
QoS-Aware Meta-Data Compiler for Ubiquitous Multimedia

Applications

Duangdao Wichadakul1, Klara Nahrstedt2

1National Electronics and Computer Technology Center
112 Paholyotin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand

2Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

duangdao@hpcc.nectec.or.th, klara@cs.uiuc.edu

June 7, 2004

Abstract

The reusability of available multimedia and middleware services brings new challenges for

enabling flexible and efficient development and deployment of distributed end-to-end multimedia

applications with specific Quality-of-Service(QoS) in ubiquitous environments. The main chal-

lenges in reusing available components include understanding and utilizing of domain-specific

components and middlewares with various semantics, and enabling their QoS-aware interoper-

ability in ubiquitous environments that resource fluctuations, device and service changes are a

common phenomenon. This paper presents a QoS-aware meta-data compiler framework that

provides a solution for the challenges. The framework extends standard component construc-

tion and composition with QoS-related meta-data. It defines a set of QoS-aware models and

meta-data translation models that are essential for modelling QoS consistency. The framework

also enables QoS-aware semantics and interfaces for interoperability among connected compo-

nents forming a QoS-aware multimedia application. Besides the defined models, the framework

introduces an architecture that integrates the models with a set of high-level specifications,

a meta-data compiler protocol, and a run-time support to form a programming environment,

called Q-Compiler. The Q-Compiler helps to automate the development and deployment of a

component-based, QoS-aware application, deployable in ubiquitous environments. To validate

the viability of the Q-Compiler, we use it to develop a mobile Video-on-Demand application in

an active space project. The experimental results show that the introduction of a translator

code between connected components does not degrade the overall service quality of the compo-

nents. Although the main contributions of the framework are validated via multimedia domain,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we anticipate that fundamental concepts and design will be applicable to other application

domains.

Index Terms: reusable components, ubiquitous computing, QoS-aware meta-data programming

and compilation, QoS-aware models, QoS-aware semantic and interface interoperability, QoS-aware

meta-data translations.

1 Introduction

A ubiquitous computing promotes the proliferation of various stationary, embedded and mobile

devices interconnected by heterogeneous networks (e.g., wired, wireless, infrared). It promises a

dynamic, distributed computing environment, that seamlessly and pervasively delivers applications

to the user, despite changes of resources, devices, and locations. In a ubiquitous environment,

component technology has become widely-accepted for enabling the rapid construction of applica-

tions. Available component models and reusable multimedia components allow fast and flexible

packaging, distribution and deployment of component-based multimedia applications. Only a few

of these applications, however, are Quality-of-Service(QoS)-aware. One of the main reasons is that

it is complex and difficult to build QoS into these applications in such ubiquitous environments.

The complexity and difficulty lie in the following facts.

First, reusable components in different layers (e.g., multimedia components in the application

layer, and QoS-enabling services in the middleware and RM management layer) that can be reused

to compose a QoS-aware application have their own QoS notations and semantics. Also, different

components in the same layer are domain-specific. For example, in the application layer, video-

streaming applications deal with frame size, frame rate, and color depth. Video conferencing

applications deal with lip synchronization skew, and visual tracking applications deal with tracking

precision. In middleware and resource management layers, a CPU scheduling service deals with

period and cycle time to ensure the required processing time for a running component. A bandwidth

broker service deals with bandwidth reservation for transmitting the data and/or control of the

component. These specific QoS semantics add to the complexity of interoperability, translations,

and mappings between connected components, both in the same layer and across layers and among

distributed end systems (See Figure 1).

2

Application layer

Middleware/RM layer

OS/Network

Ethernet, 802.11, infrared, bluetooth

QoS, media, service-relevant

 meta-data

QoS, service-relevant

 meta-data

Figure 1: Horizontal and Vertical QoS-Aware Interoperability Among Service Components in Dif-
ferent Layers in Distributed End Systems

Second, while a ubiquitous environment is dynamic due to changing availability of devices, soft-

ware components and resources, a traditionally developed QoS-aware application is tightly-coupled

with specific application service components and QoS-enabling services. Hence, the developed appli-

cation might not be adaptable to a dynamic environment and deployable in different environments,

due to unavailability of required software components, devices, and resources.

Most of the past efforts on enabling QoS for multimedia applications have focused on QoS

architectures[1, 2, 3, 4, 5], resource management algorithms and systems[6, 7, 8, 9, 10, 11, 12,

13], QoS mappings and translations[1, 14, 15, 16, 17, 18, 19], and measurement-based resource

translations[20, 21, 22]. Agilos[23] is the adaptation-based QoS middleware, based on fuzzy logics

and control theory. In the Distributed Object Computing (DOC) community, standard middleware

such as CORBA defines control of audio/video streaming specification[24]. MULTE-ORB[25] is a

reflective multimedia object request broker that mainly considers the reconfigurable bindings and

explicit streaming bindings to support real-time requirements in ORB. GOPI[26] and OpenORB[27]

at Lancaster provide a set of middleware modules representing a generic middleware platform,

which can be extended to support different types of interactions (e.g., streaming, messaging) with

specific semantics and QoS specifications. DotQoS[28] extends the .NET Remoting, which is the

middleware of Microsoft’s .NET framework, with QoS specification, the definition of QoS-enabled

component, the handling of QoS contracts, and the composition of QoS mechanisms in the message

path. In pervasive computing and communication, BASE[29] is proposed to provide an extensible

middleware via easy-to-use abstractions to access remote services and device-specific capabilities.

It provides the dynamic extensibility supporting the range of devices from sensors to full-fledged

computers. PCOM[30] offers application programmers high-level programming abstractions that

3

capture the dependencies between components using contracts. It supports automatic adaptation

in cases where the execution environment changes to the better or to the worse.

These research results could be considered as reusable QoS-enabling services for building differ-

ent aspects of QoS provisions into multimedia applications executable in ubiquitous environments.

As addressed previously, specific QoS semantics of services add to the complexity of their reusabil-

ity. An application developer will need a good understanding of QoS characteristics of available

services in order to select among them appropriately. Moreover, the application developer needs to

know how to translate or map between different semantics and interfaces of deployed QoS-enabling

services and multimedia services in order to form a QoS-aware multimedia application. Hence,

the effective development of a QoS-aware application depends mainly on the expertise and expe-

rience of the developer. Moreover, the developed application that is tightly-coupled with specific

QoS-enabling services results in the inflexibility of its deployment.

In this paper, we introduce a QoS-aware meta-data compiler that addresses fundamental re-

quirements and presents a solution for enabling the flexible reuse of multimedia components and

QoS-enabling services for composing a multimedia application with specific QoS requirements. The

goals of the compiler are to (1) reduce the complexity of developing a component-based, QoS-aware

multimedia application, and (2) improve the flexibility and efficiency of its deployment in ubiqui-

tous environments. To achieve these goals, the framework defines a component-based QoS-aware

application as the composition of application and QoS-enabling services where each service is de-

scribed by a meta-data (See Figure 2). The framework consists of a set of QoS-aware models, and

meta-data translations and compilations that help to (1) automate the QoS consistency check and

interoperability of the composed application, (2) enable QoS provision for the application based on

QoS-enabling services association, (3) optimize the association results, and (4) generate QoS-aware

deployment descriptors of the application, executable in ubiquitous environments.

The rest of this paper is organized as follows. Section 2 introduces the overall concepts and

design of the meta-data compiler. We justify why the a meta-data compiler is needed. Section 3

presents QoS-aware models and component categorizations designed for the meta-data compiler.

Section 4 presents meta-data translation models for enabling QoS-aware semantic and interface

interoperability. Section 5 describes the meta-data compiler architecture that puts together QoS-

4

QoS-enabling service

Application

 service

Meta-dataMeta-data

Meta-dataMeta-data Meta-dataMeta-data

QoS-enabling service

Application

 service
Application

 service

Application

 service

Meta-dataMeta-data

Application

 service

Application

 service

Meta-dataMeta-data
T

T

T

T TT T

T: Meta-data translation

Figure 2: A Generic Component-Based QoS-Aware Application and Its Related Meta-Data Trans-
lations

aware models and meta-data translation models into a QoS-aware programming and compilation

environment workable by a meta-data compiler protocol and a run-time support. Section 6 illus-

trates the usage of the meta-data compiler to develop and deploy a multimedia application. Section

7 presents a set of experimental results that validate performance and usability of the framework.

Section 8 discusses related work. Finally, Section 9 concludes the paper.

2 Overall Framework

We propose the meta-data compiler to fulfil the lack of a framework that enables easy and flexi-

ble reuse of available multimedia components and QoS-enabling services to compose a QoS-aware

multimedia application. In a meta-data compiler, we need (1) QoS-aware models that can be used

to describe QoS-aware component constructions1 and domain-specific compositions2 of application;

(2) translation models that include the translation specifications and their compilations for enabling

and automating different types of QoS-aware semantic interoperability among connected compo-

nents forming a QoS-aware application; (3) high-level specifications that can hide the complexity

of QoS-aware programming, customizable by an application developer; and (4) a meta-data com-

piler protocol and a run-time support that put together available models and specifications into a

QoS-aware programming environment usable by an application developer to develop and deploy a
1The component construction extracts functionality from a reusable component and describes it with QoS, media,

and service-relevant meta-data and rules.
2The domain-specific application composition concatenates components to form functional dependency graphs of

the application, and constructs of meta-data and rules for the application.

5

QoS-aware multimedia application into ubiquitous environments, with less complexity and higher

flexibility.

These entities are general principles for building any domain-specific meta-data compilers for

component-based QoS-aware applications. They are analogous to basic entities such as language

specification, lexical analyzer, parser, code generator, and their compilation protocol, comprising a

typical programming language compiler. However, a meta-data compiler is domain-specific; there

is no generic meta-data compiler although general principles are the same for each compiler. For

instance, the meta-data compiler for multimedia domain needs QoS-aware models that validate

compatibility and consistency of multimedia-specific QoS parameters along the end-to-end compo-

sition of the application.

3 QoS-Aware Models and Service Categorizations

Even though component models have been proposed in standard component architectures[31, 32,

33], none of them considers QoS as a fundamental concept. The lack of standard QoS-aware

models for both component construction and composition makes the programming models of these

architectures less applicable for enabling the development of QoS-aware applications. No standard

is defined for reusing, packaging and deploying such applications.

To enable the practical development and deployment of QoS-aware applications based on

reusable service components in different layers (e.g., application, middleware, resource manage-

ment), we define service categorization models, QoS-aware component model, QoS-aware applica-

tion model, and QoS-enabling service model, as fundamental models for the meta-data compiler.

Service categorizations deal with the classifications of application-level services and QoS-enabling

services (e.g., middleware, resource management). Both classifications divide available services into

categories3 according to specific service domain and functionality. Common ontology4 is defined

for each service category, as meta-data, representing QoS as requirement and provision of quality in

data semantics and/or service semantics. Service categories and their defined common ontologies

reduce the complexity and promote the generalization of translation models between two connected
3While these categorizations are not exhaustive, they are extensible with a new service category and its reusable

service components in the future.
4In our framework, an ontology of a service category represents common QoS parameters of the service category.

6

components, which are usually encoded with their own semantics. They enable different types of

QoS-aware semantic and interface interoperability for service composition, and help to separate

responsibility between a service component developer and a QoS-aware application developer.

The QoS-aware component model represents an atomic unit in the application layer for com-

posing a service or an end-to-end application. It is labelled with QoS meta-data derived from the

categorization of application services. The QoS-aware application model defines how to compose a

service or an application. Furthermore, it defines (1) QoS consistency check between two connected

components, and (2) labelling of the service or application with an aggregated QoS meta-data, de-

rived from the composed components. The QoS-enabling service model represents an atomic unit

in the middleware or resource management layers for enabling QoS management and enforcement.

It is labelled with QoS meta-data derived from the categorization of QoS-enabling services. We

describe service categorizations and QoS-aware models in details in the following sections.

3.1 Service Categorization

3.1.1 Application Service Categorization

To describe service semantics, we classify application services into a hierarchy as shown in Fig-

ure 3(a), according to domain and functionality of services. The first level of the hierarchy (e.g.,

AC1, AC2) represents different service domains. Each domain is further divided into subcategories

corresponding to the specific functionality of services. A leaf of the hierarchy (e.g., AC11, AC12)

represents a specific category that is described with common and configurable parameters repre-

senting service semantics. We use these parameters to customize and/or control service quality of

services in the category. A service in a category inherits common parameters from the category.

Figure 3(b) represents a concrete service hierarchy for multimedia domain. Each leaf of the hier-

archy represents multimedia services categorized into categories (e.g., encoding service, playback

service, encryption service) according to their specific functionality. The encoding service, for in-

stance, consists of three configurable parameters: “quantization factor,” “DCT coefficient,” and

“scaling factor.” A specific encoder (e.g., MPEG encoder) will inherit these meta-data from the

encoding service.

To describe data semantics of an application service, we categorize possible input and out

7

AC
1

AC
2

AC
11

AC
12

...

...

...

Multimedia

Playback

 service

Encoding

 service

Encryption

 service

Decryption

 service

Data protection

... ...

AC : Application service category

...

(a) (b)

Figure 3: Categorization of Reusable Application Services

data into a hierarchy, as shown in Figure 4, according to data types and formats. The first level

of the hierarchy represents common data types. Each internal nodes that are not in the first level

represents a sub data type which will inherit parameters from its parent and might introduce some

new parameters. A leaf node represents a specific data format which will inherit all parameters from

its associated data type and might also introduce some new parameters. In Figure 4, we classify

data types into video, audio, raw data, text, and message. Each data type is then further refined

into sub data types or formats. As shown in Figure 4, the video data type category is defined by

four QoS parameters: format, sample size, sample rate, and sample bit. An MPEG video format

category, then, refines sample size and sample rate for each frame type (I, P, B), and introduces

QoS parameters related to the group of picture (GOP).

Audio Video Raw

data

Text Message

MPEG

...

...format

sample size

sample rate

sample bit
format

sample size (I, P, B)

sample rate (I, P, B)

sample bit

number of frames per

 group of picture (GOP)

Figure 4: Categorization of Data Types and Formats

3.1.2 QoS-Enabling Service Categorization

To describe service semantics of QoS-enabling services, we classify reusable QoS-enabling services

into a hierarchy, according to their aspects of QoS provisions, as shown in Figure 5(a). The

overall hierarchy is similar to the hierarchy of application service categorization. The first level

8

of the hierarchy includes categories offering a specific aspect of QoS provision (e.g., SC1, SC2).

Each category is further divided into subcategories corresponding to different approaches for QoS

provisions. Leaves (e.g., SC11, SC12) of the hierarchy are specific categories where each category is

described by a set of common and configurable parameters representing service semantics. These

parameters are used to customize and/or control service quality of the QoS-enabling service in the

category. A QoS-enabling service in a category will inherit parameters from the category.

Figure 5(b) represents a concrete service hierarchy of QoS-enabling services usable by multime-

dia domain. A leaf of the hierarchy, CPU scheduling service, is described by a set of configurable

service-quality parameters (e.g., period, cycle time).

SC
1

SC
2

SC
11

 SC
12

...

...

...
Real-time streaming

 service

SC : QoS-enabling service category

(a)

Resource management

 service

Real-time messaging

 service

CPU scheduling

 service

Bandwidth management

 service

Real-time streaming

 protocols

Real-time

CORBA

Real-time messaging

 protocols

RTP, RTCP

(b)

...

Figure 5: Categorization of Reusable QoS-Enabling Services

3.2 QoS-Aware Models

3.2.1 QoS-Aware Component Model

Abstract Model of a QoS-aware component extends a standard component model with QoS-

related meta-data information. The abstract model utilizes the task model by Liu et al.[34], as

shown in Figure 6(a). The configurable service parameters (S), the input data quality (Qin), and

the output data quality (Qout) represent service and data semantics of the service component. Qin

and Qout specify specific data types and formats that the component expects as its processing input

and provides as its processing output, respectively. The reward profile (Rk) represents a mapping

from Qin, system resource requirements (r), and configurable service parameters (S) to Qout.

9

Concrete Model constructs and extends a generic CORBA component5, shown in Figure 6(b)6,

with QoS-related information, as shown in Figure 6(c). A QoS-aware component consists of (1)

application service component code, (2) a QoS-related meta-data, and (3) an adaptation handler.

The QoS-related meta-data represents properties of the component that are necessary for enabling

QoS-consistent service composition and efficient instantiation. The meta-data consists of the overall

information (e.g., name, category, interfaces, hardware and software constrains, required libraries)

about the component, plus the description of service semantics, data semantics, and reward profile,

presented in the abstract model. The adaptation handler is a set of interfaces that are introduced

for controlling the component to adapt according to changing environment. It connects to the

event sinks and sources in the model and extends the component with a set of interfaces such as

tuneServiceParams(params vector) and tuneDataParams(params vector).

Application Service Component Code

(b)

Component interface

Facets

Event sinks

Receptacles

Event sources

Configurable service-quality parameters

Component interface

QoS-related meta-data

ASC

Attributes

Adaptation handler

ASC

Qinout
Q

Resources r

T
k

Configurable service

 parameters S

out
Q = R (r, Q , S)in

(a)
(c)

k

Figure 6: QoS-Aware Component Models: (a) Abstract Model, (b) CORBA Component, (c) Con-
crete Model

3.2.2 QoS-Aware Application Model

Abstract Model of a QoS-aware application defines how to compose an end-to-end QoS-aware

application. As shown in Figure 7(a), a composition is represented as functional graphs of QoS-

aware service components. The model deploys a task-flow model and considers each QoS-aware

service component, yi, as a task with input data quality (Qin) and output data quality (Qout),

driven by available resources. The model defines how QoS-aware service components should connect
5We describe our model as an extension of a CORBA component because the CORBA component has been defined

with features that are necessary for any component architectures.
6In a CORBA component, the attributes represent configuration properties. The facets represent the offered

operation interfaces. The receptacles represent the required operation interfaces. The event sources and sinks
represent the produced events and consumed events, respectively.

10

together to form a consistent QoS-aware multimedia application. It defines a functional consistency

check and a QoS consistency check as described in[35].

Concrete Model is composed of a set of service graphs or configurations, as shown in Figure

7(b). Each graph is composed of QoS-aware service components. A QoS-aware application is

described by (1) QoS-related meta-data and (2) an adaptation handler. The QoS-related meta-

data describes (i) the structure of the application, (ii) its data semantics, and (iii) its adaptation

control policy. The meta-data of the application structure includes (a) general information of the

application such as name, category and accessibility, (b) functional dependency of services in form

of service graphs, and (c) description for each component in the service graphs. The Qsource
in is the

input data semantics of a source node in a service graph. The adaptation control policy describes

how the application should adapt according to the availability of resource, device, and services. The

adaptation handler is introduced to control the adaptation of the application. It cooperates with

the adaptation handlers of service components comprising the application. The handler assumes

the availability of an underlying event service. It subscribes to the event service for specific events,

and performs corresponding actions, defined in the adaptation control policy.

QoS-related meta-data QoS-related meta-data QoS-related meta-data

Adaptation handler Adaptation handler Adaptation handler

QoS-related meta-data

Adaptation handler

QoS-related meta-data QoS-related meta-data

Adaptation handler Adaptation handler

(b)

y
3

y
2

y
1

Qin
Q

out

Q
out

outQ

Qin

source

Resources r

Qin

Qin Q
out

(a)

y
3

y
1

y y
y

3
1

2

Figure 7: QoS-Aware Application Models: (a) Abstract Model, (b) Concrete Model

3.2.3 QoS-Enabling Service Model

Abstract Model of QoS-enabling service describes a reusable QoS-enabling middleware or re-

source management service with QoS-related information. The model in Figure 8(a) describes the

QoS-enabling service through its service semantics that include a requested service quality (Qreq),

11

a provided service quality (Qprov), an accessing attribute, and a reward profile (Rk). Qreq allows

a QoS-aware service component that wants to use the QoS-enabling service to specify its service

requirement. In general, a specific translation from Qin, Qout, and S of the QoS-aware service

component in Figure 6(a) into Qreq is needed. Qprov returns a level of service quality that the

QoS-enabling service can provide. The accessing attribute determines if the QoS-enabling service

is exclusive or can be shared among service components requesting the service. The reward profile

(Rk) represents the mapping from Qreq and system resources (r) to Qprov.

Concrete Model is constructed as a reusable QoS-enabling middleware or resource management

service, attached with a QoS-related meta-data, and wrapped with an intermediate representation

(IR), as shown in Figure 8(b). The QoS-related meta-data represents attributes of the QoS-enabling

service that are necessary for enabling a consistent integration between itself and a service com-

ponent. The overall description is very similar to those QoS-related meta-data of the QoS-aware

component model, with additional IR, defined for each QoS-enabling service category. The IR is a

set of common interfaces and parameters that enable service abstraction for QoS enforcement and

provision. Common interfaces are generalized from the functionality and pre-defined interfaces, pro-

vided by specific services in the same category. Common parameters are service semantics defined

by the category. Services in the same category will share the same intermediate representation. For

example, instances of a CPU real-time scheduling service, such as Dynamic Soft-Real-Time Sched-

uler (DSRT) and RT-Mach scheduler, will share the same common interfaces and parameters for

CPU scheduling and CPU bandwidth reservation. The introduction of IR allows the late binding

between a service component and its associated QoS-enabling service. During the instantiation,

the application bound with an intermediate representation can dynamically bind with any specific

QoS-enabling service, implementing the IR.

4 Meta-Data Translation Models for Interoperable Services

As different application service components and QoS-enabling services have their own pre-defined

service and data semantics with specific interfaces, it is difficult to efficiently reuse these components

to compose a QoS-aware application, without having suitable mechanisms enabling their interop-

12

QSC k

Q Qreq prov

 Requested service quality Provided service quality

QSC: QoS-enabling Service Component

Resources r

 Q = R (r, Q)
k reqprov

QSC

Configurable service-quality parameters

Component interface

QoS-related meta-data

Intermediate Representation (IR)

(a) (b)

Accessing attribute

Figure 8: QoS-Aware QoS-Enabling Service Models: (a) Abstract Model, (b) Concrete Model

erability. While past research results have solved aspects of interoperability problems (e.g., [36]),

none of them focuses on QoS-aware semantic interoperability. In addition, even though several

QoS translations and mappings [37, 14, 15, 17, 16, 38, 39, 22] result in interoperability of QoS-

aware semantics, they mainly focus on mappings from specific set of QoS parameters to resource

requirements, and do not consider interoperability from programming or software reuse point of

view.

In this section, we present a set of generalized meta-data translation models that are essential for

enabling the flexible and consistent construction and composition of a component-based, QoS-aware

application. These translation models (a) define meta-data specifications for different translations,

(b) determine appropriate operations to translate from a specification into another, and (c) compile

a specification into real codes. Based on service categorizations and pre-defined common ontologies

via service and data semantics, we can generalize the meta-data translations into three models, as

shown in Figure 9(a) and (b) for abstract and concrete models, respectively:

• (A) Common-actual ontology translation that handles QoS-aware semantic mappings between

the service and data semantics defined for a service category and the actual service and data

semantics of a specific service in the category;

• (B) Common-common ontology translation that handles QoS-aware semantic mappings be-

tween two common service and data semantics of two service categories;

• (C) Intermediate representation translation that handles QoS-aware interface mappings be-

tween common interfaces (an intermediate representation) of a service category, and the actual

interfaces, given by the implementation of a specific QoS-enabling service in the category.

13

 y y y

 S S S

 y

C

A

 S

C

A

 y

C

A

 S

C

A

(B)

(B)

CI

AI

 y

C

A

 S

C

A

(A)

(A)

(B)

 y

 S (C)

C

A

: Common service and data semantics

: Actual service and data semantics

CI

AI

: Common interfaces (Intermediate representation)

: Actual interfaces

 y : QoS-aware application service component

 S : QoS-aware QoS-enabling service

Application service layer

QoS-enabling service layer

QoS-related meta-data

Adaptation handler

DSRT

QoS-related meta-data

Playback

QoS-related meta-data

Adaptation handler

Decoder

T

T

T

T

T

T

Application layer

Middleware/RM (QoS-enabling service) layer

T

T

T

Common-actual ontology translation

Common-common ontology translation

Intermediate representation translation

(A)

(B)

(C)

(B)

(A) (A)

(A)

(B)

(C)

(a) (b)

Figure 9: Meta-Data Translation Models: (a) Abstract Model, and (b) Concrete Model

These translation models provide formal mechanisms and allow a separation of responsibility in

handling QoS-aware mappings according to different roles of developers. The compilation results

of the translation specifications are reusable. They enable the automation for composing a QoS-

aware application, hence, make the development of the application more practical and effective.

We describe each translation model in following sections.

4.1 Common-Actual Ontology Translation

The common-actual ontology translation utilizes service categorization and pre-defined common

semantics discussed in Section 3. As available application services and QoS-enabling services are

developed with their own QoS semantics, it is not our goal to build all translators between sets of

actual parameters of services and their corresponding common parameters. Instead, this translation

is proposed as a mapping placeholder for an application service or a QoS-enabling service developer

to specify a proper translation between the actual parameters of a service and the pre-defined

common parameters. A translation consists of two main parts, the specification and the compilation.

The translation specification, as shown in Figure 10, includes: (1) header, (2) substitution map-

pings from common to actual parameters, and (3) substitution mappings from actual to common

parameters7. The header includes the involved common and actual ontologies and helper functions.
7Sometimes, the actual-common ontology translation is needed for calling back from the middleware or resource

14

The substitution mappings can belong to one of the patterns: 1-1, 1-M, and M-1, shown in Figure

10(b). The 1-1 pattern represents the direct mapping between a common parameter and an actual

parameter. The 1-M pattern conveys the mapping from a parameter in the source ontology to a set

of parameters in the target ontology. The M-1 pattern demonstrates the mapping from multiple

parameters in the source ontology to a single parameter in the target ontology.

1-1: C
A

A X

1-M: CA A , A ,A , ...X Y Z

M-1: C , C , C , ...A B C A X

C A specification

A C specification

1-1: A
X

C A

1-M: AX C , C ,C , ...A B C

M-1: A , A , A , ...X Y Z CA

C : QoS parameter i in common ontology C
i

A : QoS parameter j in actual ontology A
j

INCLUDE CNAME

INCLUDE ANAME

INCLUDEFUNCTION F

INCLUDEFUNCTION F

...
1

Header

CNAME : Service category of common ontology

ANAME : Service component of actual ontology

F, F : Helper functions
1

(a) (b)

Figure 10: Specification of Common-Actual Ontology Translation: (a) Header, (b) Detailed Speci-
fication

The translator compiles the translation specification into a semantics translator, as an object

code in a specific programming language (e.g., C++ or java). The 1-1 and M-1 patterns will be

translated into an individual assignment statement. The 1-M mapping pattern will be compiled

into multiple assignment statements, where each corresponds to a parameter in the target ontology

in the specification. The semantics translator is a software code, which acts as a “glue code” for

solving a QoS-aware semantic interoperability between a pair of common and actual semantics.

Figure 11 shows an example of the common-actual ontology translation for the Dynamic Soft-Real-

Time Scheduling (DSRT) service. The CToATranslation and AToCTranslation elements consist

of the translation specification from common to actual and from actual to common semantics,

respectively.

management to the service component for QoS adaptation. Hence, there is a placeholder for it in the translation
specification.

15

DSRT

QoS-related meta-data

T

Common

Ontology

 Actual

Ontology
T

 CPU's

parameters
T

 DSRT's

parameters

<Include genericService=“CPU” specificService=“DSRTWindows”/>

<CToATranslation>

 <CParameter name="period" value="value(period)">

 <AParameter name="m_lPeriod" value="value(period)"/>

 </CParameter>

 <CParameterSet>

 <CParameter name="cycleTime" value="value(cycleTime)"/>

 <CParameter name="period" value="value(period)"/>

 <AParameter name="m_dPercentage"

 value="value(cycleTime)/value(period)"/>

 </CParameterSet>

</CToATranslation>

<AtoCTranslation>

 ...

</AToCTranslation>

<CommonActualTranslation>

</CommonActualTranslation>

public CCPUReserve CPUToDSRTWindowsTran(CPUDimensions b){

 CCPUReserve c = new CCPUReserve();

c.m_lPeriod = b.period;

c.m_dPercentage = b.cycleTime/d.period;

return c;

}

...

 s pecification trans lator

(1)
(2)

(3)

Translation specification

Specific translator

Figure 11: Common-Actual Ontology Translation (Example)

4.2 Common-Common Ontology Translation

While several QoS translations and mappings between two sets of QoS parameters (e.g., video

streaming parameters and resource-specific parameters) are proposed, there are no formal specifica-

tions and compilation mechanisms, which enable (a) reusability of these QoS translations/mappings,

and (b) fast and QoS consistent composition of a QoS-aware application. The common-common

ontology translation is proposed as a mapping placeholder for a developer, who understands how

composing components with different common semantics can communicate, to specify the proper

translation between two common semantics. The common-common ontology translation consists of

two main parts that have a very similar structure and functionality as the common-actual ontology

translation, with the addition of the one-to-one-special (1-1-special) pattern. The added pattern is

similar to the one-one pattern except that the target parameter is described not only by a source

parameter but also by some parameters in the target ontology. It is different from the many-to-

one pattern, where all parameters affecting the target parameter are in the source ontology. The

pattern will be translated into an assignment statement.

Figure 12 shows an example of the common-common ontology translation between a video

playback service and the scheduling service. The C2ToC1Translation and C1ToC2Translation ele-

ments consist of the translation specifications from common 1 to common 2 and from common 2 to

common 1 semantics, respectively. Each is translated into a function call consisting of assignment

16

 Common

Ontology 1

 CPU's

parameters

<CommonToCommonTranslation>

</CommonToCommonTranslation>

 s pecification trans lator

(1)

(2)

(3)

Translation specification

Specific translator

 Common

Ontology 2

 video's

parameters

T

QoS-related meta-data

Adaptation handler

DSRT

QoS-related meta-data

Playback

T

T

<C1ToC2Translation>

 <C1Parameter name="sampleRate" value="value(sampleRate)">

 <C2Parameter name="period" value="1000.0/value(sampleRate)"/>

 </C1Parameter>

 <C1ParameterSet>

 <C1Parameter name="sampleSize" value="value(sampleSize)"/>

 <C1Parameter name="sampleBit" value="value(sampleBit)"/>

 <C2Parameter name="cycleTime" value=

 “VCPUT.getCycleTime(value(sampleSize), value(sampleBit))"/>

 </C1ParameterSet>

</C1ToC2Translation>

<C2ToC1Translation>

 ...

</C2ToC1Translation>

<Include common1=“VideoDataType common2=“CPU”/>

<IncludeFunction function="VCPUT"/>

public CPUDimensions VideoToCPUTran(VideoDimensions a) {

 CPUDimension b = new CPUDimension();

 b.period = 1000.0/a.sampleRate;

 b.cycleTime = VCPUT.getCycleTime(a.sampleSize, a.sampleBit);

 return b;

}

...

Figure 12: Common-to-Common Ontology Translation (Example)

statements derived from the specified mapping patterns. As shown in Figure 12, VideoDataType-

ToCPUTran() function is translated from C1ToC2Translation element and its child elements.

4.3 Intermediate Representation Translation

Reusable QoS-enabling middleware or resource management services are implemented with their

own interfaces. The intermediate representation translation is introduced to enable a mapping

between interfaces of an implemented service and general interfaces, defined by the intermediate

representation of the service category that the QoS-enabling service belongs to. This translation

allows a QoS-enabling service developer to specify a proper translation between the intermediate

representation (wrapper) of a service category and the actual interfaces of a QoS-enabling service

in the category. This translation consists of two main parts that have the same structure as

the previous two translations. However, its mapping patterns are different from the previous

patterns. This translation deals with direct and indirect interface mapping patterns. The direct

interface mapping pattern represents a mapping from return type, name, and a list of parameters

of a common interface into return type and name of an actual interface, assuming that the actual

interface has the same set of parameters as of the common interface. The indirect interface mapping

pattern is used if the actual interface expects a set of parameters different from the parameters of

the common interface. In this case, it is helped by a common-actual semantics translator. Each

of direct and indirect mapping patterns will be compiled into a function with the return type,

17

name, and parameters defined as attributes of the common interface. This function will call the

corresponding actual interfaces defined in its mapping detailed specification.

 Common

 interfaces

 DSRT's

 interfaces

<IRTranslation>

</IRTranslation>

 s pecification trans lator

(1)

(2)

Translation specification

Specific translator

 Actual

 interfaces

 CPU's

 interfaces

<Include genericService=“CPU" specificService=“DSRT”

 translator="CPUToDSRTWindows"/>

QoS-related meta-data

Adaptation handler

DSRT

QoS-related meta-data

Playback

T

T

T

<CToAIRTranslation>

 <CInterface returnType="boolean" name="reserve"

 params="CPUDimensions">

 <Translate translationSpec="CPUToDSRTWindows"

 input="CPUDimensions" output="DSRTWindowsDimensions"/>

 <AInterface returnType="boolean" name="Reserve" paramsNum="2"

 params="DSRTWindowsDimensions.m_lPeriod,

 DSRTWindowsDimensions.m_dPercentage"/>

 </CInterface>

 ...

</CToAIRTranslation>

public boolean reserve(CPUDimensions b){

 CPUAndDSRTWindows p = CPUAndDSRTWindows();

 CCPUReserve c = p.CPUToDSRTWindowsTran(b);

 return d.Reserve(c.m_lPeriod, c.m_dPercentage);

}

...

Figure 13: Intermediate Representation Translation (Example)

Figure 13 shows an example of the intermediate representation (IR) translation from the IR

of CPU scheduling service into the actual interfaces of DSRT. Each CInterface element consists

of translation specification from a common interface of the CPU scheduling service to an actual

interface of the DSRT. As shown in Figure 13, the reserve() function of CPU scheduling service is

mapped to the Reserve() function of DSRT.

5 Meta-Data Compiler Architecture

The meta-data compiler architecture, called the Q-Compiler, integrates QoS-aware service models

and meta-data translation models into a working QoS-aware development and deployment environ-

ment via the meta-data compiler protocol and the run-time meta-data execution, described in the

following sections.

5.1 Meta-Data Compiler Protocol

The meta-data compiler protocol, as shown in Figure 14(a), enables a flexible and effective develop-

ment and deployment of a component-based QoS-aware application in dynamic environments. Its

concept is to separate application model from its specific implementation and generate alternative

service configurations (compositions) that can be instantiated in different environment accord-

18

ing to resource and service availability. The meta-data compiler protocol consists of two phases:

environment-independent and environment-dependent compilations.

The environment-independent compilation processes the input high-level, QoS-aware application

specification, utilizing QoS-aware models and their QoS-related meta-data. It (a) checks the QoS

consistency of the application configuration, (b) associates each QoS-consistent configuration with

generic QoS-enabling services, (c) allows the application developer to perform the instrumentation

of intermediate representations of generic QoS-enabling services into an application component’s

code if necessary, (d) compiles the adaptation rules in the meta-data specification into a XML

representation, used as the adaptation control policy for customizing the adaptation handler for

the application, and (e) combines the compilation results in previous steps into a XML document,

called the QoS-aware application deployment descriptor8, as shown in Figure 14(b). The descriptor

represents a portable and environment-independent QoS-aware application meta code, with QoS-

enabled and QoS-consistent information.

The environment-dependent compilation helps an application developer to deploy a generic QoS-

aware application represented by the QoS-aware application deployment descriptor into a specific

deployment environment with satisfactory QoS. Based on the availability of semantics transla-

tors, resulted from the meta-data translations, and the help of the underlying run-time meta-data

execution[40], the environment-dependent compilation (a) compiles the descriptor into alterna-

tive QoS-consistent configurations with different possible service quality provisions, (b) optimizes

the compilation results with cost models for enabling the effective setup and adaptation for the

application, and (c) combines all results into a XML document, called the QoS-aware Component-

based Application Specification (QoSCASpec), as shown in Figure 14(c). The QoSCASpec is the

environment-dependent deployment descriptor.

5.2 Run-Time Meta-Data Execution

The run-time meta-data execution[40] is a component-based, reconfigurable middleware. It consists

of a set of management services that comprise a distributed run-time system for the meta-data com-

piler (e.g., for probing, interacting with underlying services in a specific deployment environment),
8The descriptor is comparable to the EJB’s deployment descriptor [31] and CCM’s descriptors [32] with the

extension of QoS-enabling information.

19

High-level QoS-aware

application s pecification

E
n
v

ir
o

n
m

en
t-

in
d

ep
en

d
en

t

 c

o
m

p
il

at
io

n
E

n
v

ir
o

n
m

en
t-

d
ep

en
d

en
t

 c

o
m

p
il

at
io

n

QoSCASpecQoSCASpec

 Run-time meta-data

 execution

QoS-aware application deployment descriptor

...
 Run-time meta-data

 execution

Specific deployment environment

QoS-aware application deployment descriptor

QoS consistency check

Generic QoS-enabling service association

Adaptation rule compilation

QoS-aware application deployment descriptor generation

Generic service component substitution

Optimization
(Distributed resource probing)

M
et

a
-d

a
ta

 t
ra

n
sl

a
ti

o
n

 s
p

ec
if

ic
a

ti
o

n

a
n
d

 c
o
m

p
il

a
ti

o
n

 r
es

u
lt

s

A QoS-aware application

 developer

A QoS-aware application

 developer

META-DATA COMPILER PROTOCOL

Intermediate representation instrumentation

<QoSAwareAppDescriptor>

 <ApplicationInformation> … </ApplicationInformation>

 <SCDs> … </SCDs>

 <QSCDs > … </QSCDs >

 <GenericConfigurations>

 <SetupConfiguration index=“0” type=“…”>

 <SubConfiguration>

 <SupportingQoS profile=“setupConfig0QoS.xml”/>

 <Connection> … </Connection>

 <QoSCategory name=“Time”>

 <As s ociation>

 <QoSReques ter name=“VoDServer”>

 <QoSEnablingService name=“CPU”/>

 …

 </QoSReques ter>

 </As s ociation>

 </QoSCategory>

 <UpdatedInfo> <UpdatedInfo>

 </SubConfiguration>

 </SetupConfiguration>

 </GenericConfigurations>

 <AdaptationRules > … </AdaptationRules >

 </QoSAwareAppDescriptor>

<QoSCASpecr>

 <ApplicationInformation> … </ApplicationInformation>

 <SCDs> from the des criptor with additions </SCDs>

 <QSCDs > … </QSCDs >

 <SpecificTrans lators > … </SpecificTrans lators >

 <SpecificConfigurations>

 <SetupConfiguration index=“0” type=“…”

 <Cos tEs timations >

 <Subs titution index=“0”>

 …

 <SetupCos t> … </SetupCos t>

 <RunningCos t> … </RunningCos t>

 </Subs titution>

 </Cos tEs timations >

 <SubConfiguration>

 from the des criptor

 </SubConfiguration>

 </SetupConfiguration>

 </SpecificConfigurations>

 <AdaptationRules> … </AdaptationRules>

 </QoSCASpec>

An experienced

 developer

(a)

(b)

(c)

Figure 14: Meta-Data Compiler Architecture: (a) Meta-Data Compiler Protocol and Run-Time
Meta-Data Execution, (b) Environment-Independent Deployment Descriptor, (c) Environment-
Dependent Deployment Descriptor

and uses the result of the meta-data compiler in running an application. The management services

are: (1) configuration selection service; (2) component location discovery service; (3) configuration

instantiation service; (4) component registration service; (5) distributed multi-resource monitoring

and probing service, and (6) adaptation management service.

The configuration selection service consults the QoSCASpec repository to get all possible QoS-

aware configurations satisfying QoS requirements of the user for application instantiation. It chooses

the best configuration among the returned results, based on available resources and services in the

execution environment. If the chosen configuration consists of a component with an undefined

location, the component location discovery service will be used to discover the best location for the

20

component. Note that the configuration selection service could be considered a mapping problem

from a service graph into the best composition of distributed services. In a large ubiquitous envi-

ronment or a large peer-to-peer infrastructure, this service could be very complex. Research results

such as [41, 42] are proposed to deal with this mapping problem in a large, distributed environment.

The configuration instantiation service helps to instantiate application service components and

their associated QoS-enabling services into distributed locations. The instantiation services in

distributed locations coordinate among themselves to (1) dynamically create the containers in

the distributed locations, (2) dynamically download service components from a service component

repository into the locations, and (3) instantiate the components in the containers. These steps will

be performed only if no instance of the required service component is running on a particular target

node. An instantiated component will advertise itself to a public domain of running components

via the component registration service.

The distributed multi-resource monitoring service measures and gathers available resources in

the distributed locations. Its result is considered as a factor in selecting the most suitable configu-

ration for application instantiation and adaptation. The distributed multi-resource probing service

measures the resource requirements of an individual component or a distributed application for

different QoS provisions. The meta-data translations use this service to measure the minimum

resource requirements for different levels of service quality that can be offered, by an individual

application service component or a QoS-enabling service. The adaptation management service con-

trols and manages adaptations for QoS-aware applications, according to adaptation rules of the

application, specified as a part of the input high-level specification.

While the run-time middleware is presented as the combination of these management services,

it can be dynamically customized to be executable on different machines with various capacities

(e.g., high performance PCs, PDAs) and environments (e.g., reservation-enabled, or best-effort).

6 QoS-Aware Application Programming and Execution

This section illustrates how a developer uses the Q-Compiler to develop a component-based QoS-

aware application and how an end user executes the developed application via the Q-Compiler.

21

6.1 Development Process

To develop a component-based QoS-aware application, first, a developer uses the application de-

scription GUI to specify (1) the overall construction of the application, (2) the description of

individual service components with QoS, and (3) the setup configurations. Figure 15 shows the in-

put of the developer in the application description GUI for a mobile Video-on-Demand application.

Service component description dialog

Figure 15: Application Description for a Mobile Video-on-Demand Application (Example)

Second, the developer uses the service quality description GUI, as shown in Figure 16(a), to

specify QoS requirements expected to be provided by the application. The developer could specify

service quality of the application via QoS categories, QoS subcategories, and their corresponding

parameters. The meta-data compiler automatically transforms these service quality inputs into a

XML representation, as shown in Figure 16(b), for the mobile Video-on-Demand application.

Third, the developer uses the adaptation control description GUI, as shown in Figure 17, to

specify how the run-time meta-data execution should manage and control the application according

to resource availability, load balancing, and mobility. The adaptation is specified in the if events

then actions clauses. This description will be compiled into a XML representation during the

environment-independent compilation.

Based on inputs from the above three descriptions, including the pre-defined QoS-aware models,

and the compilation results of the translation models, the meta-data compiler protocol compiles

22

Service quality description

<?xml version="1.0"?>

<UtoATemplateProfile>

 <QoSCategory name="Time">

 <QoSSubCategory name="videoDataType">

 <UserQoSLevel level="High">

 <Format type="String"> mpeg-2 </Format>

 <Resolution type="CompoundSet"> {740x480} </Resolution>

 <Framerate type="IntegerRange"> [25,30,2] </Framerate>

 </UserQoSLevel>

 <UserQoSLevel level="Medium">

 <Format type="String"> mpeg-2 </Format>

 <Resolution type="CompoundSet"> {480x360} </Resolution>

 <Framerate type="IntegerRange"> [20, 25, 1] </Framerate>

 </UserQoSLevel>

 <UserQoSLevel level="Low">

 <Format type="String"> mpeg-2 </Format>

 <Resolution type="CompoundSet"> {360x240} </Resolution>

 <Framerate type="IntegerSet"> [15,20,1] </Framerate>

 </UserQoSLevel>

 </QoSSubCategory>

 </QoSCategory>

</UtoATemplateProfile>

(a) (b)

Figure 16: Service Quality Description for a Mobile Video-on-Demand Application: (a) Graphical
Input, and (b) Generated XML Representation from the Graphical Input

these inputs into environment-independent and environment-dependent deployment descriptors,

usable by the run-time meta-data execution during the application instantiation and adaptation.

6.2 Execution Process

To execute a developed QoS-aware application, a user utilizes the execution GUI, as shown in Figure

18(a), to specify the category and QoS requirements of the application. The execution GUI will

automatically filter out the setup configurations that do not satisfy the user requirements. When

the user clicks “execute,” the run-time meta-data execution will consult the QoSCASpec, which

is the environment-dependent deployment descriptor of the application, and try to select the best

configuration to be instantiated according to the availability of service components, devices, and

resources. Figure 18(b) shows an example of the application execution via the execution GUI. Note

that other usages of the Q-Compiler such as GUIs for meta-data translations, IR instrumentation,

component resource probing, are omitted due to limited space, and can be found in [35].

23

Figure 17: Adaptation Control Description for Mobile Video-on-Demand Application (Example)

7 Validation

The implementation of the meta-data compiler is divided into two main parts: (1) the core of

meta-data compiler including the meta-data translations, the high-level specification, and the meta-

data compiler protocol are implemented in Java; and (2) the front-end of the run-time meta-data

execution is implemented using idlj[43] and LuaJava[44] to communicate with Gaia QoS services

(e.g., instantiation service with resource reservation) and Gaia services9(e.g., component manager

core, space repository, component repository) in the active space project[45].

The application test-bed is the mobile Video-on-Demand application consisting of four appli-

cation service components: a user profile server, a VoD server, a VoD playback service, and a

media transcoder. The application is represented by two setup configurations: (1) {VoD server,

VoD playback service}, and (2) {VoD server, media transcoder, VoD playback service}, and {user

profile server, VoD playback service}, assuming that the VoD playback service is generic. The QoS-

enabling service associated with these configurations is DSRT, that is a CPU scheduling service.

The Gaia environment test-bed consists of three PCs: (1) Satyam is a Pentium III machine

with a 700 MHz processor and 384 MB RAM,(2) Florence is a Pentium III machine with a 930
9Gaia is a distributed operating system for a ubiquitous smart room environment. It brings the functionality of

an operating system to physical spaces. The Gaia kernel consists of a set of services: for example, context service,
component repository, event manager, component manager core, etc.[45].

24

(a) (b)

Figure 18: QoS-Aware Application Execution: (a) Input QoS Requirements for Executing a Mobile
Video-on-Demand Application, Specified by a User, and (b) Real Execution (Example)

MHz processor and 256 MB RAM, and (3) Casablanca is a Pentium III machine with a 930 MHz

processor and 256 MB RAM. These nodes are connected via a 100 Mbps Ethernet. All PCs are

running Windows 2000. The run-time meta-data execution is running on all nodes. The meta-

data compiler is running on Satyam. We demonstrate concepts, design, and implementation of our

meta-data compiler framework via two sets of the experiments. First, we measure performance

and overhead of the meta-data compiler protocol. Second, we measure the service quality of the

QoS-aware application developed via the meta-data compiler. Additional experiments, such as

the overheads of component and configuration instantiations performed by the run-time meta-data

execution integrated as a part of the Gaia environment, were reported in [46].

7.1 Overhead of Meta-Data Compiler Protocol

In this section, we measure the overhead of the environment-dependent compilation. In particular,

we measure time used for generic service substitution in a specific deployment environment.

As the VoD playback service in the application test-bed is “generic,” the meta-data compiler

protocol needs to substitute this service with compatible services available in the deployment en-

vironment during the environment-dependent compilation. We utilize the component repository

implemented in the Gaia project as the repository for available QoS-aware services in the deploy-

25

ment environment. In this experiment, the repository consists of two registered components: the

BitmapVoDPlayback and the MPEGIIVoDPlayback, both of which implement the PlaybackService

category. We measure the overhead of service substitution for setup configuration 1, and in both

configurations of the mobile Video-on-Demand application, as shown in Figures 19(a) and 19(b),

respectively. The overhead for the substitution includes (1) querying the component repository for

the available service components satisfying the pre-defined constraints, such as the component cat-

egory of the generic service component, and (2) performing the substitution using the result from

the component repository. The average values of ten runs for querying the component repository

and performing the substitution for configuration 1 are 40.0 and 72.1 ms, respectively. The average

values of ten runs for the same metrics of both configurations are 42.0 and 88.1 ms, respectively.

Evaluation: The overheads for querying the component repository in both experiments are

very similar because we use the same constraint in the queries. The overhead for performing the

substitution depends on the number of setup configurations consisting of a “generic” service compo-

nent. Since both configurations consist of the VoD playback service, the overhead of the substitution

in Figure 19(b) is higher than the overhead of the substitution including only configuration 1 in

Figure 19(a).

0

50

100

150

200

0

50

100

150

200
Perform substitution

Query component repository

O
ve

rh
ea

d
 (m

s)

O
ve

rh
ea

d
 (m

s)

Trials
(a)

Trials
(b)

Figure 19: Overhead of Generic Service Component Substitution for (a) Setup Configuration 1,
and (b) Both Setup Configurations, of Mobile Video-on-Demand Application

7.2 Service Quality of QoS-Aware Component with IR Translator

In this set of experiments, we respectively measure the effect of an IR translator on the service qual-

ity of a service component, and the overhead of the IR translator as additional layer of component

communication.

26

7.2.1 Effect of IR Translator on Service Quality of MPEGIIVoDPlayback

In this experiment, we measure the service quality of the MPEGIIVoDPlayback in three scenarios:

(1) MPEGIIVoDPlayback without QoS-enabling service (DSRT), (2) MPEGIIVoDPlayback with

DSRT monolithically integrated, and (3) MPEGIIVoDPlayback composed with DSRT via an IR

translator. The quality metric of the playback service is the intermediate delay time between

two consecutive video frames. For all scenarios, during time interval A, an additional background

process is introduced to heavily consume CPU of the client node.

Evaluation: As shown in Figure 20(a), the normal execution of the MPEGIIVoDPlayback

without DSRT in the CPU-loaded environment cannot maintain its service quality. The interme-

diate delay is longer as shown in the interval A due to the loaded CPU. The intermediate delay

is much shorter as shown in the interval B immediately after the additional process is terminated.

Figure 20(b) shows that service quality of the MPEGIIVoDPlayback can be maintained with the

help of DSRT even though the CPU is loaded during time interval A. Figure 20(c) shows that the

introduction of IR translator does not effect the overall service quality, maintained by DSRT, of

the MPEGIIVoDPlayback.

0

50

100

150

200

250

L
o

ca
l

sk
ew

 (
m

s)
 w

it
h

 c
o

n
su

m
er

 1
 l

o
ad

Frame number

0

30

60

90

120

150

L
o

ca
l

sk
ew

 (
m

s)
 w

it
h

 c
o

n
su

m
er

 1
 l

o
ad

 a
n

d
 D

S
R

T

Frame number

(a) (b)

0

30

60

90

120

150

Frame number
(c)

L
o

ca
l

sk
ew

 (
m

s)
 w

it
h

 c
o

n
su

m
er

 1
 l

o
ad

 a
n

d
 D

S
R

T
 I

R

A

B

Figure 20: Service Quality of the MPEGIIVoDPlayback: (a) Normal Execution with Loaded CPU
in Interval A, (b) Normal Execution with Monolithically Integrated DSRT and Loaded CPU in
Interval A, (c) Normal Execution with DSRT, via an IR Translator, and Loaded CPU in Interval
A

7.2.2 Intermediate Representation (IR) Overhead

Within this experiment, we measure the overhead of calling a function in a QoS-enabling service by

the MPEGIIVoDPlayback in two scenarios: (a) the MPEGIIVoDPlayback directly calls an actual

function provided by DSRT, and (b) the MPEGIIVoDPlayback calls the actual function of the

DSRT via the IR translator. The overhead of calling each actual function in DSRT without passing

27

through the translator is less than 1 ms. The overheads of calling functions: startRTRun() and

YieldCPU() through the IR translator of the DSRT are shown in Figure 21. The average values

of ten runs are 33.1 and 49.4 ms, respectively. Note that each run that measures the overhead of

calling the YieldCPU() function consists of 1748 iterations.

Evaluation: Even though the instrumentation of the IR translator of DSRT into the code

of MPEGIIVoDPlayback costs tens of milliseconds overhead in calling the corresponding actual

functions, it does not degrade the service quality of the component.

10

20

30

40

50

60

70

80
YieldCPU-IR

Reserve-IR

Trials

IR
 o

v
er

h
ea

d
 (

m
s)

Figure 21: Overhead of Introducing IR Translator Between MPEGIIVoDPlayback and DSRT

8 Related Work

In this section, we discuss related work in four areas: component architecture, OMG MDA, tools

for building distributed multimedia applications, and MPEG-21.

8.1 Component Architecture

Standard component architectures such as Enterprise JavaBeans[31], CORBA Component Model[32],

COM/COM+[47] have been proposed for enabling fast development and deployment of distributed

component-based applications. None of them, however, defines a model for the applications with

QoS-aware descriptions as their first-class information. Our QoS-aware service models and cate-

gorizations can be used to extend these component architectures with QoS-related meta-data. It

considers QoS as a fundamental objective in the development and deployment of an application.

8.2 OMG MDA

Model Driven Architecture(MDA)[48] provides models such as PIM (Platform Independent Models)

and PSM (Platform Specific Models) that can be used for modelling an application from different

28

views and abstractions. It enables the separated responsibility among groups of people who de-

sign, develop, and deploy the application. For instance, an architect would focus on creating the

architectural and platform independent model for the application. The middleware designer then

uses a UML profile for a specific middleware to model specific aspects of the abstract system. A

programmer, then, uses the model as well as the generated specific aspects to add codes to complete

the value-added business logic for the application. Explicit mapping relations across models are

available to enable potential automation of PSM generation as well as to ease the integration.

While both OMG MDA and our framework propose models and mappings for application de-

velopment and deployment, the overall concepts, contexts and objectives are different. First, while

OMG MDA mainly focuses on models and their relations for enabling the clear responsibility

among workers in different phases of software development and deployment, we propose differ-

ent sets of models that mainly enable QoS-aware interoperability among connected components.

Second, while a UML profile for specific middleware is analogous to a translation specification in

our framework, it does not focus on QoS mappings and semantics interoperability. Third, while

the refinement of PIM to PSM in OMG MDA seems similar to our environment-independent and

environment-dependent compilations, our protocol mainly focuses on automating the generation of

QoS-aware configurations and enabling the instantiation of QoS-aware applications into distributed

environments with the help of run-time meta-data execution.

Recent research results such as [49, 50, 51] have been proposed to introduce QoS into specific

middlewares, using the OMG MDA approach. For instance, [49] adds QoS into the .NET Remot-

ing, which is a middleware of the Microsoft’s .NET framework. These research results provide

configurable QoS-aware middlewares that could be considered reusable QoS-enabling services in

our framework.

8.3 Tools for Building Distributed Multimedia Applications

Different development tools have been developed for building multimedia applications. For exam-

ple, the Continuous Media Toolkit (CMT)[52], developed at UC Berkeley, provides a programming

environment for enabling fast development of continuous media applications. VuSystem[53] pro-

vides a programming environment that separates codes of control and user interfaces from media

29

manipulation. Ooi et al develops a multimedia software library, called Dali [54], that includes a set

of intermediate level abstractions between C and conventional libraries. The StreamIt [55] project

provides a special-purpose language to improve programmer productivity and program robustness

within the streaming domain. These research results provide libraries or specific programming

languages that enable specific aspects of multimedia programming.

From the object-oriented or component-based side, software toolkits [56, 57, 58] have been

proposed to help the application developer to develop a distributed multimedia applications flex-

ibly and more easily. For example, DAVE [56] provides a plug-and-play programming paradigm,

which allows the application developer to connect the distributed objects or devices forming the

distributed application. SCOOT [57] provides the reliable multimedia collaboration, based on the

object-oriented approach. In mash toolkit[58], Mccanne et al propose a common infrastructure,

that allows an application developer to utilize different media and protocol objects from differ-

ent research groups to develop a distributed multimedia application flexibly. Comparing to [58],

our work distinguishes itself by focusing on defining QoS-aware service models, meta-data transla-

tion models, and meta-data compilations that enable the automation of QoS-aware semantics and

interface interoperability among connected components forming a QoS-aware application.

8.4 MPEG-21

MPEG-21[59] aims to provide open framework for multimedia delivery and consumption. Two

fundamental entities of MPEG-21 are digital item that concerns about unit of distribution and

transaction and the interaction of users with digital items. Users should be able to access, ex-

change, consume and manipulate digital items in transparent and interoperable manner. To fulfil

the objective, MPEG-21 defines several related entities such as Data Item Declaration that defines

elements useful for modelling a data item, Data Item Identification that considers how to uniquely

identify data items, their types and interconnection, Intellectual Property Management and Pro-

tection that defines interoperable framework for protecting and managing intellectual property,

and Rights Expression Language that declares rights and permissions for digital contents based

on Rights Data Dictionary. Besides these entities, MPEG-21 specifies Data Item Adaptation that

emphasizes universal multimedia access and enables transparent and interoperable content creation

30

and sharing with quality guaranteed. The concepts and design of the Q-Compiler complement as-

pects of MPEG-21 objective. Especially, semantics translators resulted from the compilations of

the meta-data translations enable semantics interoperability for universal multimedia access. Also,

the meta-data compiler protocol and the run-time meta-data execution enable the ubiquitous and

dynamic deployment of multimedia contents and services.

9 Conclusion

The availability of reusable multimedia components and QoS-enabling services bring new challenges

for enabling the flexible and efficient development and deployment of component-based multimedia

applications, deployable in ubiquitous environments with QoS guarantees. In this paper, we present

a novel meta-data compiler for multimedia domain. Key contributions of the framework include:

• a set of QoS-aware models that supports the flexible integrated reuse of multimedia and

QoS-enabling services for composing a distributed, multimedia application in ubiquitous de-

ployment environments;

• a set of extensible meta-data translation models and their compilations that enable semantic

interoperability among application-specific QoS requirements, QoS-enabling service provi-

sions, and resource requirements;

• a set of high-level specifications that hides the complexity of QoS-aware programming, and

allows an application developer to develop a multimedia application with QoS by customizing

its specifications;

• a meta-data compiler protocol with environment-independent and environment-dependent

meta-data compilations that enable QoS consistency of a composed application, and promotes

configurability and flexibility of its deployment;

• a run-time meta-data execution that provides the run-time support for QoS compilation (e.g.,

for probing, interacting with underlying services in a specific deployment environment) and

the usage of meta-data compilation results for running an application.

31

Although the framework is presented via multimedia domain, we anticipate that the fundamen-

tal concepts and design will be applicable in other application-specific domains.

References

[1] K. Nahrstedt and J. Smith. Design, implementation and experiences with the omega end-point archi-

tecture. IEEE Journal on Selected Areas in Communication, 14(7):1263–1279, September 1996.

[2] M. Shankar, M. DeMiguel, and J. Liu. An end-to-end qos management architecture. In Proceedings of

IEEE RTAS’99, June 1999.

[3] A. Campbell, G. Coulson, and D. Hutchison. A quality of service architecture. Computer Communica-

tion Review, 24(2):6–27, April 1994.

[4] A. Hafid and G. Bochmann. An approach to qos management in distributed multimedia applications:

Design and an implementation. Multimedia Tools and Applications, 9(2), 1999.

[5] P. G. S. Florissi. QoSME: QoS Management Environment. PhD thesis, Columbia University, Depart-

ment of Computer Science, 1996.

[6] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation model for qos management.

In Proceedings of the IEEE Real-Time Systems Symposium, pages 298–307, December 1997.

[7] L. C. Wolf. Resource Management for Distributed Multimedia Systems. Kluwer, Boston, Dordrecht,

London, 1996.

[8] K. Nahrstedt, H. Chu, and S. Narayan. Qos-aware resource management for distributed multimedia

applications. Journal of High-Speed Networks, Special Issue on Multimedia Networking, 7(3-4):229–257,

1998.

[9] H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: Toward a Predictable Real-Time System. In

Proceedings of USENIX Mach Workshop, pages 73–82, October 1990.

[10] H. Chu and K. Nahrstedt. Cpu service classes for multimedia applications. In Proceedings of the IEEE

International Conference on Multimedia Computing and Systems, pages 296–301, June 1999.

[11] B. Ravindran. Engineering dynamic real-time distributed systems: architecture, system description

language, and middleware. IEEE Transactions on Software Engineering, 28(1):30–57, January 2002.

[12] ATM Forum. Atm user-network interface specification v3.1. 1993.

32

[13] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation protocol (rsvp) – version

1 functional specification. RFC 2205, Proposed Standard., September 1997.

[14] K. Kim and K. Nahrstedt. QoS Translation and Admission Control for MPEG Video, pages 359–362.

Chapman and Hall, November 1997.

[15] A. K. Viswanathan. Design and Evaluation of a CPU-aware Communication Broker for RSVP-based

Networks. Master thesis, University of Illinois at Urbana-Champaign, Department of Computer Science,

2000.

[16] K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahara. Qos mapping between user’s preference and

bandwidth control for video transport. In Proceedings of the 5th IFIP International Workshop on

Quality of Service (IWQoS 97), pages 291–302, May 1997.

[17] T. Yamazaki and J. Matsuda. On qos mapping in adaptive qos management for distributed multimedia

applications. In Proceedings of the ITC-CSCC’99, pages 1342–1345, July 1999.

[18] H. Knoche and H. de Meer. Quantitative qos-mapping: A unifying approach. In Proceedings of the 5th

IFIP International Workshop on Quality of Service (IWQOS’97), pages 347–358, May 1997.

[19] L. A. DaSilva. Qos mapping along the protocol stack: Discussion and preliminary results. In Proceedings

of the IEEE International Conference on Communications, pages 713–717, June 2000.

[20] B. Li and K. Nahrstedt. Qualprobes: Middleware qos profiling services for configuring adaptive ap-

plications. In Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms,

pages 256–272, April 2000.

[21] T. F. Abdelzaher. An automated profiling subsystem for qos-aware services. In Proceedings of the 6th

IEEE Real Time Technology and Applications Symposium (RTAS 2000), pages 208–217, 2000.

[22] J.-F. Huard and A.A. Lazar. On end-to-end qos mapping. In Proceedings of the 5th IFIP International

Workshop on Quality of Service (IWQOS’97), May 1997.

[23] B. Li and K. Nahrstedt. A control-based middleware framework for quality of service adaptations. IEEE

Journal of Selected Areas in Communications, Special Issue on Service Enabling Platforms, 17(9):1632–

1650, September 1999.

[24] Object Management Group Inc. Audio/video stream specification. Online documentation at

http://www.omg.org/cgi-bin/apps/doc?formal/00-01-03.pdf, January 2000.

[25] T. Plagemann, F. Eliassen, B. Hafskjold, T. Kristensen, R. H. Macdonald, and H. O. Rafaelsen. Flexible

and extensible qos management for adaptable middleware. In Proceedings of the International Workshop

on Protocols for Multimedia Systems (PROMS 2000), October 2000.

33

[26] G. Coulson and M. W. Clarke. A distributed object platform infrastructure for multimedia applications.

Computer Communications, 21(9):802–818, July 1998.

[27] N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair. Towards a reflective component based middleware

architecture. in Workshop on Reflection and Metalevel Architectures, June 2000.

[28] A. Ulbrich, T. Weis, K. Geihs, and C. Becker. DotQoS – a QoS extension for .NET remoting. In

Proceedings of International Workshop on Quality of Service, pages 363–380, June 2003.

[29] C. Becker, G. Schiele, H. Gubbels, and K. Rothemel. Base - micro-broker based middleware for pervasive

computing. In Proceedings of the 1st IEEE International Conference on Pervasive Computing and

Communications, pages 443–451, March 2003.

[30] C. Bekcer, M. Handte, G. Schiele, and K. Rothemel. Pcom - a component system for pervasive com-

puting. In Proceedings of the 2nd IEEE International Conference on Pervasive Computing and Com-

munications, pages 67–76, March 2004.

[31] Sun Microsystems. Enterprise javabeans specification, version 2.1, final release. Online documentation

at http://java.sun.com/products/ejb/docs.html, November 2003.

[32] Object Management Group Inc. Corba component model, v3.0. Online documentation at

http://www.omg.org/cgi-bin/apps/doc?formal/02-06-65.pdf.

[33] Mary Kirtland. The com+ programming model makes it easy to write com-

ponents in any language. Microsoft System Journals, Online documentation at

http://www.microsoft.com/msj/1297/complus2/complus2.aspx, December 1997.

[34] J. W.S. Liu, K. Nahrstedt, D. Hull, S. Chen, and B. Li. Epiq qos characterization, draft version. July

1997.

[35] D. Wichadakul. Q-Compiler: Meta-Data QoS-Aware Programming and Compilation Framework. PhD

thesis, University of Illinois at Urbana-Champaign, Department of Computer Science, 2003.

[36] J. M. Purtilo and J. M. Atlee. Module reuse by interface adaptation. In SoftwarePractice and Experience,

(6):539–556, June 1991.

[37] K. Nahrstedt and J. Smith. The qos broker. IEEE Multimedia, 2(1):53–67, 1995.

[38] A. Richards, G. Rogers, M. Antoniades, and V. Witana. Mapping user level qos from a single parame-

ter. In Proceedings of the International Conference on Multimedia Networks and Services (MMNS’98),

November 1998.

34

[39] N.Nishio and H.Tokuda. Simplified method for session coordination using multi-level qos specifica-

tion and translation. In Proceedings of the 5th IFIP International Workshop on Quality of Service

(IWQOS’97), pages 335–346, May 1997.

[40] D. Wichadakul, K. Nahrstedt, X. Gu, and D. Xu. 2kq+: An integrated approach of qos compilation

and component-based, run-time middleware for the unified qos management framework. In Proceedings

of IFIP/ACM International Conference on Distributed Systems Platforms, pages 373–394, November

2001.

[41] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward. Qos-assured service composition in managed ser-

vice overlay networks. In Proceedings of the 23rd International Conference on Distributed Computing

Systems, pages 194–203, May 2003.

[42] J. Jin and K. Nahrstedt. Large-scale service overlay networking with distance-based clustering. In

Proceedings of the ACM/IFIP/USENIX International Middleware Conference, pages 394–413, June

2003.

[43] Inc. Sun Microsystems. Java idl technology documentation. Online documantation at

http://java.sun.com/j2se/1.4.2/docs/guide/idl/.

[44] C. Cassino, R. Ierusalimschy, and N. Rodriguez. Luajava - a scripting tool for java. PUC-

RioInf.MCC02/99, February 1999.

[45] M. Romn, C. K. Hess, A. Ranganathan, P. Madhavarapu, B. Borthakur, P. Viswanathan, R. Cerqueira,

R. H. Campbell, and M. Dennis Mickunas. Gaiaos: An infrastructure for active spaces. Technical Report

UIUCDCS-R-2001-2224 UILU-ENG-2001-1731, Universiy of Illinois at Urbana-Champaign, 2001.

[46] D. Wichadakul, X. Gu, and K. Nahrstedt. A programming framework for quality-aware ubiquitous

multimedia applications. In Proceedings of ACM Multimedia, pages 631–640, December 2002.

[47] Microsoft corporation. The com specification. Online documentation at

http://www.microsoft.com/com/resources/comdocs.asp.

[48] J. Miller and J. Mukerji (Editors). Mda guide version 1.0.1. Online documentation at

http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf, June 2003.

[49] T. Weis, A. Ulbrich, K. Geihs, and C. Becker. Quality of service in middleware and applications: A

model-driven approach. In Proceedings of the 8th International Enterprise Distributed Object Computing

Conference.

35

[50] A. Gokhale, D. Schmidt, T. Lu, B. Natarajan, and N. Wang. Cosmic: An mda generative tool for dis-

tributed real-time and embedded applications. In Proceedings of Workshop on Model-driven Approaches

to Middleware Applications Development, June 2003.

[51] D. Simmonds, S. Ghosh, and R. B. France. An mda framework for middleware transparent software

development and quality of service. In Proceedings of Workshop on QoS in Component-Based Software

Engineering, June 2003.

[52] K. Mayer-Patel and L. A. Rowe. Design and performance of the berkeley continuous media toolkit. in

Multimedia Computing and Networking, Proc. SPIE 3020, pages 194–206, 1997.

[53] C.J. Lindblad and D.L. Tennenhouse. The vusystem: A programming system for compute-intensive

multimedia. IEEE Journal of Selected Areas in Communication, pages 1298–1313, September 1996.

[54] W.T. Ooi, B. Smith, S. Mukhopadhyay, H. H. Chan, S. Weiss, and M. Chiu. Dali : A Multimedia

Software Library. SPIE Multimedia Computing and Networking, January 1999.

[55] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Streaming Applications. In

Proceedings of the International Conference on Compiler Construction, 2002.

[56] R. F. Mines, J. A. Friesen, and C. L. Yang. Dave: A plug-and-play model for distributed multimedia

application development. In Proceedings of the ACM Multimedia Conference, pages 59–66, 1994.

[57] E. Craighill, M. Fong, K. Skinner, R. Lang, and K. Gruenefeldt. Scoot: An object-oriented toolkit for

multimedia collaboration. In Proceedings of the ACM Multimedia Conference, pages 41–49, 1994.

[58] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir, Y. Chawathe, A. Coopersmith, K. Mayer-Patel,

S. Raman, A. Schuett, D. Simpson, A. Swan, T. Tung, D. Wu, and B. Smith. Toward a common

infrastructure for multimedia-networking middleware. In Proceeding of the 7th International Workshop

on Networking and Operating System Support for Digital Audio and Video, pages 39–49, May 1997.

[59] J. Bormans and K. Hill (Editors). Mpeg-21 overview v.5. Online documentation at

http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm, October 2002.

36

