss discrimination.

The design of XRTP decouples reliability from flow control. By combining rate-controlled acknowledgements
with a monotonically increasing sequence number for all packets, XRTP eliminates the need for a retransmission
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FLOW MODEL OF PACKET PAIR

Bottleneck Bandwidth = Bbn

Fig. 1. Fluid model of packet pair with two packets.

timer. Essentially, sequence numbers and gap detection are used to detect losses and window-based selective
acknowledgements are used to inform the sender about any losses. While loss discrimination is used to determine
the impact of a loss on the transmission rate, the reliability mechanisms (i.e., retransmission) can be based on more
application-specific knowledge. For bulk data traffic, XRTP retransmits all lost packets. To support multimedia traffic,
XRTP uses information like packet deadlines and priorities to determine which packets should be retransmitted.

B. Bandwidth Estimation

XRTP estimates available bandwidth using packet-pair and jitter measurements at the receiver to set a target
rate at which the protocol transmits. Bottleneck bandwidth needs to be estimated constantly since it could vary
dynamically due to changes in channel conditions. The advantage of measuring bottleneck bandwidth using packet-
pair is due to the fact that it can be done with two data packets and it is very simple to implement. This section
describes the packet-pair technique and the statistical method used to filter the observed data to obtain accurate
estimates.

1) Packet Pair: The fluid flow model in Figure 1 depicts two packets of the same size traveling from a source
to a destination. The narrow part represents the bottleneck link. Once the packet-pair leaves the bottleneck link, a
gap is inserted between the two packets due to queuing at the bottleneck link. Let Bbn be the bottleneck bandwidth,
S be the size of the packet,ts0 and ts1 be the time when the first and second packets are sent back-to-back from
the sender andtr0 and tr1 be the time when they are received at the receiver. To maintain conservation of flow, the
equilibrium equation for the described model is given by

tr1 � tr0 = max

�
S

Bbn

; ts1 � ts0

�
: (1)

This equation reveals that if the two packets are sent close enough in time forcing them to queue at the bottleneck
link back-to-back, the packets arrive at the receiver with the same spacing,tr1 � tr0, as the spacing introduced by
the bottleneck link’s bandwidth,S

Bbn

. Rearranging Equation (1), the bottleneck bandwidth can now be computed as

Bbn =
S

tr1 � tr0
: (2)

However, Equation (2) only holds provided that the two packets are queued only at the bottleneck link and at no
later link downstream, the routers implement first-come first-serve (FCFS) queuing with simple store and forward
and the transmission delay is linear with respect to packet size [21]. Among these assumptions, it is extremely
difficult to satisfy the first since packets travel through multiple hops and each hop carries multiple flows. Due to
this dynamic nature of the network, packets from other flows can get inserted between the packet pairs increasing
the gap between the packets and causing an underestimation of the bottleneck bandwidth (time-expansion). The
packet-pair may also get queued at a later router decreasing the gap between packets causing an overestimation of
bottleneck bandwidth (time-compression).
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array h[n] // last n window-width
array obsrv[n] // last n observations
array pdf[n] // density estimations
est // current estimate
functionbandwidthestimation(new)

// subtract the density of the oldest observation
for i = 2 to n

pdf [i] � =
K(

est�obsrv[i]

h[0]
)

n:h[0]

next i
// delete the oldest observation along
// with addition of new density estimate
for i = 1 to n-1

pdf [i] = pdf [i+ 1] +
K( est�new

h[n]
)

n:h[n]

obsrv[i] = obsrv[i+1]
h[i] = h[i+1]

next i
// compute the density of new observation
obsrv[n] = new

pdf[n] = 1
nh[n]

Pn

i=1 K
�
est�obsrv[i]

h[n]

�
// Compute new bandwidth i.e., compute mean
h[n] = mean

10
// return new estimate

end function

Fig. 2. Linear kernel density estimation for BW filtering.

To satisfy the first assumption and enable the use of packet-pair for bottleneck bandwidth estimation, a statistically
robust filtering algorithm is necessary to eliminate anomalies like time-compression and time-expansion. XRTP uses
a modified version of a kernel density estimation (KDE) algorithm [9] particularly adapted to the rate-based protocol.

2) Kernel Density Estimation:Probability density functions are the basis for estimation of any random quantity.
Consider the set of observed data points of an unknown probability density function. To avoid making assumptions
about the distribution of the observed data, a non-parametric approach such as KDE [9] can be used to filter the
observations. The best estimate of the observed data would be the mean of this random variable.

The probability density function for a kernel estimator with kernel K is defined by

f(x) =
1

nh(x)

nX
i=1

K

�
x�Xi

h(x)

�
: (3)

Here,h(x) is the variable window width, also called the smoothing parameter or bandwidth,n is the number of
observations collected andK is the kernel function that satisfies the following conditionZ

1

�1

K(x)dx = 1:

The time complexity of the KDE algorithm is of orderO(n2). Unlike Lai et. al. [21] who used this estimation
technique for measuring bottleneck bandwidth in their off-line toolpathchar, estimating bandwidth on-line in a
transport protocol requires that the estimator algorithm be optimized to work as efficiently as possible. Given the
estimator function as described in Equation (3), for a fixed widthh, a standard finite differencing technique can be
used to reduce the algorithm to linear time (see Figure 2). Specifically, each time a new observation or measurement
is added into the estimator, the density of the observation being removed (oldest observed measurement) can be
subtracted from all observations and the density of the new observation can be added to all observations in time
linear in n. Therefore, XRTP uses this linearized KDE algorithm to filter out irrelevant observations (i.e., effects
of time-compression and time-expansion) to accurately estimate bottleneck bandwidth.
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C. Congestion Avoidance and Rate Control

When there are multiple flows sharing a link, running XRTP at the bottleneck rate would cause congestion since
the bottleneck rate is not the fair share. To prevent the potential of congestion by transmitting data at a rate greater
than the fair share, XRTP engages explicit congestion avoidance techniques along with congestion control. XRTP
uses three mechanism to regulate its rate. First, XRTP integrates new bandwidth estimates, which slowly push
XRTP to the rate of the bottleneck bandwidth. This is essentially XRTP’s rate increase mechanism. Second, XRTP
uses jitter measurements to determine if the current rate is higher than XRTP’s fair share, in which case the rate
is pushed down. Finally, XRTP cuts its rate by one half when it detects a congestion loss, providing multiplicative
decrease. Figure 3 summarizes the events that impact the rate of transmission of a XRTP sender, which we describe
in detail in the reminder of this section.

Event Action Comments

Bandwidth
estimation

ratenew = ratecurrent � � + newestimated rate �
(1� �)

� is dynamically adjusted based on esti-
mates of network conditions (see equa-
tions 5 and 6).

Positive jit-
ters

ratenew = ratecurrent �
3P

of past 3 positive jitters

-

Congestion
loss

ratenew = ratecurrent
2

XRTP only cuts its rate to a congestion
loss once per RTT.

Fig. 3. List of events and actions taken by XRTP to maintain optimal transmission rate.

1) Using bandwidth estimations:As a first estimate of transmission rate, XRTP sends packet-pairs to estimate the
bottleneck bandwidth. Each time the receiver estimates the new bandwidth, it uses a weighted average of the current
rate and the new estimated bandwidth to update the rate of the protocol. Exponentially weighted moving average
(EWMA) is a poor estimator to measure bottleneck bandwidth accurately since it cannot eliminate the spurious
observations that KDE eliminates elegantly. However, EWMA is extremely efficient in maintaining moving averages
provided the observations are accurate. Therefore, the XRTP sender uses the new KDE filter to accurately estimate
bottleneck bandwidth to update the new rate using the standard EWMA equation with a smoothing parameter�

(see Equation 4). XRTP uses Equation 4 to update its rate once everyk acknowledgments, wherek is set to 3.
Settingk to any reasonable value (3 � k � 10) has little impact on the performance of the protocol as long as it
keeps XRTP reactive to changing bandwidth within a single RTT. Settingk to extremely large values makes XRTP
unresponsive and too conservative.

ratenew = ratecurrent � �+ newestimated rate � (1� �) (4)

Left alone, this estimation tracks the bottleneck bandwidth, which cannot be used alone to determine the
transmission rate since other flows might be sharing the network. However, this estimation can be combined
with two novel congestion avoidance techniques,optimizing XRTP’s parameter,�, based on network conditions
and regulating the transmission rate based on jitter, to effectively operate at the network’s fair share.

2) Optimizing� based on network conditions:To compete for unused bandwidth, a transport protocol must
probe the network. Similar to TCP’s use of additive increase, XRTP increases its rate in the absence of congestion.
Rate increases in XRTP are governed by the inclusion of new bandwidth estimates, as shown in Equation 4. Since
these estimates are measured using packet pair, they provide an estimate of the bottleneck bandwidth, not the
available bandwidth. Therefore, XRTP uses this estimate as a target for probing the network. The rate at which
XRTP tries to reach this target is determined by�, the weight of the new measurement.

In general,� can range from�min to �max, where�min is the most aggressive and�max is the least aggressive.
To be conservative at the start,� is set equal to�max. When XRTP suffers no packet losses in two consecutive
RTTs,� is driven towards�min, allowing it to quickly react to any available bandwidth using Equation 5.

�new =
�current + �min

2
(5)
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transmission time

Receiver

Sender

1/rate

actual time taken
by the packet.

of the packet

actual receive time
of packet 2

estimated receive time
of packet 2

Transmission 
Delay

positive jitter negative jitter

2 3

332211

Fig. 4. Jitter caused by variation in queuing delay.

When XRTP suffers multiple packet losses due to congestion in a single RTT, the protocol pushes� closer to�max

to prevent the rate of transmission from ramping up too quickly using Equation 6.

�new =
�current + �max

2
(6)

XRTP is conservative and waits for indications from the network maintaining� at the current level when there is
no packet loss in a single RTT.

The novelty of XRTP’s congestion avoidance algorithm comes from the fact that XRTP adapts� dynamically
based on the state of the network. Other protocols that use congestion avoidance, such as TCP Vegas, use fixed
parameters, which either result in a protocol that is too aggressive and adds to congestion in the network or is not
aggressive enough to compete with other flows. During normal XRTP operation,� converges to a lower value,
allowing XRTP to compete aggressively with other flows that are also probing the network. However, if there is
congestion in the network,�, converges to a higher value, assuring that XRTP is not too aggressive and does not
add to the congestion.

3) Regulating rate based on jitter:While probing is necessary to find the unused bandwidth in the network, a
good congestion avoidance algorithm must also adapt its rate down if it is sending at a rate higher than its fair
share and causing congestion. To support such congestion avoidance, XRTP monitors for pending congestion by
monitoring jitter in the transmission stream. Since XRTP also sends packets at regular intervals, they are expected
to be received at regular intervals; in other words, the inter-arrival time between packets at the receiver should be
equal to the inter-sending time at the sender. In reality, the inter-sending time may not equal the inter-arrival time
at the receiver due to queuing delays and the presence of other flows (See Figure 4). XRTP keeps track of this
jitter, the difference between the inter-arrival time and the inter-sending time, to damp the rate and operate close
to its fair share of the bandwidth.

To estimate fair share at the receiver, XRTP observes the arrival time of packets. Let the arrival time of thenth

packet,tnr , be the sum of the time it was sent,tsn, and the transmission time,ttn (See Equation (7)).

trn = tsn + ttn (7)

Transmission time can be divided into two components, propagation time,ptn and queue time,qn (at the routers),
as shown in Equation (8). If the routes are not changing, propagation time,ptn, is constant since it only depends
on the transmission speed of the media. Queue time,qn, mainly includes the time the packets wait to be processed
and negligible processing time.

ttn = ptn + qn (8)

The number of packets along the path of communication represents the load in the network. As this number
increases, a packet in transmission experiences longer wait times at the router, and so longer end-to-end transmission
times. On the other hand, as network load decreases, end-to-end transmission time decreases to the limits of
the propagation delay on the transmission medium. The inter-arrival time,iatn, between two successive packets,
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n� 1 andn, can be used to determine the presence of congestion in the network. Substituting Equation (7) into
Equation (9), we get Equation (10) for inter-arrival time.

iatn = trn � trn�1 (9)

iatn = (ttn � ttn�1) + (tsn � tsn�1) (10)

Since the time the packets were sent is known, it can be subtracted from Equation (10) to get a measure of load
in the network as shown in Equation (11). Thus, jitter is governed by the difference in packet travel time. Along
with the assumption that propagation time is constant, the only variant is the waiting time in the queue, as shown
in Equation (13). Therefore, the main component of jitter is the time the packet spent waiting in the router queues,
which in turn indicates the amount of congestion in the network.

jittern = (ttn � ttn�1) (11)

jittern = (ptn � ptn�1) + (qn � qn�1) (12)

jittern = qn � qn�1 (13)

XRTP uses timestamps to determine the difference in send time. Therefore, the jitter for thenth packet can be
computed as

jittern = (trn � trn�1)� (tsn � tsn�1): (14)

In general, jitter may be positive or negative since delays from the previous or current packet may cause the
current packet to arrive early or late. Zero jitter indicates that the queue levels at the routers are maintained at a
constant level. Positive jitter indicates increasing queue lengths and occurs when the cumulative rate of all flows is
greater than the capacity of some link along the path. Negative jitters indicates decreasing queue length and occurs
when the network is unloading or when packets are lost due to congestion. In all cases, positive jitter implies that
the current rate could cause unfair use of bandwidth. Thus, positive jitter triggers congestion avoidance and causes
XRTP to reduce its rate. The jitters indicate the amount of rate XRTP needs to be cut down to reduce the jitter
to zero to prevent queue build up. Intuitively, the size of the positive jitter indicates the amount by which XRTP
overshot the available bandwidth. To be conservative, XRTP cuts downs its rate based on the average of the history
of the past three positive jitters.

ratenew = ratecurrent �
3P

of past 3 positive jitters
(15)

4) Congestion Control:Apart from decreasing its rate based on jitter and adapting�, XRTP always reacts to
congestion losses by cutting its rate in half, essentially using multiplicative decrease, as done by TCP. After a
change in rate, it would take at least half the round-trip time for the sender to react and another half for the receiver
to notice a change. Therefore, similar to other transport protocols, XRTP cuts its rate by half once per round-trip
time (RTT) for any packet loss due to congestion.

D. Loss Discrimination

The main challenge in loss discrimination is that the scheme must be very accurate with a very low rate of
misclassification, in particular, classifying a congestion loss as a transmission loss. Each time XRTP discriminates
a loss as a congestion loss, it goes into the congestion control phase as described in the previous section.
Since XRTP only cuts down its rate once per RTT regardless of the number of losses during that RTT, loss
discrimination during the congestion control phase has no effect on the transmission rate. Essentially, a transmission
loss classified as a congestion loss puts XRTP into the congestion control phase and renders the outcome of loss
discrimination irrelevant for one RTT. While this makes it very important to achieve accurate discrimination, it also
limits the negative impact of misclassifications. Therefore, XRTP uses conservative loss discrimination to reduce
misclassifications as much as possible while maintaining good congestion control behavior.

XRTP uses the history of jitter measurements to classify losses. As discussed in the previous section, positive
jitter indicates incipient congestion in the network. If congestion is not alleviated, the queues overflow and cause a
congestion loss. This loss causes packets adjacent to the lost packet in the queue to become closer to each other.
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function lossdiscrimination(packet p)
if history of positive jitters followed
by packet loss and negative jitterthen

LOSS = CONGESTION
else

// estimate the network congestion
p = curROTT�minROTT

maxROTT�minROTT

if p � threshold and l1 out of last
n ROTT was over deviationthen

LOSS = CONGESTION
else

LOSS = TRANSMISSION
end if

end if
end function

Fig. 5. Hybrid Loss Discrimination heuristics.

Thus, XRTP’s receiver would notice negative jitter for the packet received after the congestion loss. However,
XRTP notices negative jitters in two situations: when a packet is lost due to congestion or when the network
is unloading. Negative jitters occurs after a congestion loss since the next packet takes the queue slot of the
dropped packet, reducing the space between the packet before and after the dropped packet. In the case of network
unloading, packets from other flows become more infrequent, thus packets arrive more quickly since they experience
less queuing time. To differentiate between the causes of negative jitter, XRTP tracks the jitter preceding the loss.
Unloading of the network affects multiple packets in a row, each arriving earlier than expected, resulting in multiple
negative jitters. However, a congestion loss is likely to be preceded by packets that are experiencing congestion,
resulting in positive jitter. Therefore, positive jitter followed by negative jitter indicates a congestion loss. This
characterization is conservative since XRTP reacts to a transmission loss during the reduction of network load as
if it were a congestion loss, reducing the sending rate.

In last hop wireless networks, a packet lost due to link errors during propagation takes the same amount of
transmission time as a packet successfully transmitted. Therefore, the packet following a transmission loss does
not experience any significant change in jitter. Hence, a packet loss with no change in the trend of jitters indicates
a transmission loss. Similar to other end-to-end loss discrimination schemes, this heuristic with only jitter as a
parameter has limitations. Jitter due to the congestion loss of a packet could be masked by the presence of cross
traffic flows since slot emptied by the lost packet could be occupied by a packet from a competing flows. This
could drastically reduce the noticeable negative jitter at the receiver. Additionally, several lower layer protocols like
IEEE 802.11 implement retransmission for packets lost due to transmission error. Retransmission schemes in lower
layers would severely skew the jitter metric making it difficult for the heuristic to classify losses accurately.

Classifying congestion losses as transmission losses is detrimental to the network and other flows. To reduce
the occurrence of such misclassifications, XRTP’s loss discrimination incorporates the relative one-way trip times
(ROTT) [28] and the deviation of ROTT [24] into the heuristic (See Figure 5). XRTP determines the ratio of
the difference between the current and minimum ROTT to the difference between the maximum and minimum
ROTT. The congestion in the network directly correlates to this ratio. XRTP compares this ratio with a threshold
to determine the condition of the network when the packet loss occurred. Whenever the heuristic based on jitter
classifies a loss as a transmission loss, XRTP uses additional heuristic parameters (i.e., ROTT and its deviation) to
confirm the transmission loss.
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DATA packet global sequence number,
reliability sequence number;

timestamp; datasize,DATA
ACK packet global sequence number echo,

CACK;SACK;

updated rate; echo timestamp

Fig. 6. Content of DATA and ACK packet in XRTP.

functionprocesspacket(Acknowledgment ACK)
Process the ack.SACK and update the
boolean ’acknowledgedby receiver’
to reflect if the packet has already
been received by the receiver.
if (ack.CACK� Sender.expectedACK)then

// no packet loss
// delete all the window entries
// whose RSN� ACK.CACK

else
// find all packets that have not been
// acknowledged by the receiver and
// whose Sender.GSN� ACK.GSNecho
// and schedule for re-transmission.

end if

end function

Fig. 7. Algorithm to process the acknowledgments received at the Sender

E. Reliability

Traditional protocols like TCP Newreno use retransmission timers for ensuring reliability of the data transmitted
across the network. However, estimating an accurate retransmission timeout (RTO) is a difficult problem [29], [30].
Allman and Paxson showed that there is an intrinsic difficulty in finding optimal parameters to make an accurate
estimation for RTO. [29]. Given the difficulties and inaccuracies associated with any scheme of achieving reliability
using retransmission timers, XRTP uses logical sequence numbers to achieve reliability, eliminating the need for
an RTO. Additionally, XRTP uses rate-controlled acknowledgements to ensure timely feedback from the receiver.

The use of a monotonically increasing packet sequence number allows XRTP to decouple the packet stream
from the data stream. Every XRTP packet has aglobal sequencenumber (GSN)that is used for gap-based loss
detection. Additionally, every XRTP packet carries a data packet that has areliability sequencenumber (RSN)that
allows XRTP to determine which packet was lost. Finally, this dual sequence number space coupled with selective
acknowledgements (SACK) [31] supports the recovery of multiple losses per RTT. Figure 6 shows the header
information of XRTP’s data and acknowledgement packets. The XRTP sender incrementsGSN for every packet
sent, but only incrementsRSNfor new data packets (i.e.,GSNkeeps track of the packet stream whileRSNkeeps
track of the data stream). The receiver echoes the latestGSN received along with the next expected RSN. XRTP’s
sender maintains a log or window of unacknowledged packets. This window’s size is generally set to twice the
size of the delay-bandwidth product between the sender and the receiver. Each entry in the sender’s window has
the following contents:GSN, RSNand a booleanacknowledgedby receiver. Each time an acknowledgement is
received, the sender tries to determine if there is a gap (i.e., a packet loss in the packet sequence sent) according
to the algorithm described in Figure 7.

To demonstrate XRTP’s logical timer (i.e.,GSN), Figure 8 describes a scenario where consecutive data packets
5 and 6 are lost in the channel. The sender originally sends data packet 5 withGSN = 16 and data packet 6 with
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Sender Receiver
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19,6
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17,6 Packet 6 lost

15,5

15,5

Packet 5 lost

Packet 5
received

received
Packet 6

21,9

packet 5 retransmitted
due to dup−acks
with new GSN=19

packet 6 retransmitted
due to gap in GSN
with new GSN=21

packet 6 would
have been 

transmitted here
without facility
of logical timer

Fig. 8. Working of XRTP’s reliability without retransmission timers.

GSN = 17. Even though duplicate acknowledgements make the sender realize that data packet 5 is lost, it would
not know that data packet 6 also is lost. Later, the sender receives an acknowledgement that the receiver is still
expecting data packet 5 with an echo ofGSN = 18. Since the sender was expecting an echo forGSN = 16, it
immediately knows that data packet 6 is also lost along with data packet 5. The reliability algorithm (See Figure 7)
is used to detect the gap and it triggers a retransmission of data packet 5 withGSN = 20 and data packet 6 with
GSN = 21. Thus, every data packet lost can be accurately detected and retransmitted using a logical timer.

XRTP sender’s transmission is also limited by the window size. Once the window is filled with unacknowledged
packets and the sender receives no new ACKs, the sender assumes that the channel has blacked out and sends
one packet every RTT. Similar to the sender, the receiver goes into a blackout mode and sends one ACK every
RTT if the receiver does not receive data packets for a threshold amount of time. Note that accurate estimation of
RTT is not necessary for XRTP to send a single packet every RTT during this blackout period. XRTP is simply
probing the network to keep the connection alive. When the channel conditions improve, the protocol resumes
normal transmission.

IV. PERFORMANCEEVALUATION

In terms of performance metrics, the most important goals of any transport protocol are high throughput and fair
use of available bandwidth. The evaluations in this section are designed to demonstrate the effectiveness of XRTP’s
(1) bandwidth estimation, (2) operation in lossy environments, (3) loss discrimination and (4) congestion avoidance.
To evaluate XRTP, we use experimental results and simulations in ns-2 [32] (version 2.26). The experiments were
conducted over a local wireless area network (IEEE 802.11b between two hosts with available bandwidth of 2Mbps
to 11Mbps) to evaluate the KDE algorithm, while the protocol operation was evaluated through simulation.

Figure 9 represents the network topology used for the simulation. RouterR1 has traffic sources using XRTP,
TCP, TFRC, TCP Snoop and TCP-Westwood. Linkl2, from routerR2 to the sink, has a bandwidth of 2Mbps with
a 0.01ms propagation delay. This link represents both the wireless link with transmission errors and the shared
bottleneck link for all flows in the network. The packet loss rate varies from 0% (ideal case) to 5% to represent
a variety of wireless technologies. Linkl1 is set with a propagation delay of 40ms and a bandwidth of 10Mbps.
All other links are set with a bandwidth of 10Mbps with propagation delay of 1ms. XRTPs parameters�min and
�max are set to 0.95 and 0.99 respectively and� is initialized to�max for all experiments. Each simulation is run
for 200 seconds.

A. Comparison of bandwidth estimation using EWMA and Kernel Density Estimation

In this section, we demonstrate the effectiveness of an optimized KDE algorithm to estimate bottleneck bandwidth.
Data traces for this experiment were generated by running the packet-pair algorithm on a local wireless area network
(IEEE 802.11b) sending packet-pairs every 30 ms. This represents XRTP running on a network with the bottleneck
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Traffic Sources
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Sink

Traffic Sinks

R2R1

TCP/XRTP/TFRC/TCP Snoop Sources

Fig. 9. Infrastructure based wireless network topology setup in ns2.
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Fig. 10. Bandwidth estimation using KDE and EWMA.
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Fig. 11. Snapshot of bandwidth estimation in wireless network.

bandwidth ranging from 2 to 11 Mbps. The receiver was physically moved into regions with different signal
strengths to accomplish variations in bandwidth. The traces were used as input to compare EWMA with� set to
0.6 and 0.8 and KDE with time-complexityO(n2) andO(n), wheren is the number of sampled data-points stored
to make an estimation.n needs to be determined such that any change in the bandwidth is reflected within a single
RTT. For all experiments,n is set to 8, which was found to be appropriate for the latency in the network topology.

Figure 10 represents estimates obtained for these algorithms for one set of generated traces. In this scenario, the
bandwidth is 11Mbps from 0 to 5 seconds and falls to 2Mbps for 2 seconds at time 2 seconds. As expected, the
algorithms have variance less than the actual measured value (see Figure 10) (i.e., they are less noisy) than the
actual observations. The EWMA based estimator takes a longer time to change its estimate from 11Mbps to 2Mbps
when the channel bandwidth falls to 2Mbps. Both KDE algorithms are much quicker to adapt to the new 2Mbps
bandwidth. To look specifically at the estimated bandwidth traced by the algorithms, a snapshot of Figure 10 from
time 1.5 seconds to 2.4 seconds is shown in Figure 11. Notice that EWMA overshoots the channel bandwidth at
1.92 and at 2.01 seconds for� set to 0.6. Both KDE algorithms filter out such spurious estimates and stay close
to the channel capacity.

This evaluation shows that KDE performs better than EWMA with agility and efficiency providing accurate
estimates of the bottleneck bandwidth by eliminating spurious observations. The KDEO(n) algorithm shows
similar estimates compared to the KDEO(n2) algorithm in terms of accuracy. Selecting larger values ofn could
provide more accurate estimates of the bandwidth, but at the expense of agility to adapt to fluctuations in channel
bandwidth.

B. Evaluation of XRTP’s loss discrimination heuristics

The effectiveness of XRTP’s loss discrimination techniques is based on the accuracy of the discrimination
heuristics. The misclassification of a loss can adversely affect the throughput of the stream or increase congestion
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in the network. Therefore, we evaluate the probability of each type of misclassification. The goal of the simulations
in this subsection is to determine the upper bounds on throughput and the probability of misclassification.

To compare the actual performance gains of using a heuristic to discriminate loss, XRTP was simulated under three
different configurations as a single isolated flow on the network topology (see Figure 9). In the first configuration,
XRTP was run with no discrimination to gauge the degree of decrease in throughput with the increase in the loss
rate over the wireless link (XRTP-ND). In the second configuration, XRTP was run with the perfect discrimination
knowledge (i.e., essentially explicit loss notification ELN) to determine the ideal throughput XRTP can provide in
a lossy environment (XRTP-PD). In the last configuration, XRTP was run with the loss discrimination heuristic
described in Section III. Figure 12 shows a comparison of the performance of XRTP with each configuration along
with TCP Newreno, TFRC, TCP Snoop and TCP Westwood, each run separately, as the loss rate in the wireless
channel is increased from 0 to 5%. As expected, the throughput of TCP Newreno, TFRC, TCP Westwood and
XRTP-ND falls rapidly with increasing loss rate, since every transmission loss is considered a congestion loss
causing the protocols to back off. XRTP performs exactly like the configuration with perfect knowledge of the type
of loss (XRTP-PD). Note that the two lines for XRTP-PD and XRTP overlap each other in Figure 12. This implies
that nearly every transmission loss was accurately discriminated by XRTP.
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Fig. 12. Performance of XRTP and other flows in isolation.
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Fig. 13. XRTP and other flows with CBR cross traffic of 1 Mbps.

In the next experiment, XRTP is again run with the same three configurations, but with cross traffic of one
CBR flow that uses 1Mbps of the bandwidth on Linkl2 (see Figure 13). As in the previous simulation, TCP
Newreno, TFRC, TCP Westwood and XRTP-ND are hit hard by losses due to transmission while XRTP keeps up
with XRTP-PD in terms of throughput. To clearly understand how XRTP is always able to maintain bandwidth
close to 1Mbps even with increasing channel loss, it is necessary to look at the losses and understand how the
protocol discriminated. Table I depicts the performance of the loss discriminator used in XRTP. The first column
represents the loss rate on wireless Linkl2 in percentage. Column 2 represents the average of the total number of
packet losses across the simulations. Column 3 is losses that did not affect XRTP’s congestion control (i.e., losses
that occurred during the congestion control phase of XRTP and these losses do not affect the protocol). Columns
4 through 7 represent the losses that occurred when XRTP was not in the congestion control phase. For example,
Column 5 is denoted byC j T and is read as “the percentage of total losses that the heuristic discriminated as
congestion loss given the loss was actually a transmission loss”. Columns 4 and 5 are loss discriminations that
caused XRTP to cut its rate by half. Columns 6 are the losses that XRTP marked as transmission losses when they
were congestion losses. Column 7 are losses that were successfully detected by XRTP as transmission losses.

Notice that the number of congestion losses that caused XRTP to reduce its rate is almost constant (the sum of
Columns 4 and 5 times Column 2). Thus, the throughput of XRTP remains fairly constant, even with increasing
transmission losses. Additionally, as transmission loss rates increase, XRTP misclassifies a larger percentage
of transmission losses as congestion losses. However, there were no congestion losses that were classified as
transmission losses. The reasons can be attributed to the ideal simulation environment presented by ns2. The
bottleneck routerR2 is set with a buffer that is a multiple of twice the delay-bandwidth product of linkl2. Thus,
the CBR flow in the worst case fills only half of the queue since it is using half of the bandwidth. XRTP gets the
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TABLE I

LOSS DISCRIMINATION HEURISTICS OFXRTP AGAINST CBR.

1 2 3 4 5 6 7

loss% total � CjC CjT TjC T jT
0:00 806 82:63 17:36 0:00 0 0:00

0:01 788 82:23 17:63 0:00 0 0:12

0:02 778 81:05 17:99 0:25 0 0:64

0:05 795 82:00 16:10 0:75 0 1:13

0:10 785 79:73 17:83 0:63 0 1:78

0:20 761 77:25 17:87 1:83 0 3:02

0:50 828 75:35 14:13 4:10 0 6:40

1:00 864 68:27 10:41 7:63 0 13:65

2:00 1023 55:11 5:57 10:36 0 28:93

5:00 1346 36:24 1:41 9:50 0 52:82

remaining queue space in the router and all the characteristics required for the heuristic are maintained causing
no misclassification of congestion losses. In other scenarios (as shown later), there could be misclassifications of
congestion losses as transmission losses, but they are very rare compared to the misclassifications of transmission
losses as congestion losses since the parameters of the heuristic are set to conservative values.

To compare XRTP to an infrastructure-based protocol, we included TCP-Snoop in our experiments (See Figures 12
and 13). Clearly, XRTP does better without infrastructure support due to the use of accurate loss discrimination
heuristics and selective acknowledgements for reliability. However, it is interesting to consider the impact of
enhancing XRTP with a link layer solution like Snoop. TCP Snoop is a last-hop wireless network solution where the
base station caches the data packets to improve the performance of TCP. TCP Snoop peeks into the TCP’s header to
determine the byte sequence number. As expected, TCP Newreno shows significant improvement using Snoop (See
Figure 12). Vangala et.al. [33] has shown that TCP Newreno performance improved using TCP Snoop, but TCP
SACK’s performance deteriorated due to adverse interactions between retransmissions from the sender and from
Snoop. This would seem to indicate that XRTP cannot be enhanced by Snoop due to its use of SACK. However,
unlike TCP SACK, XRTP would be unaffected by the inclusion of Snoop. If Snoop peeked into XRTP’s data or
acknowledgement header, it would read theGSN, which is monotonically increasing (See Section III-E). Thus, each
time a packet lost by transmission in the wireless link is cached at the intermediate linkR2, the acknowledgement
from the receiver for the next succeeding packet after the lost packet invalidates this cache. Therefore, unlike
TCP SACK that takes a detrimental hit from Snoop, XRTP gains no benefit from the underlying Snoop protocol.
However, Snoop could be updated to work in unison with XRTP, similar to the work in [34], where Snoop was
modified to perform better with TCP SACK.

C. Evaluation of XRTP in presence of competing flows and cross traffic

To evaluate the performance of XRTP in the presence of cross traffic, the following experiments were run with the
same network topology as described in Figure 9. In the first set of experiments, a single XRTP flow competes against
a single TCP Newreno flow with background traffic of CBR flows that cumulatively use 1Mbps of Linkl2. Figure
14 depicts the throughput of each flow as the loss rate on the linkl2 increases from 0% to 5%. Complementing
the graph, Table II depicts the loss discrimination of XRTP.

XRTP clearly shows improved performance due to the use of loss discrimination and improved congestion control.
Table II shows that discriminating congestion losses as transmission losses is negligible. It is important to notice
that even though the throughput of XRTP is increasing with an increase in loss rate over the wireless link, XRTP
is utilizing only that extra bandwidth that is made available by TCP since TCP is reacting to transmission losses
as congestion losses (See Figure 14). With increasing loss rates, the percentage of congestion losses (Column 4
and 6) is decreasing, implying that TCP is reacting to transmission losses while XRTP is able to discriminate them
as transmission losses. Table II also shows how XRTP actively uses congestion avoidance to prevent packet loss.
The total number of packets lost due to congestion rapidly falls with increasing loss rates, implying that XRTP is
aware of the other flows in the network.
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Fig. 14. XRTP versus TCP Newreno with CBR traffic of 1 Mbps.

TABLE II

LOSS DISCRIMINATION HEURISTICS OFXRTP AGAINST TCPWITH CBR

1 2 3 4 5 6 7

loss% total � CjC CjT T jC T jT
0:00 128 54:68 44:53 0:00 0:78 0:00

0:01 127 51:96 44:09 0:00 3:14 0:78

0:02 144 60:41 36:11 0:69 2:08 0:69

0:05 100 48:00 47:00 2:00 1:00 2:00

0:10 108 42:59 42:59 7:40 2:77 4:62

0:20 93 41:93 35:48 7:52 1:07 13:97

0:50 106 29:23 19:81 16:03 0:00 34:90

1:00 152 7:88 3:94 19:07 0:00 69:07

2:00 255 1:95 0:00 5:88 0:00 92:15

5:00 719 0:82 0:00 1:52 0:00 97:63

Consider the simulation with loss rate of 2%. The total number of losses classified as congestion that affected
XRTP is about 15 packets (6% of 255) for the whole 200 second simulation although the throughput averaged
around 650Kbps. Comparing it with Table I for the same loss rate of 2%, the total number of losses classified as
congestion losses that affected XRTP is about 92 packets (9% of 1023) while the throughput is about 1000Kbps.
This confirms that XRTP’s congestion avoidance plays an important role in adapting the protocol in the presence
of competing flows.

To provide further details about the working of XRTP’s pro-active congestion avoidance, Figures 15 and 16
present snapshots of XRTP’s throughput and the congestion avoidance parameter� corresponding to experiments
in Figure 14 for a loss rate of 0.5% . Both of these figures demonstrate the fact that XRTP reactively adapts to
changes in the available bandwidth. In Figure 15, both XRTP and TCP Newreno are sharing the bandwidth fairly.
Also, XRTP’s throughput dips in Figure 15 corresponding with� peaks in Figure 16. Remember, XRTP is less
aggressive when� is closer to�max. Essentially, XRTP is able to detect congestion it is causing in the network
and back off appropriately.

1) Congestion Avoidance Behavior:The next experiment explicitly analyzes the congestion avoidance behavior
of XRTP as the available bandwidth changes. Here, a single XRTP flow competes against a CBR flow whose rate
is incremented by 0.4Mbps every 20 seconds and then decreased at the same rate. Figure 18 represents� as the
rate of the CBR flow changes. XRTP starts off with the� = �max = 0:99. Since XRTP does not experience any
congestion,� drops rapidly to�min = 0:95 and averages at0:95 for the first 80 seconds.� then fluctuates between
0:94 and0:98 for the next 40 seconds due to the fact that XRTP faced congestion and packet losses between 80-120
seconds, kicking the congestion avoidance mechanism into action. In the last 80 seconds,� moves back to0:95
since the CBR flows are switching off and more bandwidth is becoming available to XRTP. Corresponding to this
timeline, Figure 19 shows the throughput of XRTP against the CBR flow along with the aggregate throughput of
both the flows. XRTP satisfactorily tracks the available bandwidth with minimum lag, reacting appropriately to
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changes in network conditions.
2) Fairness in the presence of a large number of flows:In the following set of experiments, XRTP’s behavior,

especially fairness, was evaluated in the presence of a large number of flows. The experiment was carried out on
the network topology described in Figure 9. An equal number of XRTP flows and TCP Newreno flows competed
against each other for the limited resource linkl2. Figure 20 presents the cumulative throughput of XRTP against
TCP Newreno. The x-axis represents the total number of flows of XRTP and TCP Newreno. Note that the graph
shows throughput up to 120 flows since the 2Mbps link is too thin to sustain any more flows. The XRTP and TCP
graphs remain close with the increasing number of flows in the network, roughly using half the available bandwidth
each. This supports the fact that XRTP flows are able to detect congestion and back off allowing all flows in the
network to use the bandwidth fairly. Thus, Figure 20 shows that XRTP is fair to competing TCP Newreno flows
in the presence of a large number of flows.

V. EFFECT OFCLOCK GRANULARITY

XRTP, like other rate-based protocols, is very sensitive to the precision of the operating system’s internal clock.
For example, on a Linux system running on an Intel platform, the best timer resolution is about 10 milliseconds
(called as a jiffy). Assuming packet size of 1000 bytes and timer precision of 10 milliseconds, a rate-based protocol
could perform at its optimum only on those network paths whose bottleneck bandwidth is less than 8Mbps. This
problem does not arise on simulators like ns2 because of the use of virtual clocks that allow simulators to send
packets at the precise virtual time. To handle this situation, a two pronged strategy can be followed: either provide
a mechanism in the protocol itself to handle coarse granularity or devise a method to obtain finer granularity in
the operating system like KURT Linux [35].

Along the lines of the first strategy, it is obvious that there is a limit to the granularity of the timer beyond
which rate-based protocols would start behaving like a TCP protocol. Consider a scenario where a single XRTP



19

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0  20  40  60  80  100  120  140  160  180  200

al
ph

a

Time (seconds)

Fig. 18. Snapshot of� against changing available bandwidth

 0

 500

 1000

 1500

 2000

 2500

 0  50  100  150  200

T
hr

ou
gh

pu
t (

K
bp

s)

Time (seconds)

XRTP
CBR

Aggregate
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flow is running on a link which is 100Mbps and the granularity of the clock is 10 millisecond. To obtain optimum
throughput, the protocol must send at least a burst of 125 packets in a jiffy with the packet size of 1000 bytes each
(as shown in the Figure 17). This would greatly alter the scheme for the computation of jitter and other congestion
control parameters of the protocol. Since the time difference between sending two packets could be less that of
the transmission time through the bottleneck link, the packets would behave similar to packet-pairs, as described
in Figure 1. To accommodate for this factor in the computation of jitter, it is modified as follows:

jitter = (tn+1r � tnr )�max

�
(tn+1s � tns );

S

Bbn

�
(16)

With the modification to the computation to jitter, the simulations results of using a coarse-grained rate-controlled
protocol has shown results (not included in the paper due to space constraints), similar to the performance of XRTP
without loss discrimination heuristic. But the modification to support coarse grained timers with bursty transmission
totally undermines the loss discrimination heuristics pushing us towards the direction of devising methods to provide
finer granularity in the operating systems for implementing rate based protocols.

VI. CONCLUSIONS

In this paper, we propose a rate-based transport protocol for lossy wireless networks that uses bandwidth
estimation and jitter measurements to share the medium fairly and accurate loss discrimination to distinguish
congestion and transmission losses. Through our evaluations, we show how non-parametric density-based filters can
be used efficiently in a transport protocol when compared to noisy EWMA filters. In general, our simulations show
that the accuracy of the heuristics are directly tied to the regularity of the flow. Using the effective loss discrimination
scheme, XRTP can react wisely to loss, by reducing the sending rate in the presence of congestion, while maintaining
the current rate in the case of transmission loss, thereby increasing the throughput of the protocol. This paper has
demonstrated the effectiveness of XRTP’s congestion avoidance by optimizing the protocols parameters according
to network conditions. However, there are still a number of issues we are researching. This paper does not address
the effect of coarse-grained timer granularity of current operating systems on the performance of XRTP. We are
currently implementing XRTP in the Linux operating system and are evaluating the impact of Linux’s coarse grain
timers on XRTP. Finally, given our implementations, we plan to evaluate XRTP in realistic scenarios.
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