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ACCURACY OF NOVEL IMAGE ACQUISITION AND PROCESSING DEVICE 

IN AUTOMATIC SEGMENTATION OF ATOPIC DERMATITIS 

 

MATT LONDON 

ABSTRACT 

 Atopic Dermatitis (AD), a chronic inflammatory skin disease causing lesions, 

often causes decreased quality of life (Kapur, 2018). Segmentation, a method of 

illustrating the difference between lesioned and non-lesioned areas of interest (AOIs) has 

been the primary method for which AD has been studied (Ranteke & Jain, 2013). Manual 

segmentation is prone to subjectivity (Ning et al., 2014) and automatic segmentation, 

while reliable and efficient, poses challenges such as light reflections and color variations 

(Lu et al., 2013). Yet, AD can be classified from color and texture (Hanifin et al., 2001; 

Nisar et al., 2013), as well as through machine learning methods. The purpose of this 

study was to determine the optimal method for segmentation of images of atopic 

dermatitis on subject arms in a novel and standardized photography lightbox (Lightbox) 

and of images of subjects' self-acquired at-home photos. The goals of this study were to 

determine the accuracy and reliability of photo acquisition of arms of subjects with AD in 

a novel standardized photography lightbox, compared to photo acquisition by subjects at 

home,  and determine the accuracy and reliability of automated segmentation of AD 

lesions with combined color-based segmentation and the U-Net CNN.
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     INTRODUCTION 

Atopic Dermatitis (AD), a chronic inflammatory skin disease causing lesions, 

often causes decreased quality of life (Kapur, 2018). Currently, there is no known cure 

for atopic dermatitis. Consequently, there is much research and development of 

treatments for the symptoms of AD (Weidinger & Novak, 2016). Determining AD 

severity and rate of pathology is essential to developing treatments and managing care 

(Oranje et al., 2007). Segmentation of AD lesions is the primary method that AD severity 

has been determined (Nisar et al., 2013). Quantification of AD severity comprises 

segmenting lesioned from non-lesioned regions in AOIs and measuring the pathological 

rate of change of the AD lesion. Up to the early 1990s, segmentation had been 

undertaken manually by practitioners and demonstrated low reliability, due to its highly 

subjective process (Ben-Gashir et al., 2004). In the early 1990s, standardized AD severity 

scales were introduced (Kunz et al, 1997). Popular scales include the Scoring Atopic 

Dermatitis Index (SCORAD) and the Eczema Area and Severity Index (EASI) (Nisar et 

al., 2013). The EASI classifies AD lesions into four primary factors: erythema (redness), 

edema (swelling), excoriation (scratch damage), and/or lichenification (thick, leathery 

skin) (Alam et al., 2016). Furthermore, each factor is categorized on a scale of 0-4 (none, 

mild, moderate, severe). The EASI and SCORAD have exhibited good inter- and intra-

rater reliability in some studies (Barbier et al., 2004; Hanifin et al., 2001). Yet, other 

studies concluded that, due to the subjective bias of severity scales, they cannot be 

considered to be reliable across different studies (Ben-Gashir et al., 2004; Ning et al., 

2014).  
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Within the past decade, automated segmentation algorithms have been developed 

to improve the reliability and efficiency of segmentation for atopic dermatitis lesions 

(Nisar et al., 2013; Ch'ng et al., 2014). Popular segmentation algorithms comprise 

thresholding, clustering, growing, region merging, and edge detection. Furthermore, 

transformation of RGB images to other color spaces, prior to color and texture 

segmentation, can give superior segmentation results (Ch'ng et al., 2014; Hanifin et al., 

2001; Nisar et al., 2013). 

K-means clustering is a favored clustering method, due to speed and accuracy 

(Nisar et al., 2013; Ch'ng et al., 2014). K-means clustering identifies diverse spectral 

groups contained in a data set, using a select number of k clusters and randomly selected 

k-cluster centers  (Figure 1). The Euclidean function determines the range between each 

pixel and all cluster centers. Each pixel is allocated to the closest cluster center. The 

cluster center is randomly chosen and the Euclidean function run to allocate pixels until 

there is no more change in pixel allocation.  

 

 

Figure 1. Equation for K-means clustering 
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Nisar et al. (2013), in their research for the optimal automated system for AD 

segmentation, transformed RGB (Red, Green, Blue) photographs of AD infested skin to 

grayscale, segmented skin from the background with Otsu thresholding, transformed 

segmented skin region from RGB to four select color spaces, and segmented AD from 

healthy skin with k-means clustering. The four color spaces comprised HSI (hue, 

saturation, intensity), CMY (Cyan, Magenta, Yellow), YCbCr (Y is luma component, Cb 

and Cr are the blue-difference and red-difference chroma components), and CIELAB 

(a.k.a. L*a*b*; CIE signifies Commission Internationale de l'Eclairage, an organization 

that establishes standard color values to be used on an international level; L* describes 

luminance; a* describes degree of green to red; and b* represents degree of blue to 

yellow) (Figure 2). 

The HSI color space model (aka HSV (Hue, Saturation, Value) is most akin to 

how the human eye discerns color. "H" (Hue) is defined as the primary color/wavelength 

recognized by a viewer. "S" (Saturation) describes the proportion of impurity in a color. 

In the L*a*b* color space model, L* is the vertical axis and represents brightness 

values from black to white color and ranges from 0 to 100, respectively. The horizontal 

axes comprise a* and b*, at 90° relative to each other. The a* axis ranges from green (-

128) to red (+127). The b* axis ranges from blue (-128) to yellow (+127). 
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Figure 2. RGB color space transformed to L*a*b* and HSV color space with Matlab 

script 

 

Nisar et al. (2013) compared transformed and segmented images against manually 

segmented ground truth images. Accuracy was scored with sensitivity (probability that 

algorithm correctly identifies AD), specificity (probability that algorithm correctly 

identifies healthy skin), positive predictive value (PPV; extent that subjects are correctly 

diagnosed with AD), negative predictive value (NPV; extent that subjects are correctly 

determined to not have AD), and accuracy (proportion of lesion accurately recognized). 

Results showed that the "H" color channel of HSI and the "a" color channel of L*a*b* 

afforded the most accurate k-means automated segmentation. 
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Building off Nisar et al. (2013), Ch'ng et al. (2014) utilized k-means clustering of 

L*a*b* images of AD. In addition, Ch'ng et al. (2014) normalized the color spaces and 

utilized adaptive light compensation and gamma correction to afford better segmentation. 

Furthermore, AD severity was determined  with Z-test, which classified AD severity as 

either none, mild, moderate, or severe. "H" of HSI, which describes color value, is 

utilized for this classification. The ground truth images, produced via manual 

segmentation, were used to establish mean and standard deviation of intensity for each 

severity level. Similar to Nisar et al. (2013), images were scored with sensitivity, 

specificity, positive predictive value, negative predictive value, and accuracy. Results 

showed that adaptive light compensation afforded more accurate segmentation. 

Normalization afforded best accuracy for the "G" channel of RGB and "L" of L*a*b*. 

The green part of the a* spectrum and "G" afforded the most accurate segmentation in 

Nisar et al. (2013) and Ch'ng et al. (2014), respectively. This is likely due to the "G" layer 

of RGB containing less noise than other layers (Ch'ng et al., 2014). 

Automatic segmentation, while reliable and efficient, poses challenges such as 

light reflections, hair, vignetting, and color variations in lesioned and non-lesioned areas 

of interest.

(AOIs). Furthermore, common AD AOIs (e.g. flexures, wrists, and ankles), were 

found to be difficult to accurately document via photograph (Weidinger & Novak, 2016). 

Thus, strict standardization of photographic methods has been necessary for 

segmentation via k-means clustering.  



 

6 

 

Convolutional neural networks (CNNs) have gained popularity in recent years, for 

use in automated segmentation, due to improved software and hardware that affords 

efficient and precise images, regardless of confounding objects in photographs (Pal et al., 

2018a, Pal et al., 2018b). U-Net, developed for biomedical image segmentation, is an 

exceptionally fast and precise CNN (Ronneberger, 2015). Since its inception, U-Net has 

shown good performance in many biomedical applications, ranging from microscopic 

cell segmentations (Çiçek et al. 2016; Falk et al. 2019), to brain imaging (Dong et al., 

2017; Salehi et al. 2017), to whole-body imaging (Andersson, 2019). Although most 

laptops utilizing a CPU, can segment a 512*512 in ~1 second, a GPU can segment a 

similar image 2x-5x faster (Aijun et al., 2004; Mehrtash et al., 2017). Most laptops and 

desktops do incorporate a graphics card to run a GPU. Although, these systems have yet 

to smoothly operate U-Net and other CNN architectures. Currently U-Net runs smoothly 

on CPUs and has proven successful on the CPUs of mobile devices.       

The goals of this study were to determine the accuracy and reliability of photo 

acquisition of arms of subjects with AD in a novel standardized photography lightbox, 

compared to photo acquisition by subjects at home, and determine the accuracy and 

reliability of automated segmentation of AD lesions with combined color-based 

segmentation and the U-Net CNN run on a CPU.
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METHODS 

 

 In accordance with the HRPP Policies of Boston University Medical Campus 

(BUMC), BUMC Institutional Review Board (IRB) approval was obtained prior to 

subject recruitment. Subjects were screened to include only those who currently used a 

topical treatment for atopic dermatitis (AD). Subjects who met this requirement could 

also be taking oral AD treatment. 

Subjects (N = 10) were investigated for the pathological rate of AD over the 

course of a consecutive 22 day period. On lab visit (Visit) 1, 4, and 5, in the Laboratory 

of Human Neurobiology (HUB Lab), photos of the subject's arm, including AD lesions, 

were acquired via iPad camera (6th generation, year 2018, 9.7" screen, camera 

resolution: 8MP, 264ppi (10.4ppmm)) suspended in a novel photography lightbox 

(Lightbox; Figure 3). Each subject was instructed to place their right arm, fingers 

spread, on the floor of Lightbox, with their antecubital (inner elbow) at the 3" mark. 

Coronal photos of lesions were acquired as a primary point of reference. Sagittal photos 

of lesions were acquired to aid in lesion detection in the coronal photos. Figure 3 shows 

view of light box from perspective of subject. Figure 4 shows view of lightbox from 

perspective of lab technician while acquiring subject's photo. Figure 5 shows photos 

from lab visit 1 of Subjects 1 and 2.  

Subjects were sent home with an iPad and instructed to photograph the same arm 

that was photographed in Lightbox, in the coronal view, at the same time each day (Day) 

that they were not in the lab. 3 of 10 subjects completed at home photographs. 
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Photographs, acquired in lab, were compared against photographs acquired by subjects at 

home. Both photo sets were used to assess the feasibility of using a standardized 

photography method and automated segmentation to assess AD disease severity and 

prognosis. Figure 6 shows at-home photos of Day 2 for Subjects 1 and 2. As part of a 

larger study on behavior, subjects were required to wear actigraphy devices during some 

of the photo acquisitions. Thus, these artifacts were accounted for in lesion segmentation. 

 

 

Figure 3. Lightbox, a novel and standardized photography lightbox  
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Figure 4. Subject arm placement in Lightbox 

 

 

Figure 5. Lightbox photos  
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Figure 6. At-Home photos 

 

A dermatologist used FIJI software to manually trace AD lesions and classify the 

four primary factors of AD: erythema (redness), edema (swelling), excoriation (scratch 

damage), and/or lichenification (thick, leathery skin). The dermatologist tracings were 

used as ground truth ROIs when determining performance of automated segmentation. 

FIJI was also used to generate descriptive statistics. Mean, minimum, maximum and 

standard deviation of pixel values from various color spaces were used to determine 

thresholding values for color-based k-means clustering to mask the subject arm from the 

lightbox. Color-based k-means clustering of the green channel of  a* and b* (of L*a*b* 

color space) afforded the most accurate and reliable arm masking. This provided an 

efficient way to obtain binay images of total arm area for photos from Lightbox. At-home 

photos were segmented with color-based k-means clustering, as well, yet the high amount 

of noise in the masks made it necessary to perform some manual correction of the at-

home masks. followed by overlaying ROIs produced in FIJI, and calculating percentage 
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of arm affected by AD. Figure 7 shows FIJI regions of interest (ROIs) overlayed 

Subject's 1 and 2 Lightbox arm masks from Visit 1. Figure 8 shows FIJI regions of 

interest (ROIs) overlayed at-home arm masks of Day 2 for Subjects 1 and 2, exhibiting 

arm masks before manual correction compared to after manual correction.  

 

 

 

Figure 7: Lightbox arm masks overlayed with ground truth ROIs (red) 
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Figure 8: At-home arm masks overlayed with ground truth ROIs (red) 

 

The U-Net machine learning model was deployed with Keras, with a Tensorflow 

backend, with Python 3.7.4 in The Scientific Python Development Environment (Spyder) 

3.3.6. All software was run on an ASUS ROG GU502GV laptop with a 9th Gen Intel® 

Core™ i7-9750H CPU @ 2.60GHz, 6 cores, 12 logical processors, 16 GB RAM, 2592 

MHz max clock speed, and 141pixels per inch (ppi) display resolution. The training 

images for U-Net comprised photos acquired in Lightbox, converted to grayscale (pixel 
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values 0-255 (black-white)) (N = 24). Of the nine subjects, 24 photos were acquired in 

Lightbox. Each subject provided 1-4 photos over the course of 1-5 days in, 1-3 day 

intervals.  The training ROIs (labels), which had been manually segmented by a 

dermatologist, were binary images (pixel values 0 and 1 (black and white)). Test images 

comprised subjects' self-acquired at-home photos, converted to grayscale (N = 14). Of the 

three subjects who provided at-home photos, 14 photos were acquired. Each subject 

provided 2-4 photos over the course of 1-5 days, in 1-3 day intervals 1 All images were 

converted to 512 x 512px for efficient convolution of the U-Net neural network.  

The U-Net machine learning model was deployed with Keras, with a Tensorflow 

backend, with Python 3.7.4 in The Scientific Python Development Environment (Spyder) 

3.3.6. All software was run on an ASUS ROG GU502GV laptop with a 9th Gen Intel® 

Core™ i7-9750H CPU @ 2.60GHz, 6 cores, 12 logical processors, 16 GB RAM, 2592 

MHz max clock speed, and 141pixels per inch (ppi) display resolution. The training 

images for U-Net comprised photos acquired in Lightbox, converted to grayscale (pixel 

values 0-255 (black-white)) (N = 24). Of the nine subjects, 24 photos were acquired in 

Lightbox. Each subject provided 1-4 photos over the course of 1-5 days in, 1-3 day 

intervals.  The training ROIs (labels), which had been manually segmented by a 

dermatologist, were binary images (pixel values 0 and 1 (black and white)). Test images 

comprised subjects' self-acquired at-home photos, converted to grayscale (N = 14). Of the 

three subjects who provided at-home photos, 14 photos were acquired. Each subject 

provided 2-4 photos over the course of 1-5 days, in 1-3 day intervals 1 All images were 

converted to 512 x 512px for efficient convolution of the U-Net neural network.  



 

14 

 

U-Net ROI predictions were rendered in grayscale (0-255 (black-white)), which 

were converted to binary (0, 1 (black, white)) for ROI area measurement. The binary 

threshold for grayscale values was 245, which converts all pixel values > 245 to 255 and 

all pixel values ≤ 245 to 0. was chosen as the threshold because it rendered the most 

accurate images with minimal noise. Pixel classification comprised black pixels in ROIs as 

true positive (TP) AD lesions. Black pixels outside ROIs were classified as false positive 

(FP). 245. Figure 9 illustrates the process of test image augmentation, binarized 

thresholding of prediction, and prediction measurement. 

 

 

Figure 9. Subject 1 Day 1, original photo and ROIs compared to augmented photo 

and augmented ROIs 
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Positive predictive value (PPV) was used to determine the accuracy of lesion predictions, 

compared to ground truth ROIs (Equation 1) 

 

Positive Predictive Value = TP/(TP+FP)      (1) 

 

 Following determination of the most accurate U-Net run, predictions from that 

run were measured to determine the degree of accuracy. With a threshold of 245 for 

binary conversion of predictions, the amount of lesion pixel, in the thresholded lesion 

predictions, were divided by the total amount of arm pixels, in the binary arm masks, to 

obtain the percentage that the lesion affected arm. Total lesion coverage percentage, as 

well as AD lesions of specific factor type and severity were measured to determine the 

accuracy, reliability, and prognosis power of automated segmentation with combined 

color-based segmentation and the U-Net Convolutional Neural Network. 
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RESULTS 

Following calibration of the U-Net model for optimal speed and accuracy, 6 

epochs with 40 steps-per-epoch (spe) were found to generate accurate lesion predictions 

with 0.9965 (±0.0015) accuracy and 0.0152 (±0.0023) loss in 4 hrs (±10 mins). Less 

epochs and/or spe were found to generate less accurate predictions. More epochs and/or 

spe were found to result in overfitting, resulting in less accurate predictions as well. 

Mean PPV fluctuated across runs for images from Lightbox (Figure 9). High 

reliability of the U-Net model was evinced by negligible  (<0.0001) standard deviation 

PPV, between predictions within each U-Net run and between U-Net runs.  

 

Figure 10. Positive predictive values (PPVs) between subjects for U-Net AD prediction 

in test images 
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Run 4 was used to calculate and predict lesion type and severity in Lightbox photos, due 

to PPV being most accurate and reliable for this U-Net run.  

Percentage of anatomy affected by AD lesions, across subjects, showed no 

significant difference between ground truth (M = 7.48%, SD = .03%) and Run 4 

predictions (M = 6.96%, SD = .06%), (t(9) = 2.46, p = 0.87). 

The percentage that each lesion affected, across subjects in Lightbox, showed no 

significant difference between ground truth (M = 5.56%, SD = .04%) and Run 4 

predictions (M = 4.65%, SD = .06%), (t(35) = 2.06, p = 0.63). 

Of the four primary factors of AD severity, only erythema and lichenification 

were expressed by the subjects. Some of the lesions contained a combination of both. 

Erythema was the only factor expressed exclusively, as level 1 (Ery1) and level 2 (Ery2). 

Lichenification severity was expressed as level 1 (Lic1) and level 2 (Lic2). 

Percentage covered by Ery1, across subjects in Lightbox, showed no significant 

difference between ground truth (M = 1.56%, SD = .05%) and Run 4 predictions (M = 

1.34%, SD = .04%), (t(57) = 2.07, p = 0.65). 

Percentage covered by Ery2, across subjects in Lightbox, showed no significant 

difference between ground truth (M = 1.52%, SD = .01%) and Run 4 predictions (M = 

1.45%, SD = .03%), (t(14) = 2.17, p = 0.94). 

Percentage covered by Lic1, across subjects in Lightbox, showed no significant 

difference between ground truth (M = 4.93%, SD = .02%) and Run 4 predictions (M = 

3.73%, SD = .01%), (t(13) = 2.30, p = 0.56). 
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Percentage covered by Lic2, across subjects in Lightbox, showed no significant 

difference between ground truth (M = 3.09%, SD = .01%) and Run 4 predictions (M = 

3.67%, SD = .02%), (t(7) = 2.71, p = 0.25).  
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DISCUSSION 

The accuracy and reliability of automated segmentation with combined color-

based segmentation and the U-Net CNN was evinced by the statistical significance in the 

similarity of AD lesion predictions of U-Net and ground truth manually traced ROIs. 

These results support the finding of Lu et al. (2013) that automatic segmentation 

algorithms provide superior efficiency of segmentation for atopic dermatitis lesions, 

compared to manual segmentation, which is much more time consuming and also prone 

to subjective bias (Ben-Gashir et al., 2004; Ning et al., 2014).  

The binary arm mask is extremely efficient for segmenting the subject's arm 

from the background. Thus, affording easy calculation of the number of pixels 

comprising the arm, which can be utilized in determining the percentage of the arm that 

the AD lesions affect. 

The potential for a more reliable and efficient method for segmentation and 

quantification of pathological rate of AD, exhibited by this study, supports the work for 

the effective treatments for AD, described by Weidinger & Novak (2016). Although 

there is no known cure for AD, optimized automatic segmentation exhibits the potential 

to be essential in the diagnosis, prognosis, and treatment plan to effectively manage AD. 

Throughout the course of this study, Android Studio was used to develop and test 

a mobile application that implements the automated segmentation methods of this study 

(Figure 10). 
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Figure 11.  Flowchart of mobile app for k-means based color segmentation of AD 

 

Limitations of this study include the lack of monitoring of the subjects during the 

20 days that they were required to photograph their AOIs and a small sample size of 10 

subjects. Although, the aspect of images acquired by subjects in their natural setting, at 

home, is a primary factor in this study, it made it so that the experimenters were unable to 

determine the level to which subjects followed instructions and the degree to which 

acquisition bias was a factor between subjects. Future studies may benefit from a 
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surveillance camera in the subjects home in the location where they will be taking their 

AOI photographs, so as to document subject behavior and photography procedure. Doing 

so may enable experimenters to account for and analyze variations in subject self 

photography of their AOIs.  

 Although the sample size was small, 10 subjects producing 24 in-lab photos, the 

three subjects producing 14 at-home photos was not a limitation. As the in-lab photos 

served as the train dataset for U-Net and at-home photos served as the test dataset, this is 

a common and acceptable train / test ratio for machine learning models. 

The high/low pattern of U-Net results across runs, may be due to the learning 

rate being set too high. Future directions fine tuning the learning rate and other 

parameters of U-Net to achieve the most accurate run on the first run. Further 

development of mobile applications that utilize automated segmentation is a most 

valuable direction for future studies, as the demand for fast and efficient diagnosis 

and prognosis grows with improved software and hardware.  
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