
First-order Probabilistic Inference Revisited
DRAFT

Rodrigo de Salvo Braz Dan Roth Eyal Amir
braz@uiuc.edu danr@cs.uiuc.edu eyal@cs.uiuc.edu

Abstract

Following ideas in Poole [Poo03], which we correct, formalize and
extend, this paper presents the first provable algorithm for reasoning
with probabilistic first-order representations at the lifted level. Specif-
ically, the algorithm automates the process of probabilistic reasoning
about populations of individuals, their properties and the relations be-
tween them, without the need to ground the probabilistic knowledge
base. The algorithm makes use of unification to guide an interleaving
of variable ordering and first-order variable elimination. Importantly,
our contribution includes the formalization of concepts necessary to
reason about the algorithm’s correctness and its correctness proof.

1 Introduction

In a variety of applications one may want to represent and reason with re-
spect to multiple objects, multiple properties of them and relations among
them. Examples include reasoning about collections of papers and authors,
reasoning about populations and medical conditions they have or extracting
information about terrorist activities and perpetrators from a collection of
news articles.

Popular representations of probability distributions over sets of objects, such
as Bayes nets and random Markov fields are zeroth-order representations and
do not allow, in principle, representing and reasoning without making each
individual and each property of an individual into a separate node. In the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

past decade there has been intensive work attempting to lift probabilistic
representation to first-order representations, borrowing ideas from first-order
predicate logic and logic programming [NH95, NS92, Jae97, KR00, KP98,
Poo93], mostly based conceptually on Halpern’s Probabilistic Logic frame-
work [Hal90]. These methods involve the representation of probabilistic asser-
tions with predicates, logical variables, constant symbols and quantification.
First-order probabilistic representations allow for a compact specification of
models, less redundancy, and to express queries that quantify over popula-
tions or properties, such as the probability that any disease kills someone in
a specific population, or of someone in a population having the measles.

While representations of first-order probabilistic models have been studied
extensively in the last few years, there has been little progress in infer-
ence with it. Specifically, inference with such a representation still requires
grounding – the creation of the underlying propositional network with one
node for each property of each object. The most notable exceptions to this
are first-order probabilistic inference [Poo03], which is the topic of this pa-
per, and SPOOK [PKMT99], which uses caching in order to avoid repeated
grounding. Unfortunately, there has been little study on the application of
this caching method to general DAGs, and the savings due to this caching
method are not easy to measure or to compare with.

Poole [Poo03] points out that full grounding is unnecessary, especially when
we have large subgroups of individuals on which we have identical knowledge.
In these cases, it is possible to abstract away from individuals in a principled
manner, avoiding grounding. Poole’s method uses the insight that computing
posteriors and marginals via variable elimination [ZP94] can benefit from
lifting : we can eliminate sets of random variables, if those are described in a
compact parameterized form, which we call a parameterized random variable.

To clarify some of the representational and inferential issues, consider the
following example, modeling the spreading of 100 possible diseases in a pop-
ulation of 1,000,000 people (with similar syntax to that in [Poo03], explained
below):

P (epidemic(measles)) = 0.05
∀ D ∈ disease; D 6= measles → P (epidemic(D)) = 0.01
P (sick(measles, mary)) = 0.9
∀ X ∈ person, ∀ D ∈ disease; X 6= mary → P (sick(D, X)|epidemic(D)) = 0.4,

P (sick(D, X)|¬epidemic(D)) = 0.001

2

Figure 1: Computing an answer to query P (deathBy(t)|epidemic(t)) from our
example with a single disease typhus (t) and a million people will be expensive for
the propositional grounded model (a) as it has a large tree-width, but cheap for
the lifted model (b) since it is a linear graph.

∀ X ∈ person, ∀ D ∈ disease; φ(deathBy(D), sick(D, X))

This model declares that every disease has a probability 0.01 of being an
epidemic, except for measles, for which it is 0.05, that any person has a
probability 0.4 of becoming sick of an epidemic disease and 0.001 of other
diseases, and that the probability of a person dying of a disease is related to
the person having that disease by a potential function φ. 1

An example of a model that benefits from lifted inference can be seen at
Fig. 1. Arguably, one can set up a linear-graph propositional model doing
the same computation as the lifted model shown, and in fact this is ultimately
what our algorithm does internally. However, such a model would not di-
rectly represent the first-order model and would require manual encoding
and decoding of information, whereas our algorithm does that automatically.

This paper’s first contribution is to formalize the ideas for lifted first-order
probabilistic inference by Poole which, while containing insightful ideas, has
been presented without a full formalization and proof of correctness. This
formalization reveals that Poole’s method is incorrect, and the origins of its
flaws. The algorithm presented there is restricted to eliminating a single pa-
rameterized variable at each step; however, sometimes there are no orderings
of such elimination for which this results in a correct answer; there is a need
to allow for the elimination of groups of variables. In fact, even if one allows
the elimination of groups of parameterized variables, only a small fraction of

1This paper refers to undirected models expressed by way of potential functions on
sets of variables [Pea91]. When these potential functions are conditional probabilities on
parameterized random variables, however, we express them as such. In this example, the
potential function φ on deathBy(D), sick(D, X) is the only one that is not a conditional
probability on parameterized variables (the conditional probability of deathBy(D) depends
on all instances of sick(D, X)).

3

these orderings are valid. This seems to be a fundamental difference between
propositional and first-order variable elimination. For the query shown in
Fig. 1, Poole’s method outputs an incorrect answer if the first variable elim-
inated is either epidemic(t) or deathBy(t). Our work abstracts a necessary
and sufficient condition for determining if a group of parameterized variables
can be eliminated. Finally, we show constructively that a valid ordering
always exists.

An implementation of the algorithm can be found at
http://l2r.cs.uiuc.edu/~cogcomp.

2 Examples and motivation

In the section we present, through examples, the main ideas behind our claim
that Poole’s method is incorrect, how to fix the problem and the corrected
algorithm.

2.1 First-order probabilistic inference

Consider the example given in the introduction: person and disease are
types, X and D are typed logical variables, measles and mary are constant
terms, sick(measles, mary) is a ground random variable, sick(D, X) is a
parameterized random variable (of which D and X are the parameters),
X 6= mary is a constraint system (which can involve many of the assertion’s
logical variables), and P (epidemic(D)) and φ(deathBy(D), sick(D, X)) are
potential functions on parameterized random variables.

A probabilistic assertion consists of a set of universally quantified typed log-
ical variables, a constraint system on them, and a potential function on
parameterized random variables. It stands for all the instantiated assertions
obtained by grounding its parameterized random variables. This grounding is
determined by assignments to the logical variables that satisfy the constraint
system. A first-order probabilistic assertion is therefore a compact way of
expressing a large number of structurally identical propositional probabilistic
assertions.

Because such a first-order probabilistic model has a corresponding proposi-
tional model, we can think of its semantics as the semantics of that proposi-

4

tional model. We can therefore express the joint distribution induced by it
on the set A of all ground random variables it involves (either explicitly or
through a parameterized random variable) as a normalization of the products
of all the instantiated potential functions. For our original example, this is

P (A) ∝ P (epidemic(measles)) × P (sick(measles,mary))

×
[∏
D 6=measles

P (epidemic(D))
]
×

[∏
D

φ(deathBy(D))
]

×
[∏

X,D 6=mary

P (sick(D,X)|epidemic(D))
]
.

2.2 Poole’s method

We now give an example of Poole’s method and identify situations in which it
is incorrect. The method considers the probabilistic model in its first-order
form (no grounding is done), and eliminates atoms (parametrized random
variables) that are not present in the query until only the query variables
remain. To illustrate this, we use a simplified version of our original example,
for which we have the query P (sick(cold, mary), sick(cold, john)):

∀ X ∈ person,∀ D ∈ disease;
P (sick(D,X)|epidemic(D)) = 0.4
P (sick(D,X)|¬epidemic(D)) = 0.001

∀ D ∈ disease;P (epidemic(D)) = 0.01

We will use this example throughout the paper and abbreviate epidemic,
cold, john and mary to epi, c, j and m, respectively. We also assume that
X and D will always be of types person and disease.

A possible first parameterized variable to be eliminated is epi(D), The method
replaces the assertions in which epi(D) occurs by a new one which is the result
of summing it out: 2

∀ X ∈ person, D ∈ disease;

P (sick(D, X)) =
∑

epi(D)∈{false,true}
P (epi(D))P (sick(D, X)|epi(D)) = 0.00499. (1)

2In fact, [Poo03] indicates that we can do this two assertions at a time, but this is
incorrect; just like with propositional variable elimination, all assertions involving the
eliminated variables must be used.

5

This new assertion defines the marginal distribution on the remaining random
variables:

P ({sick(D, X) : D ∈ disease, X ∈ person}) =
∏
D,X

P (sick(D, X)). (2)

This marginal implies that the ground instances of sick(D, X) are inde-
pendent once we eliminate epi(D), so P (sick(c, j), sick(c, m)) = 0.00499 ×
0.00499 = 0.0000249001.

This solution, however, is incorrect (the reasons are given in 2.4). For com-
parison, consider the grounding of the model and observe that sick(cold, mary)
and sick(cold, john) are two random variables with a single parent, epi(cold).
We get that

P (sick(c, m), sick(c, j))

=
∑
epi(c)

P (sick(c, m), sick(c, j)|epi(c))P (epi(c))

=
∑
epi(c)

P (sick(c, m)|epi(c))P (sick(c, j)|epi(c))P (epi(c))

= 0.4× 0.4× 0.001 + 0.001× 0.001× 0.99 = 0.00160099

(3)

2.3 A condition for first-order variable elimination

The reason for the discrepancy seen in the previous subsection is that the
parameterized variable being eliminated does not contain, in some sense, the
logical variables X and D occurring in the assertions. To explain why this
is an important condition, it is instructive to examine, first, an instance in
which the method does work, within this same example. This should provide
some insight into the method and as to why such a condition is necessary.

Note that the final step in the calculation of
P (sick(cold, mary), sick(cold, john)) was not a variable elimination step, but
simply an observation of an obvious independence expressed by this joint dis-
tribution. Algorithmically, this can be done by another variable elimination.
Now, however, the situation is slightly subtler since some random variables
of the form sick(D, X) are in the query (only two, actually: sick(cold, mary)

6

and sick(cold, john)) and some are not. We can describe the ones to be elim-
inated with the constraint D 6= cold ∨ (X 6= mary ∧ X 6= john). Instead
of directly presenting the answer obtained by Poole’s method, we detail its
derivation so as to give insight into its working.

We define the instantiations on (D, X) not in the query to be NQ = {(D, X) :
D 6= c ∨ (X 6= m ∧ X 6= j}, and the ones in the query as Q = {(D, X) :
(D, X) 6∈ NQ} = {(cold, mary), (cold, john)}. We also define sickS(D, X) =
{sick(D, X) : (D, X) ∈ S} for S either NQ or Q.

Given the distribution (2) on the instances of sick(D, X), the answer to query
sick(cold, mary), sick(cold, john) is given by another marginalization

P (sick(c, m), sick(c, j)) =
∑

sickNQ(D,X)

P ({sick(D, X) : D ∈ disease, X ∈ person})

=
∑

sickNQ(D,X)

∏
(D,X)

P (sick(D, X))

The summation is over all groundings of all eliminated variables, which we
want to avoid. To do that, we can first split the product and factor out the
assertions on Q:

∑
sickNQ(D,X)

∏
(D,X)

P (sick(D, X)) =

[∏
(D,X)∈Q

P (sick(D, X))
][∑

sickNQ(D,X)

∏
(D,X)∈NQ

P (sick(D, X))
]

The crucial step in eliminating the grounding summation takes place now,
when we observe that, for any set of variables x1, . . . , xn and function f ,∑

x1,...,xn

∏
i=1,...,n

f(xi) =
∑
x1

· · ·
∑
xn

f(x1) . . . f(xn)

=
[∑

x1

f(x1)
]
. . .

[∑
xn

f(xn)
]

=
∏

i=1,...,n

∑
xi

f(xi).

(4)

7

Based on this, we can write

P (sick(c, m), sick(c, j)) =[∏
(D,X)∈Q

P (sick(D, X))
][∏

(D,X)∈NQ

∑
sick(D,X)

P (sick(D, X))
]
.

In this particular case, the summation equals 1 because P (sick(D, X)) is
a probability distribution, and the whole second product disappears. This
is only true in the cases in which the eliminated variables are children in
the conditional probabilities involved. In the general case we may get a
new potential on the remaining variables, which is a summation over the
parameterized variable’s domain, without the need to consider all groundings.
We then have

P (sick(c, m), sick(c, j)) =
∏

(D,X)∈Q

P (sick(D, X))

= P (c, m)P (c, j) = 0.0000249001

which, as in our informal earlier observation, says that the query’s probability
is indeed the product of P (sick(D, X)) over the random variables in the
query. While this numeric value per se is incorrect (according to (3)), it is
so due to assertion (1) being incorrect, not because of the elimination just
performed.

The most important part of the manipulations above is the application of
4. Notice however that it could only be applied because there was a one-to-
one correspondence between the bindings (D, X) ∈ NQ in the product and
sickNQ(D, X) in the sum. Had we had, for example, (D, X) ∈ NQ in the
product and epi(D) in the sum, there would be no such correspondence and
we would not be able to apply 4. We can state this condition as follows:

Condition 2.1. A parameterized random variable can only be eliminated if
there is a one-to-one correspondence between the assignments to its logical
variables and the assignments to the logical variables of probabilistic asser-
tions in which it occurs (after appropriate splitting of assertions).

This condition is properly formalized in Theorem 3.4.

8

2.4 Why Poole’s method is incorrect

The need for Condition 2.1 explained above can be better seen by examining
the incorrect elimination of epi(D) presented before, and showing how they
are not satisfied in it. Our simplified model defines a joint distribution on
all its ground random variables, {sick(D, X)} ∪ {epi(D)}:

P ({sick(D, X)}∪{epi(D)}) =
[∏

D

P (epi(D))
][∏

(D,X)

P (sick(D, X)|epi(D))
]
.

If we choose to eliminate random variables of the form epi(D) first, we sum
over them and obtain the marginal on the remaining variables, {sick(D, X)}:

P ({sick(D, X)})
=

∑
epi(D)

P ({sick(D, X)} ∪ {epi(D)})

=
∑

epi(D)

[∏
D

P (epi(D))
][∏

(D,X)

P (sick(D, X)|epi(D))
]

=
[∏

D

P (epi(D))
][∏

D

∑
epi(D)

∏
X

P (sick(D, X)|epi(D))
]
.

(5)

After correct inversions on products indexed by D, the summation cannot
“pass through” the product indexed by X because there is no one-to-one
correspondence between the groundings of D and X and we cannot apply
something like (4). In comparison, as we have seen in (1), Poole’s method
determines that

P (sick(D, X)) =
∑

epi(D)

P (sick(D, X)|epi(D))P (epi(D)).

Obtaining such an assertion is to say, according to the semantics we have
defined, that

P ({sick(D, X)}) =
∏
D

∏
X

∑
epi(D)

P (sick(D, X)|epi(D))P (epi(D)),

which does not follow from (5) (they provide different numerical answers).

9

In some cases Condition 2.1 greatly reduce the number of valid orderings.
For example, in an assertion with parameterized random variables

u1(X), . . . , um(X), b(X, Y1), . . . , b(X, Yn),

only an exponentially small number of orderings (those with all binary vari-
ables coming before any unary variables) will be valid. However, it is not
difficult to find a valid ordering, as discussed next.

2.5 Keeping the Inversion Condition satisfied

We have calculated P (sick(c, j), sick(c, m)) analytically, but it is necessary
to show that this can be done by lifted variable elimination. This de-
pends on finding an elimination ordering such that every set of variables
being eliminated satisfies Condition 2.1, which is the case for the ordering
sickNQ(D, X) = {sick(D, X) : (D, X) ∈ NQ} and then {epi(D) : D ∈
disease}. By eliminating sickNQ(D, X) first, we eliminate ground variables
with all values of X but j and m, so we can do away with products indexed
by X, after which it is possible to soundly eliminate epi(D). We do this by
writing

P ({sick(D, X) : (D, X) ∈ Q} ∪ {epi(D)})
=

∑
sickNQ(D,X)

P ({sick(D, X)} ∪ {epi(D)})

=
∑

sickNQ(D,X)

[∏
D

P (epi(D))
][∏

(D,X)

P (sick(D, X)|epi(D))
]

We again have made use of (4), obtaining a summation without a product
inside. This summation is 1 and Q contains only two elements, so we expand
it and write

P ({sick(D, X) : (D, X) ∈ Q} ∪ {epi(D)}) =[∏
D

P (epi(D))
]
P (sick(c, m)|epi(c))P (sick(c, j)|epi(c)).

We now proceed in an analogous fashion by eliminating variables of the form

10

epi(D).

P (sickQ(D, X)) = P (sick(c, m), sick(c, j))

=
∑

epi(D)

P ({sick(D, X) : (D, X) ∈ Q} ∪ {epi(D)})

=
[∑

epi(D)

[∏
D

P (epi(D))
]
P (sick(c, m)|epi(c))P (sick(c, j)|epi(c))

]

=
∑
epi(c)

[∑
epi(D)
: D 6= c

[
P (epi(c))

∏
D 6=c

P (epi(D))
]
P (sick(c, m)|epi(c))P (sick(c, j)|epi(c))

]

=
[∑

epi(c)

P (sick(c, m)|epi(c))P (sick(c, j)|epi(c))P (epi(c))
][∑

epi(D)
: D 6= c

∏
D 6=c

P (epi(D))
]

=
[∑

epi(c)

P (sick(c, m)|epi(c))P (sick(c, j)|epi(c))P (epi(c))
][∏

D 6=c

∑
epi(D)

P (epi(D))
]
.

Again we have a case of a summation being evaluated to 1, so we obtain

P (sickQ(D, X)) = P (sick(c, m), sick(c, j))

=
∑
epi(c)

P (sick(c, m)|epi(c))P (sick(c, j)|epi(c))P (epi(c)),

which amounts to the calculation (3) resulting in the correct answer 0.00160099.

We have shown in our example that not every ordering is valid but have
found a valid one. It is important to know whether it is always possible to
do so for any query. The answer is positive, as we see in the next section.

3 Formalization

In this section we formalize the problem and the notions necessary to solve it,
presenting the algorithm in technical detail and the proof of its correctness.

11

3.1 Basic Definitions

3.1.1 Syntax

Definition 3.1. Let F be an infinite set of constant symbols, X an infinite
set of variable symbols, P be an infinite set of predicate symbols, T the set
of terms equal to F ∪ X , and A the set of logical atoms (or simply atoms)
formed with a predicate symbol in P and terms in T . Each variable X has a
type, a set of possible values for X, which is provided by a function T (X).

Let T ∗ be the set of possible sequences of symbols in T . Then the function
pred : A → P maps atoms to their predicate symbols and the function args :
A → T ∗ maps atoms to the sequence formed by their arguments.

In our introductory example, mary and measles are (constant) terms, X
and D are variable terms, hadContact and sick are predicate symbols and
sick(D, X) and epidemic(D) are atoms.

Definition 3.2. An equality constraint is an equation between terms, and
a disequality constraint is a disequation (that is, a negated equation) be-
tween terms. A constraint is either an equality constraint or a disequality
constraint. A boolean formula on constraints (>, ⊥ or a combination of
constraints using ∧,∨ and ¬ connectives) is called a constraint formula.

A constraint system is a pair (F,V) where F is a constraint formula and V
is a set of logical variables, called the base of (F,V). We often use “,” to
denote ∧ in constraint systems.

In our example, X 6= mary is a disequation and also a constraint system,
when coupled with the set {X1, X2}.

Definition 3.3. An assignment is a function σ : X → (F ∪ X). The
domain of σ, Dom(σ), is the set of variables being mapped to something else,
{X : σ(X) 6= X}.
Let V be a set of logical variables. A grounding assignment wrt V is an
assignment σ mapping all variables in V to ground terms, that is, {X ∈ V :
σ(X) ∈ F}.

Definition 3.4. A random variable is denoted by a ground atom, while a
parameterized random variable is denoted by an atom in general.

12

A sequence of parameterized random variables, or simply parseq, is a pair
(A, C) where A is a sequence of parameterized random variables and C is
a constraint system on the logical variables occurring in A. The constraint
system is required to contain all logical variables occurring in A (and pos-
sibly more). For simplicity of notation, for any parseq (A, C) we define
ParV ar((A, C)) = A and C((A, C)) = C.

A parfactor is a pair (φ, Arg) of a parseq Arg = (A, C) and a non-negative
real function φ on A called the potential function of the parfactor. The
constraint system is required to contain all logical variables occurring in Arg
(and possibly more). For simplicity’s sake we define, for any parfactor g =
(φ′, Arg′), that φg = φ′, Arg(g) = Arg′, ParV ar(g) = ParV ar(Arg(g)),
and C(g) = C(Arg(g)).

Probabilistic assertions are represented as parfactors. For example,

∀X1 : person, X2 : person, D : disease;

X1 6= X2 → P (sick(D, X1)|hadContact(X1, X2), sick(D, X2)) = 0.2

can be represented as the parfactor(
φ, ({sick(D, X1), hadContact(X1, X2), sick(D, X2)}, (X1 6= X2, {X1, X2, D}))

)
where φ is the function

φ
(
sick(D, X1), hadContact(X1, X2), sick(D, X2)

)
={

0.2, if hadContact(X1, X2) ∧ sick(D, X2),

0.5, otherwise.

The φ is a potential function as used in undirected graphical models. The
seemingly arbitrary value of 0.5 for when the condition is false causes, when
this is the case, the total joint distribution to be computed as if the asser-
tion were not present, which is the expected effect. This is for convenience
only, and the specification of conditional probabilities for each assignment to
parents is also possible.

We will often talk about multiple parfactors or parseqs. In these cases they
will always be standardized away, that is, logical variables present in separate
constraint systems are assumed to be distinct even if they have the same
name. This can always be made more clear by renaming them if necessary.

13

Definition 3.5. A syntactic construct is any of the constructs defined above
(a term, an atom, a parseq, a parfactor, a constraint, a constraint system,
an assignment), a set of those, or a sequence of those.

Let S be a syntactic construct. Then LV ar(S) is the set of logical variables
occurring in S and ParV ar(S) is the set of parameterizes random variables
occurring in S (as we had already defined for parseqs and parfactors).

Let S be a syntactic construct and σ an assignment wrt LV ar(S). Then Sσ
is the syntactic construct resulting from the replacement of every occurrence
of a logical variable in S by its corresponding value in σ. For any set of
assignments Θ, SΘ is the sequence {Aσ}σ∈Θ.

3.1.2 Semantics – Extensions

Definition 3.6. An assignment σ is consistent with a constraint formula F
if Fσ is true.

For every constraint system C = (F,V) the extension of C, [C], denotes the
set of all grounding assignments wrt V which are consistent with F . The
extension of a constraint formula F is defined as [(F, LV ar(F)].

Two constraint systems C and D are equivalent if [C] = [D].

For any formula F and syntactic construct S, S[F] is an abbreviation for
S[(F, V ar(S))].

An analogous operation is defined for parseqs. If E is a parseq, then [E] is
ParV ar(E)[C(E)] (all possible substitutions according to grounding assign-
ments in [C(E)]. Two parseqs D and E are called equivalent if [D] = [E].

A notation remark is in order. It is usual in probability texts to denote
the mathematical variables representing the assignments to random vari-
ables (not be be confused with the assignments to logical variables about
which we have been talking about) by their small letter counterparts. For
example, x1, . . . , xi−1, xi+1, . . . , xn represents an assignment to X1, . . . , Xi−1,
Xi+1, . . . , Xn. In our case, this is made a bit more complex since we deal with
sets of random variables represented by potentially complex expressions, in-
volving constraint systems, set operations and indexing. We follow the small
letter convention by establishing that expressions involving small letter ver-
sions of known variables and functions represent assignments to the set of

14

random variables determined by the same expression having the small letter
variable names replaced by their capital letter counterparts. So, for example,
a[>], aΘ1 − aΘ2 and parV ar(g) represent assignments to A[>], AΘ1 −AΘ2

and ParV ar(g) (the arguments of φg), respectively. This is an abuse of
notation in the sense that the operations applied to small letter variables
are really meant to be applied to the objects denoted by their capital letter
versions, but the meaning will always be clear from the context.

Definition 3.7. The grounding of parfactor g = (φ, Arg), for Arg = (A, C),
is the function [g]([arg]) =

∏
σ∈[C] φ(aσ), defined on assignments to random

variables [Arg].

Because [g] is always applied to [arg] which is defined by g itself, we re-
duce redundancy by abusing the notation and writing simply [g] instead of
[g]([arg]) when it is clear that we mean the value on a given assignment to
[Arg] rather than the function itself.

Note that the operations [·] for constraint systems and [·] for parfactors, al-
though not technically the same, represent the same idea of considering all
of their possible groundings. The grounding of a parfactor, however, is a
real function, while the grounding of constraint systems are sets of ground-
ing assignments and the grounding of parseqs are sets of ground random
variables.

Definition 3.8. We define the function GV ar(g) on a parfactor g to be
[Arg(g)] and GV ar(G) =

⋃
g∈G GV ar(g) for any set of parfactors G.

3.1.3 Semantics – Joint distribution

We are now ready to define the joint probability described by a set of par-
factors.

Definition 3.9. Given a set of parfactors G defined on a set of parameterized
random variables (atoms) A, the joint distribution on all the random variables
defined by it is given by

P (gV ar(G)) ∝
∏
g∈G

[g]

15

where, according to the definitions above, gV ar(G) is an assignment to GV ar(G),
the set of all random variables obtained by grounding all atoms in G.

It should be clear that the definition above is equivalent to

P (gV ar(G)) ∝
∏
g∈G

∏
σ∈[C(g)]

φg(parV ar(Arg(g))σ)

where parV ar(Arg(g))σ is, according to our notation convention, an assign-
ment to ParV ar(Arg(g))σ and is simply expressing that the joint distribu-
tion on random variables (the ground atoms) is determined by the product
of all groundings of all parfactors.

In order to further simplify notation, we make the taking of paramaterized
random variables from a parseq unnecessary inside arguments to potential
functions. This is unambiguous since parsets themselves cannot be such
arguments. This allows us to write

φg(arg(g)σ) = φg(parV ar(Arg(g))σ) (6)

3.2 First-Order Variable Elimination

We now present the method of First-order variable elimination. The problem
is to find the marginal distribution on a set of random variables given a model
and evidence (an assignment to another set of random variables). Just as
in the propositional case, we can incorporate evidence by integrating it into
the model, so we restrict ourselves to answering queries given a model only.
Also, for didactic purposes, we restrict ourselves for now to answering ground
queries only.

Given a set of parfactors G and a query Q, Theorem 3.3 guarantees that
either G is defined on Q only or there are random variables [E], such that
[E] ∩Q = ∅, which can be eliminated. It also provides the sets of parfactors
H ′ and H ′′ such that H ′ ∪ H ′′ is equivalent to G, parfactors in H ′′ do not
involve any ground random variables in [E] while all parfactors in H ′ do.
These properties can be used to simplify the marginalization with a sum

16

based on the assignments to [E] to a marginalization without a summation:

P (gV ar(G) \ [e]) =
∑
[e]

P (gV ar(G))

=
∑
[e]

P (gV ar(H ′ ∪H ′′))

=
∑
[e]

[∏
h′′∈H′′

[h′′]
][∏

h′∈H′
[h′]

]

=
[∏

h′′∈H′′
[h′′]

] ∑
[e]

[∏
h′∈H′

[h′]
]

=
[∏

h′′∈H′′
[h′′]

]
[g′], (7)

where g′ can be calculated according to Theorem 3.4 and whose grounding
does not involve the random variables in [E]. By repeating this procedure,
we eventually obtain a marginal distribution on Q only.

We now proceed to show the lower-level results justifying this method.

3.3 Splitting a model

We define the notion of a splitting unifier, which describes a set of random
variables to be eliminated from a model. As we have discussed before, not
every set of variables can be eliminated and, accordingly, there is also a notion
of a valid splitting unifier. By finding a valid splitting unifier, we determine
the setting for a step of first-order variable elimination.

We present the definitions and theorems here, leaving the proofs for appendix
D.

3.3.1 Splitting unifiers

Splitting unification is an operation where, given a set of parseqs R and a
“seed” parseq E (meant to be everything not in the query), one tries to find
a parseq E ′ (meant to be the variables eliminated in the next step) such that
[E ′] ⊆ [E] and, for each original parseq R ∈ R, [E ′] is either completely
included in it ([E ′] ⊆ [R]) or completely disjoint from it ([E ′] ∩ [R] = ∅).

17

Definition 3.10. Let R be a set of parseqs and E a parseq. A splitting
unifier of R given a seed E is a parseq E ′ such that [E ′] ⊆ [E], [E ′] 6= ∅,
for any S ∈ R, either [E ′] ⊆ [S] or [E ′] ∩ [S] = ∅ and there is at least one
R ∈ R for which [E ′] ⊆ [R]. A splitting unification of R given E is said to
fail if there is no splitting unifier of R given E, and to succeed otherwise.

If there is a non-empty intersection between [E] and [R] for some R ∈ R,
then we can find a splitting unifier for R given E. Intuitively, this is done by
first unifying some part of E to some part of R, and then using this resulting
intersection as a seed for the remaining elements in R.

Theorem 3.1. Let R be a set of parseqs and E a parseq. There is at least
one element R ∈ R such that [E] ∩ [R] 6= ∅ if and only if there is a splitting
unifier E ′ of R given E.

3.3.2 Valid splitting unifiers

We define a valid splitting unifier of a set of parseqs wrt a ground query. To
do that, we first need the notion uncovered logical variables.

The next definition uses the notion of partial unifier, treated in appendix
D. Intuitively, a partial unifier describes the unification between subsets of
parseqs. For example, the partial unifier of parseqs

R1 = ({p(X, Y), q(Y, Z)}, (Y 6= Z, {X, Y, Z}))

and
R2 = ({q(V, a), r(W, W)}, (>, {V, W}))

is
({q(Y ′, Z ′)}, (Z ′ = a ∧ Y ′ 6= a, {Y ′, Z ′})).

Furthermore, this partial unifier defines assignments σR1 = {Y → Y ′, Z →
Z ′} and σR2 = {V → Y ′}.

Definition 3.11. Let E be a splitting unifier of a set of parseqs R with some
seed. For any R ∈ R such that [R]∩ [E] 6= ∅, let σR be the assignment defined
by the partial unifier of E and R (as determined by Theorem D.2). A logical
variable Y in LV ar(R) is covered by E wrt R if Y is in the domain of σR,
and uncovered otherwise.

18

Definition 3.12. A splitting unifier E of a set of parseqs R (with some seed)
is valid if there are no uncovered logical variables by E wrt R.

Theorem 3.2. For any set R of parseqs and Q a set of ground atoms such
that GV ar(R) \ Q 6= ∅ there is a valid splitting unifier E of R with seed
GV ar(R) \Q.

Finally, we present the main result which is the basis for first-order variable
elimination.

Theorem 3.3. Let G be a set of parfactors and Q a ground query. If
GV ar(G) 6= Q then there exists

• a parseq E such that [E] ∩Q = ∅,

• a set of parfactors H ′ such that C(h′) = C(E) and E ⊂ Arg(h′) for
each h′ ∈ H ′, and

• a set of parfactors H ′′ (called residuals) such that [Arg(h′′)] ∩ [E] = ∅
for each h′′ ∈ H ′′.

Moreover, H = H ′ ∪H ′′ defines the same distribution as G, i.e.,
∏

h∈H [h] =∏
g∈G[g].

Proof. According to Theorem 3.2 applied to the parseqs P = {Arg(g) : g ∈
G} and Q, there is a valid splitting unifier E of R wrt Q. Let G′ ⊆ G be the
set of parfactors such that [E] ⊆ [Arg(g′)] for every g′ ∈ G′, and G′′ ⊆ G be
the set of parfactors such that [E] 6⊆ [Arg(g′′)] for every g′′ ∈ G′′ defined by
the splitting.

Because this splitting is valid, for each g′ ∈ G′ there is an assignment σg′

involving all logical variables in g′ such that C(g′)σ = C(E); let Arg+
g′ =

(ParV ar(g′)σ, C(E)) and Arg−g′ = (ParV ar(g′)σ, C(g′)σ∧¬C(E)). Accord-

ing to this constructions, [Arg+
g′] and [Arg−g′] form a partition of [Arg(g′)], so

the two parfactors h+
g′ = (φg′, Arg+) and h−

g′(φg′, Arg−) are equivalent to g′.
Also, because of this construction, [E] ⊆ GV ar(h+

g′) and since C(h+
g′) = C(E)

it is also true that E ⊆ Arg(h+
g′). Furthermore, [E] ∩ GV ar(h−

g′) because of

the construction of C(Arg−g′) which excludes C(E).

We define H ′ to be {h+
g′ : g′ ∈ G′} and H ′′ to be {h−

g′ : g′ ∈ G′} ∪G′′ which,
along with E, are the objects guaranteed by the theorem to exist.

19

3.4 Doing away with summation

Another important step, used to calculate g′ in (7), is the operation which,
given a set of parfactors sharing the variables to be eliminated and a con-
straint system, determines a new parfactor without the eliminated variables.

Note that in the theorem below we use the operation of subtracting a set
of logical variables from a constraint system and the function Dim. These
concepts are defined in appendix A on constraint systems, but intuitively the
former is meant to be the removal of unnecessary variables from a constraint
system and the latter how many times the number of assignments is reduced
by this elimination.

Theorem 3.4. Let C = (F,V) be a constraint system and G be a set of
parfactors such that, for every g ∈ G, C(g) = C. Also, let E be a parseq such
that LV ar(E) = V and ParV ar(E) ∈ ParV ar(Arg(g)) for every g ∈ G.
Let R (for remaining) be LV ar(Arg′), D (for disappearing) be LV ar(G)\R
and Arg′ be the parseq (∪g∈GParV ar(Arg(g))) \ParV ar(E), C −D). Then

∑
[e]

∏
g∈G

[g] = [g′]

where g′ = (φg′, Arg′), with

φg′(arg′) =
(∑

d∈{0,1}

∏
g∈G

φ(d, arg(g) \ e))
)Dim(C,D)

.

Note that we are using our notation convention as in (6). Strictly speaking,
the last equation should have been written as

φg′(parV ar(Arg′)) =
(∑

d∈{0,1}

∏
g∈G

φ(d, parV ar(Arg(g))\parV ar(E)))
)Dim(C,D)

.

Proof. ∑
[e]

∏
g∈G

[g] =
∑
[e]

∏
g∈G

∏
σ∈[C(g)]

φg(eσ, (arg(g) \ e)σ)

20

but C(g) = C, so

=
∑
[e]

∏
g∈G

∏
σ∈[C]

φg(eσ, (arg(g) \ e)σ)

=
∑
eσ1

· · ·
∑
eσn

∏
g∈G

φg(eσ1, (arg(g) \ e)σ1) · · ·
∏
g∈G

φg(eσn, (arg(g) \ e)σn)

for σ1, . . . , σn all the grounding assignments in [C]. Note that the ability
to expand both [e] and

∏
σ∈[C] into corresponding elements depends on the

hypothesis that LV ar(E) = V; if V had some variable not in LV ar(E), then
we would have eσi = eσj for some i 6= j. Now, because the parfactors are
shattered, no eσi occurs in any∏

g∈G φg(eσj , (arg(g) \ e)σj) for j 6= i, so we can factor things out and obtain

=
[∑

eσ1

∏
g∈G

φg(eσ1, (arg(g) \ e)σ1)
]
. . .

[∑
eσn

∏
g∈G

φg(eσn, (arg(g) \ e)σn)
]

By renaming eσi in each summation, we obtain

=
[∑

d∈{0,1}

∏
g∈G

φg(d, (arg(g) \ e)σ1)
]
. . .

[∑
d∈{0,1}

∏
g∈G

φg(d, (arg(g) \ e)σn)
]

=
∏

σ∈[C]

∑
d∈{0,1}

∏
g∈G

φg(v, (arg(g) \ e)σ)

We now do not have the variables in D in the arguments to the φg functions.
Therefore, the application of each assignment σ ∈ [C] agreeing on V\D = R
will result in the same expression. We can therefore replace all these identical
assignment applications by a single one application by the assignment in
[C −D] that agrees with them on R, powering it to the number of original
assignments, which Theorem A.6 says to be Dim(C,D), writting

=
∏

σ∈[C−D]

(
∑

d∈{0,1}

∏
g∈G

φg(d, (arg(g) \ e)σ))Dim(C,D)

= [φg′]

21

4 Conclusion

First-order probabilistic inference is important as a knowledge representation.
So far is has not lived up to expectations, however, due to the lack of inference
algorithms taking concrete advantage from it. Following and correcting the
ideas in [Poo03], we have formalized an algorithm that benefits from the
representation by avoiding full grounding of the model.

Future work includes determining what model measures are relevant in com-
plexity analysis (for example determining how a tree-width cost analysis ap-
plies to the first-order case). Other directions are to find orderings that may
lead to a small cost, to perform bounded approximation, and applications
(we are currently applying it to a human-computer interface application).

References

[Bar98] Roman Barták. Constructive negation in CLP(H). Technical
Report No. 98/6, Charles University, July 1998.

[Hal90] Joseph Y. Halpern. An analysis of first-order logics of probability.
In Proceedings of IJCAI-89, 11th International Joint Conference
on Artificial Intelligence, pages 1375–1381, Detroit, US, 1990.

[Jae97] Manfred Jaeger. Relational Bayesian networks. In Morgan Kauf-
mann, editor, Proceedings of the 13th Conference on Uncertainty
in Artificial Intelligence, pages 266–273, 1997.

[KP98] Daphne Koller and Avi Pfeffer. Probabilistic frame-based sys-
tems. In Proceedings of the 15th National Conference on Artifi-
cial Intelligence (AAAI), pages 580–587, 1998.

[KR00] Kristian Kersting and Luc De Raedt. Bayesian logic programs.
In J. Cussens and A. Frisch, editors, Proceedings of the Work-in-
Progress Track at the 10th International Conference on Inductive
Logic Programming, pages 138–155, 2000.

[NH95] Liem Ngo and Peter Haddawy. Probabilistic logic programming
and bayesian networks. In Asian Computing Science Conference,
pages 286–300, 1995.

22

[NS92] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic
programming. Information and Computation, 101(2):150–201,
1992.

[Pea91] Judea Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann, San Mateo
(Calif.), 1991. Harold Cohen Library Liverpool.

[PKMT99] Avi Pfeffer, Daphne Koller, Brian Milch, and Ken T.
Takusagawa. Spook: A system for probabilistic object oriented
knowledge representation. In Proceedings of the 14th Annual
Conference on Uncertainty in AI (UAI-99), pages 541–550, 1999.

[Poo93] David Poole. Probabilistic horn abduction and bayesian net-
works. Artificial Intelligence, 64(1):81–129, 1993.

[Poo03] D. Poole. First-order probabilistic inference. In Proceedings of
the 8th International Joint Conference on Artificial Intelligence,
pages 985–991, 2003.

[ZP94] N.L. Zhang and D. Poole. A simple approach to bayesian network
computations. In Proceedings of the Tenth Biennial Canadian
Artificial Intelligence Conference, 1994.

A Constraint Systems

The algorithm and proof presented in this paper require intensive manipu-
lation of constraint systems. This subsection defines several properties and
operations used on them.

It is convenient to keep constraint systems of parfactors in a normalized form.
A constraint formula F is normalized if it is one of >, ⊥ and a conjunction
of constraints in which each logical variable appears in at most one left-
hand side of an equality constraint, no constraint appears twice, there are
no equality constraints of the form t = t for any term t and no disequality
constraints of the form c1 6= c2 for any two distinct constants c1 and c2.

This is a normal form as described in [Bar98]. A normalized constraint system
is a constraint system whose constraint formula component is normalized. We
define normal(F) to be the normal form of a constraint conjunction F .

23

Theorem A.1 ([Bar98]). Every constraint conjunction is equivalent to a
normalized constraint conjunction.

The following theorem shows that a constraint system is always equivalent
to a set of normalized constraint systems.

Theorem A.2. For every constraint formula F , let D be the set of disjuncts
in the DNF of F and FG, for each G ∈ (2D−∅), be the normalized constraint
conjunction normal

(∧
d∈D,d∈G d

∧
d∈D,d6∈G ¬d

)
. Then {[FG] : G ∈ (2D − ∅)}

is a partition of [F].

Proof. Let H be {FG : G ∈ (2D − ∅)}. We show that the extensions of
elements in H form a partition of [F] by showing that an assignment satisfies
F if and only if it is in the extension of one and only one element of H . For
each assignment σ satisfying F take Gσ = {d ∈ D : dσ is true}, which is
in 2D − ∅. By the definition of FG, σ must be in [FGσ]. FGσ is the only
element in H to whose extension σ belongs to. This is so because for any
G′ ∈ H, G′ 6= Gσ since G′ 6= G there must exist d ∈ D that is not in Gσ

and that therefore it not satisfied by σ, so σ 6∈ [FG′]. Conversely, if σ does
not satisfy F , it does not satisfy F ′ or any d ∈ D. Since all assignments in
the extension of every FG ∈ H must satisfy some d ∈ D, σ is not in any of
them.

Let C = (F,V) be a normalized constraint system and X ∈ V be a variable.
C is shattered wrt X if, for every pair of distinct constraints X rel1 α and
X rel2 β in F , where rel1, rel2 ∈ {=, 6=}, either ∀σ ∈ [C] : ασ = βσ or
∀σ ∈ [C] : ασ 6= βσ.

The notion of shattering is useful when calculating the number of possible
values for X in [C], for if we know that different constraints on X will always
be either equivalent or contradictory to each other, then the number of pos-
sible values for X will depend solely on the number and type of constraints
on it. This will be shown in Theorem A.4.

The next theorem shows that we can always replace a parfactor by a set of
parfactors, each with a constraint system based on a normalized constraint
system shattered wrt a certain variable.

24

Theorem A.3. Let C = (F,V) be a normalized constraint system, X a
variable and J the set of conjuncts in F . Then S(C), defined as

{(F ′,V) : F ′ = normal(F ∧
∧

α, rel, β:
(X rel1 α)∈J,(X rel2 β)∈J,

α6=β,rel1,rel2,rel∈{=, 6=}

α rel β), F ′ 6= ⊥}

is a set of normalized constraint systems shattered wrt X whose extensions
form a partition of [C].

Moreover, each of the resulting constraint systems preserves previous shat-
tering, i.e., if C is shattered wrt a variable Y , then so are the elements of
S(C).

Proof. Every constraint system (F ′,V) ∈ S(C) is shattered wrt X because,
for every pair of distinct constraints X rel1 α and X rel2 β in F , α and β
are restricted to be either equal or different according to every assignment in
[F ′].

Every assignment σ in the extension of a constraint system (F ′,V) ∈ S is
also in [(F,V)], because if F ′σ is true, then it satisfies all conjuncts used in
the construction of F ′, one of which is F itself.

Given distinct constraint systems (F ′,V), (F ′′,V) ∈ S, their extensions are
disjoint because their construction involve opposite constraints for at least
one pair of terms α and β, so the assignments in one’s extensions will never
satisfy the other’s.

Every assignment σ ∈ [(F,V)] is in the extension of at least one element
of S(C). To see this, we consider that for each pair of disequalities X = α
and X = β, either ασ = βσ or ασ 6= βσ, and by the construction of S(C)
there will always be an element (F ′,V) in it such that F ′σ is true. Note that
F ′ is necessarily different from ⊥ because it is equivalent to normal(F ∧∧

α,β:X=α∈J,X=β∈J,α6=β,σ(α)=σ(β) α = β ∧
∧

α,β:X=α∈J,X=β∈J,α6=β,σ(α)6=σ(β) α 6= β)

so at least σ is in [F ′], by this definition and from the fact that σ ∈ [F].

The preservation of shattering can be observed from the fact that the exten-
sions of elements of S(C) are subsets of [C]. If it is true that C is shattered
wrt Y , then for every pair of distinct constraints Y rel1 α and Y rel2 β in F ,
where rel1, rel2 ∈ {=, 6=}, either ∀σ ∈ [C] : ασ = βσ or ∀σ ∈ [C] : ασ 6= βσ,
and consequently, for every C ′ ∈ S(C), either ∀σ ∈ [C ′] : ασ = βσ or

25

∀σ ∈ [C ′] : ασ 6= βσ. This shows that every C ′ ∈ S(C) remains shattered
wrt Y .

The notion of shattered constraint systems is useful for calculating the num-
ber of assignments eliminated when a logical variable is eliminated from the
system. For this we need to define the notions of eliminations of logical vari-
ables from constraint systems, and well as the dimensionality of a constraint
system wrt a logical variable.

We define the elimination of logical variables from a normalized constraint
system through a − operation between a constraint system and a set of
variables. For every C = (F,V) a normalized constraint system and W ⊆ V
a set of variables, C −W is the constraint system (F ′,V −W), where F ′ is
the conjunction of all conjuncts in F that do not involve any variables in W .

Let C = (F,V) be a normalized constraint system and X a logical variable.
Then the dimensionality of C with respect to X, denoted as Dim(C, X), is
a natural number such that for every assignment σ ∈ [C − {X}] there are
exactly Dim(C, X) distinct assignments in [C] agreeing with σ on V−{X}.
We now show how to calculate the dimensionality of constraint system wrt
a variable.

Theorem A.4. Let C = (F,V) be a normalized constraint system shattered
wrt a variable X. Then Dim(C, X) is 1 if F contains a conjunct X = t for
some grounded term t and |T (X)| − n if there is no such equality conjunct
and there are n ∈ {0, . . . , |T (X)|} disequality conjuncts X = ti for grounded
terms ti, i = 1, . . . , n.

Proof. Let C ′ be C − {X}. For every σ′ ∈ [C ′], make σ identical to σ′ but
for mapping X to itself, and take C ′′ = (Fσ, {X}). Because C is shattered
wrt X, Fσ′ contains at most one equality X = t for a grounded term t and
zero or more disequalities X 6= ti for ti, i = 1, . . . , n grounded terms (distinct
from t if there is an equality). These terms must all be grounded because
X is the only variable left in Fσ. If there is one equality X = t, then there
is only one assignment σ′′ ∈ [C ′′] and agreeing with σ′ on V − {X}, which
is the one mapping X to t and Y to σ′(Y) for every Y 6= X. If there is no
equality X = t, then for every value x in X’s type T (X) that is different
from all ti’s (there will be |T (X)| − n such values) there is an assignment
σ′′ ∈ [C ′′] and agreeing with σ′ on V− {X}, which is the one mapping X to

26

x and Y to σ′(Y) for every Y 6= X. In either case, there is a natural number
r such that there are r assignments satisfying C ′′.

Now, for each σ′′ ∈ [C ′′], we build the assignment σ′′′ that agrees with σ′ on
V − {X} and with σ′′ on X. σ′′′ ∈ [C] because Fσ′′′ ≡ Fσ′σ′′, which, since
σ′′ ∈ [C ′′], must be true, and σ′′′, by its construction, agrees with σ′. Because
we have r such assignments for each σ′′ ∈ [C ′′] = [C − {X}], the definition
of Dim(C, X) tells us that Dim(C, X) = r.

Now notice that the particular values to which σ′ maps variables are unim-
portant in the above argument. Therefore the number Dim(C, X) of assign-
ments satisfying C−{X} and agreeing with σ′ on V−{X} will be the same
for any σ′ ∈ [C ′].

We now generalize these results from a single variable to a set of variables.

Given a constraint system C = (F,V) shattered wrt all logical variables in
a set X ⊆ V, the dimensionality of C wrt X , denoted as Dim(C,X), is a
natural number such that for every assignment σ ∈ [C−X] there are exactly
Dim(C,X) distinct assignments in [C] agreeing with σ on V −X.

We can calculate Dim(C,X) for a normalized constraint system shattered
wrt a set of logical variables X from its dimensionality wrt each variable in
X.

Theorem A.5. Let C be a constraint system (F,V) shattered wrt all logical
variables in a set X ⊆ V. If |X| = 1, then Dim(C,X) = Dim(C, X). If
|X| > 1, then for any variable X ∈ X, with Y = X − X, Dim(C,X) =
Dim(C −Y, X)×Dim(C,Y).

Proof. We prove this by induction on |X|. For the case base where |X| = 1,
we observe that the definitions for dimensionality wrt a single variable and
wrt a set of variables with a single variable turn out to be the same, so
Dim(C,X) = Dim(C, X). For |X| > 1, by induction there are Dim(C,Y)
assignments in [C] agreeing with each assignment in [C−Y] on V−Y, and,
from the definition of dimensionality wrt a variable, there are Dim(C−Y, X)
assignments in [C −Y] agreeing with each assignment in [(C −Y)− X] =
[C −X] on V−X. Note that an assignment σ agreeing with an assignment
σ′ on V −Y and σ′ agreeing with σ′′ on V −X implies that σ agrees with
σ′′ on V −X, because V −X ⊆ V −Y. Therefore, there are Dim(C,Y)×

27

Dim(C−Y, X) assignments in [C] agreeing with each assignment in [C−X]
on V−X, which means that Dim(C,X) = Dim(C,Y)×Dim(C−Y, X).

Finally, we show how to calculate Dim(C,X) without the restriction on
C = (F,V) being shattered wrt X.

Theorem A.6. Given a set of logical variables X and a normalized con-
straint system C = (F,V) (not necessarily shattered wrt X), let S be the set
of constraint systems shattered wrt X such that its element’s extensions form
a partition of [C], according to Theorem A.3. Then there are Dim(C,X) =∑

C′∈S Dim(S,X) assignments in [C] agreeing with each assignment [C−X]
on V −X.

Proof. We know that there are Dim(C ′,X) assignments in each C ′ ∈ S
agreeing with each assignment in [C−X] on V−X. Because {[C ′] : C ′ ∈ S}
is a partition of [C], it exhausts [C] and guarantees that [C ′] ∩ [C ′′] = ∅
for C ′, C ′′ ∈ S, C ′ 6= C ′′, so there are

∑
C′∈S Dim(S,X) assignments in [C]

agreeing with each assignment [C −X] on V −X.

B Parseq Shattering

As seen in the previous subsection, constraint systems can be broken down
into normalized constraint systems shattered wrt some variable, with disjoint
extensions. This creates individual systems whose extension is uniform in
some sense and therefore more predictable without the need to analyse their
grounding. In this subsection we show that a similar notion can be applied
to parseqs.

When a parseq is defined on atoms with the same predicate, some instances
of it may contain more random variables than others. For example, a parseq
({q(X, Y), q(X, Z)},>) has instances in which Y = Z and others in which
Y 6= Z. If this parseq is the argument sequence for a parfactor q(X, Y) =
q(X, Z) means that the grounded factor will be defined on a single random
variable, while q(X, Y) 6= q(X, Z) means that the grounded factor will be
defined over two random variables. This is undesirable because sometimes we
rely on the structural uniformity of groundings to manipulate them without
the need to consider individual cases.

28

This motivates the definition of a shattered parseq, that is, a parseq whose
all groundings contain the same number of grounded atoms.

Definition B.1. A parseq (A, C) is shattered if every pair of parameterized
random variables in A is constrained by C to be either identical or different
from each other.

A normalized parseq is a parseq whose constraint system is normalized and
whose equality conjuncts have been eliminated by substituting variables in the
parseq’s parameterized random variables according to them. This is to say
that their constraint system’s constraint formula is a conjunction of disequal-
ities. The function normal maps parseqs into their normalized versions.

Analogously to constraint systems, for any normalized parseq there is a set
of normalized shattered parseqs whose constraint systems’ extensions form
a partition of its constraint system’s extension. In order to show how this
can be computed, we need to introduce convenient ways of expressing that
two atoms must be different or equal, which we call equality (or disequality)
constraints on atoms, as defined below.

The equality constraints of atoms B and C is

Eq(B, C) =

|args(B)|∧
i=1

args(B)i = args(C)i

if pred(B) = pred(C) ∧ |args(B)| = |args(C)|, or Eq(B, C) = ⊥ otherwise.

The disequality constraints of atoms B and C is

Dis(B, C) =

|args(B)|∨
i=1

args(B)i 6= args(C)i

if pred(B) = pred(C)∧ |args(B)| = |args(C)|, or Dis(B, C) = > otherwise.

More generally, we define AtConstr to be

AtConstr(B, C, =) = Eq(B, C)

and

AtConstr(B, C, 6=) = Dis(B, C).

29

We can now show how to replace a normalized parseq by a set of shattered
normalized parseqs.

Theorem B.1. Let E = (A, (F,V)) be a normalized parseq. Then NNS(E)
(the non-normalized shattering of E) is defined as

{(A, (F ′,V)) : F ′ = normal(F ∧
∧

B,C∈A,rel∈{=, 6=}
AtConstr(B, C, rel))}

and is a set of shattered parseqs such that {[(F ′,V)] : (A, (F ′,V)) ∈ NNS(g)}
is a partition of [(F,V)].

Note that while the formulas in this set are normalized, the parseqs are not.
We also define S(E) = {normal(E ′) : E ′ ∈ NNS(E)} as the version of
NNS(E) with normalized parseqs (that is, without equality conjuncts in their
constraint systems).

Proof. This proof is similar to the proof of Theorem A.3.

Every assignment σ ∈ [(F,V)] is in [(F ′,V)] for some (A, (F ′,V)) ∈ NNS(E),
namely the one with F ′ equal to the normalized form of

F ∧
∧

B,C∈A:Bσ=Cσ

AtConstr(B, C, =) ∧
∧

B,C∈A:Bσ 6=Cσ

AtConstr(B, C, 6=)

since Fσ is true and there will be an element of NNS(E) constructed with
constraints on the atoms of A exactly reflecting whether σ makes them equal
or different.

Every assignment σ ∈ [(F ′,V)] for some (A, (F ′,V)) ∈ NNS(E) is also in
[(F,V)] because F ′σ is true and since F is a conjunct of F ′, Fσ must also
be true.

[(F ′,V)] form a partition of [(F,V)] because no assignment σ can be in both
[(F ′,V)] and [(F ′′,V)] for two distinct F ′ and F ′′ such that (A, (F ′,V)),
(A, (F ′′,V)) ∈ NNS(E). This is so because if F ′ and F ′′ are distinct then
there is at least one pair of atoms B, C ∈ A on which one imposes equality
and the other disequality, and σ can only make one of those true.

30

C Parseq operations

We show here that operations on sets of ground random variables described
by parseqa can be performed on the parseqs themselves.

It is important to show that the extension of a parseq minus a set of ground
atoms can be described by the extension of another parseq.

Theorem C.1. Let R be a parseq and Q be a set of ground atoms. Then

[R] \Q = [(
⋃

V ∈ParV ar(R)

V σV ,
∧

V ∈ParV ar(R)

∧
W∈Q

(C(R)σV ∧ ¬CV,W))],

where σV is an assignment of logical variables LV ar(V) to unique names and
CV,W is constraint system with the equalities necessary to make V σV equal to
W .

Proof. Let A be a ground atom in [R] \ Q. Then A ∈ [(V σV , C(R)σV)] for
some V ∈ ParV ar(R) but A 6= W for any W ∈ Q, so

A ∈ [(
⋃

V ∈ParV ar(R)

V σV ,
∧

V ∈ParV ar(R)

∧
W∈Q

(C(R)σV ∧ ¬CV,W))]

by construction of the latter.

Conversely, if A ∈ [(
⋃

V ∈ParV ar(R) V σV ,
∧

V ∈ParV ar(R)

∧
W∈Q(C(R)σV∧¬CV,W))],

A is a instance of some V ∈ ParV ar(R) but not equal to any W ∈ Q, so it
must be in [R] \Q.

D Unifications

There are three types of unifications needed in first-order variable elimina-
tion: parseq unification, partial unification and splitting unification.

D.1 Parseq Unification

The most basic of the unifications we use is parseq unification. Parseq uni-
fication unifies sets of parameterized random variables, which are just logic

31

atoms, so it resembles the regular unification used in resolution. However,
this is a more general case since it may involve disequalities and logical vari-
ables may already be constrained prior to it.

Definition D.1. Let R and S be parseqs. A normalized constraint system
U = (F, LV ar(R) ∪ LV ar(S)) is a unifier of R and S if [U] ⊆ [C(R)],
[U] ⊆ [C(S)] and, for any substitution θ ∈ [U], set(Rθ) = set(Sθ), where set
is a function returning a set of parameterized random variables of a parseq
(which is a sequence and therefore ordered – this is to say that the equality
here is defined by regarding the parseqs as sets, not sequences).

The unification between R and S is said to fail if there is no unifier of R and
S and to succeed otherwise.

[Bar98] shows that there is a unifier of R and S if and only if [R] ∩ [S] 6= ∅,
for the case where they are unary parseqs, and how to find it.

A unifier describes the set of instantiations common to both parseqs R and S,
and its constraint system is defined on the logical variables of both of them.
However, we can choose one of them, say, R, and transform the unifier into
an equivalent parseq whose constraint system is defined on LV ar(R) alone,
as the next theorem shows.

Theorem D.1. Let U be the unifier of normalized parseqs R and S. The set
[(ParV ar(R), U)], which is by definition equal to [(ParV ar(S), U)], is also
equal to a set [(ParV ar(R), U ′)] where U ′ is a constraint system containing
logical variables in LV ar(R) only.

Proof. Consider the constraint system U and assume it in a normalized form.
Because it is a product of unification, the logical variables in LV ar(S) can
only have disequality constraints in relation to constants and other variables
in LV ar(S), and can only have equality constraints with constants or vari-
ables in LV ar(R). In particular, there cannot be disequalities between vari-
ables in LV ar(R) and LV ar(S), as mentioned in [Bar98]. We then construct
a new constraint system on LV ar(R) as follows:

U ′ =
⋃
c′∈C

c′

where
C =

⋃
c is a conjunct of U

s(c)

32

and s(c) maps each conjunction in U to either a unary set or the empty set
in the following manner:

s(c) =

{c}, if c does not involve variables in LV ar(S),

{Y = α}, if c is of the form X = α for X ∈ LV ar(S) and

X = Y is a conjunct of U for some Y ∈ LV ar(R),

∅, if c is an equality X = α for X ∈ LV ar(S) and

there is no other conjunct

X = Y in U , for Y ∈ LV ar(R).

From this transformations one can verify, since the variables in LV ar(S) do
not occur in R, that [(ParV ar(R), U ′)] = [(ParV ar(R), U)].

Theorem D.2. Let U be a unifier of parseqs R and S. U defines assignments
σR and σS such that RσR = U and SσS = U .

Proof. The existence of these assignments is a consequence of the fact that
the unification in [Bar98] guarantees an equality, for each logical variable in
the parseqs, to either a constant or logical variable in the other parseq. sigR

(sigS), then, will map each variable in R (S) to either a constant, itself, or
a logical variable in S (R), depending on the logical variables actually being
used in U .

D.2 Partial unification

The second type of unification is partial unification between parseqs. Some-
times it is not possible to find a unifier of two parseqs, but a unifier on a
subset of the parameterized random variables of those parseqs, which is a
useful operation.

Definition D.2. Let R and S be two parseqs. A partial unifier of R and S is
a parseq E such that [E] 6= ∅, [E] ⊆ [R] ∩ [S] and LV ar(C(E)) = LV ar(E)
(i.e., the constraint system of E is not allowed to contain logical variables
not in LV ar(E)).

The partial unification of R and S is said to fail if there is no partial unifier
of R and S and to succeed otherwise.

33

Note that a unifier is a constraint system but a partial unifier is a parseq.
The reason for this difference is that the partial unifier must contain the
information on what part of the original parseqs the unification has been
performed.

Theorem D.3. Let R and S be two parseqs. There is a partial unifier of R
and S if and only if [R] ∩ [S] 6= ∅.

Proof. Suppose there is a partial unifier E of R and S. Then [E] is not empty
and [E] ⊆ [R]∩ [S], therefore [R]∩ [S] 6= ∅. Conversely, suppose [R]∩ [S] 6= ∅.
Then there is a ground random variable A both in [R] and [S] which is an
instance of V ∈ ParV ar(R) and of W ∈ ParV ar(S). Therefore, we can
find a unifier U of parseqs (V, C(R)) and (W, C(S)), accordingl to [Bar98].
Let us assume U to be normalized, and define U ′ to be the conjunction of
conjuncts of U that only contain logical variables in LV ar(V) ∪ LV ar(W).
All assignments to the variables in LV ar(V) ∪ LV ar(W) in U will thus be
preserved in U ′, so U ′ is also a unifier of parseqs (V, C(R)) and (W, C(S)).
According to Theorem D.1, there is another unifier U ′′ with logical variables
from LV ar(V) only (or from LV ar(W) only). From this, by definition,
(V, U ′′) (or (W, U ′′)) is a partial unifier of R and S.

D.3 Splitting unification

We have already defined splitting unification in section 3.3.1 and stated some
theorems about it, which we re-state and prove here.

Proof of Theorem 3.1:

Theorem D.4. Let R be a set of parseqs and E a parseq. There is at least
one element R ∈ R such that [E] ∩ [R] 6= ∅ if and only if there is a splitting
unifier E ′ of R given E.

Proof. We prove this by induction on |R|. If |R| = 0 then both directions
of the theorem are trivial, based on the observation that there is no element
R ∈ R whose extension intersects [E] since R is empty.

If |R| ≥ 1, the “if” part of the theorem is tru by the definition of splitting
unifier. For the “only if” part, let R ∈ R such that [E] ∩ [R] 6= ∅. Then,
according to Theorem D.3, there is a partial unifier E ′ of E and R. Let us

34

now consider, by induction, the splitting unification of R′ = R \ {R} given
E ′ as seed. If this splitting unification fails then for every element R′ ∈ R′,
[R′] ∩ [E ′] = ∅. This means, by definition, that E ′ is a splitting unifier for
R given seed E. If this splitting unification succeeds, there is a splitting
unifier E ′′ of R′ such that [E ′′] ⊆ [E ′] ⊆ [E] and [E ′′] ⊆ [R]. Because E ′′ is
a splitting unifier for R′ and [E ′′] intersects [R], E ′′ is a splitting unifier for
R given seed E.

In order to prove Theorem 3.2, we first prove the following lemma:

Lemma D.1. Let R be a set of parseqs and Q a set of ground atoms. If
there is a splitting unifier of R with seed GV ar(G) \Q, then there is a valid
splitting unifier of R with seed GV ar(G) \Q.

Proof. Let E be a splitting unifier of R with seed GV ar(G)\Q. We prove the
theorem by induction on the number of logical variables in R left uncovered
by E. If this number is 0, then E is a valid splitting unifier wrt GV ar(G)\Q.

If E > 0, then let V be a parameterized random variable in ParV ar(R), for
some R ∈ R such that [R]∩ [E] 6= ∅, such that a logical variable X uncovered
by E occurs in V . Let V ′ be the parseq describing [(V, C(R))] \Q according
to Theorem C.1. [V ′] is not an empty set because the query is ground and
V is parameterized. (V ′ represents ground random variables that need to
be eliminated, because they are not in the query, while coming from the
grounding of a logical variable uncovered by E.)

Let W ⊆ ParV ar(R) such that there is a parseq (W, C) with [(W, C)] =
[E]. These are simply the parameterized random variables in R that have
been unified to parameterized random variables in E. Let E ′ be the parseq
(W∪{V }, C(E)∧C(R)). By the construction of E ′, [E ′]∩R 6= ∅, so, according
to Theorem 3.1, there is a splitting unifier E ′′ of R for seed E ′. In particular,
because V is unified to some part of E ′′, X is covered by E ′′. Moreover,
any logical variable Y that was already covered by E is covered by E ′′ as
well. This is so because any parseq S ∈ R such that [S] intersects [E ′′] must
have a set of parameterized random variables T unifying with ParV ar(E),
so the logical variables in T must have unified to logical variables in E and
W , so they are also unified to logical variables in E ′ and thus covered by E ′′.
By induction, then, there must be a valid splitting unifier for R with seed
GV ar(G) \Q.

35

Theorem D.5. For any set R of parseqs and Q a set of ground atoms such
that GV ar(R) \ Q 6= ∅ there is a valid splitting unifier E of R with seed
GV ar(R) \Q.

Proof. Because GV ar(R) \ Q 6= ∅, there is a parseq D such that [D] ⊆
GV ar(R) and [D]∩Q 6= ∅ (by Theorem C.1). This means, by Theorem D.4,
that there is a splitting unifier D′ of R. From Lemma D.1, it follows that
there is a valid splitting unifier.

36

