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ABSTRACT

Over half the human genome consists of repetitive sequences. One major class is the

tandem repeats (TRs), which are defined by their location in the genome, repeat unit,

and copy number. TRs loci which exhibit variant copy numbers are called Variable

Number Tandem Repeats (VNTRs). High VNTR mutation rates of approximately

10−4 per generation make them suitable for forensic studies, and of interest for po-

tential roles in gene regulation and disease. TRs are generally divided into three

classes: 1) microsatellites or short tandem repeats (STRs) with patterns <7 bp; 2)

minisatellites with patterns of seven to hundreds of base pairs; and 3) macrosatellites

with patterns of >100 bp. To date, mini- and macrosatellites have been poorly char-

acterized, mainly due to a lack of computational tools. In this thesis, I utilize a tool,

VNTRseek, to identify human minisatellite VNTRs using short read sequencing data

from nearly 2,800 individuals and developed a new computational tool, MaSUD, to

identify human macrosatellite VNTRs using data from 2,504 individuals. MaSUD is

the first high-throughput tool to genotype macrosatellites using short reads.

I identified over 35,000 minisatellite VNTRs and over 4,000 macrosatellite VN-

TRs, most previously unknown. A small subset in each VNTR class was validated

ix



experimentally and in silico. The detected VNTRs were further studied for their

effects on gene expression, ability to distinguish human populations, and functional

enrichment. Unlike STRs, mini- and macrosatellite VNTRs are enriched in regions

with functional importance, e.g., introns, promoters, and transcription factor binding

sites. A study of VNTRs across 26 populations shows that minisatellite VNTR geno-

types can be used to predict super-populations with >90% accuracy. In addition,

genotypes for 195 minisatellite VNTRs and 22 macrosatellite VNTRs were shown to

be associated with differential expression in nearby genes (eQTLs).

Finally, I developed a computational tool, mlZ, to infer undetected VNTR alleles

and to detect false positive predictions. mlZ is applicable to other tools that use read

support for predicting short variants.

Overall, these studies provide the most comprehensive analysis of mini- and macrosatel-

lites in human populations and will facilitate the application of VNTRs for clinical

purposes.
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Chapter 1

Introduction

The human genome is about 3.2 billion base pairs long. About 3% of the genome

comprises gene sequences. The non-coding genome, once called junk DNA, is now

known to play an important role in biological processes (Carey, 2015; Biémont and

Vieira, 2006; Ludwig, 2016). Over 50% of this non-coding genome consists of repeti-

tive DNA. The analysis of certain types of repetitive DNA is the focus of this thesis.

Figure 1·1: Classification of repetitive DNA in the human
genome. Figure obtained from (Billingsley et al., 2019).

1.1 Repeats in the human genome

There are different classes of repeats in the human genome (International Human

Genome Sequencing Consortium, 2001). This classification is depicted in Figure 1·1

and can be summarized as follows:

- Satellite DNA are small fragments of DNA that can move around in the genome.
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Transposons are a class of satellite DNA that can change their position in the

genome. Tandem Repeats (TRs) are another class of satellite DNA which con-

sist of patterns that are repeated consecutively. Telomeres and centromeres

of the DNA consist of AT-rich blocks of tandem repeats. TRs are also called

simple repeats.

- Segmental Duplications (SDs) are duplications of >10 Kbp or longer with >90%

similarity spread out in the genome (Vallente and Eichler, 2005).

- Processed pseudogenes are inactive copies of genes or small RNA.

The focus of this dissertation is tandem repeats. TRs can be defined by their location

on the genome, the pattern (also called the repeat unit), and the number of copies.

An example of a tandem repeat is given in Figure 1·2.

1.2 Sequencing technologies

Over the years many different techniques have been developed to sequence genomes.

Today, the most common and cost-effective sequencing technology is paired-end se-

quencing with Illumina machines (Kulski, 2016). In this method, whole genome

shotgun sequencing is used (Weber and Myers, 1997) to shear the DNA into small

fragments of a few hundred bp, usually 250–550 bp. The fragments follow a normal

distribution. Each fragment is read with a laser on each end from different strands

for a fixed length. The two “reads” obtained from a fragment have fixed length and

come from different strands of the DNA. Paired-end sequencing is commonly used

for Whole Genome Sequencing (WGS). Read lengths of 100–250 bp are common for

WGS. Paired-end sequencing produces short reads with very high per base precision

( 2%) (Schirmer et al., 2016; Ma et al., 2019).

Other technologies such as PacBio (Rhoads and Au, 2015) and nanopore(Jain
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Figure 1·2: An example tandem repeat. A tandem repeat (TR)
is characterized by its location on the genome, the pattern, and the
number of copies. The blue box is the consensus pattern. The repeat
units are shown as stacked red boxes. The mutations in each repeat
unit compared to the pattern consensus are shown in different colors
(pink for mutation to A, green for mutation to T, and gray for indel).
This TR has pattern length 10 bp (TTGTTAACCA), as presented in
the consensus (blue box above), and 7.1 copies (number of stacked
red blocks). The repeats do not need to be exact, mutations may
occur, neither do they have to be complete, partial repeats are allowed.
The image was obtained from the Tandem Repeat DataBase (TRDB)
(Gelfand et al., 2007).

et al., 2016; Jain et al., 2018) can sequence longer reads of thousands to hundreds of

thousands of base pairs. However these reads have higher error rate (>10%). While

Illumina errors consist mainly of SNPs, PacBio reads and nanopore reads can also

include indels, causing downstream errors.

Recently, PacBio introduced a new method, Circular Consensus Sequencing (CCS),

to overcome the low read quality of their long reads. In CCS, the molecules are made

circular, and the circular molecules are sequenced many times and create a consensus

read sequence (Wenger et al., 2019). Since the error rate of PacBio reads are about

10%, if the molecule is read 10 times, the average error of the consensus will be-
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come 1%, which is comparable to the error rate of Illumina reads. Clone sequencing

(Duitama et al., 2012) and 10X Genomics WGS (Marks et al., 2019) combine the

two methods by first fragmenting the DNA into large molecules, and then, producing

short precise reads from the large molecules. In the future, producing longer reads

with high accuracy will become possible.

1.3 Alignment of short reads

The reads produced by the different technologies should be mapped back to the

reference genome. Alignment of reads to the genome is a matured methodology, and

the most commonly used aligners are BWA MEM (Li, 2013) and Bowtie2 (Langmead

and Salzberg, 2012) being the most common used for WGS. While alignment methods

perform with over 95% accuracy genome-wide, their precision suffers on repeat-rich

regions.

1.4 The human reference genome

The latest version of the human reference genome was published in 2013 and is

named Genome Research Consortium human build 38 (GRCh38) from NCBI or Hu-

man Genome Build 38 (hg38) for short from UCSC and is ∼ 3.1 × 109 bp long

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/. The two versions

are identical and only differ in the way the chromosome names are saved. In GRCh38,

the chromosomes are written as chr1, chr2, . . . while in hg38 the “chr” is dropped

and the chromosomes are written as 1, 2, . . . to save disk space. The previous version

of the reference genome was published in 2009, and was labeled GRCh37 from NCBI

and hg19 from UCSC.

Aligning reads are aligned to the reference genome, and because the reference

genome was built from few individuals, biases are introduced (Ballouz et al., 2019).
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Individuals with more similarity to the reference genome, i.e., Europeans, will have

better alignment. More distance genomes, i.e., Africans, will have many unmapped

reads (Sherman et al., 2019). To correct for this bias, pan-genomes have been in-

troduced (Li et al., 2010) that present the genomes as a graph with all the possible

variants as edges in it. GRAF implements workflows to align reads to pan-genomes

and to detect variants which is available at https://www.sevenbridges.com/graf/.

1.5 Genomic variation

Differences between two DNA molecules are called genomic variants. Germline vari-

ation are fixed mutations in the gametes, such as sperm or egg cells of an individual

compared to the reference genome. Differences between DNA of cells in one individual

compared to the germline cells of the same individual are called somatic variation.

While germline mutations are either inherited or occur at random during meiosis,

somatic variation occurs during mitosis (cell division). Somatic variants are com-

monly studied in cancer tumors to understand the mutations that have caused the

cell to become malignant. Genomic variants can be classified based on their length.

Single nucleotide variants (SNVs) are mutations, insertions, or deletions of one base

pair. Small insertion or deletions of ≤50 bp are called indels. Copy Number Vari-

ants (CNVs) are differences in copies of genes or sequences in one person’s genome

compared to the reference genome. Structural variation are deletions, insertions, in-

versions, or translocations of thousands to millions of base pairs. One form of genetic

variation are TRs with different copies between individuals that are called Variable

Number Tandem Repeats (VNTRs).

1.5.1 Homozygous vs heterozygous variants

The human genome is diploid, meaning that, except for the sex chromosomes in male

individuals, there are two copies of each chromosome. However, the reference genome,
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which is the point of comparison, is haploid (one one copy of each chromosome). A

homozygous variant is a locus on the genome where both chromosomes are the same

but are different from the reference genome. Any heterozygous locus on a genome, by

definition, is a genomic variant, because at least one copy of the chromosome must

differ from the reference.

1.5.2 The genotype of a variant

A loci in the human genome has two “alleles”, which is the observed sequence on

each chromosome. The genotype of the diploid locus in an individual is presented as

“allele1/allele2”. At homozygous loci, only one allele is observed and at heterozygous

loci two alleles are observed.

1.6 Population-wide studies of genomic variants

Genomic variation is common in the human genomes. Population-wide studies aim to

find variants occurring in a large number of individuals in order to study the natural

diversity among populations or to associate phenotypes to genotypes. With the goal

of capturing the global picture of variation in human genomes, different consortiums

have collected variants on large cohorts of individuals.

In 2008, The 1000 Genomes Project took up as an international effort with the

goal of sequencing 1000 genomes (The 1000 Genomes Project Consortium, 2015). The

goal was to sequence at least 1000 genomes from different populations and identify

variants with minor allele frequencies as low as 1% across the genome. In 2015, the

third and final phase published variants on 2,504 genomes from five super-populations

and 26 sub-populations. Figure 1·3 shows a map of the populations presented in the

1000 Genomes Project. Although the 1000 Genomes Project was a breakthrough in

genetic studies at its time, the majority of the genomes were sequenced at low coverage

(<10X). So, in Phase 3 of the 1000 Genomes Project, 30 genomes were re-sequenced
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at higher coverage. These 30 genomes included two trios (child-father-mother) from

the Yoruban and CEPH population, and another 24 genomes each from the remaining

populations.

Figure 1·3: The populations from the 1000 Genomes Project.
Total 2,504 unrelated individuals from 26 populations and five super
populations were sequenced. Figure obtained from the Coriell website

(https://www.internationalgenome.org/cell-lines-and-dna-coriell).

In 2019, the New York Genome Center (NYGC) resequenced the 2,504 genomes

from the 1000 Genomes Project at higher coverage and longer read length. In addition

698 other genomes, which are related to the original samples, were sequenced.

In 2016, the Simon’s Genome Diversity Project (SGDP) sequenced 300 individual

genomes from 142 populations with high coverage with the aim to“maximize medical

relevance by studying populations with large numbers of present-day people” (Mallick

et al., 2016). Figure 1·4 shows a map of the populations selected for the SGDP. Many

of these populations were not included in the 1000 Genomes Project, and have been

under-represented in the population-wide studies.
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Figure 1·4: The genomes from Simon’s Genome Diversity
Project (SGDP). A total of 260 genomes were sequenced at read
length 100 bp and coverage >40× from populations unrepresented in
the 1000 genomes project (Mallick et al., 2016). The goal of this project
was to include individuals proportional to the current world population.
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The Personal Genome Project (PGP) (Church, 2005) sequences genomes and med-

ical information of 100,000 volunteers publicly with the goal to expedite personalized

medicine studies. Seven of the genomes from PGP were sequenced at very high

coverage by the Genome In A Bottle consortium (GIAB) (Zook et al., 2016). Inter-

national Genome Sample Resource (IGSR) (Fairley et al., 2020) provides a collection

of publicly available genomes.

1.6.1 Common vs private variants

A common variant is a variation that occurs in >5% of the population under study.

A private variant, on the other hand, occurs in <1% of the individuals. This def-

inition was used in the 1000 Genomes Project to detect common SNPs vs. private

SNPs. They found about 4–6 million SNPs per individual, which 3–4 million were

common. Using the number of private SNPs, the SNP mutation rate is estimated

to be about 10−9 per generation (The 1000 Genomes Project Consortium, 2015).

Common variants can be used to study the normal spectrum of variation in human

populations.

1.6.2 Major vs. minor allele

Alleles observed at one loci across the population can be studied to find major or

minor alleles. Major allele is the most common allele at a given loci in the population.

Minor allele is the second most common allele. Minor alleles are commonly associated

with phenotypes (Asif et al., 2020; Panagiotou et al., 2010).

1.6.3 Heterozygosity and diversity

Variants in population-wide studies are also studied for heterozygosity. For a two

allele system the heterozygosity is defined as 2pq, where p is the probability of the

major allele and q is the probability of the minor allele. The p and q can be used
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to calculate the Hardy Weinberg equilibrium, (p+ q)2 = 1, where p2 is the frequency

of homozygous occurrences of major alleles and q2 is the frequency of homozygous

frequency of the minor allele. Deviations from this equation could be used to detect

genetic shift or selection in a population.

Higher heterozygosity in a population is linked to higher diversity and is linked

to many human traits (Campbell et al., 2007). Heterozygosity and allele diversity

have been associated with higher adaptive potential for quantitative traits (Vilas

et al., 2015). Loss of heterozygosity in tumor tissue is linked to tumor progression

(Cavenee, 1991; Schwarzenbach et al., 2012; Zuo et al., 2010).

1.7 De novo detection vs genotyping genomic variants

To detect variants in the genome, aligned reads are used. Detecting variants without

any prior information of their position is called de novo variant detection. De novo

methods are useful when the variant can occur at any location, such as SNPs or struc-

tural variations. When we know where the variants are located, such as minisatellites

or testing for haplotypes, we can simply recruit reads originating from the region of

interest. This is called genotyping. For genotyping, a reference set containing all the

loci of interest should be provided.

Approaches to statistically infer variants from short WGS reads use four differ-

ent “signatures”: read depth, split read signatures, paired-end signatures, or local

assembly. These techniques are summarized in Figure 1·5.

- Read depth signature: Comparing read depth of a region to the expected read

depth is used to detect variants that cause a difference in read coverage, i.e.

insertions, deletions, and CNV. This method can detect the change in read

depth, but cannot find the position of the variant.

- Split read signature: When part of a read aligns to one position and another
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part aligns to another position, we detect a “split read”. Split reads can provide

hints of a structural variation. BWA MEM provides split reads when a read

partially aligns.

- Paired end signatures : Paired-end reads revolutionized structural variation de-

tection. The distance that the pairs align to compared to the average fragment

size, and the strands they align to can give a structural variation-specific signa-

ture. This method is commonly used in the state of the art structural variation

detection tools such as LUMPY (Layer et al., 2014) and DELLY2 (Rausch et al.,

2012).

- Local assembly: Another technique is to assemble the reads originating from

the region of interest and locally assembling them using de bruijn graphs. The

assembled sequence could be analyzed for the existence of certain structures,

such as tips or bubbles, or compared to the reference genome.

Computational tools such as GATK (McKenna et al., 2010) and samtools mpileup

(Li et al., 2009) have been developed for detecting short variants, i.e., SNPs and indels.

Detecting small variants has matured and these tools perform with >90% precision

and recall. In contrast, tools to call variants in repeat-rich regions such as balanced

rearrangements, i.e. inversions and translocations, suffer from high false positives

due to mapping errors. Structural variations breakpoints occur inside SDs and TRs,

in which alignment tools perform poorly on these regions. Read support, defined as

the number of reads showing evidence of the variant, is commonly used to measure

the confidence of variant detection tools. Variants are required to be supported by

a certain number of reads to be statistically reliable. Increasing the read support

reduces the false positive calls and improves the precision, but also reduces sensitivity.
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Figure 1·5: Methods to detect large variants from short WGS
reads. Paired end reads can be used to detect variants that are larger
than the read length. In general four different signatures are used,
paired-end read signature: pairs aligning too far or too close compared
to the fragment size give a signature for the variant: the difference in
read coverage at one region compared to the expected coverage; split
read signature: when a read maps partially to two different positions,
and local assembly: reconstructing the region using de bruijn graphs.
Assembly can be used to find the sequence of an insertion. Image was
obtained from (Alkan et al., 2011).
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1.8 A review of minisatellites in the literature

Minisatellite TRs comprise more than a million base pairs in the human genome.

These are defined as TRs with pattern length of 7-–100 bp. While many minisatel-

lite loci appear to be monoallelic with regard to copy number, a significant fraction

exhibit copy number variability and are called Variable Number Tandem Repeats

(VNTRs). Changes in VNTR copy number have been proposed to arise by slipped

strand mispairing (Taylor and Breden, 2000; Madsen et al., 1993; Levinson and Gut-

man, 1987), unequal crossover (Jeffreys et al., 1998; Debrauwère et al., 1999), and

gene conversion (Jeffreys et al., 1998; Pâques et al., 2001).

1.8.1 De novo detection of minisatellites on the reference genome

Tandem Repeat Finder (TRF) (Benson, 1999) detects repeats of at least 1.8 copies

in a given sequence. TRF uses parameters: match score, mismatch penalty, and

gap penalty to find consensus patterns repeated at least 1.8 times in a sequence of

nucleotides. The repeats are reported as the start and end position, the consensus

pattern and its length, and the score. Minisatellites can be extracted by limiting the

pattern size to 7–100 bp. The score can be used to filter out repeats that are not

reliable.

Tandem Repeat DataBase (TRDB) (Gelfand et al., 2007) provides an online

database of TRs on different versions of the reference genome. It also provides tools

to filter the repeats and visualize them. TRs can also be visualized on the“Simple

Tandem Repeats by TR” UCSC genome browser track (Kent, 2002).

1.8.2 Characteristics of minisatellites

VNTRs are highly mutable, with germline mutation rates estimated between 10−3

and 10−7 per cell division (Bustamante et al., 2013; Fu et al., 2016; Vogler et al.,
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2006; Verstrepen et al., 2005; Legendre et al., 2007). This mutation rate, which far

exceeds that of SNPs, makes VNTRs useful for DNA fingerprinting (Panigrahi, 2018;

Sinha et al., 2018; Imam et al., 2018).

VNTRs have also been predicted to have high heterozygosity, ranging from 43%

to 59% (Denoeud et al., 2003), and the copy numbers of several VNTR loci have

been shown to be population-biased in humans (Deka et al., 1991; Deka et al., 1992),

suggesting that these VNTRs would not be useful for population wide studies.

The Eichler group (Sulovari et al., 2019) has examined TR loci on human and

ape genome assemblies from PacBio sequencing data and has identified 1,584 human-

specific VNTR loci proximal to 52 genes as candidate regions associated with disease.

Additionally, by comparing VNTR loci situated in known gene enhancers with RNA

sequencing data, the authors found that expansion of VNTRs correlated with up-

regulation of the corresponding genes, suggesting that TR copy number can modulate

enhancer activity.

More than half of previously identified human VNTR loci (Sulovari et al., 2019;

Hancock and Santibáñez-Koref, 1998) are located near or within genes (Duitama

et al., 2014) and some occur within coding exons (Duitama et al., 2014; Lancaster

et al., 1990; Van Tol et al., 1992). Therefore, the potential effects of VNTRs on

gene expression or the protein products are substantial. Indeed, VNTRs have been

shown to contain binding sites for transcription factors such as NF-κB and Myc/HLH

(Trepicchio and Krontiris, 1992; Krontiris et al., 1993), have been associated with

changes in levels of gene expression (Sonay et al., 2015), including tissue-specific

expression (Bakhtiari et al., 2020), and have been associated with gene splicing dif-

ferences (Pacheco et al., 2019; De Roeck et al., 2018).
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1.8.3 Minisatellites and disease

VNTRs have been proposed as drivers of phenotypic variation in evolution (Fondon

and Garner, 2004; Laidlaw et al., 2007; Sulovari et al., 2019). For example, VNTR

polymorphisms may play a role in neurogenesis and account for “human-specific cog-

nitive traits” (Sonay et al., 2015).

Furthermore, minisatellite VNTRs have been associated with a variety of diseases

(Antwi-Boasiako et al., 2018; Ksiazek et al., 2019; Cong et al., 2018; Ramı́rez-Patiño

et al., 2013; Vairaktaris et al., 2007; Safarinejad et al., 2013; Ibrahimi et al., 2019),

including neurodegenerative disorders (Marinho et al., 2019) such as Alzheimer’s

disease (Katsumata et al., 2019; Chang et al., 2019; De Roeck et al., 2018) and

Huntington’s disease (Scott et al., 1991; Krontiris et al., 1993), and other psychiatric

conditions, such as PTSD (Hoxha et al., 2019), ADHD (Šerý et al., 2015; Grünblatt

et al., 2019), depression (Van Assche et al., 2016), and addiction (Stolf et al., 2019).

1.8.4 Theoretical prediction of VNTRs in the literature

Denoeud et. al., (2003) examined 127 minisatellites with copy numbers ≥10 on

chromosomes 21 and 22 of the human genome on 76 unrelated European genomes.

They investigated the effect of the characteristics of the probability of TR polymor-

phism. The characteristics they studied were: pattern length, copy number, percent

match of the repeat units, entropy of the consensus pattern, GC content of the array,

Purine/Pyrimidine bias of the array (strand asymmetry for purines and pyrimidines),

and a theoretical estimate called HistoryR. HistoryR (Benson and Dong, 1999) mea-

sures how ancient the TR is using the number of mutations accumulated in the repeat

units. They found a strong correlation between HistoryR and GC content and prob-

ability of a TR being polymorphic, and a weak correlation between pattern size and

entropy. They predicted that each individual would have ∼4,800 VNTRs.
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In another work (Näslund et al., 2005), the authors developed a predictive model to

predict the probability of a TR to be a VNTR from the following characteristics: the

reference copy number, the match percentage of the repeat units, the entropy of the

consensus pattern, and the GC content of the array. They found that minisatellites

with higher copy numbers are more likely to be polymorphic, and that when the

repeat units were more similar they were more likely to be an polymorphic VNTR,

similar to the HistoryR measure discussed above. Overall, they predicted 29,224

(18.55%) out of 157,549 minisatellite TRs to be VNTRs corresponding to 9.1 VNTRs

per million base pairs.

1.8.5 Methods to genotype VNTRs

Despite their biological significance, until recently, relatively few human VNTRs have

been identified and studied in detail. The ever-increasing availability of accurate

whole genome sequencing (WGS) data, however, provides an opportunity for high

throughput, genome-wide VNTR genotyping. Furthermore, the emergence of PCR-

free WGS datasets is reducing locus selection bias and enabling better filtering of

false positive VNTR variants.

Nonetheless, genotyping variability in repeat sites remains challenging (Stolf et al.,

2019; Gymrek, 2017; Tørresen et al., 2019). Few high-throughput tools are available

for minisatellite genotyping. The adVNTR tool (Bakhtiari et al., 2018) trains a

Hidden Markov Model for each VNTR locus of interest and has been used to predict

variability in 2,944 VNTRs intersecting coding regions.

VNTRseek (Gelfand et al., 2014), developed in our lab, uses the Tandem Repeats

Finder (TRF) (Benson, 1999) to detect and characterize TRs inside reads and then

maps read TRs to TRs in a reference set. Because it builds pattern profiles before

mapping, VNTRseek is robust in the presence of SNPs and small indels. The latest

version of VNTRseek (V1.10) supports BAM/CRAM, FASTQ, and FASTA files,
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and processes a ∼100× coverage WGS dataset in a few hours on a machine with 16

processors and 4G RAM . The output is given in both VCF and SQLite format, which

helps downstream data analysis.

1.9 A review on macrosatellites in the literature

Most macrosatellites are polymorphic and exhibit different copy numbers in different

individuals (Schaap et al., 2013; Brahmachary et al., 2014). The high rate of polymor-

phism among macrosatellites is believed to allow the organism to evolve rapidly, for

example, in order to adapt to environmental changes (Vinces et al., 2009; Verstrepen

et al., 2005). Polymorphic macrosatellites have also been linked to diseases, including

facioscapulohumeral muscular dystrophy (FSHD) (Geng et al., 2012; de Greef et al.,

2009; Jones et al., 2012; Lemmers et al., 2012), immunodeficiency, centromeric re-

gion instability, facial anomalies syndrome (ICF) (Kondo et al., 2000), and cancer

(Dumbovic et al., 2018; Balog et al., 2012). Many macrosatellites have high GC con-

tent and are often hot spots for methylation, which can result in reduced expression

of the downstream gene (Huichalaf et al., 2014; Giacalone et al., 1992; Chadwick,

2009). Tandem repeats of CG-rich islands can trigger heterochromatization in a copy

number-dependent manner, resulting in repeat-induced gene silencing (RIGS) (Gar-

rick et al., 1998; Ye and Signer, 1996).

Despite the importance of macrosatellites in human biology, only a handful of

macrosatellites have been studied, in part because of a lack of computational tools to

characterize them in a high throughput fashion. In 2010, four macrosatellites were

experimentally genotyped and characterized in the CEPH family (Tremblay et al.,

2010), where it was found that macrosatellites are polymorphic across the genome

and exhibit meiotic and mitotic instability. In a second study in 2013, six autosomal

and two X chromosomal macrosatellites were genotyped in 270 HapMap individuals
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from Central Europe, Asia and Africa using Southern blotting (Schaap et al., 2013).

Great variability in size for these loci was found, with a mitotic mutation rate of

0.4–2.2%. In 2014, Nanostring probes were used to genotype 15 macrosatellite loci

in 165 HapMap samples and five primates (Brahmachary et al., 2014). The authors

found that macrosatellite loci were highly polymorphic in the human genomes and

that the true copy number of many macrosatellites is under-represented in the human

reference genome. The authors also found association of macrosatellite copy numbers

with nearby DNA methylation levels, which resulted in RIGS. Finally, they showed

that macrosatellite loci are under selection, suggesting that they have biological roles.

Genotyping macrosatellites is difficult. Macrosatellites are too large to be geno-

typed by probes. They cannot be detected by typical assembly methods or SNP

tagging (Burgner et al., 2003) since SNPs mutate at rate 10−8 rate and tandem re-

peats at 10−4.

Long read technologies that use DNA polymerization such as PacBio and nanopore

cannot be used to detect long tandem repeats due to high error rates (up to 15%) and

GC content biases. NanoSatellite (De Roeck et al., 2019) is a tool that genotypes

tandem repeats using long-read sequencing on PromethION directly using electric

current data. It can improve tandem repeat genotyping bias on GC content in long

reads and is more robust against mutations in repeat units. However, such long read

datasets are not currently available for many applications.

Short NGS reads, on the other hand, are the most cost- and time-effective sequenc-

ing technology for variation detection. While macrosatellites fall in the category of

copy number variants (CNV), high-throughput CNV methods such as CNVseq (Xie

and Tammi, 2009), LUMPY (Layer et al., 2014), and CONY (Wei and Huang, 2020),

rely on read depth and fail to genotype macrosatellites because repeat-rich regions

cause ambiguity in aligning short reads and assembly.
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1.10 Thesis rationale

A limited number of studies have characterized minisatellite and macrosatellite VN-

TRs in human populations. VNTRs play an important role in gene regulation and

neurodegenerative diseases and disorders. However, to date the diversity of VNTRs

has not been investigated in a large cohort of humans. The primary goal of this thesis

is to provide a comprehensive collection of human VNTRs in a large cohort of humans

from various populations. By identifying the VNTRs and their characteristics, we can

better understand their functional role in human biology and provide a platform to

incorporate them in studies of human disease.

In Chapter 2, VNTRs on a large cohort of human genomes are characterized on

2,800 WGS datasets (2,770 individual genomes) using VNTRseek. The VNTRs were

characterized by their heterozygosity, allele diversity, and allele frequency. In Chap-

ter 3, a population-wide study of VNTRs in 2,504 unrelated genomes is carried out to

investigate the functional role of VNTRs on gene regulation and expression intensities.

A model to predict ancestry from VNTRs will also be presented. Chapter 4 focuses

on validating and confirming the VNTR predictions. The predictions are validated

in silico and in vitro, and the consistency is evaluated across sequencing platforms

and by Mendelian inheritance on related genomes. Also, the error rate of the pre-

dictions is quantified and the source of these errors are discussed. Chapter 5 delves

deeper into the problem of type 1 and type 2 errors, and presents a computational

tool named mlZ (machine learning on Z-scores) to detect false positive allele and infer

false negative ones. The tool is tested thoroughly on simulated data and on real data.

Chapter 6 presents a novel computational tool named MaSUD to detect macrosatel-

lites using short NGS reads and it’s application on the 1000 Genomes Project data.

The dissertation will conclude in Chapter 7, with a discussion of limitations of our

work, comparison to the literature, the impact of this thesis, and future directions.
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Chapter 2

Characterization of VNTR minisatellites

in humans

2.1 Introduction

Tandem repeats (TRs) are patterns of 7–100 bp repeated consecutively in the human

genome. A TR with difference in copy number across genomes is called a Variable

Number Tandem Repeat (VNTR). As described in Chapter 1, VNTRs have been

associated with diseases and disorders and are predicted to play an important role

in gene regulation. To characterize VNTRs in the human population, I downloaded

2,800 WGS datasets from 2,770 individuals and processed them with VNTRseek on

the GRCh38 reference genome. We investigate the abundance of VNTRs, their allele

diversity and frequency, heterozygosity, and their major alleles.

In Section 2.2 a brief description of the datasets used and the methodology will

be discussed. The results section will follow in Section 2.3, first by summarizing the

VNTRs detected by each data source, and then various characteristics, i.e., heterozy-

gosity, frequency of alleles, common genotypes, of the VNTR loci will be investigated.

Section 2.3.6 will summarize VNTRs in the tumor-normal paired tissues. Finally, in

section 2.4 a short summary of the results will be given.
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2.2 Materials and methods

This section provides details on the datasets used in this thesis. Also the filtering

steps used to obtain the reference TR and how the VNTR genotyping was performed

are described.

2.2.1 WGS datasets

Datasets comprising 2,801 PCR-free, WGS samples from 2,770 individuals were used

in this study (Table 2.1). This datasets consist of the following:

- 30 individuals from the 1000 Genomes Project Phase 3 (The 1000 Genomes

Project Consortium, 2015), including the Utah (CEU) and Yoruban (YRI) trios

(mother-father-child);

- 2,504 unrelated individuals mostly overlapping with the 1000 Genomes Project,

recently sequenced at>30× coverage by the New York Genome Center (NYGC) 1;

- 253 individuals from the Simons Genome Diversity Project (SGDP) (Mallick

et al., 2016);

- seven individuals sequenced by the Genome in a Bottle (GIAB) Consortium

(Zook et al., 2016), including the Chinese (HAN) and Ashkenazi Jewish (AJ)

trios and NA12878 (with ID HG001);

- two haploid hydatidiform mole cell line genomes, CHM1 (Chaisson et al., 2015)

and CHM13 (Huddleston et al., 2017);

- tumor/normal tissues from two unrelated individuals with breast cancer (breast

invasive ductal carcinoma cell line/lymphoblastoid cell line) from the Illumina

Basespace public WGS datasets (Drmanac et al., 2010); and

1These data were generated at the New York Genome Center with funds provided by NHGRI
Grant 3UM1HG008901-03S.
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- the AJ child sequenced with PacBio Circular Consensus Sequencing (CCS) reads

(Wenger et al., 2019).

Duplicates of 27 genomes were present in two datasets: 1000 Genomes and NYGC.

One of these, NA12878, was also included in the GIAB dataset (with ID HG001).

Data source Read Read Samples
Data source Length (bp) Coverage in Set

1000 Genomes Phase 3 HC
YRI trio 250 71–73× 3
CEU trio 250 55–63× 3
Others 250 33–66× 24

New York Genome Center (NYGC) 150 29–101× 2,504

Simon’s Genome Diversity Project (SGPD) 100 33–133× 253

Genome In A Bottle (GIAB)
AJ trio 250 61–69× 3
HAN trio 148 / 250 111–333× 3
NA12878 (HG001) 148 291× 1

Haploid genomes CHM1 148 40× 1
CHM13 250 128× 1

Illumina basespace Tumor/Normal 101 38–88× 4

Table 2.1: WGS datasets. 2,801 publicly available WGS samples,
for 2,770 individuals, were used in this study. Read coverage was calcu-
lated as the product of the number of reads and the average read length,
divided by the haploid genome size, as in the Lander/Waterman equa-
tion (Lander and Waterman, 1988). All coverage values are approxi-
mate. The 1000 Genomes Phase 3 samples were released in 2015. The
NYGC samples were released in 2020 by the New York Genome Center
(NYGC). For the Simons Genome Diversity Project (SGDP), released
in 2016, only datasets which were not present in the the 1000 Genomes
datasets were used.

Overall, read coverage ranged from approximately 27×, in the PacBio sample

to 333×, in the GIAB Chinese child. Besides the PacBio data, reads consisted of

three lengths, 100/101 bp (257 samples), 148/150 bp (2,508 samples), and 250 bp (35

samples). All data were downloaded as raw fastq files, except for the PacBio data

which were obtained as a BAM file with reads aligned to GRCh37. SRA links to the

data are given in Table 2.1.

The majority of the population-wide analyses presented in Chapter 3 were per-
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formed on the 2,504 genomes from NYGC. The 253 genomes from SGDP provided

insight into under-represented populations. The 27 genomes duplicated in the 1000

Genomes and NYGC datasets were used in Chapter 4 to measure consistency across

sequencing platforms. The trios from the 1000 Genomes (CEU and YRI) and GIAB

(AJ and Chinese HAN) datasets were used for analyzing Mendelian inheritance in

Chapter 4. The cancer datasets were used to find possible changes in VNTRs in

tumor tissues (Section 2.3.6). The haploid genomes were used for measuring false

positive heterozygous calls (Chapter 4 and Chapter 5). The PacBio data was used

for validation purposes only (Chapter 4).

2.2.2 The reference TR set

The 22 autosomes and sex chromosomes from the human reference genome GRCh38

were used to produce a reference set of TRs in TRDB (Gelfand et al., 2007)with the

TRF software and four quality filtering steps as described in (Gelfand et al., 2014).

In addition, centromere regions were excluded from the reference set. These filtering

tools are available online in TRDB. Starting with 1,199,362 TRs found by TRF, we

curated a filtered reference set with 228,486 TRs.

Using VNTRseek, the TRs were classified into two subcategories, singleton and

indistinguishable. A singleton TR appears to be unique in the genome based on a

combination of its repeat pattern and flanking sequence. An indistinguishable TR

belongs to a family of genomically dispersed TRs that share highly similar patterns

and flanking sequences, and can therefore produce misleading genotype calls. Indis-

tinguishable TRs were identified using the procedure described in (Gelfand et al.,

2014), performed by Yozen Hernandez, a former PhD student. Each TR array from

the initially filtered reference set of 228,486 TR loci was treated as a single read and

all such reads were mapped to the original unfiltered TR set using VNTRseek. Any

TR that mapped to a locus other than its own was labeled indistinguishable. In-
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distinguishable TRs were not removed from the reference set, but genotype calls in

the output of VNTRseek were flagged (and filtered) if the locus was indistinguish-

able. In the output VCF files the filtering field marks these TRs as “SC”, meaning

they did not pass the “Singleton Criterion” filter. Alleles from indistinguishable TR

loci detected in a sample were filtered from that sample before further processing.

Indistinguishable TRs (total 37,200 or about 16% of the reference set) were filtered.

Simulation testing revealed that some singletons produced false positive VNTRs.

To minimize this issue, an additional filtering step was added to eliminate problematic

singleton loci from the reference set. The following procedure was followed. For each

reference TR, a sliding window equal in size to a specified read length was used to

generate reads. The leftmost window ended one base upstream (-1 bp) of the TR

array start position and the rightmost window began one base downstream (+1 bp)

of the TR array end position, with the window moving in increments of one base.

The combined simulated reads for all TRs were mapped back to the reference set

with VNTRseek. A Singleton TR locus was then removed if:

- it was the source of at least one read resulting in a VNTR call, either at its own

locus or another locus; or

- at least one read drawn from a different locus resulted in a VNTR call for the

TR.

The procedure was repeated for three separate read lengths, 100 bp, 150 bp, and 250 bp,

to produce three separate reference sets.

We assumed that genotyping was possible for a reference TR locus, given a par-

ticular read length, if the TR array length plus a minimum 10 bp flank on each

side, would fit within the read. We will discuss the detection range of VNTRseek in

Chapter 5.
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2.2.3 Genotyping TRs and VNTRs

Each short read WGS dataset described in Section 2.2.1 was processed separately

with VNTRseek using default parameters: minimum and maximum flanking sequence

lengths of 10 bp and 50 bp, respectively, on each side of the array, and requiring at

least two reads mapped with the same array copy number to make an allele call. Out-

put from VNTRseek included two VCF files containing genotype calls, one reporting

all detected TR and VNTR loci, and the other limited to VNTR loci only. The VCF

files contained two specialized FORMAT fields: SP, for number of reads supporting

each allele, and CGL, to indicate genotype by the number of copies gained or lost with

respect to the reference. For example, a genotype of 0 indicated detection of only the

TR reference allele (zero copies gained or lost), while 0,+2 indicated a heterozygous

locus with a reference allele and an allele with a gain of two copies.

To remove clear inconsistencies, we filtered the VCF files to remove per sample

VNTR loci with more alleles than the expected number of chromosomes. VNTR

loci which reported more alleles in a diploid sample than the expected number of

chromosomes were termed Multis in that sample. They correspond to loci with the

following:

- three or more alleles on an autosomal chromosome,

- three or more alleles on chromosome X of a female individual,

- any allele on chromosome Y of a female individual, or

- two or more alleles on a sex chromosome of a male individual

For the two haploid samples, any locus that reported more than one allele, or any Y

chromosome locus that reported any allele was termed Multi.

After Multi filtering, a TR locus was labeled as a VNTR if any remaining allele,

different from the reference, was observed in any sample. The number of reference
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TR alleles that could be genotyped using each of the read lengths in our data is

summarized in Table 2.2.

Read
Length(bp)

Reference
Set Size

Reference
Singletons

Singletons
Removed

Final
Ref. Set

Expected
Genotyped (%)

100–101 228,486 191,286 1,704 226,782 153,293
(80.14%)

148–150 228,486 191,286 1,976 226,510 168,742
(88.21%)

250 228,486 191,286 4,812 223,674 177,864
(92.98%)

Table 2.2: Filtering out reference singletons to reduce false
positive VNTRs. The original reference set contained 228,486 TR
loci, labeled as singleton or indistinguishable. Using simulated reads
generated from the reference set, singleton TRs that were called as false
positive VNTRs or those which generated reads leading to such a result
were removed. The “Expected Genotyped” column is the number of
singleton TR loci for which the sum of array length and minimum flank
lengths did not exceed the read length (for the 100/101 bp set, 100 bp
was used as read length, for the 148/150 bp set, 150 bp was used).
Percent is the Expected Genotyped out of all the original Reference
Singletons.

2.2.4 Data availability

The reference TR set files, output VCF files, and the pre-processed data files along

with the code to create figures and tables are published at: DOI 10.5281/zenodo.4065850

2.3 Results

In this section, a summary and characterization of the VNTR predictions is presented.
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2.3.1 About one in five minisatellite TRs are variable in the human pop-

ulation.

WGS datasets from 2,770 human genomes were analyzed with VNTRseek to detect

VNTRs. Overall, 184,315 out of 191,286 singleton reference TR loci (∼96%) were

genotyped across all samples (Table 2.3) while 5% of the loci had TR arrays too long

to fit within the longest reads and could only be genotyped if they lost a sufficient

number of copies.

Dataset Samples TRs Genotyped Multis VNTRs Detected

1000 Genome Project 30 178,395 366 8,761
NYGC 2,504 177,612 1,181 33,403
SGDP 253 156,803 221 9,944
GIAB 7 178,804 239 6,736
CHM1 1 159,563 175 1,118
CHM13 1 170,805 632 1,977
Tumor-Normal 4 150,531 21 1,291
Totals 2,800 184,315 - 35,638

Table 2.3: Summary of genotyping VNTRs by data source.
TRs Genotyped is the number of distinct TR loci genotyped across all
individuals within a dataset. (All other numbers are also per dataset.)
Multis are TR loci genotyped in a single individual with more than the
expected number of alleles. They could be artifacts or indicate copy
number variation in a genomic segment. Multis were excluded from
further analysis on a per sample basis. VNTRs Detected is the number
of TR loci, excluding Multis, with a detected allele different from the
reference.

A total of 5,198,392 VNTRs were detected, corresponding to 35,638 ( 19%) dis-

tinct VNTR loci, indicating an abundant occurrence of these variable repeats. Their

occurrence within genes was common, totaling 7,698 protein coding genes, and 3,512

exons. The resulting genotypes were output in VCF format files and summarized for

each genome (see Section 2.2.4).
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2.3.2 The number of TRs and VNTRs genotyped depends on coverage

and read length.

To determine the effect of coverage and read length on VNTR genotyping, two quanti-

ties were measured: 1) the percentage of reference singleton TRs that were genotyped

and 2) the total number of singleton VNTRs that were detected in each genome. Only

singleton loci were considered in all further analysis. Figure 2·1 shows that there was

a strong positive correlation between coverage and the ability to genotype TRs. A

strong correlation with read length was also apparent, however, the effect was larger,

primarily due to the ability of longer reads to span, and thus detect, longer TR arrays.

These results suggest that our VNTR numbers are under-counts.

VNTR detection was similarly dependent on coverage and read length, as shown in

Figure 2·2 However, detection was also positively correlated with population, which

seemed likely due to the evolutionary distance of populations from the reference

genome, which is primarily European (Lappalainen et al., 2013; Günther and Nettel-

blad, 2019). For example, in the 250 bp trios with comparable coverage, the African

Yoruban genomes (YRI) had the highest number of VNTRs, followed by the Ashke-

nazi Jewish genomes (AJ), and finally, the Utah genomes (CEU). Notably, within

each trio, the VNTR counts were similar.

The haploid genomes CHM1 (150 bp) and CHM13 (250 bp) had greatly reduced

VNTR counts relative to genomes with similar coverage and read length. This was

because in these genomes, which are derived from haploid genomes, the parental

heterozygous loci with one reference allele would appear to be VNTRs, on average,

only about half the time.
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Figure 2·1: TR Genotyping sensitivity. This graph shows the
relationship between coverage, read length, and the percentage of TRs
in the reference set that were genotyped. Each symbol represents a
single sample and specific samples are labeled. Increasing read length
had the largest effect on sensitivity because many reference TR alleles
could not be detected at the shorter read lengths (see Table 2.2).
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Figure 2·2: Number of VNTRs detected per genome. Graph
shows the relationship between coverage, read length, and the number
of VNTR loci detected. Read length and coverage both had large ef-
fects. Coloring of symbols shows that the population also had a strong
effect, reflecting distance from the reference, which is primarily Eu-
ropean. Note the reduced numbers for CHM1 (150 bp) and CHM13
(250 bp). Because they are haploid genomes, parental heterozygous
loci with one reference allele would appear to be VNTRs, on average,
only about half the time.
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2.3.3 More than two alleles are common in VNTRs.

Two alleles were detected in the majority of VNTR loci across all datasets (Fig-

ure 2·3). However, at 10,698 loci (29%), three or more alleles were detected. In a

substantial number of loci (5,395), the reference allele was never seen, but only 105

of these were in the VNTRseek detectable range for the 100 bp and 105 bp reads,

which made up the bulk of our data.

In total, 4,084 VNTRs from NYGC the reference genotype (0/0) could be observed

(array length ≤130 bp). And, in a total of 1,166 of these, the reference genome was

not the major allele. These VNTRs with non-reference major alleles overlap with 731

genes, 540 of which encode proteins. A total of 91 of these VNTRs occurred inside 78

exons. In 124 VNTRs (overlapping 90 genes), the reference genotype was seen in less

than 1% of the population. A list of VNTRs where the reference was never observed,

while it was detectable is given in Table 2.4.

In the case of TR ids 182290167 and 182289941, which overlap with introns 9 and

13 of gene CTNNA3, all individuals had genotype -1/-1 (2,501) and +1/+1 (2,429),

respectively. For TR id 182387900 overlapping with gene POU6F1, 2,503 people had

genotype -1/-1 and the other person probably had an error. Other examples of VN-

TRs where the reference allele was never observed are: TR id 182501000 in the fourth

intron of the gene HERC2, where every individual had -6/-6 and reference was never

seen. Every genotyped individual had genotype -1/-1 for TR id 182967914overlap-

ping the fifth intron of ASIC5. For TR id 182996967 overlapping intron ten of gene

SPEF2, all genotyped individuals were -2/-2. These results suggest that the reference

genome does not represent the major alleles. It has been previously shown that using

pan-graphs with known VNTRs improves mappability of short reads (Lu et al., 2020).
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Figure 2·3: Alleles detected per VNTR locus. Each bar repre-
sents the specific number of alleles detected across all datasets. Coloring
shows that proportion of loci where the reference allele was (TRUE) or
was not (FALSE) observed
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TRid Major
genotype

Count Gene Pattern
size (bp)

Reference copy
number

Array
size (bp)

182170668 1/1 2,499 PRDM16 25 2.7 67
182227226 -1/-1 2,503 37 3.1 114
182249995 -1/-1 2,504 16 2.9 47
182289941 1/1 2,504 CTNNA3 13 4.4 59
182290167 -1/-1 2,504 CTNNA3 8 5.5 44
182331426 -2/-2 2,500 EHF 8 7.3 58
182387900 -1/-1 2,504 POU6F1 34 3.2 110
182400618 -1/-1 2,503 7 4.6 32
182413455 -2/-1 2,488 8 7.6 61
182416530 -1/-1 2,499 CABP1 18 4.2 76
182552008 1/1 2,503 AC007493.2 12 3.2 37
182713567 -1/-1 2,489 26 3.5 91
182759585 1/1 2,504 IGFBP2 9 4.3 39
182797532 1/1 2,502 7 5.4 41
182829368 -1/-1 2,504 17 3.4 57
182916461 -1/-1 2,504 AC006296.3 12 4.3 51
182996967 -2/-2 2,503 SPEF2 27 4.3 121
183017144 -1/-1 2,503 MCTP1 15 3.7 55
183080876 -1/-1 2,504 16 3.9 62

Table 2.4: Example of VNTRs where the reference geno-
type was not observed. VNTRs where the reference genotype was
never detected, while over 2,400 individuals found another genotype are
listed. In the second column, the major genotype detected in most in-
dividuals is given. The third column in the number of individuals with
the major genotype. The genes/transcripts these VNTRs overlapped
with are listed in the fourth column. In all these loci, the reference
genotype was detectable, i.e. the reference array size was <130 bp (last
column).
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Figure 2·4: Number of VNTR alleles with gains or losses.
Each bar represents a specific number of copies gained or lost in non-
reference VNTR alleles relative to the reference allele. Loss was always
more frequently observed.
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2.3.4 Loss of VNTR copies relative to the reference is more common than

gain of VNTR copies.

Overall, VNTRseek found approximately 1.8-fold more alleles with copy losses (3,444,128),

with respect to the reference copy number, than gains (1,958,250). Loss of one copy

(2,263,608) was the most common type of VNTR polymorphism (Figure 2·4).

The overabundance of VNTR copy loss may be an underestimate. Because VN-

TRseek requires a read to span a TR array in order for it to be detected, only limited

gain in copies could be observed. Observing gain of one copy would have been possible

in approximately 68%, 82%, and 92% of loci for samples with read lengths of 100 bp,

150 bp, and 250 bp, respectively. By contrast, the reference locus needed to have a

minimum of 2.8 copies for a loss of one copy to be observed by TRF, and only 16%

of the reference loci met this criterion. Higher observed copy loss could be explained

by a bias in the reference genome towards including higher copy number repeats, or

by an overall mutational preference for copy loss.

2.3.5 VNTRs have high heterozygosity

High heterozygosity in human populations suggests higher genetic variability and

may have beneficial effects on a range of traits associated with human health and

disease (Campbell et al., 2007). Since calculating heterozygosity for VNTRs is not

straightforward (because of limitations on discovering alleles, especially within shorter

reads), we used the percentage of detected, per-sample heterozygous VNTRs as an

estimate for heterozygosity. At read length 250 bp, per-sample heterozygous VNTR

loci comprised approximately 46–55% of the total, which is comparable to previous

theoretical estimates of 43–59% (Denoeud et al., 2003). At shorter read lengths, the

bottom of the range extended lower (∼38–57% for 150 bp reads, ∼29–51% for 100 bp

reads, Figure 2·5), as expected, because longer alleles were undetectable if they did

not fit within a single read.
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Figure 2·5: Fraction per sample of VNTR loci called as het-
erozygous. Samples are separated by read length. Higher read length
and coverage provide more statistical power to detect heterozygous
calls. Stratification by population is evident and is further displayed in
Figures 2·6, 2·7, and 2·8
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Interestingly, despite the previous comment, within genomes that were compara-

ble in read length and coverage, the fraction of heterozygous loci clustered within

populations (Figure 2·6, Figure 2·7, and Figure 2·8), with African genomes generally

having the most heterozygous calls and East Asians the fewest. This result is con-

sistent with previous findings of population differences in SNP heterozygosity among

the Yoruban and the Ashkenazi Jewish individuals as compared to European individ-

uals (López Herráez et al., 2009; Bray et al., 2010), and suggests that there is higher

genomic diversity among African genomes, as has been previously noted (Edea et al.,

2015).

Figure 2·6: Heterozygous VNTR calls on the 2,504 NYGC
150 bp samples per superpopulation. Data are presented as box
plots for each superpopulation showing the interquartile range and me-
dian (middle line). Africans had the highest percentages of heterozy-
gous calls and East Asians had the lowest compared to the other super-
populations.
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Figure 2·7: Heterozygous VNTR calls on the 2,504 NYGC
150 bp samples per subpopulation. Data are presented as box
plots for each subpopulation showing the interquartile range and me-
dian (middle line). Among the admixed Americas populations, Peru-
vians had the lowest median percentage of heterozygous calls, similar to
that of East Asians. The Peruvian population appears to have had the
least mixing with African and European genomes in the NYGC dataset,
based on this measure. South Asian and European sub-populations had
similar frequencies of heterozygous calls.
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Figure 2·8: Heterozygous VNTR calls on the 253 SGDP
100 bp samples per superpopulation. Data are presented as box
plots for each superpopulation showing the interquartile range and me-
dian (middle line). The SGDP aimed to sequence underrepresented
populations. Although the overall percentage of heterozygous calls was
lower than for the NYGC samples due to lower sensitivity with shorter
reads, Africans still had the highest percentage of heterozygous calls.
Interestingly genomes with Oceania ancestry had a very low percentage
of heterozygous calls.
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2.3.6 VNTRs in tumor vs normal tissue.

On the cancer genomes, we investigated the change in VNTR alleles and the change in

heterozygosity. The data consisted of paired tumor-normal samples from individuals

HC1187 and HC2218. A significant loss of heterozygosity (LOH) was observed in

predicted VNTRs of one of the tumor tissues compared to its matching normal tissue

(sample ID HC1187). The percentage of heterozygous VNTRs was approximately

double that seen in the normal tissue (∼38% vs ∼19%) (Table 2.5). Extreme loss

of heterozygosity in small variants has previously been reported in these samples

by Illumina Basespace (Edea et al., 2015; Raczy et al., 2013) with the number of

heterozygous small variants in HC1187 being four times lower in the tumor tissue

compared to the normal. Taken together, these results suggest that VNTR LOH

could be linked to tumor progression.

Knowledge of gene associations with somatic tumor mutations (VNTR alleles

present in a tumor, but not normal tissue) could be useful as indicators of cancer prog-

nosis and for therapy. In the HC2218 individual, somatic tumor mutations overlapped

with lncRNAs (ACO73336.1, AC107959.2, AL355388.2), introns (C3orf67, COX17,

DHRS3, DPP6, GAN, PCGF3, RGS12, SLC25A13, SLC6A19, TACR2, TEPP), and

promoter regions (TRIM24, DUSP4). RGS12 is a known oncogene, TRIM24 has been

associated with prognosis in breast cancer (Chambon et al., 2011; LU et al., 2017;

Pathiraja et al., 2015) and over-expression of DUSP4 has been shown to improve the

outcome of chemotherapy and overall survival (Balko et al., 2012; Menyhart et al.,

2017).

In the HC1187 individual, somatic tumor mutations overlapped with lncRNAs

(LINC01708, AC1058290.1, AC104596.1), exons (THNSL2), introns (AJAP1, SMAD1,

FLT4, PTPN3, ADAMTSL2, ANO2, SOX5, SGCG, WDR72, NQO1, CCDC200,

ARHGAP45, AC005258.1, PEAK3) and promoters (HFM1, TBK1, GNS, LEMD3,
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FGFR3, VIPR2). SMAD1, PTPN3, NQO1, and FGFR3 are known oncogenes, and

TBK1 and FGFR3 have been used as treatment targets for HER2+ breast can-

cer (Deng et al., 2014; Long et al., 2020).

Sample Coverage
(×)

Multis Total
TRs

VNTRs Heterozygous
VNTRs

Ratio
(%)

HC1187 Normal 51 43 146,794 793 302 0.38
HC1187 Tumor 67 60 146,969 741 144 0.19
HC2218 Normal 38 40 144,710 724 293 0.4
HC2218 Tumor 88 57 147,812 864 328 0.37

Table 2.5: Ratio of heterozygous VNTRs in paired normal and
tumor samples. The ratio of heterozygous calls in the tumor samples
was lower than the paired normal tissue, suggesting loss of heterozy-
gosity. In HC1187, the percentage was half that of the normal tissue.
With same read length and higher coverage in the tumor samples, this
finding cannot likely be attributed to artifacts.

Additionally, in both tumors a large number of loci exhibited loss of both alleles

in comparison to the normal tissue (Table 2.6). Given that the coverage for the tumor

samples was significantly higher than for the normal tissue, it is unlikely that these

observations were due to artifacts. Also, the tumor samples did not show a higher

percentage of filtered multi VNTRs (too many alleles) than the normal samples (1.37%

and 1.23% in normal tissue vs 1.72% and 1.71% in tumor tissue).

2.4 Summary

Variable Number Tandem Repeats (VNTRs) are tandem repeat (TR) loci that vary

in copy number across a population. Using VNTRseek, a program to detect VNTRs

using short WGS reads, we analyzed human whole genome sequencing datasets from

2,770 individuals in order to detect minisatellite VNTRs, i.e., those with pattern

sizes ranging from 7 bp to 126 bp, and with array lengths up to 230 bp. A total of

5,209,412 human VNTRs corresponding to 35,638 loci were identified, corresponding

to 19% of the TR loci. At higher read length and coverage VNTRseek had sensitivity
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Genotype HC1187 HC2218 Description
Normal Tumor

AA
AA 391 349 No change
— 75 32 Loss of both alleles in tumor

AB 9 31 Allele mutation in tumor,
or failure to detect in normal

BB 2 1 Allele mutation in tumor

AB
AB 109 232 No change
— 116 39 Loss of both alleles in tumor
AA 90 40 Loss of one allele (LOH) in tumor
AC 1 0 Allele mutation in tumor

— AA 103 127 Failure to detect in normal

— AB 36 84 Failure to detect in normal

Table 2.6: Comparison of VNTR alleles in paired normal and
tumor samples. Notation: AA means homozygous; AB and AC mean
heterozygous; — means not detected. Due to significantly higher cover-
age in the tumor samples, we assumed the tumor genotyping was likely
correct, whereas genotyping in the normal tissue may have failed to
detect one or two alleles. The majority of VNTR loci detected in both
tissues for each patient exhibited no change. The most common geno-
type change was loss in the tumor of one allele (LOH) or both alleles.
Allele mutation was apparently uncommon.

>84%, and detected about 1,500 to 3,500 VNTRs per genome. VNTRseek has high

sensitivity when the read length and coverage is high. However at similar read length

and coverage, the number of VNTRs depends on the population, with Africans having

higher per genome VNTRs. We characterize these VNTR loci by studying their

frequencies, number of alleles, and heterozygosity. Although VNTRseek has lower

recall on detecting losses, the number of losses detected was almost twice as the

number of gains, with loss of one copy being the most frequent VNTR allele. About

a third of the VNTR loci had three or more alleles, and in 150 cases the reference

allele was never observed, suggesting the reference genome is incorrect at these loci.

Further, we found that VNTRs have high heterozygosity, as predicted in the literature,

and that Africans and East Asians have higher ratios of heterozygous VNTRs than

other populations.
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Chapter 3

Population-wide study of VNTRs

3.1 Introduction

As discussed in Chapter 1, detecting variants on a large population of humans is

useful to understand the diversity of our genome. This information is crucial to dif-

ferentiate disease causing mutations from healthy variation in the human population.

The variants enriched in one population compared to other populations, could predis-

pose a population to a phenotype or disease, which could be useful to design better

treatments. Population-biased variants shed light on the evolutionary path of the

human genome and can be used to understand the origin of human life, the diver-

sity in each population, bottlenecks and natural selection that the population has

gone under. Also, population-biased variants can be used to predict ancestry. In this

chapter we analyze the VNTRs across the population and detect common VNTRs

that occur in >5% of the individuals. The potential role of these common VNTRs

in gene regulation is investigated by genomic annotation enrichment and gene set

enrichment. Then, the expression of proximal genes to VNTRs are examined to find

correlations. Finally, common VNTRs with population-biases alleles, i.e. alleles that

are more frequently found in one population compared to other populations, are used

to predict ancestry of the individuals.

In Section 3.2 the materials and methods used to analyse the VNTRs across pop-

ulations are discussed. Section 3.3 will present the results. Section 3.4 will summarize

this chapter’s findings.
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3.2 Materials and methods

In the following sections methods for detecting common and private VNTRs are

described (Section 3.2.1). The material used for enrichment of common VNTRs

by annotation is explained (Section 3.2.2). Then the methods of two population-

wide analyses on common VNTRs are discussed: association with gene expression

(Section 3.2.3) and population-biased VNTR alleles (Section 3.2.4).

3.2.1 Common and private VNTRs

To classify common and private VNTRs, we used results from the NYGC dataset

(2,504 individuals) because the read length and coverage were comparable across all

genomes (See Table 2.1). Additionally, these genomes contain no related individuals

and represent a wide set of populations (26 populations from five continents).

VNTR loci were classified as common if they were identified as VNTR in at

least 5% (126 individuals) of the individuals and classified as private if they were

identified as VNTR in less than 1% (25 individuals). For these classifications, VNTRs

genotyped on the sex chromosomes were excluded.

3.2.2 Annotation and enrichment

Annotation based on overlap with functional genomic regions was performed for the

reference TR loci. Genomic annotations for GRCh38 were obtained from the UCSC

Table Browser (Karolchik et al., 2004) in BED format. Known gene transcripts from

GENCODE V32 (Hsu et al., 2006) were used along with tracks for introns, coding

exons, and 5’ and 3’ exons. Regulatory annotations included transcription factor

binding site (TFBS) clusters (ENCODE Project Consortium, 2012; Davis et al., 2018)

and DNAse clusters (Thurman et al., 2012) from ENCODE 3 (Roadmap Epigenomics

Consortium et al., 2015), and CpG island tracks (Gardiner-Garden and Frommer,
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1987), comprising 25%, 15%, and 1% of the genome, respectively. Bedtools (Quinlan

and Hall, 2010) was used to find overlaps between TR loci and the annotation features.

LOLAweb (Nagraj et al., 2018) was used to determine VNTR enrichment for

genomic regions in comparison to the background TR annotations, and common

and private VNTR enrichment in comparison to all VNTR annotations. TRs on

the sex chromosomes were excluded in the background set. To identify gene and

pathway functions that could be affected by common VNTR copy number change,

genes with exons or introns overlapping with common VNTRs were collected and their

enrichment computed using GSEA (Subramanian et al., 2005) for biological process

Gene Ontology (GO) terms (Ashburner et al., 2000) and KEGG pathways (Kanehisa

and Goto, 2000) with FDR p-value <0.05.

3.2.3 Association of VNTR alleles with gene expression.

To detect expression differences among individuals with different VNTR genotypes,

mRNA expression counts from lymphoblastoid cell lines of 660 individuals by the

Geuvadis consortium (Accession: E-GEUV-1) were downloaded (Lappalainen et al.,

2013). A total of 445 individuals overlapped with the 2,504 NYGC genomes set.

We paired VNTR loci with genes within 10 Kbp, and extracted the genotypes for

each individual at those VNTRs. When no genotype was observed for an individ-

ual, we classified the genotype as other. We did this because we assumed that the

alleles were outside the detection range, given that genotypes were observed in other

individuals with similar coverage. VNTR loci were retained for analysis if at least

two genotypes were detected for that VNTR across all individuals (at least three if

other was one of the genotypes) and if each genotype was observed in at least 20

individuals. Genes were excluded from analysis if the median TPM (Transcripts Per

Kilobase Million) expression value equaled zero.

To control for confounders we used covariates for sex and population structure and
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detected additional hidden covariates using Iteratively Adjusted Surrogate Variable

Analysis (IA-SVA) (Lee et al., 2018) on the log2 normalized TPM values. For popula-

tion structure we used the top five principal components determined from a principal

components analysis of the informative SNP genotypes from the 445 individuals as re-

ported by the 1000 Genomes project (http://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/release/20130502/supporting/hd_genotype_chip/). Using IA-SVA and ob-

serving that covariates sixteen and above were over 85% correlated with other covari-

ates (Figure 3·1), we chose fifteen hidden factors to include in our model. Finally, we

used a linear regression expression ∼ sex+population PCAs+hidden factors with

the log2 normalized TPM values to extract residuals to be used in the downstream

association model.

For each gene-VNTR pair, we used a one-way ANOVA test as residuals ∼

genotype to detect if the mean of any genotype class was different from the oth-

ers. The p-values of the ANOVA tests were adjusted using FDR. Any gene-VNTR

pair with FDR<5% was reported. For significant eQTLs, we calculated the maxi-

mum mean difference of the residuals for all pairs of genotype classes for reporting

purposes.

To associate eQTLs with histone marks or open chromatin, we downloaded narrow

peaks data in GRCh38 in bed format from 14 experiments on histone marks and one

on DNAse hypersensitive sites from the GM12878 (B-Lymphocyte) cell line from the

ENCODE project (ENCODE Project Consortium, 2012) (source IDs are given in

Table 3.1). Any overlaps of peaks with the eQTL VNTRs were reported.
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Figure 3·1: Detecting hidden covariates with SV.A To detect
unknown confounders, Iteratively Adjusted Surrogate Variable Analysis
(iasva) (Lee et al., 2018) was applied on the log2 normalized TPM
values of mRNA expression from the Geuvadis consortium (Accession:
E-GEUV-1). We observed the first covariates were independent and the
covariates 16–20 were >85% correlated to other covariates. Therefore,
I chose five hidden factors to include in our model.
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Figure 3·2: First and second hidden factors.

Figure 3·3: Third and fourth hidden factors.
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Marker Source ID Number of overlap

H3K27me3 ENCFF695TUH 0
H3K27ac ENCFF835NLI 38
H3K36me3 ENCFF695TUH, ENCFF829MGL 7
H3K4me1 ENCFF710GQV 11
H3K4me2 ENCFF772RNW 48
H3K4me3 ENCFF566VFL, ENCFF920KUR 53
H3K79me2 ENCFF522JVO 24
H3K9ac ENCFF797IEH 41
H3K9me3 ENCFF874UEV 0
H4K20me1 ENCFF774QTB 0
DNAse ENCFF588OCA 40

Total 89/138

Table 3.1: Number of overlap of histone markers and open
DNAse peaks with the eQTL VNTRs. From the ENCODE, ex-
periments on the GM12878 cell line were selected. Narrow peak calls
in bed format on GRCh38 were downloaded. Any intersection of the
peak with the VNTR loci was counted as an overlap. The ID of the
file from ENCODE is given in the “Source ID” column. Total 89 eQTL
VNTRs overlapped with one or more histone marker.

3.2.4 Population-biased alleles and predicting ancestry

The 2,504 genomes in the NYGC dataset consisted of 26 populations of individuals

with ancestry from five super-populations: African, American, East Asian, Euro-

pean, and South Asian. To investigate the predictive power of common VNTRs

with regard to super-population membership, Principal Component Analysis (PCA)

clustering was applied. For each sample, a vector of common loci alleles showing

presence/absence (1/0) was produced. Uninformative alleles (that were not present

in at least 5% of the samples) were removed and principal components (PCs) were

calculated over the resulting vector set. Using a 70% training to 30% testing split of

the data, a decision tree based on the first 10 PCs was trained using 10-fold cross-

validation and was then validated on the testing data.

In order to find super-population markers among the common VNTRs, a one-

sided Fisher’s exact test was used to calculate the odds ratio and p-value of each allele
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being in one super-population versus being collectively in all the others. Only over-

represented alleles were considered (rather than both over- and under-represented)

because we were interested in identifying alleles that have a phenotypic effect. Odds

ratio values were log2 transformed and p-values were adjusted for false discovery rate

(FDR). Any allele with FDR¡0.05 and log2(odds ratio) >1 was chosen as a significant

marker for that population.

3.3 Results

The number of common and private VNTRs will be discussed in Section 3.3.1 and

the enrichment by genomic location and gene set will be presented in Section 3.3.2.

Section 3.3.3 investigates the correlation of VNTR alleles with proximal gene ex-

pression levels. And Section 3.3.4 presents a model to predict ancestry from the

population-biased VNTR alleles.

3.3.1 A total of 19% of minisatellite VNTRs are polymorphic across the

human population

To detect common VNTRs, following methodology used with SNPs (Psychiatric

GWAS Consortium Coordinating Committee et al., 2009), we classified VNTRs in the

2,504 healthy, unrelated individuals from the NYGC dataset (150 bp and coverage

> 30×) as common if they occurred in at least 5% of a population (126 individuals)

and private if they occurred in less than 1% (25 individuals). We classified 5,676

VNTRs as common (17% of the 33,403 VNTRs detected in this population) and 68%

as private. The number of genomes calling each loci as VNTR is illustrated in Fig-

ure 3·4. Each sample averaged 1,783 common VNTRs (median 1,677) and 46 private

VNTRs (median 17). Figure 3·5 shows that when the threshold of 5% of the pop-

ulation is increased for common VNTRs, the number of common VNTRs does not

change drastically. Widespread occurrence of common VNTRs indicates a fitness for
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use in Genome Wide Association Studies (GWAS).

Figure 3·4: The number of genomes calling each loci as VNTR.
Data shown are the common loci from the 2,504 sample NYGC dataset.
Each bar represents the number of samples calling a locus as a VNTR.
Bin size is 100. Bar height is the number of loci with that sample sup-
port. Red line indicates the 5% cutoff for common loci (126 samples).

3.3.2 Polymorphic minisatellite VNTRs are enriched in functionally an-

notated regions

To determine possible functional effects of the common VNTRs, we classified the

overlap of reference TRs with various functionally annotated genomic regions: up-

stream and downstream of genes, 3’ UTRs, 5’ UTRs, introns, exons, transcription

factor binding site (TFBS) clusters, CpG islands, and DNAse clusters.
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Figure 3·5: Number of common/private VNTRs by cutoff in
the 2,504 NYGC samples. Blue area specifies the interquartile
range (line is the median) of common VNTR loci counts per sample as
the number of samples required to be called common increases from zero
to 2,504. For example, at the 5% cutoff (126 - blue vertical line), there
were 1,783 common VNTRs on average per genome (median 1,677).
The pink area specifies the interquartile range of private VNTRs. At
the 1% cutoff (25 - red vertical line), each genome had 46 private VN-
TRs on average (median 17). The graph shows that common VNTR
loci were indeed very common since the numbers do not drop dramat-
ically even if the cutoff were raised to 500 samples.
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Our reference TR reference set comprised only 0.52% of the genome, however, 49%

of human genes contained at least one TR and 5% of all the TFBS clusters overlapped

with TRs. Moreover, high proportions of our TR reference set and common VNTRs

intersected with genes (63% and 64% respectively), TFBS clusters (38% and 51%),

and DNAse clusters (21% and 28%) (Table 3.2 and Table 3.3).

A total of 3,627 common VNTRs overlapped with 2,173 protein coding genes in-

cluding 254 exons. In comparison to TRs, VNTR loci were positively enriched in

1 Kbp upstream and downstream regions of genes, 5’ and 3’ UTRs, coding exons,

TFBS clusters, DNAse clusters, and CpG islands (p-values <0.05) (Table 3.2 and

Table 3.3). The common VNTRs, on the other hand, compared to all VNTRs, were

enriched in 1 Kbp upstream regions of genes, TFBS, and CpG islands, suggesting

regulatory function. Private VNTRs were less likely to occur in 1 Kbp regions up-

stream or downstream of genes, inside TFBS clusters, open DNAse clusters, or CpG

islands.

Focusing on the common VNTRs, we used the LOLAweb (Nagraj et al., 2018)

online tool to perform enrichment analysis with various curated feature sets, includ-

ing transcription factor binding sites from ENCODE (ENCODE Project Consortium,

2012), DNase hypersensitive sites clustered by tissue (Sheffield et al., 2013), ChIP-

Seq experiments for histone markers from the CODEX database (Sánchez-Castillo

et al., 2015), and transcription factor ChIP-Seq peaks from the Cistrome database

(Liu et al., 2011). The aim was to identify potential VNTR functional effects through

overlap with these experimentally validated regulatory regions. LOLAweb found that

common VNTRs are mostly located inside introns and intergenic regions (Figure 3·6)

and, compared to all VNTRs, the common VNTRs were enriched in TSS and enhancer

segments (Figure 3·7). Enrichment within ChIP-Seq transcription factor peaks in-

cluded POL1 and POL2 (Odds ratio >3), suggesting that they have effects on gene
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Figure 3·6: Genetic distribution of common VNTRs for dif-
ferent partitions by lolaWeb. The common VNTRs are spread
across chromosomes. Most occur inside introns and intergenic regions.
Hundreds occur inside promoters and gene exons.

transcription (Figure 3·8). Among the results from LOLAweb, DNAse enrichments

by tissue type were enriched in brain, muscle, epithelial, fibroblast, bone, hematopoi-

etic, cervix, skin, and endothelial (Figure 3·9) with brain showing up multiple times,

consistent with findings in the literature that associate VNTRs with loss or gain of

cognitive function and neuron function (Sonay et al., 2015). These results suggest

that VNTR alleles can affect gene regulation in multiple tissues, which is consistent

with previous reports (Bakhtiari et al., 2020).

3.3.3 VNTR genotypes are correlated with gene expression differences

To detect association between VNTR genotypes and expression of nearby genes, we

paired VNTRs to any gene within 10 Kbp and after removing genes with low expres-
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Figure 3·7: Encode segmentation enrichment for common VN-
TRs by lolaWeb. The common VNTRs are enriched in enhancer
segments and TSS segments. All results were filtered by Odds ratio >1
and p-value <5%.

Figure 3·8: Enrichment of common VNTRs using chipSeq data
by LolaWeb. Common VNTRs are enriched in binding sites of Pol1
and Pol2 transcription factors suggesting they may play a role in gene
regulation. The results were filtered by p-value <5% and Odds ratio
>1.
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Figure 3·9: Enrichment of common VNTRs with DNAse clus-
ters by LolaWeb. DNAse experiments across 91 tissues are tested for
enrichment of common VNTRs. Brain is a recurrent hit. The results
were filtered by p-value <5% and Odds ratio >1.

sion and controlling for confounders, applied a one-way ANOVA test to determine

if there was a significant difference between the average gene expression levels for

the VNTR genotypes. A total of 1,071 gene-VNTR pairs were tested and 197 pairs

(190 genes, 192 VNTRs) exhibited significant expression differences at FDR<5%

(Figure 3·10). The top 10 genes were FARP1, HEBP1, MXRA7, CD151, THNSL2,

DNAJA4, PIP5K1B, B4GALNT3, KLF11, and DPYSL4.

Three top genes are shown in Figure 3·11, Figure 3·12, and Figure 3·13. Gene

MXRA7 is associated with a VNTR (id 182606303) in the 5’ UTR exon, DPYSL4 is

associated with a VNTR (id 182316137) in the first intron, and CSTB is associated

with an upstream VNTR (id 182814480). The VNTR region in MXRA7 is a target

site for transcription factors METTL23 and JMJD6. METTL23 is known to function
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Figure 3·10: The eQTL VNTRs. In 198 gene-VNTR pairs (dots
above the dashed black line), a significant difference in gene expression
was correlated with VNTR genotype. the y-axis is − log10 of the FDR
value and the dashed black line denotes FDR=0.05. The x-axis is
the maximum difference between the mean expression for the different
genotypes. Genes with the most significant expression differences are
labeled.

as a regulator in the transcriptional pathway for human cognition and has been asso-

ciated with mental retardation and intellectual disability. JMJD6 is associated with

congenital myasthenic syndrome associated with AChR deficiency and pancreatitis.

Copy number expansions in the VNTR upstream of CSTB have been previously as-

sociated with progressive myoclonic epilepsy (EPM1) (Lalioti et al., 2003). For this

VNTR, we observed the -1 and 0 alleles (2 and 3 copies, respectively), which are

common in healthy individuals. However, 201 individuals had genotypes outside of

our detection range which likely represented longer expansions and these individuals

showed higher expression of this gene.
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Feature Reference
TRs

All
VNTRs

Common
(>5%)

Private
(<1%)

Total 191,286 33,403 5,676 22,538
Upstream (1Kb) 12,415

3,424 671 2,181
5’ UTR 4,994

1,294
236 847

Intron 116,002 20,266 3,451 13,526
Coding exon 2,990

699 91
500

3’ UTR 6,628
1,295

238 817

Downstream (1Kb) 10,844
2,200

401
1,385

Gene 121,205
21,410

3,624 14,351

TFBS cluster 71,779
16,220 2,913 10,459

DNAse cluster 40,517
9,296

1,613
6,003

CpG Island 6,718
2,989 638 1,757

Table 3.2: Annotation and enrichment of VNTRs. Column
Reference TRs shows the genomic feature annotations of the reference
VNTRs. Numbers do not add to the total due to multiple classifica-
tions. We performed a Fisher’s Exact Test to find enrichment of all
VNTRs against all TRs and common/private VNTRs against all VN-
TRs. Significant p-values at the 5% threshold are presented in colored
font, with blue and red indicating odds ratios less than one and greater
than one, respectively. Compared to reference TRs, VNTRs were en-
riched in genes, gene upstream and downstream regions, TF binding
sites, CpG islands, and open DNAse sites. Common VNTRs were more
likely to occur in gene upstream regions, TF binding sites, and CpG
islands (suggesting possible gene regulation effects); while they were
less likely to occur inside exons, possibly due to disruption of protein
product function. Private VNTRs, on the other hand, were less likely
to occur at gene upstream and downstream regions, TF binding sites,
open DNAse sites, and CpG islands (possibly due to the potential to
randomly disrupt gene expression).
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Feature Reference
TRs

All
VNTRs

Common
(>5%)

Private
(<1%)

Total 191,286 33,403 5,676 22,538

Upstream (1Kb) 6.49
10.25 11.82 9.68

5’ UTR 2.61
3.87

4.16 3.76

Intron 60.64 60.67 60.80 60.01

Coding exon 1.56
2.09 1.60

2.22

3’ UTR 3.46
3.88

4.19 3.62

Downstream (1Kb) 5.67
6.59

7.06
6.15

Gene 63.36
64.10

63.85 63.67

TFBS cluster 37.52
48.56 51.32 46.41

DNAse cluster 21.18
27.83

28.42
26.64

CpG Island 3.51
8.95 11.24 7.80

Table 3.3: Annotation and enrichment of VNTRs as percent-
ages. This table presents the enrichment data in Table 3.2 as percent-
ages. We performed a Fisher’s Exact Test to find enrichment of all
VNTRs against all TRs and common/private VNTRs against all VN-
TRs. Significant p-values at the 5% threshold are presented in colored
font, with blue and red indicating odds ratios less than one and greater
than one, respectively.
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Figure 3·11: Gene expression of MXRA7 with VNTR id
182606303. Shown are violin plots of gene expression values (log2
normalized TPM) for the MXRA7 gene which displayed significant dif-
ferential expression when samples were partitioned by VNTR allele
genotype. Genotype is indicated in labels on the x-axis and numbers
refer to copies gained or lost relative to the reference allele. ”Other” in-
dicates a partition with undetected alleles presumed outside the range
of VNTRseek detection. Number of samples in each partition is shown
in parenthesis.
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Figure 3·12: Gene expression of DPYSL4 with VNTR id
182316137. Shown are violin plots of gene expression values (log2
normalized TPM) for the DPYSL4 gene which displayed significant
differential expression when samples were partitioned by VNTR allele
genotype. Genotype is indicated in labels on the x-axis and numbers
refer to copies gained or lost relative to the reference allele. ”Other” in-
dicates a partition with undetected alleles presumed outside the range
of VNTRseek detection. Number of samples in each partition is shown
in parenthesis.
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Figure 3·13: Gene expression of CSTB with VNTR id
182814480. Shown are violin plots of gene expression values (log2
normalized TPM) for the CSTB gene which displayed significant dif-
ferential expression when samples were partitioned by VNTR allele
genotype. Genotype is indicated in labels on the x-axis and numbers
refer to copies gained or lost relative to the reference allele. ”Other” in-
dicates a partition with undetected alleles presumed outside the range
of VNTRseek detection. Number of samples in each partition is shown
in parenthesis.
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Of these eQTL VNTRs 89 overlapped with peaks for histone marks and DNAse

hypersensitive sites (Table 3.4 and Figure 3·14).

D
N

A
se

H
3K

36
m

e3

H
3K

4m
e1

H
3K

79
m

e2

H
3K

27
ac

H
3K

27
ac

H
3K

4m
e2

H
3K

9a
c

H
3K

4m
e3

183271886−TRIM14

182702417−AHSA2P

182318091−PHRF1

182654783−MVB12A

182654783−BST2

182644200−MAP2K2

182617052−ABHD3

182579795−CENPV

182293260−FUT11

182604508−COG1

182963495−AC104596.1

183087087−TSTD3

182771099−TRIB3

182857044−CCDC66

182371420−MRPL51

183252298−B4GALT1

182610370−TBCD

182575506−ACADVL

182650196−KANK2

183260115−PIP5K1B

182809120−URB1−AS1

182478082−SNAPC1

183061814−HLA−K

183217213−CA3−AS1

183086206−GPR63

182493713−BEGAIN

182772378−C20orf194

182374347−HEBP1

183004774−ELOVL7

182664764−CAPN12

183303223−YY2

182689900−SLC4A1AP

182571753−VPS53

182168797−AL645608.6

182682994−KLF11

182917598−LAP3

182712760−THNSL2

182462158−UPF3A

182268274−ECHDC3

182845537−OXSM

182797602−LINC01749

182671756−CCDC155

182641327−WDR18

182531094−CCNF

182177661−ARHGEF19

Figure 3·14: Clustering of eQTL VNTRs with histon markers
and open DNAse peaks. For source of data see Table 3.1. A total
of 98 out of 195 eQTL VNTRs overlapped with histone markers and
DNAse peaks. Hierarchical clustering was performed to illustrate the
overlaps.
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Overlap with histones No overlap with histones Marginal
row total

In eQTL 89 106 195
Not in eQTL 187 585 772

Marginal
column total

276 691 967 (Grand
Total)

Table 3.4: Enrichment of histone markers in eQTL VNTRs.
The eQTL VNTRs are more likely to overlap with eQTL VNTRs at
p-value <0.00001.

3.3.4 Population-specific VNTR alleles

We next investigated whether VNTR alleles are population-biased and whether they

can be used to predict ancestry. Understanding the occurrence of population-biased

VNTR alleles will be useful when controlling for population effects in GWAS, and

more generally in interpreting gene expression differences among people of different

ancestry.

A total of 4,605 alleles from the common VNTR loci were classified as common

if they occurred in at least 5% of the population (NYGC). We then constructed a

matrix of presence/absence of each allele by sample and clustered the samples using

Principal Component Analysis. We found that the first, second, fourth, and fifth

principal components (PCs) separated the super-populations as shown in Figure 3·15.

Each PC captured a small fraction of the variation in the dataset, suggesting that

there was substantial variation between individuals from the same population.

The first PC separated Africans, suggesting that they have the furthest evolution-

ary distance from the other super-populations analyzed. The second PC separated

East Asians. The fourth and fifth PCs separated South Asians and Americans, re-

spectively. The American population had a sub-population of Puerto Ricans that

clustered with the Iberian Spanish population, suggesting mixed ancestry (Lalioti



65

et al., 2003; Sudmant et al., 2015).
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Figure 3·15: Principle Component Analysis (PCA) of common
VNTR alleles in the NYGC population (150 bp). PCA was
performed to reduce the dimensions of the data. Left : PC1 captured
∼5% of the variation and separated Africans from the other super-
populations, suggesting that they had the greatest distance from the
others. PC2 separated East Asian and European populations but left
individuals from the Americas and South Asia mixed. Right : PC4 sep-
arated the South Asian population and PC5 separated the American
populations. PC3 (not shown) captured batch effects due to differ-
ences in coverage. Some American sub-populations proved hardest to
separate, likely due to ancestry mixing.

To show the power of these alleles to predict ancestry, we next trained a decision

tree model (Figure 3·16) using the top 10 PCs (11% of the total variation) and

achieved a recall of over 98% on every population when applied to the 30% test

partition (Table 3.5).
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Figure 3·16: Decision tree for prediction of superpopulation
ancestry from common VNTRs. Each box is a node in the decision
tree. Color and superpopulation name indicate majority label in the
training data entering the node. Five decimal values are the fractions of
population labels in training data entering the node with values in order
as Africa, America, East Asia, Europe, and South Asia. Percentage
shown is percent of training data entering the node. Equation with PC
number indicates principle component test value to exit the node down
”yes” (left) branch.
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N=751 African American East Asian European South Asian Precision

African 205 0 0 0 0 100%
American 4 91 0 3 0 93%
East Asian 0 1 146 0 0 99%
European 0 6 0 141 0 96%
South Asian 0 0 0 0 154 100%

Recall 98% 93% 100% 98% 100%

Table 3.5: Confusion matrix of decision tree results on the test
data to predict ancestry. Common VNTR predictions on 2,504 un-
related genomes from NYGC were used to train a model to predict
ancestry. Principle component analysis was performed to reduce di-
mensionality. The first 10 principle components were used to train
70% of the data (train). The model was tested on the remaining test
data (30%). The confusion matrix on the test data is presented here.
The total number of genomes in the test was 751. Columns indicate
the true label, rows the predicted label. The last column shows the pre-
cision, and the last row shows the recall. Populations of African, East
Asian, and South Asian ancestry were the easiest to predict. People
with American ancestry, on the other hand, had more admixed genomes
and fewer samples (as described by the data source) making them more
difficult to predict. Overall accuracy was 98%.

A one-sided Fisher’s Exact Test was applied to determine the population-biased

VNTR alleles that were over-represented in one population versus all the others.

A total of 3,850 VNTR alleles were identified as population-biased in one or more

super-populations, corresponding to 1,096 VNTR loci (Figure 3·17). The population-

biased VNTR loci overlapped with 689 genes and 51 coding exons. Africans had

the highest number of population-biased alleles (266), followed by East Asians (65),

while Americans had the lowest (13), suggesting more mixed ancestry in the American

super-population. We observed 63 loci that had a population-biased allele in each

population (Figure 3·18). Figure 3·19 shows seven of the 1,096 population-biased loci

in a “virtual gel” representation, mimicking the appearance of bands on an Agarose

gel for easier interpretation. The details of these seven population-biased loci are

given in Table 3.6.
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A total of 49 genes that displayed expression differences correlated with VNTR

genotype were also associated with population-biased VNTR loci (Table 3.7), includ-

ing the VNTR 182316137 associated with the gene DPYSL4, discussed in the previous

section, which exhibited seven different alleles, five of which were population-biased.
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Figure 3·17: Volcano plot for alleles at population-specific
VNTR loci. One-way Fisher’s Exact Test was used to find com-
mon VNTR alleles over-represented in each population versus the oth-
ers. Each dot in the volcano plot represents one allele tested for over-
representation in one population (depicted by color). The p-values were
adjusted using FDR. Alleles with FDR<5% (above the horizontal gray
line nearly coinciding with zero) and with odds ratio > 2 (right of the
red line) were selected.
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Figure 3·18: Venn diagram of population-specific VNTR loci.
Africans have the highest number of loci with population-specific alle-
les, followed by East Asians. Americans had the least which could be
because of the lower number of samples (statistical power) and/or more
admixed genomes (Sudmant et al., 2015). Interestingly 63 loci had an
allele that is over-represented in each population.
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Figure 3·19: “Virtual gel” representation of seven population-
specific VNTR alleles. Each dot represents an allele in one sample.
Samples are separated vertically by super-population. Dots are jiggered
in a rectangular area to reduce overlap. Population-specific alleles show
up as bands over-represented in one population. Numbers and labels
at bottom are VNTR locus ids with nearby genes indicated and the
population-specific allele expressed as copy number change (+1, -2,
etc.) from the reference. For example, in the leftmost column, the +1
allele was over-represented in the African population. Note that the
allele bias towards pattern copy loss relative to the reference allele is
apparent and that at one locus (second from left) the reference allele
was the population-specific allele since almost no reference alleles were
observed in the four other populations. The details of these seven loci
are given in Supplementary Table 3.6.
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TRid (Allele) Specific to Odds
Ra-
tio

FDR AFR AMR EAS EUR SAS

(log2) (661) (347) (504) (503) (489)

182229555 (+1) African 6.73 1E-82 148 2 1 1 0
182232436 (0) African 7.03 5E-235 381 15 0 2 1
182247194 (+2) East Asian 7.29 7E-24 0 0 36 0 0
182272465 (−2) African 4.85 4E-34 73 7 0 0 0
182311248 (+1) South Asian 8.76 8E-107 0 0 0 1 147
182423923 (−1) East Asian 6.12 4E-133 4 3 208 5 7
182454990 (+1) South Asian 7.63 1E-28 0 0 0 0 43

Table 3.6: Example of population specific alleles. Seven signifi-
cant alleles were chosen to draw a virtual gel (main text). The details
of the test on those seven VNTR alleles and the raw counts in each
population for the specified allele are given here. N is the total number
of genomes in that population. Allele column indicates copy number
change relative to the reference allele.

Fifty eQTL VNTRs also had population-biased alleles (Table 3.7), including the

VNTR 182316137 associated with the gene DPYSL4, discussed in the previous sec-

tion, which exhibited seven different alleles, five of which were population-biased.

Table 3.7: Intersection of population-specific VNTRs and VN-
TRs with genotypes correlated with gene expression. For a
total of 51 genes, which had expression levels correlated with proximal
VNTR genotype, the VNTRs were also found to be population-specific.

TRid Gene Maximum difference in mean FDR
182187335 AC004865.2 0.64 1E-02
182370381 AC006207.1 0.36 6E-07
182422326 ADGRD1 0.18 1E-02
182168797 AL645608.6 0.09 5E-02
182168889 AL645608.7 0.37 3E-03
182317968 ANO9 0.70 2E-19
182344338 AP003071.5 0.16 4E-02
182318359 AP2A2 0.11 7E-10
182177661 ARHGEF19 0.30 2E-05
182369070 B4GALNT3 1.53 1E-27
182319651 C11orf21 0.96 1E-12
182318295 CD151 1.27 1E-30

Continued on next page
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Table 3.7 – Continued from previous page
TRid Gene Maximum difference in mean FDR
182405813 CFAP54 0.09 4E-02
182417629 CLIP1 0.09 3E-02
182171124 DFFB 0.31 5E-02
182176034 DHRS3 0.23 4E-02
182387680 DIP2B 0.10 4E-02
182303301 DNMBP 0.32 3E-11
182316137 DPYSL4 2.88 3E-47
182268274 ECHDC3 0.67 5E-11
182318207 EPS8L2 0.47 4E-02
182454752 FARP1 1.19 3E-02
182293260 FUT11 0.15 2E-02
182374347 HEBP1 1.25 4E-02
182374347 HTR7P1 0.07 3E-03
182312799 LHPP 0.18 8E-03
182188225 MEAF6 0.13 5E-05
182314781 MGMT 0.19 5E-02
182371420 MRPL51 0.07 3E-03
182272465 NEBL 0.36 7E-03
182172261 NPHP4 0.27 3E-05
182172324 NPHP4 0.34 3E-07
182225943 NTRK1 0.11 3E-02
182251099 NVL 0.17 9E-03
182278429 PARD3 0.49 3E-08
182331520 PDHX 0.16 1E-04
182317816 PGGHG 0.37 2E-09
182318090 PHRF1 0.41 4E-05
182318091 PHRF1 0.07 3E-04
182242989 PTPRVP 0.27 3E-03
182242992 PTPRVP 0.45 4E-02
182281227 RET 0.02 3E-02
182228303 RGS5 0.09 2E-02
182223480 S100A10 0.47 1E-08
182182434 SELENON 0.82 3E-02
182330802 TCP11L1 0.25 5E-14
182169710 TMEM52 0.19 7E-03
182388680 TNS2 0.03 8E-03
182270754 TRDMT1 0.18 6E-10
182462158 UPF3A 0.39 1E-02
182386450 ZNF641 0.18 5E-07
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Next, to identify potential functional roles of the population-biased VNTR loci we

performed Gene Set Enrichment Analysis (GSEA) for the associated genes against

the Broad Institute MSigDB (Liberzon et al., 2011). Genes overlapping with the

population-biased VNTRs were enriched for Endocytosis (hsa04144), Fatty acid metab-

olism (hsa01212), and Arrhythmogenic right ventricular cardiomyopathy (ARVC)

(hsa05412) pathways (Table 3.8). Among the GO biological processes affected by

these genes were neurogenesis (GO:0022008; FDR=3.62e-8), neuron differentiation

(GO:0030182; FDR=2.52e-7), and neuron development (GO:0048666; FDR=4.31e-

7). These processes are potentially related to other findings that have linked VNTRs

to neurodegenerative disorders and cognitive abilities (Marinho et al., 2019; Kat-

sumata et al., 2019; Chang et al., 2019; De Roeck et al., 2018; Scott et al., 1991;

Hoxha et al., 2019; Šerý et al., 2015; Grünblatt et al., 2019; Van Assche et al., 2016)

The GO term Behavior (GO:0007610; FDR=2.22e-4) was also found, which could

be related to the association of VNTR loci with aggressive behavior (Schlüter et al.,

2014; Zammit et al., 2004; Schlüter et al., 2014).

Other notable GO terms that the population-biased VNTRs were enriched in

were regulation of muscle contraction (GO:0006937) and neuromuscular processes

related to balancing (GO:0050885) with FDR <1%. The genes were also highly

enriched in midbrain neurotype cell gene signatures (FDR=5.49e-25), which might

affect movement and emotions (Mill et al., 2002; Diatchenko et al., 2007; Kang et al.,

1999).

3.4 Summary

Our research has classified a large subset of VNTRs (5,676) as common (occurring in

>5% of the population). When considering the largest dataset in our study (2,504
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Gene Set Name KEGG id Gene set
size
(K)

No. of
genes in
overlap

(k)

k/K p-value FDR q-value

Endocytosis hsa04144 181 11 6% 2.51 e-5 4.67 e-3
Fatty acid
metabolism

hsa01212 42 5 12% 1.98 e-4 1.84 e-2

Arrhythmogenic
right ventricular
cardiomyopathy
(ARVC)

hsa05412 74 6 8% 3.87 e-4 2.4 e-2

Calcium signaling
pathway

hsa04020 178 9 5% 5.29 e-4 2.46 e-2

Vascular smooth
muscle contraction

hsa04270 115 7 6% 7.39 e-4 2.75 e-2

Table 3.8: KEGG pathways enriched for population-specific
VNTR genes. GSEA (Subramanian et al., 2005) was used to find
enrichment of the 560 protein coding genes overlapping with 1,096
population-specific VNTR loci.

individuals), on average, each genome was found to be variable at 1,951 VNTR loci

and among those, nearly 1,700 were common VNTRs.

In addition to their widespread occurrence, further evidence of minisatellite VNTR

importance can be seen in the enrichment of these loci in genes and gene regulatory

regions (promoters, transcription factor binding sites, DNAse hypersensitive sites,

and CpG islands). Our entire set of VNTRs overlapped with 7,698 protein coding

genes and 3,512 exons. The common VNTRs occurred within or were proximal to

over 2,173 protein coding genes, including that overlapped with 254 exons. Biological

function enrichment among the genes containing VNTRs includes neuron develop-

ment and differentiation, and behavior. This finding is consistent with the finding

that VNTR expansions in humans compared to primates are associated with gain of

cognitive abilities (Sulovari et al., 2019), and possible involvement of VNTRS with

many neurodegenerative diseases and behavioral disorders.
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The overabundance of VNTR proximity to genes suggests that variability at these

loci affects gene expression and indeed, we observed that the expression levels of

118 genes were significantly correlated with the presence of specific VNTR alleles in

lymphoblastoid cell lines of 445 individuals.

Common VNTRs were used to predict ancestry of the genomes. PCA clustering

separated the genomes by super-population. Using the top 10 PCs, a decision tree

was trained that predicted the ancestry with >98% accuracy. In addition, A total of

4,605 VNTR alleles were found to be over-represented in one population compared

to others. VNTRs with population-biased alleles were enriched in gene sets related

to neuron function and gene signatures of various mid-brain cell types.
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Chapter 4

Validating VNTRseek predictions

4.1 Introduction

In the previous chapters we predicted VNTR loci in 2,800 genomes using VNTRseek.

In this chapter the reliability of our predictions are evaluated. Detecting minisatellites

using short reads has several difficulties. As discussed in Chapter 1, common aligners

such as BWA MEM (Li, 2013) and Bowtie (Langmead and Salzberg, 2012) perform

very well on a whole genome scale, however, they do not perform ideally on repeat-rich

regions. Many reads originating from the TR loci will be mismapped or unmapped.

Second, as mentioned in Chapter 1, minisatellite repeats, unlike microsatellites, may

contain SNPs and indels, making the mappability ratio inconsistent. Local assembly

methods are not applicable to TR loci, because of the low complexity or the repeats.

Finally, since many TRs are GC-rich, the library preparation protocol can affect the

coverage of TR arrays. For example, PCR amplified datasets can lose complete cov-

erage on minisatellites or create slippage. To overcome these difficulties, VNTRseek

uses the basic idea to run TRF on each read and compare the read pattern consensus

to the reference TRs (see Section 1.8.5). Aligning the consensus pattern of read TRs

to the reference TRs, makes the algorithm more robust to SNPs and indels in each

pattern or caused by sequencing errors.

The precision and recall of VNTRseek is assessed on various simulations in Chap-

ter 5. In this chapter, we focus on validating the prediction results from Chapter 2,

and show that the predictions are reliable. Our predictions will be validated in several
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ways, including experimental validation, through confirmation of predicted alleles in

long reads, and by comparisons across related genomes and genomes sequenced with

different Illumina machines. We investigate the type 1 error of VNTRSeek prediction

by providing a discussion on Multis. A Multi is a TR that is genotyped with more

alleles than logically possible (Section 2.2.3).

Section 4.2 discusses the methods used for in vitro and in silico validations and

measuring consistency of the calls. Section 4.3 summarizes the results. The experi-

mental validations are presented in Section 4.3.1 and the validations using long reads

are given in Section 4.3.2. The consistency of VNTRseek prediction by Mendelian

inheritance and by different sequencing platforms is discussed in Section 4.3.3 and

Section 4.3.4, respectively. Section 4.3.5 discusses the type 1 error rate and possible

sources of error. Section 4.3.6 evaluates the trade-off between type 1 error rate and

sensitivity. Finally, Section 4.4 summarizes the results of this chapter.

4.2 Materials and methods

In vitro validation was performed in Fuxman Bass lab by Samantha D. Drinan and

by comparison to validations in the adVNTR paper (Bakhtiari et al., 2018) on the

NA12878 genome. In silico validation was performed using long precise reads. Con-

sistency of VNTR predictions is measured across sequencing platforms and across

related genomes.

4.2.1 In vitro Validation

Accuracy of VNTRseek genotyping was experimentally tested for 13 predicted VNTR

loci in the Ashkenazi Jewish (AJ) trio. The following DNA from B-Lymphocytes were

obtained from the NIGMS Human Genetic Cell Repository at the Coriell Institute

for Medical Research: NA24385, NA24149, and NA24143 (also identified as GIAB

IDs HG002, HG003, and HG004). Selection criteria required that the PCR product
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was not contained in a repeat region, unique primers could be designed, the primer-

defined allele length difference was between 10% and 20% of the longest allele, and

the primer-defined GC content was between 40% and 60%. Given these criteria,

we prioritized VNTRs in genes and regulatory regions which might be of interest to

researchers. List of the selected loci are given in Table 4.1.

Primers were designed with Primer-BLAST (Ye et al., 2012) (Table 4.2). Saman-

tha D. Drinan (Fuxman Bass lab, Boston University) amplified the VNTR loci from

the genomic DNA using the specific primers for each individual using the following

reagents: 0.2 µL 5 U/µL DreamTaq DNA Polymerase (ThermoFisher Scientific), 4.0

µL 10× DreamTaq Buffer (ThermoFisher Scientific), 0.8 µL 10mM dNTP mix (Ther-

moFisher Scientific), 3.2 µL primer mix at a final concentration of 0.5 µM, 1.6 µL

genomic DNA (40 ng), and 30.2 µL nuclease-free water. PCR cycling conditions were

as follows: 30 s at 95◦C, 30 s at 56-60◦C, 20 s at 72◦C, for 30 cycles, with an initial

denaturation of 3 min at 95◦C and a final extension of 7 min at 72◦C. The resulting

amplicons were electrophoresed on a 2% agarose gel at 100 V for 2 h and visualized

with UV light using ethidium bromide.

# TR id Pattern size
(bp)

Ref. copy
no.

Description

1* 182316181 105 3.8 intron 1 of STK32C
2 182316985 27 5.8 regulatory region targeting

LINC01168
3 182453735 30 2.8 intron 1 of DNAJC3
4 182461997 38 7.2 intron 1 of RASA3
5 182493720 70 3.1 intron 1 of BEGAIN
6 182515357 34 8.2 intron 5 of MEGF11
7 182608886 27 6.3 intron 21 of RPTOR
8 182620950 48 3 exon 8 of RNF138
9 182982510 34 4.1 intron 6 of SLC12A7
10# 183046759 38 4.1 intron 3 of ARL10
11† 183081195 15 4.5 exon 2 of TENT5A
12 183117043 17 9.2 regulatory region targeting MRM2,

LFNG
13 183169331 15 4.5 exon 6 of IRF5

Table 4.1: TRs selected for experimental validation.



79

# VNTR ID Forward primer sequence (5’ to 3’) Reverse primer sequence (5’ to 3’)

1 182316181 TACTCCCAATGAGGACAGCAA TTCTCCAGCTCTTGAGACAGC
2 182316985 GTCACCCAAGGTCCTGTAGC CTGGGACCAACAGCCAGTAG
3 182453735 CTAGCAATGGAGCTCAGTCTTC GCAAGGGGTTGTACAATGGAT
4 182461997 GCAGCACAAGAAAAAGAGGCTG CTCTGACCTTCACTGCTGTTCT
5 182493720 GGGTAGCTGCATGGCTGAAA TCCCTGACCATCTCCTCTCTG
6 182515357 GCCTGGACTGTCTCAAAGCC TGCTACGAGGTAGGGATGAGA
7 182608886 GCCGGGAATCTGTTCTCAGT CAACCTAGTGCCTCATGGCT
8 182620950 GACTTTTGACCATAGTGTTTTCCAG TCCATCAAGATGACCTCTACTACA
9 182798584 GACCCTCAAGGAGGAATGAGG GTAAGGAAGTCTGCCTCCCAC
10 183046759 CCAGAGGCTACTTCTGGGAAC GCTGGCAGCATTTCCTAACAC
11 183081195 GCTTTCGCAATAGTCCAAGCAA TCGCCATGTCTGAGGACGAG
12 183117043 ACCTGCTTCCCTCATCTACCC CTAACCTGAGTGCCTTCTGC
13 183169331 TCCACACGCACTCTCTGTAGAT GGACCTCAGAGAGAAGCTCCC

Table 4.2: Primers designed for the experimental validations.
Total 13 VNTRs were chosen where the change was 10–20% of the
VNTR array, unique primers could be designed and CG content was
about 40–60%. The primers were designed using the primer-BLAST
tool (Ye et al., 2012).

As a second validation, VNTRseek predictions in the NA12878 genome were

compared to experimental validations in a paper describing the adVNTR software

(Bakhtiari et al., 2018). We had three datasets for NA12878; HG001 (148 bp) from

GIAB, NA12878 (150 bp) from NYGC, and NA12878 (250 bp) from 1000 Genomes.

The adVNTR predictions used GRCh37 coordinates that were converted using the

UCSC liftover tool (Kent, 2002) to coordinates to GRCh38.

4.2.2 In silico validation using long reads

Aligned PacBio reads for the AJ child (GIAB ID HG002) were processed to validate

VNTRseek predictions (Section 2.2.1). The read sequences were extracted from the

BAM file using picard tools (2019) and mapped back to the GRCh38 genome using

BWA MEM default settings (Li, 2013). Using bedtools (Quinlan and Hall, 2010),

the reads aligning to each TR reference locus were extracted. For each read, a local

wraparound dynamic programming alignment (Appendix xxx) was performed using

the reference pattern and the same scoring parameters used to generate the reference

set (match=+2, mismatch=-5, and gap=-7). The number of copies of the pattern
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in the resulting alignment was then determined and compared with the VNTRseek

predictions. If the difference between a PacBio copy number in at least one read and

the VNTRseek copy number was within ±0.25 of a copy, we considered the VNTRseek

allele to be validated.

4.2.3 Measuring consistency of Mendelian inheritance

A locus on an autosomal chromosome is consistent with Mendelian inheritance if the

genotype of a child can be explained as one allele from the mother and one from the

father. Genotype consistency was evaluated for all mother-father-child trios, i.e., the

AJ, CEU, HAN, and YRI trios.

We evaluated loci defined by several increasingly stringent criteria:

- both parents heterozygous,

- all members of the trio heterozygous,

- all members of the trio heterozygous and with different genotypes

These criteria were selected to avoid false interpretations of consistency.

TR loci on the X and Y chromosome of male children were also selected for

evaluation when both the son and the appropriate parent had a predicted genotype.

In these cases, inheritance consistency means a son’s X chromosome allele is observed

on one of the mother’s X chromosomes, and a son’s Y chromosome allele is observed

on the father’s Y chromosome.

4.2.4 Measuring allele consistency across platforms

VNTR calls were compared for each of 27 genomes that were represented twice, once

in the 1000 Genomes dataset, sequenced in 2015 on an Illumina HiSeq2500 with

250 bp read length and once in the NYGC dataset, sequenced in 2019 on an Illumina

NovaSeq 6000 with 150 bp read length. The two platforms have different error profiles.
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Because read length and coverage differed among datasets, for each pairwise com-

parison, we only considered VNTR loci that were genotyped in both samples. We

extracted the non-reference VNTR alleles (detected in at least one sample) and com-

puted consistency as the ratio of those alleles detected by both platforms over the

total alleles found by both. For alleles detected in 250 bp reads, we only counted

those that could have been detected in the shorter 150 bp reads. Reference alleles

were excluded to avoid inflating the ratio.

4.3 Results

To show the reliability of our results, we experimentally validated VNTR predictions

at 13 loci in the three related AJ genomes, and also compared VNTRseek predictions

to alleles experimentally validated in the literature. We additionally used accurate

long reads on one genome (HG002) to find evidence of the predicted alleles.

Separately, we determine the consistency of our predictions in two ways: first,

we looked at inheritance consistency among four trios (mother, father, child), and

second, we compared the results for genomes sequenced on two different platforms.

4.3.1 In vitro validation

All but one of the 66 predicted VNTR alleles were confirmed at 13 loci in the three

related AJ genomes (child HG002, father HG003, and mother HG004). In the re-

maining case, two predicted alleles were separated by only 15 nucleotides and could

not be distinguished. At two loci, other bands were also observed. In one, all three

family members contained an allele outside the detectable range of VNTRseek (longer

than the reads). In the other, one allele that was detectable was missed in two family

members. See Table 4.3 for a complete list of experiment results and Figure 4·1,

Figure 4·2, Figure 4·3, Figure 4·4, and Figure 4·5 for the gel images and more details.



82

#
T

R
id

V
N

T
R

se
e
k

E
x
p

e
ct

e
d

b
a
n
d
s

V
a
li

d
a
ti

o
n

C
h

il
d

F
a
th

e
r

M
o
th

e
r

C
h
il

d
F
a
th

e
r

M
o
th

e
r

C
h

il
d

F
a
th

e
r

M
o
th

e
r

1∗
18

23
16

18
1

-2
-2

-2
23

7/
34

2
23

7
23

7
-2

/-
1

-2
/-

1
-2

/
+

1
2

18
23

16
98

5
-3

/
0

-1
/0

-3
/-

2
11

8/
/1

99
17

2/
19

9
11

8/
14

5
ye

s
ye

s
ye

s
3

18
24

53
73

5
0/

+
1

0/
+

1
0/

+
1

18
0/

21
0

18
0/

21
0

18
0/

21
0

ye
s

ye
s

ye
s

4
18

24
61

99
7

-5
/

-4
-5

/-
4

-5
/-

2
19

3/
23

1
19

3/
23

1
19

3/
30

7
ye

s
ye

s
ye

s
5

18
24

93
72

0
0

0
0/

-1
26

6
26

6
26

6/
19

6
ye

s
ye

s
ye

s
6

18
25

15
35

7
-5

/-
5

-5
/-

6
-5

19
5

19
5/

16
1

19
5

ye
s

ye
s

ye
s

7
18

26
08

88
6

0/
-2

0/
-3

-2
20

8/
18

1
20

8/
15

4
23

5/
18

1
ye

s
ye

s
ye

s
8

18
26

20
95

0
0/

-1
0/

-1
0/

-1
24

3/
19

5
24

3/
19

5
24

3/
19

5
ye

s
ye

s
ye

s
9

18
29

82
51

0
0/

-1
0

0/
-1

30
1/

26
7

30
1

30
1/

26
7

ye
s

ye
s

ye
s

10
#

18
30

46
75

9
0

0/
-1

-1
22

2/
26

0
22

2/
18

4
18

4
0/

+
1

ye
s

-1
/

+
1

11
†

18
30

81
19

5
+

2/
-1

2/
1

-2
18

2/
12

2
18

2/
16

7
18

2/
12

2
ye

s
2

ye
s

12
18

31
17

04
3

-5
/

-3
-5

/-
3

0/
-3

18
0/

21
4

18
0/

21
4

26
5/

21
4

ye
s

ye
s

ye
s

13
18

31
69

33
1

-2
-2

/0
-2

20
9

20
9/

23
9

20
9

ye
s

ye
s

ye
s

T
a
b

le
4
.3

:
E

x
p

e
ri

m
e
n
ta

l
v
a
li

d
a
ti

o
n

o
f

1
3

lo
ci

o
n

th
e

A
J

tr
io

.T
h
ir

te
en

V
N

T
R

lo
ci

w
er

e
se

le
ct

ed
fo

r
ex

p
er

im
en

ta
l

va
li
d
at

io
n

in
th

e
A

J
tr

io
.

T
h
e

ex
p

er
im

en
t

w
as

p
er

fo
rm

ed
b
y

S
am

an
th

a
D

.
D

ri
n
an

(F
u
x
m

an
B

as
s

la
b
,
B

os
to

n
U

n
iv

er
si

ty
).

A
ll

b
u
t

on
e

of
th

e
66

b
an

d
s

p
re

d
ic

te
d

b
y

V
N

T
R

se
ek

w
er

e
va

li
d
at

ed
.
†

F
or

th
e

re
m

ai
n
in

g
b
an

d
,

th
e

re
su

lt
s

w
er

e
q
u
es

ti
on

ab
le

b
ec

au
se

th
e

tw
o

p
re

d
ic

te
d

al
le

le
s

fo
r

th
e

fa
th

er
w

er
e

on
ly

15
n
u
cl

eo
ti

d
es

d
iff

er
en

t
in

le
n
gt

h
,

w
h
ic

h
w

as
to

o
cl

os
e

to
d
is

ti
n
gu

is
h

in
th

e
im

ag
e.
∗

F
or

al
l

th
re

e
in

d
iv

id
u
al

s,
th

e
ge

l
co

n
ta

in
ed

b
an

d
s

(b
ol

d
fo

n
t)

n
ot

p
re

d
ic

te
d

(o
r

d
et

ec
ta

b
le

)
b
y

V
N

T
R

se
ek

.
T

h
e

ex
tr

a
b
an

d
fo

r
th

e
so

n
co

rr
es

p
on

d
ed

to
th

e
-1

al
le

le
as

fo
u
n
d

in
th

e
P

ac
B

io
re

ad
s.

T
h
e

fa
th

er
’s

ex
tr

a
b
an

d
ap

p
ea

re
d

to
m

at
ch

w
it

h
th

e
-1

al
le

le
.

T
h
e

m
ot

h
er

’s
ex

tr
a

b
an

d
ap

p
ea

re
d

to
b

e
a

+
1

al
le

le
(5

52
n
u
cl

eo
ti

d
es

).
#

A
n

ex
tr

a
b
an

d
fo

r
th

e
m

ot
h
er

an
d

so
n

(b
ol

d
fo

n
t)

w
as

n
ot

p
re

d
ic

te
d

b
y

V
N

T
R

se
ek

,
al

th
ou

gh
it

se
em

ed
to

m
at

ch
th

e
+

1
al

le
le

th
at

w
as

d
et

ec
ta

b
le

.



83

# TR
VNTRseek Expected bands Validated

son father mother son father mother son father mother

1 182316181 -2 -2 -2 237 237 237 -2, -1 -2, -1 -2, +1

2 182316985 -3, 0 -1, 0 -3, -2 118, 199 172, 199 118, 145 yes yes yes

3 182453735 0, +1 0, +1 0, +1 180, 210 180, 210 180, 210 yes yes yes

Figure 4·1: Experimental validation of loci 1, 2, and 3.In locus
1, all three individuals share a band at 237bp. The father and son share
a band at approximately 342bp and the mother has an additional band
above 450bp. The bands at and above 342bp correspond to alleles that
are not detectable by VNTRseek and were not predicted. The 342 bp
band corresponds to a -1 allele found in the PacBio reads for the son.
The mother’s extra band appears to be a +1 allele (552 bp). In locus 2,
the son and father share a band at 199 bp and the son and mother share
a band at 118 bp. The father has an additional band at 172 bp and the
mother at 145 bp. In locus 3, all individuals (son, father, mother) share
the same bands, 180 and 210 bp). All three loci confirm the VNTRseek
predictions.
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# TR
VNTRseek Expected bands Validated

son father mother son father mother son father mother

4 182461997 -5,-4 -5,-4 -5,-2 193, 231 193, 231 193, 307 yes yes yes

5 182493720 0 0 0, -1 266 266 266, 196 yes yes yes

6 182515357 -5 -5, -6 -5 195 195, 161 195 yes yes yes

Figure 4·2: Experimental validation of loci 4, 5, and 6. In locus
4, the son shares a larger band with the father (231bp) and a smaller
band with both the mother and the father (193bp). The mother seems
has a larger band at 307bp. In locus 5, all three individuals share a band
at 266bp. The mother has an extra band which is smaller at 196bp. In
locus 6, all individuals share a band at 195bp. The father has a smaller
band at 161. All three loci confirm the VNTRSeek predictions.
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# TR
VNTRseek Expected bands Validated

son father mother son father mother son father mother

7 182608886 0, -2 0, -3 -2, +1 208, 181 208, 154 235, 181 yes yes yes

8 182620950 0, -1 0, -1 0, -1 243, 195 243, 195 243, 195 yes yes yes

9 182982510 0, -1 0 0, -1 301, 267 301 301, 267 yes yes yes

Figure 4·3: Experimental validation of loci 7, 8, and 9. In
locus 7, the son and father share a band at 208 bp and the son and
mother share a band at 181 bp. The father has another smaller band
at 154bp and the mother has a band slightly higher at 235 bp. In
locus 8, all individuals share two bands at 195 bp and 243 bp. In locus
9 all individuals share a band at 301 bp. The son and mother share
another smaller band at 267 bp. All three loci confirm the VNTRSeek
predictions.
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# TR
VNTRseek Expected bands Validated

son father mother son father mother son father mother

10* 183046759 0 0, -1 -1 222 222, 184 184 0, +1 0, -1 -1, +1

11 183081195 +2, -1 +2, +1 +2, -1 182, 122 182, 167 182, 122 yes yes* yes

Figure 4·4: In locus 10 the son and father share a band at 222 bp.
The father and mother share a band at 184 bp. The son and mother
share a larger band which appears to be the +1 allele (260 bp), which
was detectable, but not predicted in either sample by VNTRseek. The
alleles predicted by VNTRSeek were validated and an extra band that
could have been predicted was missed in two samples. In locus 11, all
individuals share the larger band at 182bp. The son and mother have
a smaller band at 122bp. If the father has two alleles as predicted by
VNTRseek, then they are very close together (15 nucleotides different
in length). There is a suggestion in the gel that there are two close
bands. In any event, all but one of the alleles was validated.
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# TR
VNTRseek Expected bands Validated

son father mother son father mother son father mother

12 183117043 -5, -3 -5, -3 0, -3 180, 214 180, 214 265, 214 yes yes yes

13 183169331 -2 -2, 0 -2 209 209, 239 209 yes yes yes

Figure 4·5: Experiment Validation of loci 12 and 13. In locus
12, all individuals share a band at 214 bp. The son and father share a
smaller band at 180bp. The mother has a larger band at 265 bp. In
locus 13, all individuals share a band at 209 bp. The father has a larger
band at 239bp. Both loci confirm the VNTRSeek predictions.

Among the experimentally verified loci, three were located within coding exons

(genes IRF5, TENT5A, and RNF138) and might be expected to affect protein func-

tion. We therefore examined predicted allele occurrence at these loci within the 150 bp

NYGC dataset. In the case of IRF5, 675 individuals were genotyped as reference, 609

had genotype –2/–2 and 1,209 individuals had both 0 and –2 alleles. For TENT5A,

only 127 individuals had the reference genotype; the more common genotypes were

+1/+1 (854 individuals), -1/-1 (693 individuals), 0/+1 (462 individuals), and 0/-1

(178 individuals). In the case of RNF138, the reference genotype could not be ob-

served because it was 144 bp (¿130 bp), but in 2,158 individuals we observed a loss of

one copy. In all three VNTR loci, the repeat pattern length was a multiple of three
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(15 bp in IRF5 and TENT5A and 48 bp in RNF138). This suggests that exon trans-

lation would not be interrupted, potentially resulting in proteins of different lengths

in different individuals.

We also compared VNTRseek predictions in three datasets from the NA12878

genome with VNTRs validated in the adVNTR paper (Bakhtiari et al., 2018). Out

of the original 17 VNTR loci experimentally validated in the adVNTR paper, four

were not included in our reference set and for one, the matching TR could not be

determined.

Overall, 11 of 16 detectable alleles were correctly predicted, four were not found

in the NA12878 sample with sufficient read size (250 bp), and one was incorrectly

predicted in the HG001 sample and was not found in the other two (Table 4.4).

4.3.2 Validation of predicted VNTRs using long reads

PacBio Circular Consensus Sequencing reads from the HG002 genome (Wenger et al.,

2019), with an average length of 13.5 Kbp and an estimated 99.8% sequence accuracy,

were computationally tested to determine if they confirmed VNTRseek predicted

alleles for the GIAB Illumina reads from the same genome. Overall, more than 97%

of predicted alleles were confirmed, and at the predicted VNTR loci, more than 87%

of alleles were confirmed (Table 4.5).
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4.3.3 VNTR predictions are consistent with Mendelian inheritance.

We compared the predicted alleles in four trios (CEU and YRI trios from 1000

Genomes; Chinese HAN and AJ from GIAB), testing loci on autosomes and X and Y

chromosomes (see Section 4.2.3). We considered loci defined by several increasingly

stringent criteria: both parents heterozygous, all members of the trio heterozygous,

all members of the trio heterozygous and with different genotypes. Additionally, loci

in the X and Y chromosomes of male children were chosen to test for consistency with

direct inheritance from the mother or father, respectively. In all cases, only 15 of loci

were inconsistent (Table 4.6).

Trio: AJ HAN CEPH YRI

Heterozygous in both parents 358 224 302 469
Inconsistent 2 2 2 7
Heterozygous in all three 262 178 215 349
Inconsistent 0 2 1 3
Heterozygous in all three and different 59 32 53 105
Inconsistent 0 2 1 3
All on chrY of son 911 884 - -
Inconsistent 0 0 - -
All on chrX of son 6,701 6,493 - -
Inconsistent 2 0 - -

Table 4.6: Consistency with Mendelian inheritance of VNTR
genotypes in trios from GIAB and the 1000 Genomes Phase 3
HC datasets. Only loci detected in all members of a trio were consid-
ered, but with increasingly stringent criteria. Loci were overwhelmingly
consistent.

4.3.4 VNTR predictions are consistent across platforms

In 2015, the 1000 Genomes Phase 3 sequenced 30 genomes using Illumina HiSeq2500

at read length 250bp. In 2020, 27 of those 30 genomes were resequenced by NYGC

using Illumina Novaseq 6000 at read length 150 bp. Comparing VNTR loci genotyped

in both platforms and non-reference alleles detectable at both read lengths, agreement

ranged from 76%–91% (Figure 4·6). Note, however, that read coverage was not the
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same for both datasets, causing variation in statistical power.

Figure 4·6: Comparison of VNTRseek allele prediction across
platforms. Comparison was done on the 27 genomes in common in the
1000 Genomes Phase 3 HC and NYGC datasets. Only non-reference
alleles detected in both genomes were included. Agreement of allele
calls in both platforms ranged from 76% to 91%. Each bar represents
one genome. Colored bar heights indicate percentage of agreement
between predicted alleles (blue) or alleles found in one sample only
(read and yellow). Lines indicate the read coverage in the two platforms
in each sample. Generally, as the read coverage of the 150 bp sample
increased above that of the 250 bp sample, more alleles were found in
the former that were not detected in the latter, which was expected due
to higher statistical power. Conversely, when the coverage was higher
in the 250 bp sample, that platform found more alleles not detected in
the 150 bp sample.

4.3.5 Controlling for type 1 errors

“Multis” are TR loci genotyped with more alleles than logically possible (Section 2.2.3).

These alleles contribute false positive calls or type 1 errors. A total of 98,150 Multis

were detected across all genomes corresponding to 3,808 loci. Figure 4.7 shows the
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histogram of how many times a TR is genotyped as a Multi across all genomes. It

can be observed that most Multi loci occur in only a few genomes: A total of 1,384

(36%) of the Multi loci occurred in only one genome. Another 525 (14%) occurred in

exactly two genomes. Only 115 (3%) occurred in more than 5% (140) of the genomes.

Figure 4·7: Frequency of recurrent Multis. The number of sam-
ples calling the same loci as Multi is presented as a histogram. Loci
that occurred in more than 100 individuals are not shown, because all
occurred in <4 individuals. The blue vertical line shows the 0.5% cut-
off (14 samples) and red line shows the 1% (28 samples). Most Multis
reoccur in few individuals (<1%), suggesting that the Multis are not
related to the sequence or characteristics of the TR, such as the CG
content, pattern size, copy number, etc.

We next investigated two sources for type 1 error. First, in case of recurrent Mul-

tis, we investigated whether similarity in sequence is causing mapping errors. Using a

sliding window approach (Section 2.2.3) the reference TRs that cause ambiguous map-

ping due to similarity in sequence are labelled as Indistinguishable. Another source

of repeats, which might not be captured by the sliding window, is Segmental Dupli-

cations. Segmental Duplications are duplications of 1 Kbp or longer with over 90%
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similarity across the human genome (Vallente and Eichler, 2005). Segmental duplica-

tions are known to reduce mappability and cause false positive CNV and structural

variation calls (Bailey et al., 2001; Alkan et al., 2011). Figure 4·8 summarizes the

percentage of recurrent Multi loci (in more than 1% of the genomes) that were In-

distinguishable or overlapped with Segmental Duplications. Figure 4·8 shows that

about half of the recurrent Multis could be explained by these two criteria. About

36% of the recurrent Multi loci were correctly marked as Indistinguishables and an-

other 5–10% were located inside Segmental Duplications. Interestingly, overlapping

with Segmental Duplications increased the chances of recurrent Multis. VNTRseek

indistinguishable filtering is doing well to identify Multis. Using a linear regression

model:

N ∼ Indistinguishable+ Segmental Duplication (4.1)

the effect size of being indistinguishable was 39% (p-value=1.61e-13) and overlapping

Segmental Duplications had effect size 48 (7.89e-4).

Second, in the case of random Multi loci (occurring in <1% of genomes), we

propose that the sequencing errors are causing false calls. In this case, we would see

a correlation between the read coverage and number of singleton Multis per genome.

Indeed, the number of Multis increased as the read coverage increased (Figure 4·9).

To reduce the effect of sequencing errors, we would need to increase the minimum

read support for an allele. The default minimum read support setting for VNTRseek

is two reads, meaning that a TR allele will require two reads supporting the same

copy number to be reported. In the next section the effect of the minimum read

support parameter on Multi calls is investigated.
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Figure 4·8: Number of Multis explained by Segmental Dupli-
cations and Indistinguishable TRs. For each Multi loci detected in
at least 1% of the genomes (28 genomes), we measured the percentage
that were Indistinguishable and the percentage that overlapped Seg-
mental Duplications (SD). Approximately 30–35% of the Multis were
caught by the indistinguishable filter. Another 5–10% could be ex-
plained by occurrence inside large Segmental Duplications. Interest-
ingly, overlap with Segmental Duplications increases the change of a
Multi TR call.

4.3.6 Type one error reduced by increasing minimum read support cutoff

CHM1 and CHM13 are haploid genomes, meaning we expect all the genotyped TRs

to have only one allele. Under such assumption, every genotyped TR with two alleles

(mimicking heterozygous VNTR), would be marked as Multi. We used such Multi

loci on these haploid genomes to investigate the effect of minimum read support cutoff

on Multi errors. We separated the Multi loci with two alleles on CHM1 and CHM13

by read support, the alleles with the less read support were labeled as “Lower” and

the other one, “Higher”. Figure 4·10 shows the distribution of the two classes. By
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Figure 4·9: Number of Multis per read coverage. Only datasets
coverage below 100X are shown to avoid outliers. There is a clear trend
between read coverage and number of Multis. As the read coverage in-
creases, sequencing errors accumulate, resulting in higher type 1 errors.

increasing the minimum read support, the erroneous allele would have been filtered

and the loci would not have been a Multi.

The percentage of loci categorized as Multi in CHM1 and CHM13 was 0.1% and

0.3% of all TR loci and 18% and 25% of VNTR loci, respectively, at the default

requirement for a minimum of two reads supporting an allele call. Increasing the

requirement to three reads reduced the percentages to 8% and 15%, respectively

(Figure 4·11 and Figure 4·12). This shows the necessity of using more stringent

calling criteria in the case of higher coverage, as for CHM13 with a coverage of

137×. However, increasing the minimum required read support could result in lost

sensitivity, because longer arrays are expected statistically to have fewer spanning

reads. We are currently developing more sophisticated methods to determine the

minimum required cutoff dependent on read coverage and array length. Because the

expected read support depends on array length, we do not recommend such a coarse-

grained correction. We are currently working on a more refined approach based on

array length.
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Figure 4·10: The Multi calls on haploid genome by read sup-
port. Haploid genomes CHM1 and CHM13, theoretically, should not
have any heterozygous calls. Such calls are marked as Multis. We di-
vided two alleles of such Multi calls on these two genomes into two
groups: the allele with less read support (Lower), and the allele with
more read support (Higher). For each group we plotted the distribu-
tion of read support. Most of these Multis had one allele with very few
reads (<4). These false positive calls could be resolved by increasing
the minimum read support parameter in VNTRseek. The default value
for minimum read support is two.
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Figure 4·11: False positive VNTR alleles on the haploid
genome CHM1. CHM1 is a haploid genome without Y chromosomes
and theoretically carries no heterozygous VNTRs. We measure false
positive calls by VNTRseek by counting loci with Multi alleles. Here
we compared the number of Multi calls (heterozygous calls or any al-
lele call on chromosome Y) as a function of the minimum required read
support for an allele. We observed that as the minimum required sup-
port increased, the number of false positive calls fell (bottom figures).
However if the support was increased too much, the sensitivity suf-
fered. The minimum read support in VNTRseek is, by default, set to
two. At this setting for CHM1 (40× coverage), 13% of the VNTR loci
were Multis, i.e, had at least one excess allele (lower right graph in the
first quartet of figures). Raising the minimum support to three reads,
decreased this to 7%.
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Figure 4·12: False positive VNTR alleles on the haploid
genome CHM13. CHM13 is a haploid genome without Y chromo-
somes and theoretically carries no heterozygous VNTRs. We measure
false positive calls by VNTRseek by counting loci with Multi alleles.
Here we compared the number of Multi calls (heterozygous calls or any
allele call on chromosome Y) as a function of the minimum required
read support for an allele. We observed that as the minimum required
support increased, the number of false positive calls fell (bottom fig-
ures). However if the support was increased too much, the sensitivity
suffered. The minimum read support in VNTRseek is, by default, set
to two. At this setting for CHM13 (128× coverage), at the default
setting, 24% of the loci were Multis, and the support threshold had to
be raised to five to decrease this to 8% (lower right graph).
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4.4 Summary

In this chapter, the robustness of our VNTR predictions are confirmed in several

ways, including the following:

1. successful experimental validation of 66 alleles at 13 VNTR loci in the AJ family

trio,

2. comparison of allele genotyping prediction results from Illumina reads to allele

occurrence in PacBio reads from the AJ child showing 97% agreement of all

alleles and 87% agreement at VNTR loci,

3. comparison of our predictions in the NA12878 genome with experimentally val-

idated results from the adVNTR prediction tool (Bakhtiari et al., 2018) con-

firming 11 correct VNTR allele predictions and one incorrect prediction, and

4. comparison of results from two Illumina sequencing platforms on 27 genomes

that shows 76–91% consistency of the VNTR allele calls.

In this chapter, we also investigated type 1 errors, marked as Multis. These

loci are genotyped with more alleles than logically possible on the genome (more

than two alleles on a diploid chromosome, or more than one allele on a haploid

chromosome such as sex chromosomes in male individuals). We investigated two

sources of error: sequence similarity of the TRs and DNA sequencing errors. Sequence

similarity would cause ambiguous mapping of reads and should increase the likelihood

of a loci becoming a recurrent Multi. We see that Indistinguishable TRs are the source

of the Multi about 30% of the time. Segmental Duplication increased the likelihood

of recurrent Multi loci.

Another source of Multis is DNA sequencing error. As the read coverage increases,

the effect of sequencing errors rises. Genomes with higher read coverage had higher
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counts of Multi calls. On CHM1 and CHM13 we show that most Multi calls have

one allele with an abnormal read count. We show that increasing the minimum read

support cutoff would reduce these erroneous alleles. However, longer arrays would

suffer due to this filtering. In Chapter 5, a computational method is proposed to

dynamically set the cutoff for each array length and detect such errors.
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Chapter 5

Inferring heterozygous VNTRs using read

support

5.1 Introduction

As discussed in Chapter 1, genomic variant detection tools report the “read support”

as an indicator of confidence. The idea is that when a large number of reads support

the same variant, that variant is less likely to have been called by mistake, i.e. less

likely to be a false positive. Similarly, VNTRseek reports the read support for each

detected allele. By default VNTRseek requires two reads to support any allele in

order for it to be reported.

As we saw in Chapter 4, VNTRseek’s allele-finding capability is limited in two

ways: 1) the allele array length must fit in the read, and 2) the allele must have at

least two copies in order to be detected by TRF.

For example, consider genotyping a reference TR with the following attributes:

pattern length 40 bp and copy number 3, in an individual with read length of 150 bp

and coverage 100X. The following three error scenarios could occur:

Scenario 1) The individual has genotype 0/-2. Let n(0) and n(-2) be the number

of reads spanning the 0 and -2 allele, respectively. VNTRseek will run TRF on the

n(0) reads and detect the reference allele each time. However, TRF will not detect

the -2 allele in the remaining n(-2) reads because the copy number is below two. As

a result VNTRseek will output this genotype as 0/0 with read support n(0).
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Scenario 2) The individual has genotype 0/+2. Let n(0) and n(+2) be the number

of reads spanning the 0 and +2 allele, respectively. Similar to scenario 1, n(0) reads

will be reported with allele 0. However, in the case of the allele +2, the array size has

become reference array length + (2 pattern size), which is equal to 200 bp. A reads

of 150 bp cannot span an array of 200 bp, thus, the +2 allele will not be detected.

VNTRseek will report 0/0 with read support n(0).

Scenario 3) The individual has genotype 0/0. Let n(0) be the number of reads

spanning the loci from both chromosomes. In two reads, the right flank has sequencing

errors such that the flank becomes similar to the repeat unit. Then, TRF could

possibly align the flank as another repeat unit and report a read TR with four copies.

Under these circumstances VNTRseek would incorrectly report 0/+1.

The first two scenarios illustrate the detectable range of VNTRseek. The third

scenario shows how “Multis” occur (see Section 4.3.5). This chapter presents a com-

putation tool named mlZ (machine learning on Z-scores) to statistically infer missing

alleles (scenario 1 and 2) and “Multi” errors (scenario 3). mlZ uses the read support

to predict whether VNTRSeek allele calls are truly heterozygous or homozygous.

The first two scenarios illustrate the detectable range of VNTRseek. The third

scenario shows how “Multis” occur (see Section 4.3.5). This chapter presents a com-

putation tool named mlZ (machine learning on Z-scores) to statistically infer missing

alleles (scenario 1 and 2) and “Multi” errors (scenario 3). mlZ uses the read support

to predict whether VNTRSeek allele calls are truly heterozygous or homozygous.

5.2 Materials and methods

Section 5.2.1 describes the simulated datasets that were used to test VNTRseek and

mlZ. The real data used to illustrate mlZ’s application is presented in Section 5.2.2.

Then, Section 5.2.3 lists the abbreviations used in the rest of the chapter. Section 5.2.4
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summarizes the mlZ algorithm and Section 5.2.5 describes how the Decision Tree

model was trained.

5.2.1 Simulated datasets

To evaluate the mlZ algorithm, three diploid genomes with random SNPs and indels

were simulated using varsim (Mu et al., 2015) with default parameters on the GRCh38

reference genome. Out of the total reference set, a VCF file with random VNTRs

was designed. The reference TR set was randomly stratified into six subsets of equal

size. The first, second, third, and fourth subset were designed to have the following

genotypes: heterozygous gain (0/+1), homozygous gain (+1/+1), heterozygous loss

(0/-1), and homozygous loss (-1/-1), respectively. The remaining two-sixth were left

with the reference genotype (0/0). In all cases, the loss and gain of one copy number

were implanted.

varsim does not allow overlapping variants, e.g. an SNP inside a VNTR array.

To ensure that the designed VNTRs were implanted, all SNPs and indels overlap-

ping the VNTRs from the VCF file were removed. Then, Illumina reads at different

read lengths and fragment distributions were simulated using ART read simulator

(Huang et al., 2012) to create three testing datasets comparable to real datasets. Ta-

ble 5.1 summarized the characteristics of the simulated datasets. The three simulated

datasets are referred to as Sim1, Sim2, and Sim3 with respective read lengths 250 bp,

148 bp, and 101 bp, and physical coverage 100×.

5.2.2 Real datasets

High coverage PCR-free WGS datasets of seven individuals from the Personal Genome

Project (Church, 2005) sequenced by the Genome In A Bottle (GIAB) consortium

(Zook et al., 2016) were downloaded. The seven genomes are labelled HG001 to

HG007:
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ID: Sim3 Sim2 Sim1

Fragment mean 350 550 550
Fragment standard
deviation

100 150 150

Read length 101bp 148bp 250bp
Error profile (ART)∗ HS10 - HiSeq

1000
HSXn - HiSeqX PCR

free
MSv3 - MiSeq

v3
Physical (fragment)
coverage∗∗

100X 100X 100X

Number of reads
simulated

2,818,459,600 1,923,354,266 2,277,177,120

Read coverage ∼95X ∼95X ∼190X

Table 5.1: The simulated datasets. ∗ The error profile is provided
by ART (Huang et al., 2012) based on real runs. ∗∗ Three datasets
were simulated for testing purposes. The characteristics of simulations
were designed to represent the real data. Read coverage is calculated
as the product of the read length and number of reads over the total
size of the genome.

- HG001 is the pilot NA12878 genome from the CEPH/UTAH family (mother)

which is commonly used in variation studies,

- HG002, HG003, and HG003 are the Ashkenazi Jew (AJ) trio,

- and HG005, HG006, HG007 are the Chinese trio.

The HG001 and Chinese parents were sequenced at read length 148 bp (using

the reference set of 150 bp), and the Chinese son and AJ trio have 250 bp reads.

The Chinese son and HG001 were sequenced at 300X coverage and the others were

sequenced at 100X. The high coverage and read length allows for more VNTRs to be

detected by VNTRseek, thus, more input data for mlZ.

A dataset on the NA12878 genome from the 1000 Genomes Project Phase 3 was

compared to the HG001 results, in order to measure the consistency of mlZ across

sequencing platforms. The NA12878 dataset was sequenced with read length 250 bp.

In addition, long precise CCS PacBio reads were obtained on the HG002 genome

(Wenger et al., 2019) with read length ∼13,500 bp. This data set was to evaluate
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the mlZ predictions on that genome. These datasets are described in Chapter 2

(Section 2.2.1).

5.2.3 Definitions

- VRS: read support for each allele reported by VNTRSeek

- ERS: expected read support for a given array length

- SRS: simulated read support on bins of size 10, gives medians and standard

deviations based on real data characteristics i.e, the read coverage, fragment

mean and standard deviation, and read length

- ORS: the mean and standard deviation of fitted bimodal normal distribution

on the binned VRS

- lmRS: the smoothed ORS with a simple linear regression to filter out variation

due to noise

- normal-VRS: for each allele, VRS is divided by (ERS+1); 1 is added to the

ERS to avoid division by zero

5.2.4 The mlZ algorithm

The mlZ algorithm compares the read support of each allele detected by VNTRseek

to the expected read support distributions for that allele. The steps of this algorithm

are depicted in Figure 5·1.
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Figure 5·1: Flowchart of the mlZ algorithm. mlZ extracts VRS
for each VNTR and compares the VRS to SRS to find the most likely
distribution: heterozygous or homozygous.
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Figure 5·2: Relation between expected read support and array
length. The X-axis is the array length. The Y-axis is the read support,
i.e. the number of reads spanning the array with given flank length.
R and C are the read length and coverage extracted from the real
data. F is the minimum flank required by VNTRseek. The expected
read support (ERS) is linearly proportional to the array size. At array
length X = 1, C reads span a loci (array length X = 1). No read could
possibly span an array with length R− 2F .

Assuming read coverage follows a Poisson distribution, expected read support in-

creases linearly with read length and decreases linearly with allele length (Figure 5·2).

Assume VNTRseek detected an allele A with observed read support V RS. The dis-

tribution of expected read support can be estimated computationally. Random reads

are simulated with the same characteristics of the real data, and the number of times

they span a given array size of A is counted. This is repeated many times via boot-

strapping, resulting in the expected read support distribution, SRS. Since A can be

homozygous or heterozygous, this simulation is done twice: first assuming A is ho-

mozygous, SRS(hom), and again assuming A is heterozygous, SRS(het). Respectively,

two Z-scores are calculated for V RS. The first calculation is done using the ERS(hom)

distribution, hereon referred to as Zscore(V RS,ERS(hom)). The second calculation
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uses the ERS(het) distribution, referred to as Zscore(V RS,ERS(het)). The allele is

given a label according to the distribution it was more likely to come from, i.e the

distribution that resulted in the Z-score with the smallest absolute value. This is

described below:

1. if Zscore(V RS,ERS(het)) < −3 or Zscore(V RS,ERS(hom)) > +3, the allele A

is marked as ERROR;

2. if the |Zscore(V RS,ERS(het))| ≤ |Zscore(V RS,ERS(hom))|, allele A is labelled

heterozygous (HET);

3. otherwise, allele A is labelled homozygous (HOM).

This label classifies the alleles predicted by VNTRseek into homozygous and het-

erozygous categories. However, this prediction is done on alleles, and not the locus.

To predict whether the locus is homozygous or heterozygous, another layer of machine

learning was added that trains a model based on both TR and allele features. TR

features include: the reference array length, the pattern length, the reference copy

number, and whether gain/loss of one copy could be observed. Allele features in-

clude: the Z-score values and label for each allele, the normalized VRS, and whether

the allele was an VNTR or not. The features are explained in detail in the following

paragraphs. RapidMiner 1 was used to train the decision tree model.

Extracting and binning VRS: mlZ extracts the allele genotypes and their read

support (V RS) from the VNTRseek output. Multis (TRs with more than two alleles

on autosomal chromosomes or chromosome X of females) and TR alleles on the sex

chromosomes of male individuals are excluded. The alleles are grouped according to

their array lengths into bins of size 10 bp, starting from 2× flank to read length−
1Mierswa, Ingo, and Ralf Klinkenberg. “RapidMiner Studio.” RapidMiner Account, 9.1.000 (rev:

ef0090, platform OSX), RapidMiner, Inc., 12 Dec. 2018, rapidminer.com
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2× flank, where flank is the minimum flank required by VNTRseek (by default set

to 10 bp).

On the VRSs of each bin, two normal distributions are fitted using mixtools (Be-

naglia et al., 2009), one for the heterozygous and one for the homozygous alleles.

To avoid errors due to different bin sizes and the nature of noisy data, i.e. V RS

with extremely low or extremely high values, outliers (beyond three standard devia-

tions) are not considered in the model fitting. The means and standard deviations of

these two normal distributions for each bin are saved as the ORS(het) and ORS(hom)

distributions.

Estimating the SRS(het) and SRS(hom) for each bin: The expected distribution

of the read support, SRS, is estimated by bootstrapping. First, the characteris-

tics of the real data, i.e. read length, fragment mean and standard deviation, and

the total number of reads (or coverage) are extracted from the bam file. Then, us-

ing these characteristics, random fragments are drawn from a normal distribution

of N (µfragment, σfragment), with the DNA strand drawn from a Boolean distribution

with p=0.5. For each fragment, two reads are set at the ends with a fixed length of

read length. Random arrays of given length are simulated and the number of reads

overlapping the arrays is counted for homozygous (on both strands) and heterozy-

gous (on the first strand only). The array sizes are the middle of the V RS bins

created in the previous step. This should theoretically be done for the same number

of reads as exists in the real dataset. However, in order to speed up the runtime

and reduce memory requirements, a speedup parameter is used that scales down the

number of fragments and the genome size. This gives us the SRS distribution for the

homozygous and heterozygous alleles for each bin of array lengths.
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Inferring the expected read support from real data: Given that the read

support and the array size correlate linearly, that is read support ∝ array size, and

the fact that the error across the bins from real data is not uniform, a linear model:

ORS[array size] ∼ arraysize (5.1)

is applied on the ORS estimates to smooth the variation. The final estimates are

called the linear model read supports, lmRS. A plot is drawn to compare the SRS,

ORS, and lmRS on each data set, for both heterozygous and homozygous V RS.

This plot can guide the user to detect incorrect parameter settings or unexpected

errors.

Normalizing the observed read supports: The expected read support, ERS,

decreases linearly with the array length. This relation can be formulated as:

ERS = C × (1− Array

R− 2F
) (5.2)

where Array is the observed array length, R is the read length, F is flank size, and C

is the read coverage (Figure 5·2).

In order to make the ORS comparable across alleles with different array size, we

need to normalize the V RS using the ERS. To normalize the read count we divide

it by the expected read support.

normal-V RS =
V RS

ERS + 1
(5.3)

The 1 is added to avoid division by zero. The normal-V RS will be about 0.5 and

1.0 for heterozygous and homozygous calls, respectively. However, due to VNTRSeek

errors and noise, some reads are expected to be unmapped, causing the normal-V RS

to be slightly less than ERS (ORS ≤ ERS). In other words, the observed real
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support in real data is lower than the theoretical calculated values.

Computing Z-scores of heterozygous and homozygous lmRS distributions:

For each allele genotyped, given the corresponding bin size and VRS, the Z-scores of

the homozygous and heterozygous lmRS distributions are calculated. These Z-score

values are called lm-Z(het) and lm-Z(hom). lm-Z values are used to find the more

likely class of the allele:

Z-label =


ERR, lm-Z(het) < −3 or lm-Z(hom) > +3

HET, |lm-Z(het)| ≤ |lm-Z(hom)|

HOM, otherwise

(5.4)

The Z-label improves the prediction of heterozygosity (discussed in results). How-

ever, Z-label provides information on the allele and not the locus, raising ambiguity

when the Z-labels of two alleles from the same locus do not agree.

5.2.5 Learning the Decision Tree model

After estimating the read support distributions, a decision tree model is trained on

simulated data to predict the heterozygous or homozygous class using the Z-label

and Z-score measurements calculated above. This decision tree is calculated once

and saved for future use on real data. Two sets of features are collected for the

training dataset:

- The reference TR attributes: pattern size, array size, copy number, and the

ability of detecting loss /gain of one copy

- The allele features: normalized read support (normal-VRS), lm-Z(het), lm-

Z(hom), and the Z-label.
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The alleles are separated into two datasets, one for homozygous calls and one for

heterozygous calls. Each dataset will include the reference TR attributes. The ho-

mozygous dataset will have one set of allele features, since only one allele was detected.

The heterozygous dataset will have two sets of allele features, one per detected allele,

ordered by array size. Features of the homozygous dataset are given in Table 5.2 and

those of the heterozygous dataset are given in Table 5.3. All machine learning proce-

dures were done in RapidMiner Studio (Mierswa and Klinkenberg, 2018) Educational

License edition.

Feature Type Distribution in data

TR id text —

Ability of detect gain of one copy binomial TRUE
FALSE

91.7%
8.3%

Ability of detect loss of one copy binomial TRUE
FALSE

87.5%
12.5%

lmZ(hom) real
minimum
maximum
mu
σ

-8.8
122.0

-1.0
2.0

lmZ(het) real
minimum
maximum
mu
σ

-5.8
182.9

3.1
2.9

normal-VRS real
minimum
maximum
mu
σ

-49.7
89.4
0.9
0.4

Z-label categorical
HOM
HET
ERROR

66.9%
31.0%
2.1%

Table 5.2: Features for the homozygous dataset. A total of six
features were selected for the homozygous dataset. Type is the type of
data. Distribution is the distribution of that feature in the data.
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Feature Type Distribution in data

TRID text –

Ability of detect gain of one copy binomial TRUE
FALSE

99.0%
1.0%

Ability of detect loss of one copy binomial TRUE
FALSE

82.4%
17.6%

lmZ(hom) of allele 1 real
minimum
maximum
µ
σ

-8.8
115.6

-4.0
2.1

lmZ(hom) of allele 2 real
minimum
maximum
µ
σ

-8.6
27.5
-2.7
1.9

lmZ(het) of allele 1 real
minimum
maximum
µ
σ

-5.8
161.9

-0.7
2.3

lmZ(het) of allele 2 real
minimum
maximum
µ
σ

-5.7
54.2
-0.6
2.4

normal-VRS of allele 1 real
minimum
maximum
µ
σ

0.0
13.9
0.4
0.2

normal-VRS of allele 2 real
minimum
maximum
µ
σ

-7.0
36.2
0.6
0.3

Z-label of allele 1 categorical
HET
ERROR
HOM

81.1%
14.9%
4.0%

Z-label of allele 2 categorical
HET
HOM
ERROR

75.7%
19.1%
5.3%

Table 5.3: Features for the heterozygous dataset. A total of ten
features were selected for the heterozygous dataset. Type is the type of
data. Distribution is the distribution of that feature in the data. Allele
1 is the allele with the smaller array length and allele 2 is the allele
with the longer array length.
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To optimize the decision tree parameters and find the best model, an optimization

grid is applied. A grid runs through a set of parameters and tries every combination.

Due to memory and time constraints, numeric features are discretized with a step

size. The optimization grid for each model was:

- criterion ∈ {gini index, gain ratio, information gain, accuracy}

- minimal gain ∈ range(min=1.0E-7, max=0.3, step=0.01)

- confidence ∈ range(min=1.0E-7, max=0.3, step=0.01)

- minimal depth ∈ range(min=5, max=15, step=1)

The optimization objective was to maximize the AUC measure. A ten-fold cross-

validation was used to avoid over-fitting. For the homozygous model, the minimum

split size was set to 200 and the minimum leaf size was set to 10. For the heterozygous

model, the minimum split size was set to 20 and the minimum leaf size was set to 10,

because there are less heterozygous loci. The decision tree was trained on a random

split of 75% of the training data and tested on the remaining 25%.

To ensure that the models are not biased according to the dataset used in training,

we tested each decision tree model on the other two simulation datasets. The homozy-

gous models are called Hom1, Hom2, and Hom3, corresponding to the models trained

on the homozygous genotypes of the Sim1, Sim2, and Sim3 datasets, respectively.

Similarly, the heterozygous models are called Het1, Het2, and Het3, corresponding

to the models trained on the heterozygous genotypes of the Sim1, Sim2, and Sim3

datasets, respectively.

After making sure models are representative of every dataset and there is no bias

for sequencing features such as read length, fragment size, and coverage (i.e. the

features never showed up in the models), all three simulated datasets were combined

to obtain higher sample size. The final heterozygous and homozygous models were
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saved and implemented in the mlZ tool. The user can choose to use the Z-labels or

the mlZ predictions.

5.3 Results

Table 5.4 summarizes the number of detectable reference TRs for each read length.

In over 80% of the reference TRs a loss of one copy could not be detected, while loss

of copy was shown to be the most common allele in humans in Section 2.3.4. As the

read length increases, more gain can be observed; the number of reference TRs that

gain of one copy could not be detected is about 32%, 16%, and 8% for read lengths

100 bp, 150 bp, and 250 bp, respectively. In the case of heterozygous VNTRs, there

is a good probability that at least one allele will be detected. The performance of

VNTRseek and mlZ on simulated data is presented in Section 5.3.1 and Section 5.3.2,

respectively. The accuracy of the normalRS measurement is shown in Section 5.3.3.

The Decision Tree performance is discussed in Section 5.3.4 and the best confidence

cutoff is presented in Section 5.3.5. In Section 5.3.6 the result of mlZ on real data is

presented. Section 5.3.7 shows the consistency of mlZ across sequencing platforms.

Section 5.3.8 and Section 5.3.9 are dedicated to the erroneous predictions.

5.3.1 Performance of VNTRseek on simulated data

To measure the performance of VNTRseek on simulated data, we extracted the de-

tectable genotypes on each simulated dataset (Table 5.1) and evaluated the precision

and recall of each of the five classes: 0/0. 0/-1, 0/+1, -1/-1, and +1/+1. Table 5.5

shows the results of VNTRseek on the simulated datasets. In general, the number

of TRs genotyped increases with read length and coverage, as previously shown in

Section 2.3.2.
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Reference set
100 bp

(%)

125 bp

(%)

150 bp

(%)

250 bp

(%)

Total singleton TRs 190,080 189,475 189,772 187,541

Loss of ≥1 copy

cannot be detected

153,603

(81%)

153,504

(81%)

153,607

(81%)

153,207

(82%)

Gain of ≥1 copy

cannot be detected

61,070

(32%)

40,306

(21%)

30,261

(16%)

13,916

(7%)

Union (either loss or gain of

one copy cannot be detected)

173,599

(91%)

169,616

(90%)

167,315

(88%)

160,901

(86%)

Intersect (both loss or gain of

one copy cannot be detected)

41,074

(22%)

24,194

(13%)

16,553

(9%)

6,222

(3%)

Table 5.4: Percentage of reference TRs not detectable by VN-
TRSeek. This table summarizes singletons TRs that cannot be de-
tected by VNTRSeek when there is a loss of at least 1 copy (TRF
will not find it) or gain of at least one copy (the TR array + 2flank
will become larger than the read length). The flank considered here
is 10bp on each side. The numbers are presented for each reference
set at 100 bp, 125 bp, 150 bp and 250 bp. The number of total TRs
changes based on the read length due to the sliding window approach
to detect indistinguishable TRs. In most loci, at least one allele could
be detected.
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VNTRSeek results Sim1 Sim2 Sim3

Read length 250 bp 148 bp 100 bp

Read coverage 190X 95X 95X

No. of reference set TRs 223,674 226,510 226,782

No. of indistinguishables 36,133 36,738 36,702

No of read TRs 262,001,823 135,346,720 127,080,013

Total TRs found

(singleton)
132,344 147,093 133,739

Total VNTRs 70,544 58,395 46,112

Homozygous TRs

(singleton)
110,009 111,500) 101,274

Heterozygous TRs

(singleton)
37,850 24,893 18,930

Table 5.5: VNTRSeek results on simulated data. VNTRseek
was run with default parameters on the Sim1, Sim2, and Sim3 datasets.
Read length and coverage are the simulation characteristics. At longer
read lengths, more heterozygous TRs were genotyped.

In order to not penalize VNTRSeek on what it cannot find, we calculated the

performance on the detectable genotypes, i.e. if the given genotype could be detected

by VNTRseek (as discussed in Section 5.1). Table 5.3.1, Table 5.3.1, and Table 5.3.1

summarize the performance of VNTRseek in each dataset Sim1, Sim2, and Sim3,

respectively. Overall the accuracy of VNTRseek to find the alleles it could detect was

84%, 80%, and 79% on Sim1 (250 bp), Sim2 (150 bp), and Sim3 (101 bp), respectively.
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Sim1 Truth
0/0

Truth
0/1

Truth
0/-1

Truth
-1/-1

Truth
1/1

Unde-
tectable

Preci-
sion

Pred. 0/0 84,140 1,452 1,817 60 210 321 96%

Pred. 0/1 135 26,113 7 0 9,037 2 74%

Pred. 0/-1 213 15 1,949 166 0 11 83%

Pred. -1/-1 22 2 173 2,202 2 92 88%

Pred. 1/1 25 1,761 0 1 17,458 2 91%

Pred. other 75 111 30 39 128 260 0%

Not detected 5,370 524 396 2,107 1,014 34,911 79%

Total 89,980 29,978 4,372 4,575 27,849 35,599

Recall 94% 87% 45% 48% 63% 98%

Recall

in detected
99% 89% 49% 89.22% 65% NA

Table 5.6: Confusion matrix of VNTRSeek genotypes on the
Sim1 dataset. Homozygous and heterozygous gain/losses of one copy
were simulated for testing purposes. Expected genotype is what VN-
TRseek would have observed according to its detectable range. VN-
TRseek cannot detect alleles with array size larger than the read length
or alleles with copy number less than two. Read length for the Sim1
dataset was 250 bp and physical coverage was 100X. The confusion
matrix of the genotypes predicted by VNTRseek. undetectable: im-
planted TR alleles that could be detected by VNTRseek. Recall in
found: the recall of that class among all the genotyped TRs. Note that
VNTRseek does not find 79% of the TRs. Overall accuracy was 84.12%
and accuracy of detected genotypes was 89.49%.
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Sim2 Truth
0/0

Truth
0/1

Truth
0/-1

Truth
-1/-1

Truth
1/1

Unde-
tectable

Preci-
sion

Pred. 0/0 72,278 6,295 1,767 70 226 154 89%

Pred. 0/1 40 17,367 3 1 643 0 96%

Pred. 0/-1 41 14 758 12 2 0 92%

Pred. -1/-1 22 8 391 1,068 15 37 69%

Pred. 1/1 20 1,489 0 0 17,393 1 92%

Pred. other 18 33 6 4 35 7 0%

Not found 17,380 4,685 1,403 3,358 9,477 35,263 49%

Total 89,799 29,891 4,328 4,513 27,791 35,462

Recall 80% 58% 18% 24% 63% 99%

Recall in found 100% 69% 26% 92% 95% NA

Table 5.7: Confusion matrix of VNTRSeek genotypes on the
Sim1 dataset. Homozygous and heterozygous gain/losses of one copy
were simulated for testing purposes. Expected genotype is what VN-
TRseek would have observed according to its detectable range. VN-
TRseek cannot detect alleles with array size larger than the read length
or alleles with copy number less than two. Read length for the Sim1
dataset was 250 bp and physical coverage was 100X. The confusion
matrix of the genotypes predicted by VNTRseek. undetectable: im-
planted TR alleles that could be detected by VNTRseek. Recall in
found: the recall of that class among all the genotyped TRs. Note that
VNTRseek does not find 79% of the TRs. Overall accuracy was 84.12%
and accuracy of detected genotypes was 89.49%.
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Sim3 Truth
0/0

Truth
0/1

Truth
0/-1

Truth
-1/-1

Truth
1/1

Unde-
tectable

Preci-
sion

Pred. 0/0 79,390 4,298 1,903 89 300 185 92%

Pred. 0/1 101 21,830 4 0 1,298 0 94%

Pred. 0/-1 236 16 1,244 30 1 0 81%

Pred. -1/-1 26 11 405 1,532 8 40 76%

Pred. 1/1 28 1,850 0 1 21,350 2 92%

Pred. other 60 55 19 15 70 36 0%

Not found 9,775 1,865 772 2,871 4,786 35,246 64%

Total 89,616 29,925 4,347 4,538 27,813 35,509

Recall 89% 73% 29% 34% 77% 99%

Recall in found 99% 78% 35% 92% 93% NA

Table 5.8: Confusion matrix of VNTRSeek genotypes on the
Sim3 dataset. Homozygous and heterozygous gain/losses of one copy
were simulated for testing purposes. Expected genotype is what VN-
TRseek would have observed according to its detectable range. VN-
TRseek cannot detect alleles with array size larger than the read length
or alleles with copy number less than two. Read length was 101 bp and
physical coverage was 100X. The confusion matrix of the genotypes pre-
dicted by VNTRseek. undetectable: implanted TR alleles that could be
detected by VNTRseek. Recall/Accuracy in found: the recall/accuracy
of that class/VNTRseek among all the genotyped TRs. Note that VN-
TRseek does not find 79% of the TRs. Overall, while the per class
precision is high, the recall of losses is lower. The overall accuracy was
69.64% and accuracy of detected genotypes was 90.71%.
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While VNTRseek can find reference alleles with >95% precision, the -1/-1 and

0/-1 genotypes have recall <50%. When a VNTR has a copy loss such that the copy

number falls less than 1.8 (1.9 for patterns smaller than 50 bp), TRF will not be able

to discover it and the VNTR allele will not be genotyped by VNTRSeek. In another

scenario, when the VNTR has gained too many copies such that the array length

becomes larger than the read length -2flanks, no read can span it, and thus, that

allele cannot be detected by VNTRseek. In general, about 80% of the reference TRs

have a copy number ≤2.8, meaning a loss of one copy or more cannot be discovered

in them. The number of TRs where a gain of at least one copy cannot be detected

depends on the read length. Table 5.9 shows the precision of VNTRseek for the

predicted homozygous genotypes. On simulated datasets Sim1, Sim2, and Sim3,

VNTRseek homozygous predictions had precision 73%, 72%, 69%, respectively. On

the predicted heterozygous genotypes, the precision was 74%, 93%, and 96% for Sim1,

Sim2 and Sim3, respectively (Table 5.10).

Homozygous Sim1 Sim2 Sim3

True HOM 76,173 76,507 66,973

True HET 28,294 29,618 29,608

Total 104,467 106,125 96,581

VNTRseek accuracy 72.92% 72.09% 69.34%

Table 5.9: VNTRseek precision on simulated data for the pre-
dicted homozygous genotypes. The precision of VNTRseek was
measured for homozygous genotypes in the detectable range for the
simulated datasets Sim1, Sim2, and Sim3. Note that most homozygous
calls are reference genotypes. The shorter reads in the Sim3 dataset
miss many heterozygous alleles, causing false positive homozygous calls.
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Heterozygous Sim1 Sim2 Sim3

True HOM 9,616 1,698 741

True HET 27,867 23,138 18,164

Total 37,482 24,835 18,904

Precision 74.35% 93.17% 96.09%

Table 5.10: VNTRseek precision on simulated data for the
predicted heterozygous genotypes. The precision of VNTRseek
was measured for heterozygous genotypes in the detectable range for
the simulated datasets Sim1, Sim2, and Sim3. VNTRseek has high pre-
cision on heterozygous class. The Sim1 dataset, which has the longest
read length, causes more Multis (false positive heterozygous calls).

5.3.2 Evaluating the accuracy of normal-VRS

To show the correctness of our assumptions about the heterozygous and homozygous

read supports, especially the final normal-VRS, after running VNTRseek on the sim-

ulated data, the VRS values were extracted. The distribution of normal-VRS of each

allele was plotted (Figure 5·3 A). As it can be seen, we have three Poisson (binomial)

distributions: one centered slightly less than 0.5, corresponding to the heterozygous

alleles, another centered slightly under 1.0, corresponding to homozygous calls, and

another at 0, indicating erroneous calls. We separated heterozygous and homozygous

genotypes (as reported by VNTRseek) and plotted the VRS again, this time filter-

ing outliers (beyond 3 standard deviations). The heterozygous normal-VRS values

peaked at 0.5 (Figure 5·3 B) and the homozygous normal-VRS values peaked at 1.0

(Figure 5·3 C). As it can be observed, normal VRS is a good feature to predict het-

erozygous alleles. In Figure 5·3 C, a small bump around 0.5 is observed. These are

the genotypes that are missing an allele.
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Figure 5·3: normal-VRS distributions for alleles. On the simu-
lated dataset Sim1, Sim2, and Sim3, the normal VRS was plotted for
all the alleles (A), the alleles detected as by VNTRseek (B) and alleles
detected as homozygous by VNTRseek (C). Alleles with normal-VRS ¿
1.5 have been excluded because there were very few and caused a very
long tail. The homozygous alleles have mean about 1.0 and the het-
erozygous alleles have mean about 0.5. The homozygous alleles have
a small peak at 0.5, suggesting in some cases the true genotype was
heterozygous. The alleles that peak around 0 are the Multis.



125

5.3.3 Robustness of the decision tree across sequencing platforms

The homozygous model: Homozygous VNTRseek genotype prediction on the

simulated datasets was used to train the homozygous datasets. To ensure the ac-

curacy of the mlZ decision trees, we test a tree model that was trained on each

simulated dataset and tested on the other two independent datasets. The models and

performances are compared to ensure the decisions trees are not biased by dataset

characteristics such as read length, fragment size, and coverage.

Table 5.11 shows the learning performance (five-fold cross-validation) of the Hom1

model that was trained on the Sim1 dataset, and Table 5.12 and Table 5.13 show the

results of the Hom1 model on the Sim2 and Sim3 datasets, respectively. Similarly, Ta-

ble 5.14 presents the learning performance of the Hom2 model on the cross-validations,

and Table 5.15 and Table 5.16 present the testing performance of the Hom2 model

on the Sim1 and Sim3 datasets; and Table 5.17 is the learning performance on the

Hom3 model, and Table 5.18 and Table 5.19 are the testing performance of the Hom3

model on the Sim1 and Sim2 datasets. While all the models had similar performance,

the Hom3 model that was trained on the Sim3 dataset has the lowest performance

because the Sim3 dataset had less training data (lowest read length results in less

TRs being genotyped). The Hom1, Hom2, and Hom3 models had 96%, 95%, and

93% accuracy, respectively. They had similar performance across datasets. The re-

call on the heterozygous class was the lowest, but the precision was high. All models

performed with >90% precision on homozygous and heterozygous classes, except for

the heterozygous recall of the Hom1 model on Sim2 and Sim3 datasets which was

<80%. The possible explanation is that the Hom1 model was trained on the Sim1

dataset that was simulated with the MiSeq Illumina error profile with higher error

rate including indels. In general, the three models, Hom1, Hom2, and Hom3, were

comparable across simulation datasets.



126

Learning Hom1 True HOM True HET Class Precision

Pred. HOM 73,382 1,518 97.97%
Pred. HET 2,791 26,776 90.56%
class recall 96.34% 94.63%

Table 5.11: Learning performance of Hom1 model on Sim1
(N=127,449). The Hom1 model was trained on homozygous calls
of the Sim1 dataset (read length 250 bp) with stratified 5× cross-
validation. The optimal parameters used were: Information Gain
criterion, minimal gain and confidence set to minimum (1.0E-7) and
maximum depth to 9. The accuracy was 95.88%±0.15 (micro average:
95.88%).

Hom1 on Sim2 True HOM True HET Class Precision

Pred. HOM 87,317 7,842 91.76%
Pred. HET 2,084 27,422 92.94%
class recall 97.67% 77.76%

Table 5.12: Testing performance of Hom1 on Sim2. The Hom1
model was tested on the Sim2 dataset (read length 148 bp).The overall
accuracy was 92%. The heterozygous (HET) recall was 78%.

Hom1 on Sim3 True HOM True HET Class Precision

Pred. HOM 77,156 13,798 84.83%
Pred. HET 1,699 21,613 92.71%
class recall 97.85% 61.03%

Table 5.13: Testing performance of Hom1 on Sim3. The Hom1
model was tested on the Sim3 dataset (read length 101 bp). The overall
accuracy was 86%. The heterozygous (HET) recall was 61%.
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Learning Hom2 True HOM True HET Class Precision

Pred. HOM 72,699 2,050 97.26%
Pred. HET 3,808 27,568 87.86%
class recall 95.02% 93.08%

Table 5.14: Learning performance of the Hom2 model on Sim2
(N=124,665). The Hom2 model was trained on homozygous calls
of the Sim2 dataset (read length 148 bp) with stratified 5× cross-
validation. The optimal parameters used were: information gain crite-
rion, minimal gain and confidence set to minimum (1.0E-7) and max-
imum depth to 9. The accuracy was accuracy: 94.48%±0.17 (micro
average: 94.48%).

Hom2 on Sim1 True HOM True HET Class Precision

Pred. HOM 83,456 1,409 98.34%
Pred. HET 4,963 31,749 86.48%
class recall 94.39% 95.75%

Table 5.15: Testing performance of Hom2 on Sim1. The Hom2
model was tested on the Sim1 dataset (read length 250 bp). The overall
accuracy was 95%. The heterozygous (HET) recall was 96%.

Hom2 on Sim3 True HOM True HET Class Precision

Pred. HOM 74,024 4,852 93.85%
Pred. HET 4,831 30,559 86.35%
class recall 93.87% 86.30%

Table 5.16: Testing performance of Hom2 on Sim3. The Hom2
model was tested on the Sim3 dataset (read length 101 bp.) The overall
accuracy was 92%. The heterozygous (HET) recall was 86%.
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Learning on Hom3 True HOM True HET Class Precision

Pred. HOM 63,064 3,040 95.40%
Pred. HET 3,909 26,568 87.17%
class recall 94.16% 89.73%

Table 5.17: Learning performance of the Hom3 model on Sim3
(N=114,267). The Hom3 model was trained on homozygous calls
of the Sim3 dataset (read length 101 bp) with stratified 5× cross-
validation. The optimal parameters used were: information gain crite-
rion, minimal gain and confidence set to minimum (1.0E-7) and maxi-
mum depth to 9. accuracy: 92.81%±0.07% (micro average: 92.81%).

Hom3 on Sim1 True HOM True HET Class Precision

Pred. HOM 81,195 1,259 98.47%
Pred. HET 7,224 31,899 81.54%
class recall 91.83% 96.20%

Table 5.18: Testing performance of Hom3 on Sim1. The Hom3
model was tested on the Sim1 dataset (read length 250 bp.) The overall
accuracy was 93%. The heterozygous (HET) recall was 96%.

Hom3 on Sim2 True HOM True HET Class Precision

Pred. HOM 84,109 2,060 97.61%
Pred. HET 5,292 33,204 86.25%
class recall 94.08% 94.16%

Table 5.19: Testing performance of Hom3 on Sim2. The Hom3
model was tested on the Sim2 dataset (read length 148 bp.) The overall
accuracy was 94%. The heterozygous (HET) recall was 94%.
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Figure 5·4: AUC of the homozygous models: Hom1, Hom2,
and Hom3. Positive class is HET
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Figure 5·5: AUC of the final homozygous model. The ROC
curve for the final homozygous model is shown. The AUC was
0.973±0.001 (micro average: 0.973) on ten-fold cross-validation.

Figure 5·4 shows all AUCs corresponding to the testing done above. Note that

learning AUC is calculated on the cross-validations and shows the 95% confidence

interval as shadows (Figure 5·4 A for the Hom1 model, Figure 5·4 D for the Hom2

model, and Figure 5·4 G for the Hom3 model). The AUC on the heterozygous class

was >95% in all models, except for the Hom1 model on the Sim3 dataset.

After ensuring the decision trees were robust across simulation datasets, the sim-

ulated data was combined and the final homozygous tree was trained and incor-

porated into mlZ. The final homozygous model had 94.31%±0.15 accuracy and F-

measure 90.20%±0.24 on the ten-fold cross-validation (Table 5.20). The AUC was

97.3%±0.001 (Figure 5·5).

In addition I compared the decision tree to a Naive Bayes model. The decision

tree performed slightly better than the Naive Bayes model (Figure 5·6). Random

Forest did not improve the results (not shown), so we decided to use the decision tree

for simplicity. In the final tree (not shown), the first depth node was the Z-label and

the second depth node was normal-VRS. This shows the importance of these features.
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Final homozygous model True HOM True HET Class Precision

Pred. HOM 209,378 7,189 96.68%

Pred. HET 10,275 80,331 88.66%

Class recall 95.32% 91.79%

Table 5.20: Learning performance of the final homozygous
model (N=366,380). The final homozygous model was trained on
the homozygous calls of the Sim1, Sim2, and Sim3 datasets com-
bined. The optimal parameters used were: information gain criterion,
minimal gain and confidence set to minimum (1.0E-7) and maximum
depth to 9 with ten-fold cross-validations. Overall accuracy was accu-
racy: 94.31%±0.15 (micro average: 94.31%) and the F1 measure was
90.20%±0.24 (micro average: 90.20).

Figure 5·6: Comparison of the ROC curves of the final ho-
mozygous model and the candidate model. Naive bayes is the
default. Random tree model was made with the same parameters of
DT. ROC curves of all models drawn with 75%/25% split ratio and 10
folds validation. (positive class: HET). The 95% confidence interval on
the ten-fold cross-validation is presented as shadows.
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The heterozygous model: The same testing and training was performed on the

heterozygous genotypes as the homozygous genotypes. Three tree models, named

Het1, Het2, and Het3, were trained on 75% of the Sim1, Sim2, and Sim3 datasets

with five-fold cross-validation and tested on the corresponding remaining 25%, re-

spectively to get the learning performance. The three models were then tested on

the other two simulated datasets. Table 5.21, Table 5.24, and Table 5.27 show the

learning performance of the Het1, Het2, and Het3 models, respectively. The learning

accuracy was >98% in all three models. Table 5.22 and Table 5.23 show the result

of the Het1 model on the Sim2 and Sim3 datasets, respectively. Table 5.25 and Ta-

ble 5.26 show the performance of the Het2 model on the Sim1 and Sim3 datasets,

respectively. And Table 5.28 and Table 5.29 show the performance of the Het3 model

on the Sim1 and Sim2 datasets. The AUC for the learning models and tests are

shown in Figure 5·7. While all models had accuracy >95%, the results did not sig-

nificantly improve beyond the overall performance of VNTRseek. Table 5.5 shows

that VNTRSeek accuracy on heterozygous calls is around 97%. As a result there are

very few TRUE homozygous calls in the training data. This results in a big bias in

the training data, and reduces statistical power for the heterozygous model. This

problem can be solved by simulating more and more data.
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Learning Het1 True HOM True HET Class Precision

Pred. HOM 8,965 280 97.69%
Pred. HET 651 27,587 96.97%
class recall 93.23% 99.00%

Table 5.21: Learning performance of the Het1 model on Sim1
(N=366,380). Model Het1 was trained on the heterozygous calls
of the Sim1 dataset (read length 250 bp) with stratified 5× cross-
validation. The optimal parameters used were: information gain cri-
terion, minimal gain and confidence set to minimum (1.0E-7) and
maximum depth to 7. F1 measure was 95.06%±0.25 (micro average:
95.06%) (positive class: HOM).

Het1 on Sim2 True HOM True HET Class Precision

Pred. HOM 1,747 197 89.87%
Pred. HET 563 26,421 97.91%
class recall 75.63% 99.26%

Table 5.22: Testing performance of Het1 on Sim2. The Het1
model was tested on the heterozygous calls of the Sim2 dataset (read
length 148 bp). The overall accuracy was 97.37%.

Het1 on Sim3 True HOM True HET Class Precision

Pred. HOM 725 300 70.73%
Pred. HET 305 20,780 98.55%
class recall 70.39% 98.58%

Table 5.23: Testing performance of Het1 on Sim3. The Het1
model was tested on the heterozygous calls of the Sim3 dataset (read
length 101 bp). The overall accuracy was 97.26%.
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Learning Het2 True HOM True HET Class Precision

Pred. HOM 1,307 109 98.33%
Pred. HET 391 23,029 92.30%
class recall 76.97% 99.53%

Table 5.24: Learning performance of the Het2 model on Sim2
(N=24,836). The Het2 model was trained on heterozygous calls of
Sim2 dataset (read length 148 bp) with stratified 5× cross-validation.
The optimal parameters used were: information gain criterion, minimal
gain and confidence set to minimum (1.0E-7) and maximum depth set
to 8. Overall accuracy was 97.99%±0.23 (micro average: 97.99%) and
F1 measure was 83.92%±1.99 (micro average: 83.94%). (positive class:
HOM)

Het2 on Sim1 True HOM True HET Class Precision

Pred. HOM 11,169 536 95.42%
Pred. HET 871 31,839 97.34%
class recall 92.77% 98.34%

Table 5.25: Testing performance of Het2 on Sim1. The Het2
model was tested on the heterozygous calls of the Sim1 dataset (read
length 250 bp). The overall accuracy was 96.83%.

Het2 on Sim3 True HOM True HET Class Precision

Pred. HOM 788 219 78.85%
Pred. HET 242 20861 98.85%
class recall 76.50% 98.96%

Table 5.26: Testing performance of Het2 on Sim3. The Het2
model was tested on the heterozygous calls of the Sim3 dataset (read
length 101 bp). The overall accuracy was 97.91%.
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Learning Het3 True HOM True HET Class Precision

Pred. HOM 575 67 89.56%
Pred. HET 166 18,097 99.09%
class recall 77.60% 99.63%

Table 5.27: Learning performance of the Het3 model on Sim3
(N=18,905). The Het3 model was trained on the heterozygous calls
of the Sim3 dataset (read length 101 bp) with stratified 5× cross-
validation. The optimal parameters used were: information gain crite-
rion, minimal gain and confidence set to minimum (1.0E-7) and maxi-
mum depth set to 5. Overall accuracy was 98.77%±0.08 (micro average:
98.77%) and F1 measure was 83.13%±1.33 (micro average: 83.15%).
(positive class: HOM)

Het3 on Sim1 True HOM True HET Class Precision

Pred. HOM 11,127 700 94.08%
Pred. HET 913 31,675 97.20%
class recall 92.42% 97.84%

Table 5.28: Testing performance of Het3 on Sim1. The Het3
model was tested on the heterozygous calls of the Sim1 dataset (read
length 250 bp). The overall accuracy was 96.37%.

Het3 on Sim2 True HOM True HET Class Precision

Pred. HOM 1,753 193 90.08%
Pred. HET 557 26,425 97.94%
class recall 75.89% 99.27%

Table 5.29: Testing performance of Het3 on Sim2. The Het3
model was tested on the heterozygous calls of the Sim2 dataset (read
length 148 bp). The overall accuracy was 97.41%.
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Figure 5·7: AUC of the heterozygous models: Het1, Het2,
and Het3. Positive class is HOM



137

Figure 5·8: AUC of the final heterozygous model. The ROC
curve for the final heterozygous model is shown. The AUC was
0.973±0.004 (micro average: 0.973) on ten-fold cross-validation.

Ensuring the decision trees for the Het1, Het2, and Het3 models were robust

across simulated datasets, the three datasets were combined and a final heterozygous

model was trained. The overall learning accuracy on ten-fold cross-validation was

98.00%±0.15 and the F-measure was 90.20%±0.24. The homozygous precision was

95.63% and the heterozygous precision was 98.39% (Table 5.30). The AUC was

0.973±0.004 (Figure 5·8).

Final heterozygous model True HOM True HET Class Precision

Pred. HOM 10,928 499 95.63%

Pred. HET 1,127 68,670 98.39%

class recall 90.65% 99.28%

Table 5.30: Learning performance of the final homozygous
model (N=81,224). The final homozygous model was trained on
the heterozygous calls of the Sim1, Sim2, and Sim3 datasets combined.
The optimal parameters used were: information gain criterion, minimal
gain and confidence set to minimum (1.0E-7) and maximum depth to
10 with ten-fold cross-validations. Overall accuracy was 98.00%±0.15
(micro average: 98.00%) and the F1 measure was 90.20%±0.24 (micro
average: 90.20%).
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In the final tree, the first and second node is the normal read count for the first

and second allele followed by the Z-label. Figure 5·9 compares the final heterozygous

tree to the Naive Bayes model which performed similarly.

Figure 5·9: Comparison of the ROC curves of the final heterozygous
model and the candidate model. Naive Bayes is the default. Random
tree model was made with the same parameters of DT. ROC curves
of all models drawn with 75% / 25% split ratio and ten-fold cross-
validation.

Overall performance of the decision tree on simulated data: The overall

accuracy of mlZ on simulated data was >95%. On the homozygous and heterozy-

gous the precision was 96% and 93% and the recall was 95% and 94%, respectively

(Table 5.31).
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Final mlZ performance True HOM True HET Class Precision

Pred. HOM 19,228+324 715+37 96.30%

Pred. HET 839+103 7,093+5,759 93.17%

Class recall 95.40% 94.47%

Table 5.31: Final mlZ performance (heterozygous and ho-
mozygous model combined). The predictions from the final het-
erozygous model and the final homozygous model were combined and
the confusion table was calculated. Overall accuracy was 95.03%.

5.3.4 Comparison of VNTRSeek , Z-label, and mlZ

The predictions of mlZ on VNTRseek can be presented with the annotation “VN-

TRseek class”→“mlZ class”. HOM→HOM is used when a locus was predicted ho-

mozygous by both VNTRseek and mlZ, HET→HET is used when both VNTRseek

and mlZ predicted heterzoygous, HOM→HET is used when VNTRseek predicted a

homozygous locus that mlZ predicts should have been heterozygous, and HET→HOM

is when VNTRseek predicted heterozygous and mlZ predicts is was homozygous. We

are particularly interested in the HOM→HET class where more VNTRs can be in-

ferred.

Comparison of performances by VNTRseek, Z-label, and mlZ are given in Ta-

ble 5.32. The overall accuracy of VNTRseek was 79%, which by using the Z-labels

alone, improved to 90%. mlZ could further improve this accuracy to 98%. The preci-

sion on homozygous class improved from 72% to 94% using Z-labels and 98% by mlZ.

This is because mlZ can infer many missing alleles that would make a homozygous

prediction heterozygous (HOM→HET).

5.3.5 The confidence threshold

The decision tree model used in mlZ reports a confidence value that can be used to

filter the predictions to a more reliable subset. Figure 5·10, Figure 5·11, and Fig-
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Comparison True homozygous True heterozygous All

Method Precision Recall Precision Recall Accuracy

VNTRSeek 71.99% 95.91% 93.16% 59.75% 78.52%

Z-label 94.29% 86.42% 86.56% 94.34% 90.23%

mlZ 97.63% 97.25% 89.90% 91.21% 95.97%

Table 5.32: Comparison of VNTRseek, Z-label, and mlZ. Al-
leles were extracted. If the allele was from a homozygous VNTRseek
prediction, it was labelled as homozygous and otherwise, it was labelled
as heterozygous. The Z-label can be homozygous, heterozygous, or er-
ror. The errors were excluded in the precision calculation. mlZ predicts
whether the allele was heterozygous or homozygous. The precisions
and overall accuracy were compared on simulated data. mlZ does not
improve the precision of VNTRseek on heterozygous alleles, because
VNTRseek can find 2,000–3,000 heterozygous calls per genome, which
is not enough to train the model.

ure 5·12 show the effect of increasing the confidence threshold on performance on

the Sim1, Sim2, and Sim3 datasets, respectively. At a threshold of 90% confidence,

the performance improves significantly, while losing <10% of the predictions. Ta-

ble 5.33 shows that, on the Sim1 dataset, a confidence threshold of 90% improves the

overall accuracy from 96% to 98% and improves the heterozygous recall from 97%

to 99%, while maintaining >90% of the predictions. Table 5.34 shows that >86%

of the predictions on the Sim2 dataset had confidence >90%, and that the accuracy

improved from 95% to 98% and the heterozygous recall improved from 95% to 99%.

Table 5.35 shows that >77% of the predictions in the Sim3 dataset have confidence

>90%, the accuracy improved from 93% to 98%, and the heterozygous confidence im-

proved from 92% to 98%. Using a threshold of 90% confidence, overcomes the lower

recall of mlZ on heterozygous compared to using Z-labels alone. Using this threshold

when applying mlZ is recommended.
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Figure 5·10: The confidence threshold effect on the Sim1
dataset performance. The confidence reported by the decision tree
can be used to filter uncertain predictions. As the confidence threshold
increases, the performance improves. About 90% of the test samples
had confidence >90%. Note that the Y-axis starts from 80 to 100%.
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Sim1 True HET True HOM Precision

Conf.≥0.9
Accuracy=98%

Pred. HET 58,890 3,091 95%

Pred. HOM 540 87,764 99%

Recall 99% 97%

Conf.<0.9
Accuracy=76%

Pred. HET 4,552 2,146 68%

Pred. HOM 1,551 7,458 83%

Recall 75% 78%

Combined
Accuracy=96%

Pred. HET 63,442 5,237 92%

Pred. HOM 2,091 95,222 98%

Recall 97% 95%

VNTRSeek Not found 12,129 50,365
Percent 16% 33%

Conf.≥0.9 Conf.<0.9 Total Percent

HET 61,981 6,698 68,679 90%
HOM 88,304 9,009 97,313 91%

Total 150,285 15,707 165,992
Percent 91% 9%

Table 5.33: Performance of mlZ on the Sim1 dataset at confi-
dence threshold 90%. The table above compares the mlZ predictions
with confidence ≥90% to the predictions with confidence <90%. The
bottom table shows the number of samples with confidence ≥90% com-
pared to the number of samples with confidence <90%. Percent in real
data is the number of samples with the same criteria in the real data
results.
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Figure 5·11: The confidence threshold effect on the Sim2
dataset performance. The confidence reported by the decision tree
can be used to filter uncertain predictions. As the confidence threshold
increases, the performance improves. About 86% of the test samples
had confidence >90%. Note that the Y-axis starts from 80 to 100%.
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Sim2 True HET True HOM Precision

Conf.≥0.9
Accuracy = 98%

Pred. HET 52,013 2,680 0.95

Pred. HOM 604 76,891 99%

Recall 99% 97%

Conf.<0.9
Accuracy=78%

Pred. HET 6,654 2,090 76%

Pred. HOM 2,611 10,050 79%

Recall 72% 83%

Combined
Accuracy=95%

Pred. HET 58,667 4,770 92%

Pred. HOM 3,215 86,941 96%

Recall 95% 95%

VNTRSeek Not found 15,780 59,113
Percent 20% 39%

Conf.≥0.9 Conf.<0.9 Total Percent

HET 54,693 8,744 63,437 86%
HOM 77,495 12,661 90,156 86%

Total 132,188 21,405 153,593
Percent 86% 14%

Table 5.34: Performance of mlZ on the Sim2 dataset at confi-
dence threshold 90%. The table above compares the mlZ predictions
with confidence ≥90% to the predictions with confidence <90%. The
bottom table shows the number of samples with confidence ≥90% com-
pared to the number of samples with confidence <90%. Percent in real
data is the number of samples with the same criteria in the real data
results.
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Figure 5·12: The confidence threshold effect on the Sim3
dataset performance. The confidence reported by the decision tree
can be used to filter uncertain predictions. As the confidence threshold
increases, the performance improves. About 78% of the test samples
had confidence >90%. Note that the Y-axis starts from 80 to 100%.
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Sim3 True HET True HOM Precision

Conf.≥0.9
Accuracy=98%

Pred. HET 39,865 1,700 96%

Pred. HOM 912 62,603 99%

Recall 98% 97%

Conf.<0.9
Accuracy=78%

Pred. HET 12,173 3,265 79%

Pred. HOM 3,541 12,317 78%

Recall 77% 79%

Combined
Accuracy=93%

Pred. HET 52,038 4,965 91%

Pred. HOM 4,453 74,920 94%

Recall 92% 94%

VNTRSeek Not found 21,171 70,939
Percent 27% 47%

Conf.≥0.9 Conf.<0.9 Total Percent

HET 41,565 15,438 57,003 73%
HOM 63,515 15,858 79,373 80%
Total 105,080 31,296 136,376

Total 132,188 21,405 153,593
Percent 77% 23%

Table 5.35: Performance of mlZ on the Sim3 dataset at confi-
dence threshold 90%. The table above compares the mlZ predictions
with confidence ≥90% to the predictions with confidence <90%. The
bottom table shows the number of samples with confidence ≥90% com-
pared to the number of samples with confidence <90%. Percent in real
data is the number of samples with the same criteria in the real data
results.
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5.3.6 Results of mlZ on the GIAB dataset

To test mlZ on real data, TRs were genotyped using VNTRseek on the seven genomes

from GIAB (previously discussed in Chapter 2). Table 5.36 summarizes the VN-

TRseek runs on the GIAB datasets. First, the normal-VRS distribution on the HG002

(AJ son) was examined to see if the assumptions of mlZ apply on the real data (Fig-

ure 5·13). The homozygous calls by VNTRSeek had a thick left tail compared to a

Poisson distribution suggesting some homozygous calls were heterozygous with un-

detected allele pairs. Also, similar to simulated datasets (shown in Figure 5·3), the

heterozygous and homozygous normal-VRS is slightly less than the expected values

of 0.5 for heterozygous and 1.0 for homozygous. This means that due to some errors,

VNTRSeek missed some reads. This problem is yet to be investigated by the authors

of VNTRSeek.

Genome Sex Read
length

(bp)

Frag-
ment
(µ, σ)

Physical
coverage

(X)

Total no.
of reads

Total TRs
genotyped

Total
VN-
TRs

HG001 F 148 (550,150) 300 62.0E8 193,185 3,788

HG002 M 250 (400,100) 100 8.8E8 200,446 3,437

HG003 M 250 (400,100) 100 7.8E8 200,181 3,294

HG004 F 250 (400,100) 100 8.7E8 199,258 3,394

HG005 M 250 (550,150) 300 42.6E8 203,836 5,424

HG006 M 148 (550,150) 100 23.7E8 192,143 2,895

HG007 F 148 (550,150) 100 24.4E8 190,999 2,933

Table 5.36: VNTRseek results on the real datasets. VNTRseek was
used to genotype the reference TRs in seven individuals from the GIAB
consortium. The number of genotyped TRs increased with read length
and coverage.
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Figure 5·13: Histogram of normal-VRS values in the HG002
dataset. The number of reads supporting homozygous calls (blue)
show a thicker left tail, indicating a mixture with heterozygous calls
(red). The read support is normalized by the expected (theoretical)
read support to be comparable across different array sizes and cover-
ages.

In order to investigate how close our simulated read support estimates (SRS) are

to the real data and how representative our model is, mlZ plots the three values

SRS, ORS, and lmRS for each run. For HG001 (Figure 5·14), the Ashkenazi Jew trio

(Figure 5·15, Figure 5·16, and Figure 5·17), and the Chinese Han trio (Figure 5·18,

Figure 5·19, and Figure 5·20) the lmRS and SRS are in almost perfect agreement

and lmRS successfully reduces the variability of ORS. These plots are automatically

drawn by mlZ and are useful to detect incorrect parameter settings, i.e. if the user

had a wrong assumption and incorrectly set the parameter.
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Figure 5·14: Comparison of the SRS, ORS, and lmRS values
on HG001. mlZ plots the SRS (simulated read support) in black, ORS
(observed read support inferred by fitting a normal distribution on the
real data) in red, and lmRS (smooth ORS) in blue. The homozygous
alleles are plotted in the left and the heterozygous alleles are plotted
in the right. The gray dashed lines are the 2σ from the SRS mean and
the dashed blue lines are 2σ from the lmRS lines.
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Figure 5·15: Comparison of the SRS, ORS, and lmRS values
on HG002. mlZ plots the SRS (simulated read support) in black, ORS
(observed read support inferred by fitting a normal distribution on the
real data) in red, and lmRS (smooth ORS) in blue. The homozygous
alleles are plotted in the left and the heterozygous alleles are plotted
in the right. The gray dashed lines are the 2σ from the SRS mean and
the dashed blue lines are 2σ from the lmRS lines.
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Figure 5·16: Comparison of the SRS, ORS, and lmRS values
on HG003. mlZ plots the SRS (simulated read support) in black, ORS
(observed read support inferred by fitting a normal distribution on the
real data) in red, and lmRS (smooth ORS) in blue. The homozygous
alleles are plotted in the left and the heterozygous alleles are plotted
in the right. The gray dashed lines are the 2σ from the SRS mean and
the dashed blue lines are 2σ from the lmRS lines.
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Figure 5·17: Comparison of the SRS, ORS, and lmRS values
on HG004. mlZ plots the SRS (simulated read support) in black, ORS
(observed read support inferred by fitting a normal distribution on the
real data) in red, and lmRS (smooth ORS) in blue. The homozygous
alleles are plotted in the left and the heterozygous alleles are plotted
in the right. The gray dashed lines are the 2σ from the SRS mean and
the dashed blue lines are 2σ from the lmRS lines.



153

0
10

0
20

0
30

0
40

0
VNTRPIPE_hg005 (homozygous)

array_length (binned)

es
tim

at
es

d 
re

ad
 s

up
po

rt

25 35 45 55 65 75 85 95 10
5

11
5

12
5

13
5

14
5

15
5

16
5

17
5

18
5

19
5

20
5

21
5

22
5

simulation
+/− 2sd from simulation
bimodal (mixtools)
smoothened bimodal
+/− 2sd from smoothened bimodal

0
10

0
20

0
30

0
40

0

VNTRPIPE_hg005 (heterozygous)

array_length (binned)

es
tim

at
es

d 
re

ad
 s

up
po

rt

25 35 45 55 65 75 85 95 10
5

11
5

12
5

13
5

14
5

15
5

16
5

17
5

18
5

19
5

20
5

21
5

22
5

simulation
+/− 2sd from simulation
bimodal (mixtools)
smoothened bimodal
+/− 2sd from smoothened bimodal

Figure 5·18: Comparison of the SRS, ORS, and lmRS values
on HG005. mlZ plots the SRS (simulated read support) in black, ORS
(observed read support inferred by fitting a normal distribution on the
real data) in red, and lmRS (smooth ORS) in blue. The homozygous
alleles are plotted in the left and the heterozygous alleles are plotted
in the right. The gray dashed lines are the 2σ from the SRS mean and
the dashed blue lines are 2σ from the lmRS lines.
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Figure 5·19: Comparison of the SRS, ORS, and lmRS values
on HG006. mlZ plots the SRS (simulated read support) in black, ORS
(observed read support inferred by fitting a normal distribution on the
real data) in red, and lmRS (smooth ORS) in blue. The homozygous
alleles are plotted in the left and the heterozygous alleles are plotted
in the right. The gray dashed lines are the 2σ from the SRS mean and
the dashed blue lines are 2σ from the lmRS lines.
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Figure 5·20: Comparison of the SRS, ORS, and lmRS values
on HG007. mlZ plots the SRS (simulated read support) in black, ORS
(observed read support inferred by fitting a normal distribution on the
real data) in red, and lmRS (smooth ORS) in blue. The homozygous
alleles are plotted in the left and the heterozygous alleles are plotted
in the right. The gray dashed lines are the 2σ from the SRS mean and
the dashed blue lines are 2σ from the lmRS lines.
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The results of mlZ on real data are given in Table 5.37 for the TRs genotyped by

VNTRseek. Table 5.38 compares the number of VNTRs per genome before and after

applying mlZ. In each case about 19–20 thousand new heterozygous calls could be

inferred, increasing the VNTR count per genome from thousands to tens of thousands.

This new number agrees with the predictions in the literature (Näslund et al., 2005).

Data HOM→HOM HOM→HET HET→HOM HET→HET

HG001 142,084 21,376 495 971

HG002 142,038 21,334 109 1,204

HG003 143,343 19,857 83 1,144

HG004 147,922 22,168 101 1,221

HG005 144,064 20,730 645 1,451

HG006 134,630 21,069 317 739

HG007 141,151 21,127 313 747

Table 5.37: Results of mlZ on real data. The predictions
are shown as “VNTRseek prediction” →“mlZ predictions”. Around
20,000–22,000 homozygous calls were predicted to be heterozygous
(HOM→HET). The genomes: HG001 (NA12878) is from the CEU
family; HG002, HG003, and HG004 are the Ashkenazi son, father, and
mother, respectively; and HG005, HG006, and HG007 are the Chinese
son, father, and mother, respectively.
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Sample Description
Read

length

VNTR Count

pre-mlZ

VNTR Count

w/ mlZ inferred

HG001 NA12878 148 bp 2,582 23,589

HG002 AJ son 250 bp 2,571 23,466

HG003 AJ father 250 bp 2,477 21,893

HG004 AJ mother 250 bp 2,558 24,312

HG005 Chinese son 148 bp 3,829 24,058

HG006 Chinese father 148 bp 2,039 22,827

HG007 Chinese mother 148 bp 2,052 22,787

Table 5.38: Inferring VNTRs using mlZ. The results of mlZ on
real data were used to infer VNTRs. The mlZ predictions were la-
belled as VNTRs for all alleles with HOM→HOM predictions that had
a non-reference allele or mlZ heterozygous (HET) predictions. The
HOM→HET predictions are the VNTRs inferred by mlZ that VN-
TRseek did not predict as VNTR.
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5.3.7 Consistency of mlZ across platforms

In Section 4.3.4 of Chapter 4, we showed that VNTRseek predictions are consistent

across sequencing platforms. Here, we evaluate the consistency of mlZ across se-

quencing platforms. We used two datasets on the NA12878 genome. One was from

GIAB, with read length 148 bp and 300× physical coverage, and another was from

1000 Genomes Project Phase 3, sequenced as 250 bp and >40× physical coverage.

Table 5.39 shows that at 90% confidence threshold, the mlZ predictions were the same

in both datasets 93% of the time. However, when we allowed missing genotypes (not

penalizing if one dataset did not detect the genotype), the consistency went up to

99%. The consistency on the HOM→HET predictions was 87% and, when allowing

missing genotypes, the consistency was 96%.

Table 5.40 presents a detailed comparison between the two datasets. The most

common inconsistency is when the missing allele was detected in one, but not in the

other. The rest of the inconsistent cases were negligible. As we increase the confidence

threshold for mlZ predictions, the consistency increases, meaning the more precise

calls are more consistent/reliable (Figure 5·21).
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ID HG001 NA12878

Source GIAB 1000 Genomes Project
Fragment size N(550,150) N(400,100)
Read length (bp) 148 250
Read coverage 306× 60×
Percent of TRs Genotyped 87% 91%
VNTRs 2,583 2,181

Confidence≥90%
Without NA
(found in both)

Allowing NA
(found in either)

Consistency in HOM→HET 87% 96%
Consistency in all 93% 99%

Table 5.39: Consistency of mlZ predictions on NA12878 from
two platforms. Two datasets from the same genome were used to
compare the consistency of mlZ on different sequencing platforms. Re-
sults of mlZ on HG001 from GIAB with read length 148 bp and 300×
physical coverage was compared to the results of mlZ from NA12878
from the 1000 Genomes Project with read length 250 bp and ∼40X
physical coverage. Only mlZ predictions with >90% confidence were
used. Consistency was measured in two ways: 1) only in the loci geno-
typed in both datasets (calculated a lower bound on consistency), and
2) allowing missing data (calculating an upper bound on consistency).
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GIAB 1000 Genomes Project Count

HOM→HET HOM→HET 5,019

HOM→HOM HOM→HOM 5,019

HOM→HOM HOM→HET 606

HET→HET HET→HET 541

HOM→HET HOM→HOM 165

HOM→HET HET→HET 29

HOM→HOM HET→HET 29

HET→HET HOM→HET 27

HET→HOM HOM→HOM 6

HOM→HOM HET→HOM 6

HET→ERR HET→HET 3

HET→HOM HET→HET 3

HET→HOM HET→HOM 2

HOM→HET HET→HOM 2

HET→HET HET→HOM 1

HET→HOM HOM→HET 1

Table 5.40: Detail comparison of results from VNTRseek and
mlZ on NA12878 from two platforms. The predictions from mlZ
on two datasets from the same genome (NA12878) were compared.
Total 16 different cases can occur. HOM→HET predictions in any
dataset are highlighted as the most interesting class which results in
inferring new VNTRs. Rows highlighted in green are the consistent
predictions (HOM→HET in both dataset) and highlighted in orange are
the inconsistent predictions where a least in one dataset a HOM→HET
prediction was made.
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Figure 5·21: The effect of the confidence threshold on the
consistency of mlZ on sequencing platforms. The consistency of
mlZ predictions on the same genome from two datasets with different
sequencing platforms was calculated in two ways: 1) without NAs:
only on loci which was genotyped in both datasets by VNTRseek, and
2) with NAs: Considering the loci that was not genotyped on one
of the datasets as a correct prediction. The first method calculated
a lower bound for consistency and the second method calculated an
upper bound for consistency.
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5.3.8 Investigating the predicted errors

In Section 4.3.5 of Chapter 4, the error type 1 of VNTRseek was addressed. To

investigate the power of mlZ to detect such erroneous alleles, we counted the percent-

age of alleles that were labeled as ERROR by mlZ (using the Z-label). Table 5.41

shows that all of the datasets had ≤1% error rate except for HG001 and HG005 that

were sequenced using MiSeq Illumina machines at 300× physical coverage. Sim1 was

simulated using an error profile mimicking a MiSeq machine and had much higher

Multi ratio, too. Figure 5·22 shows that, as the coverage increases, the number of

ERROR predictions by mlZ also increases. This was also seen in Section 4.3.5 where

the number of Multis increased by read coverage.

Genome VN-
TRs

Any allele
was error

All alleles
were error

Error
(%)

Read
coverage

(×)

Read
length

(bp)

HG001 2,583 5,183 3,845 1.99 306 148
HG002 2,522 1,627 1,575 0.82 65 250
HG003 2,559 1,609 1,566 0.82 72 250
HG004 2,621 1,726 1,682 0.84 74 250
HG005 2,081 9,441 7,071 3.65 355 250
HG006 2,053 2,233 1,851 1.01 117 148
HG007 3,897 1,837 1,576 0.83 119 148

Sim1 70,540 23,321 4,239 2.46 201 250
Sim2 58,395 5,796 1,452 0.95 112 148
Sim3 46,112 2,242 821 0.60 65 101

Table 5.41: Error predictions by mlZ. The Z-labels were used to
count the ERROR labels. “Any error” refers to loci that at least one
allele had Z-label ERROR. “All error” is the number of loci that all
alleles were ERROR. The error percentage is the percentage of loci that
had error labels for all the alleles. In bold is the error rate of HG001,
HG005, and sim1. These datasets had the MiSeq Illumina machine
error profile that has higher errors including indels.
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Figure 5·22: Predicted ERRORs as a function of the read
coverage. The percent of loci that had Z-label ERROR for all their
alleles is plotted against the read coverage. At higher read coverage
more ERRORs occur. This is consistent with the finding that the
number of Multis increases with the read coverage (Section 4.3.5).
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5.3.9 Ability of mlZ to remove Multis (error type 1)

To investigate the effectiveness of mlZ on removing false positive alleles, i.e. Mutis,

the number of heterozygous calls on the sex chromosomes of male individuals were

used. Sex chromosomes on male individuals are haploid and should not have any

heterozygous VNTR. We counted the number of such multis on the chromosome

X and Y of HG002, HG003, HG005, and HG006. Given that there 8,312 TRs on

the sex chromosomes and 181,461 TRs on autosomal chromosomes, we can estimate

the number of multis expected on the whole genome. mlZ does not run on sex

chromosomes of male individuals, so the number of mlZ predictions of HET→HOM

could be used as an estimate of the multi loci. Table 5.42 shows that the number of

HET→HOM predictions by mlZ agrees well with the estimated values. Figure 5·23

plots this correlation with r2 = 99%.

Genome
Multis

with two alleles
on chrX or chrY

Estimated
no. of Multis

on the whole genome

mlZ
HET→HOM

Difference

Sim1 284 6,200 9,287 -3,087
Sim2 59 1,288 1,405 -117
Sim3 27 589 614 -25
HG002 5 109 109 0
HG003 3 65 83 -18
HG005 22 480 645 -165
HG006 10 218 317 -99

Table 5.42: The mlZ HOM→HET predictions as an estimate
for Multi loci. The heterozygous Multi genotypes on the sex chro-
mosome of male individuals were used to estimate the total number
of multis on the whole genomes. Total TRs on chromosome X and Y
was 8,312, and the total number of TRs on the other chromosomes is
181,461. The HET→HOM predictions by mlZ was compared to the es-
timated number of Multis on the whole genome. The column Difference
shows the difference between the estimated Multis and the HET→HOM
predictions. The differences were small. Note that mlZ does not per-
form predictions on the sex chromosomes of male individuals.
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Figure 5·23: The expected number of multis compared to the
HET→HOM predictions by mlZ. The heterozygous Multi genotypes
on the sex chromosome of male individuals were used to estimate the
total number of multis on the whole genomes (see Table 5.42). The
HET→HOM predictions by mlZ correlated with the estimated number
of multis (r2 = 99%).
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5.4 Summary

In this chapter, a computational tool named mlZ (machine learning on Z-scores) was

introduced to reduce type 1 and type 2 errors in VNTR predictions. On the genotyped

TRs by VNTRseek, mlZ compares the observed read support to the theoretically

expected value to predict whether the genotype is heterozygous or homozygous. On

simulated datasets, mlZ had an accuracy of >95% and the precision and recall on the

heterozygous class was 94% and 93%, respectively. By applying mlZ to VNTRseek

predictions, the accuracy increased from ∼70% to >95%.

On real data, mlZ inferred an additional 20,000 heterozygous VNTRs increasing

the number of VNTRs to ∼21,000–24,000 per genome. mlZ prediction and perfor-

mance was consistent between datasets from the same genome from two different

sequencing platforms with ∼96% consistency on the heterozygous class.

In addition, the number of predicted ERROR labels increases with the read cov-

erage. Using the number of heterozygous VNTRs predicted by VNTRseek on the

sex chrosomomes on male individuals, the total number of multis on the rest of

the genome is estimated. A close correlation (r2 = 99%) between the number of

HET→HOM predictions by mlZ and the estimated number of multis was found.
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Chapter 6

Genotyping Macrosatellites Using Read

Depth (MaSUD)

6.1 Introduction

Macrosatellites are tandem repeats with patterns of 100 bp or larger. Currently no

high-throughput methods exist for genotyping macrosatellites. However, few stud-

ies have examined macrosatellites in vitro and concluded that macrosatellite copy

numbers are highly polymorphic across the human population (Schaap et al., 2013;

Brahmachary et al., 2014). Macrosatellites may affect gene expression by repeat-

induced gene silencing (RIGS) (Garrick et al., 1998; Ye and Signer, 1996) (see Chap-

ter 1). In this chapter I present a novel computational method, MaSUD (genotyping

MacroSatellite Using depth) to detect total copy number gain or loss using short

WGS datasets. Section 6.2 described the data used in this chapter and the method-

ology of MaSUD. Section 6.3 presents the performance of MaSUD and an analysis of

the characteristics of macrosatellites in a large cohort of unrelated individuals. This

chapter concludes in Section 6.4 with a brief summary.

6.2 Materials and methods

The data used in this analysis is presented in Sections 6.2.1, 6.2.2 and 6.2.3. The

MaSUD algorithm is described in Section 6.2.4. Sections 6.2.5 and 6.2.6 describe the

validation of MaSUD on real data. Section 6.2.7 provides the methods to annotate
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macrosatellites. Sections 6.2.8 and 6.2.9 describe the population-biases of macrosatel-

lite genotypes and Section 6.2.10 presents the methods on finding eQTL macrosatel-

lites.

6.2.1 Tandem repeat reference set

Tandem repeats on the GRCh38 reference genome were downloaded from the Tandem

Repeat Database (TRDB) (Gelfand et al., 2007) and filtered using the methodology

explained in (Gelfand et al., 2014). We further filtered the TRs to include only

macrosatellites, i.e. those with pattern length ≥100 bp. Additionally, macrosatellites

were removed if they overlapped with segmental duplications, i.e.,regions >1 Kbp

long and with >90% similarity to another region (Vallente and Eichler, 2005). For

this step, a list of segmental duplications database provided by the Eichler lab was

used (Bailey et al., 2001; Alkan et al., 2011).

6.2.2 Simulated datasets

Five simulated haploid genomes were generated using simuG (Yue and Liti, 2019),

which allows genome simulation with random or targeted variants. The simulated

genomes were designed to test MaSUD under different conditions: small copy number

changes, large copy number changes, and no changes. For each of the genomes,

the changes described below were applied to all the macrosatellites from the filtered

reference set:

– Ref : No change in macrosatellite copy number;

– Simple: macrosatellite copy number modified by creating a copy number change

in the range [−rcn,+rcn] where rcn = reference copy number. The range

includes only integer values. For example if rcn = 4, the new copy number

could be any integer value from 0 to 8. Since most macrosatellites have copy
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number <5, the changes here were small;

– Large: changes of at least three copy number when possible, if rcn≥3 the copy

change for gain would be in the range [3, rcn] and for loss would be [−rnc,−3],

otherwise, if rnc<3, no change is implemented;

– Gain: only copy number gains in the range +3 + [0, rcn]; and

– Loss : only copy number losses in the range −3− [0, rcn] when rnc≥3, otherwise

no change is implemented.

All randomized change values were rounded to the closest integer. Table 6.1 summa-

rizes the copy number gain and loss implanted on each simulated genome.

Name No. of ref. No. of gains No. of loss Sequencing

Ref 4,292 0 0 A, C
Simple 1,948 1,166 1,178 A, C
Large 4,038 130 124 A, B, D
Gain 0 4,292 0 A, B, D
Loss 3,615 0 677 A, B, D

ID Read length Fragment size Coverage

A 100 bp N (µ = 350, σ = 100) 40×
B 150 bp N (µ = 550, σ = 150) 40×
C 150 bp N (µ = 550, σ = 150) 100×
D 250 bp N (µ = 550, σ = 150) 100×

Table 6.1: Sequencing simulations.

The copy number changes were saved as VCF files and given as CNV targets to

simuG. An additionally random 3,000,000 random SNPs were also inserted into each

genome using simuG. As a result, a simulated haploid genome was produced for each

of the five conditions and saved in FASTA format.

We simulated paired-end Illumina reads from the FASTA files using ART (Huang

et al., 2012). Four different settings were used to represent publicly available real
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data, with read lengths of 100 bp, 150 bp, and 250 bp and physical coverages of 100×

and 40× (Table 6.1). The reads were mapped back to the reference genome using

BWA-MEM (Li, 2013) and the BAM files were sorted and indexed using samtools (Li

et al., 2009).

6.2.3 Whole genome sequencing data

GIAB: BAM files for seven genomes sequenced at high coverage were downloaded

from the Genome In A Bottle (GIAB) consortium (Zook et al., 2016) (see Data Avail-

ability Section) including: the NA12878 genome (HG001) from the 1000 genomes

CEU family, the Ashkenazi Jewish (AJ) trio (HG002, HG003, HG004) and the Chi-

nese (HAN) trio (HG005, HG006, HG007). The Ashkenazi Jewish trio and Chinese

Han trio genomes are from the Personal Genome Project (Church, 2005). Table 6.2

summarizes the characteristics of these datasets.

GIAB NIST Description Sex Read Coverage
ID ID length (bp)

HG001 NA12878 Western European Female 148 300
HG002 NA24385 Ashkenazi Jewish son Male 250 100
HG003 NA24149 Ashkenazi Jewish father Male 250 100
HG004 NA24143 Ashkenazi Jewish mother Female 250 100
HG005 NA24631 Chinese son Male 250 300
HG006 NA24694 Chinese father Male 148 100
HG007 NA24695 Chinese mother Female 148 100

Table 6.2: GIAB genomes.

NYGC: In 2019, the New York Genome Center (NYGC), sequenced 2,504 unre-

lated individuals from five super-populations and 26 sub-populations1. Most of these

genomes overlap with the 1000 Genomes Project. The read length was 150 bp and

the coverage was >30X. These genomes were downloaded as CRAM files.

1These data were generated at the New York Genome Center with funds provided by NHGRI
Grant 3UM1HG008901-03S.
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6.2.4 The MaSUD algorithm

MaSUD uses read depth to estimate the total change in pattern copy number at a TR

locus in comparison to a reference copy number. As a preliminary, we consider reads

mapping inside a TR array.

The expected number of reads aligning inside a macrosatellite array of length A

is positively correlated to the physical coverage and inversely? correlated to the read

length. This relation can be formulated as:

Inside ∝ Physical coverage

Read length
× A, (6.1)

where Inside is the number of reads aligning inside the array of size A.

The accuracy of this equation is shown using simulated data in Figure 6·1. Using

simulated data, we plotted the Inside counts against the array size and a correspond-

ing linear regression line for each read length and coverage combination. In each case,

the slope is equal to Physical coverage/Read length.

Consider now the example of genotyping the same macrosatellite locus in two

genomes, i and j, with the same sequencing characteristics, i.e., read length and

coverage. If the locus is homozygous in both genomes, but they have two different

alleles, with array sizes Ai and Aj, respectively, then by counting Insidei and Insidej,

we can estimate the difference between the array sizes as:

Ai − Aj =
Read length

Coverage
(Insidei − Insidej), (6.2)

and the fold change (ratio change in the sizes) as:

Ai

Aj

=
Insidei
Insidej

. (6.3)

Because the pattern lengths are the same in the two alleles, we can explain the
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Figure 6·1: The relation of the Inside measurement with read
length and physical coverage. Legend: the numbers for each test
are given as “read length”-“coverage”. The expected slope for read
length 100 bp and coverage 100X (red line) is one.

difference in array sizes as a difference in their copy numbers. (Here we assume that

the major differences in the allele lengths are confined to whole pattern copy number

differences. This restriction will be relaxed below?) In other words:

Ai = pattern length× copyi (6.4)

and

Aj = pattern length× copyj, (6.5)

where pattern length is the pattern size of the macrosatellite and copyi and copyj are

the pattern copy numbers in alleles Ai and Aj, respectively. Then, the copy number

change can be estimated as:
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copyi − copyj = (Ai − Aj) / pattern length, (6.6)

or:

copyi − copyj = (
Ai

Aj

− 1)× copyj. (6.7)

We use genome i and thus allele Ai as the reference allele in what follows. For the

sample (diploid) genome, the locus may have one (homozygous) or two (heterozygous)

alleles. The homozygous case is as presented above. For the heterozygous case, the

value of copyi will be the average copy number of the two alleles. Because MaSUD can-

not detect the difference between a homozygous and heterozygous locus, this means

that the estimated copy number difference from Equations 6.6 or 6.7 will also be an

average of the difference between the reference and the two heterozygous alleles.

Figure 6·2 shows the algorithm for MaSUD. Equations 6.6 and 6.7 are used to

estimate the copy number change of a macrosatellite locus in an individual compared

to the reference genome in the following steps:

1. Given a sorted BAM file, for each macrosatellite, reads aligning inside the array

(Insidei) are counted.

2. Simulated reads are generated with the same characteristics as the real data

from a genome with reference alleles. These characteristics are the physical cov-

erage, read length, mean fragment size and standard deviation. The simulated

reads are mapped back to the same reference genome and the reads mapping

inside each array (Insidej) are counted. The change in copies is calculated

according to Formula 6.6 (∆C) and Formula 6.7 (FC).

3. Step 2 is repeated several times (by default 10 times) to account for random

noise. The mean and standard deviation of ∆C and FC are calculated are

reported for each reference macrosatellite.
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These steps are described in more detail in the following paragraphs.

Figure 6·2: The MaSUD algorithm

Recruiting reads Given a sample genome BAM file consisting of reads aligned

to a given reference genome, MaSUD extracts reads mapping completely inside the

macrosatellite array. This observed number of reads is termed Insideobs and rep-

resents the combined effect of the two (heterozygous or homozygous) alleles in the

sample genome. This requires the array length to be greater than the read length.

Creating background counts Using the characteristics of the input BAM file,

i.e., the read length, fragment length mean and standard deviation, and physical

coverage, reads are randomly generated from the reference genome in the region(s)
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of interest. The simulated reads are mapped back to the reference genome and those

reads aligning completely inside the macrosatellite array are counted. This back-

ground number of reads is termed Insidebg for the reference copy number, copyref .

The copy number change estimate Copy number change at the macrosatellite

locus is estimated in two ways. First, using the Inside differences (formula 6.6):

∆C = (
Read length

Coverage
)× (Insideobs − Insidebg) / pattern length, (6.8)

and, second, using the Inside fold change (formula 6.7):

FC = (
Insideobs
Insideback.

− 1)× copyref . (6.9)

Theoretically ∆C and FC should return the same number. Since ∆C is a linear

function of two normal distributions, the standard deviation of this distribution will

be the summation of the standard deviation of the two normal distributions. How-

ever, FC is the ratio of two normal distributions and the standard deviation will be

undefined. In the case of gain (Insidei > insidej), the standard deviation will be

lower than the standard deviation of each distribution. However, ∆C and FC are

calculated using the reference pattern length and copy number, respectively, which

are independent values. It is interesting to report both measurements to compare

the robustness and how they perform under different characteristics of the reference

macrosatellite.

The refining step The background simulation is repeated ten times and the ∆C

and FC for each simulation is calculated. The mean and the standard deviation of

both statistics, ∆C and FC, are computed. The standard deviation is used as a

measure of certainty. Observing that ∆C performs better on loss of copies and FC
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performs better on gain, (see Section 6.3.2) we define the final estimate, MaSUD as:

MaSUD =


∆C, if ∆C < 0

FC, otherwise

(6.10)

One limitation of MaSUD is in regard to short array sizes. When the loss of copies

is such that the arrayj becomes smaller than the Read length, MaSUD returns -rcn,

because no read could span inside the array (Ai = 0). Any copy change of -rcn should

be treated as a loss of at least rcn− read
pattern

, rnc is the reference copy number.

6.2.5 In vitro validation

DNA samples for the AJ trio, NA24385, NA24149, and NA24143 (also identified as

GIAB IDs HG002, HG003, and HG004), were obtained from the NIGMS Human

Genetic Cell Repository at the Coriell Institute for Medical Research. We chose 10

macrosatellite loci predictions for experimental validation using the following criteria:

• product length ∼1,000–1,500 bp,

• expected length change within 10-20% of the reference array length,

• GC content of 40-60%, and

• unique primers detectable.

We prioritize those macrosatellite loci which were nearby to genes or regulatory re-

gions. The primers were designed using primer-BLAST (Ye et al., 2012) (Table 6.3).
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6.2.6 Confirmation on the Y chromosome in related genomes

The copy number on the Y chromosome of son and fathers should be identical.

6.2.7 Gene set enrichment of genes overlapping macrosatellites

All genes proximal to macrosatellites (1 Kbp upstream to 1 Kbp downstream) were

tested with GSEA (Subramanian et al., 2005) against the Molecular Signatures

Database (MSigDB) (Liberzon et al., 2011) for enrichment of KEGG pathways (Kane-

hisa and Goto, 2000), cell type signatures (C8), and biological process GO terms

(GO:BP) (Ashburner et al., 2000; The Gene Ontology Consortium, 2019). Results

with adjusted p-value (FDR) <1% were considered significant.

6.2.8 Population ancestry prediction

The NYGC dataset consists of 2,504 genomes from individuals with ancestry in five

super-populations (African, American, East Asian, European, and South Asian) and

26 sub-populations. Principal Component Analysis (PCA) was used to investigate

the predictive power of MaSUD genotyping results with regard to super-population

membership. For each sample, a vector of loci with MaSUD prediction values was

produced. Macrosatellite loci on the sex chromosomes, were excluded, resulting in

xxx loci per vector. The top 30 Principal Components (PCs) were selected to train

a decision tree to predict super-population ancestry using a 75% to 25% training to

testing split of the data. Training parameters were a maximum depth of 30, minimum

split size of 40, and minimum bucket size of 20 (default value). Performance of the

model, in terms of precision, recall, and overall accuracy, was evaluated on the testing

split.
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6.2.9 Population-biased macrosatellites

We applied two approaches to find macrosatellite loci with different MaSUD genotyping

distributions among the super-populations:

1. ANOVA model. An ANOVA model was used to detect differences of average

copy number changes predicted by MaSUD across super-populations. We used

the Tukey’s honestly significant difference test (Tukey’s HSD) (Tukey, 1949) for

multiple comparisons among the super-population groups. Tukey’s HSD reports

a maximum difference and the adjusted p-value for the null hypothesis that the

means in all the groups are the same. The Tukey’s HSD p-values were FDR

corrected and loci with FDR<5% and with predicted copy number difference of

at least one were reported as population-biased.

2. SHAP value. SHapley Additive exPlanations (SHAP) (Lundberg and Lee,

2017), a method to measure feature importance. was used to find macrosatel-

lites that are most predictive of super-population. We used the R package

SHAPforxgboost V0.0.4 (Liu and Just, 2020) to calculate SHAP values. The

top 1, 10, 20, 50, and 100 macrosatellites by SHAP value were used train a

predictive model (similar to Section 6.2.8).

6.2.10 Association of macrosatellite copy number with nearby genes

To detect expression differences among individuals with different VNTR genotypes,

mRNA expression counts from lymphoblastoid cell lines of 660 individuals by the

Geuvadis consortium (Accession: E-GEUV-1) were downloaded (Lappalainen et al.,

2013). A total of 445 individuals overlapped with the 2,504 NYGC genomes set.

To exclude genes that are not expressed in blood, we excluded genes with median

expression value equal to 0. Finally, we used log2 normalized TPM values to ensure

comparability across genomes.
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To control for confounders we used known covariates of sex and population and

detected additional hidden covariates. To detect hidden factors such as unreported

batch effects, we applied “Iteratively Adjusted Surrogate Variable Analysis” (Lee

et al., 2018) on the log2 normalized TPM values. Observing that covariates six and

above are over 85% correlated with other covariates (Figure 3·1), we chose five hidden

factors to include in our model. Finally, we used a linear regression expression ∼

sex+ population+ hiddenfactors to extract residuals to be used in the downstream

association model.

Next, for each gene, we extracted the genotypes of VNTRs within 10 Kbp. When

no genotype was observed for an individual, we classified the genotype as other (as-

suming that the actual alleles were outside the detection range of VNTRseek because

genotypes were observed in other individuals with similar coverage). VNTR loci were

retained for analysis if more than one genotype was detected for that VNTR across

all individuals (at least three if other was one of the genotypes) and if each genotype

was observed in at least 20 individuals.

For each gene-VNTR pair, we used an linear regression model as residuals ∼

genotype to detect if the mean of any genotype class is different from the others. The

p-values of the linear models were adjusted using FDR. Any gene-VNTR pair with

FDR<5% was reported.

Finally, we downloaded experiments on the GM12878 cell line from the ENCODE

project (ENCODE Project Consortium, 2012) with histone markers or DNAse peaks.

Narrow peaks in bed format on GRCh38 were downloaded (source IDs are given in

Table 3.1). Any overlap of the peaks with the eqtl VNTRs were reported.
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6.3 Results

The characteristics reference macrosatellites used in this study are described in Sec-

tion 6.3.1. was tested vigorously datasets and then validated on real dataset. The

performance of MaSUD was tested on simulate data (Section 6.3.2) and experimentally

proven on real data (Section 6.3.3). An overview of macrosatellites genotyped in a

large cohort of 2,504 unrelated individuals from NYGC is given in Section 6.3.4. Sec-

tions 6.3.5 and 6.3.6 present an analysis of population-biased macrosatellites. Finally,

Section 6.3.7 presents the macrosatellites associated with gene expression.

6.3.1 Characteristics of the macrosatellite reference set

Tandem repeats on the human reference genome assembly GRCh38 were downloaded

from TRDB (Gelfand et al., 2007). A total of 4,292 (3,877 with array length ≥300

bp) macrosatellite loci were extracted from TRDB that comprised 2,524,991 base

pairs (0.1%) of the reference genome. Figure 6·3 summarizes the characteristics of

the reference macrosatellites. The pattern length varied from 100 bp to 1,994 bp

(Figure 6·4a) and the copy number ranged from two to 120 (Figure 6·4c). Overall the

array sizes were between 178 bp and 57,978 bp (Figure 6·4b).
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Figure 6·3: Correlation of macrosatellites characteristics.
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(a)

(b)

(c)

Figure 6·4: Distribution of pattern length, array length and
copy number of macrosatellites used in this study.
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The macrosatellite loci were located mainly in intergenic regions and introns (Fig-

ure 6·5). They overlap with 2,114 genes (1,492 protein coding), including 677 exons.

The protein coding genes overlapping with the macrosatellites were enriched in path-

ways related to immunity and neuron function. The genes were enriched in gene

signatures of various midbrain cell types, adult kidney cells, and pancreas cells (all

FDR< 10−10). Among the biological functions were neurogenesis, neuron develop-

ment, neuron differentiation, synaptic signaling, ion transport, cell morphosis and

organization, and transportation of small molecules in the membrane. These enrich-

ment results suggest macrosatellites play a role in brain and neuron function.

Figure 6·5: Annotation of macrosatellite loci on the human reference
genome.
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6.3.2 Performance of MaSUD on simulation results

Total 34,428 macrosatellites were simulated in thirteen datasets (see Section 6.2.2).

The prediction results of MaSUD on simulated datasets compared to the true copy

number change is plotted in Figure 6·6 (Figure 6·7 and Figure 6·8 for ∆C and FC,

respectively). Overall, the ∆C and FC estimates were 99% correlated (Figure 6·9).

The performance of MaSUD on simulated data was measured in three ways:

1. Using a linear regression (Truth ∼ MaSUD): the r-squared value was 0.90 for

MaSUD (0.88 and 0.91 for ∆C and FC measurements, respectively). The RMSE

was 1.37 (1.66 and 1.34 for ∆C and FC, respectively). The correlation between

the MaSUD prediction and the true copy number changes was 95% (94% and 95%

for ∆C and FC measurements, respectively). The first and third quartile of the

residual values was -0.48 and -0.01, respectively with median -0.22 (median was

-0.47 for ∆C and -0.28 for FC).

2. By examining whether the true copy change is inside the ∆C and FC distribu-

tions (within three standard deviations): Overall, for 85% of the predictions,

the true change was within the normal range of the MaSUD predictions (75% and

78% for ∆C and FC, respectively). The standard deviation of the predictions

are shown in Figure 6·10.

3. By converting the problem to a classification problem to predict loss or gain:

If zero was within three standard deviations of the prediction, we considered

that NA, meaning no loss or gain. Otherwise, if the prediction was positive, we

consider it a gain and otherwise, a loss. MaSUD precision was 96% and 92% for

gain and loss, respectively and the recall was 95% and 96%. Overall accuracy

was 96%. FC had lower precision for losses in comparison to ∆C, and that is

why we use ∆C values for predicting losses (See Table 6.6).
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Figure 6·6: MaSUD predictions on simulated data. The copy num-
ber changes (Y-axis) as a function of the true copy number change
implanted (X-axis) are plotted. Total 34,428 predictions are shown for
13 datasets (different colors). Red line is the y=x line.
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Figure 6·7: Correlation of the ∆C estimate and the true copy
change.
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Figure 6·8: Correlation of the FC estimate and the true copy
change.
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∆C Gain Loss Ref Precision

Gain 8,943 18 336 96%
Loss 0 3,880 342 92%
NA 459 156 20,294 97%

Recall 95% 96% 97%

(a) MaSUD

∆C Gain Loss Ref Precision

Gain 9,318 19 569 99%
Loss 0 3,880 342 96%
NA 84 155 20,061 96%

Recall 99% 96% 96%

(b) ∆C

FC Gain Loss Ref Precision

Gain 8,943 18 336 96%
Loss 0 3,945 653 86%
NA 459 91 19,983 97%

Recall 95% 97% 95%

(c) FC

Table 6.6: Confusion matrix for MaSUD, ∆C and FC measure-
ments on simulated data. For three class of Ref (no change), Gain
(gains of copies), and Loss (loss of copies) we calculated the precision
and recall. Columns are labeled with true labels and rows are labeled
with predictions. If the µ ± 3σ interval of ∆C (or FC) included zero,
the prediction was considered NA. If the interval was strictly >0 it was
considered Gain, and otherwise Loss. Total number of predictions was
34,428. The accuracy by ∆C and FC was 97% and 95%, respectively.
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Figure 6·9: Correlation of ∆C and FC on simulated data.
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Table 6.8 shows the effect of dataset characteristics of MaSUD error. Higher cov-

erage reduced the error because the statistical power increases with the coverage.

Similarly, as the pattern length increased the error of MaSUD decreased, because the

change is more dramatic and easier to detect. The read size had a slight negative ef-

fect on the performance. Smaller reads provide higher resolution and allow for smaller

changes to be detected with higher precision.

Dataset Estimate Std. Error t value Pr(> |t|)
Gain 100bp 2.34 0.01 172 <2e-16 ***
Gain 150bp 2.11 0.02 -10 <2e-16 ***
Gain 250bp 2.76 0.03 -13 <2e-16 ***
Large 100bp 0.29 0.02 -106 <2e-16 ***
Large 150bp 0.22 0.02 -92 <2e-16 ***
Large 250bp 0.46 0.03 -58 <2e-16 ***
Loss 100bp 0.26 0.02 -108 <2e-16 ***
Loss 150bp 0.30 0.02 -89 <2e-16 ***
Loss 250bp 0.44 0.03 -58 <2e-16 ***
Ref. 100bp 0.28 0.02 -107 <2e-16 ***
Ref. 150bp 0.19 0.02 -94 <2e-16 ***
Simple 100bp 0.37 0.02 -103 <2e-16 ***
Simple 150bp 0.38 0.02 -86 <2e-16 ***

Table 6.7: Error by dataset.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 5.53E-01 1.94E-02 29 <2e-16 ***
read 6.82E-03 2.10E-04 32 <2e-16 ***
coverage -1.46E-02 3.24E-04 -45 <2e-16 ***
copy number 2.11E-02 1.45E-03 15 <2e-16 ***
pattern -3.17E-04 3.56E-05 -9 <2e-16 ***
copy number:pattern 1.22E-04 4.88E-06 25 <2e-16 ***

Table 6.8: Effect of dataset characteristics on error.
model used was: abs(truth−MaSUD) ∼ read+ coverage+ pattern×
copy number
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(a)

(b)

Figure 6·10: Standard deviation of ∆C and FC for each
dataset.
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6.3.3 Confirmation on real data

Confirmation on the Y chromosomes of related genomes: In the GIAB

datasets, the genomes of the sons should have the same copy number as the father.

Using a linear model son father had an estimate of 94% (p-value <2e-16).

Experimental validation of MaSUD predictions. To test MaSUD prediction, ten

loci were experimentally validated on the Ashkenazi Jew trio from GIAB by Samantha

D. Drinan (Fuxman lab). For each loci and individual, we interpolated the band size

using the ladder. To compare the observed bands to the predicted values, When two

bands were present for a given loci in an individual, the average of both band sizes

were used (Table 6.9). The predictions were plotted against the observed band size

or the average of two bands when present (Figure 6·11). The R2 was 0.91 with slope

0.93 and error of 0.05.

Figure 6·11: Predicted vs. observed band sizes of macrosatel-
lites. r2 = 0.907
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# Ref. copy
no.

Ref.
array

Ref.
pattern

Prediction
Child

Prediction
Father

Prediction
Mother

MS1 6.03 837 138 -2.14 -2.15 -0.89
MS2 6.00 660 110 -2.41 -2.60 -2.83
MS3 5.07 568 112 -2.78 -2.52 -2.53
MS4 4.01 571 144 -2.08 -2.06 -1.79
MS5 6.60 1,108 168 2.20 0.55 -0.43
MS6 2.35 1214 518 0.32 0.26 -0.15
MS7 2.50 668 267 -0.13 1.06 0.24
MS8 6.00 1,940 327 -4.66 -4.82 -4.40
MS9 3.28 1,008 308 0.14 0.01 0.06
MS10 9.60 1,910 165 -3.87 -6.28 -4.77

# Band size
Child

Child
genotype

Band size
Father

Father
genotype

Band size
Mother

Mother
genotype

MS1 671 -2/-2 671 -2/-2 671/1,049 -2/0
MS2 429/556 -3/-2 429/556 -3/-2 429/556 -3/-3
MS3 794/838 -3/-2 794/838 -3/-2 794/838 -2.69
MS4 443/739 -3/0 443/739 -3/0 443/739 -1.94
MS5 1,187 0 1,187 0 1,187 -0.11
MS6 1,759 0 1,759 0 1,759 0.27
MS7 805 0 897 0 897 0.34
MS8 407/518 -5/-4 407 -5/-5 518/676 -4.24
MS9 1,250 0 1,250 0 1,250 0.24
MS10 774/2,116 -7/+1 774/934 -7/-6 774/2,116 -6/+1

Table 6.9: Validation results of MaSUD.
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Then using the estimated average band sizes, the average change in copy number

was calculated and compared to the MaSUD predictions (Figure 6·12). Similar to

Section 6.3.2, we evaluate the accuracy of the validated prediction in three ways:

1. Using a linear regression (Truth ∼ MaSUD), the estimate was 1.06, the error

was 0.06, the R-squared was 0.92, and the RMSE was 0.62. The correlation

between the predictions and the validations was 0.95. The first, second, and

third quartile of the residuals were -0.21, -0.03, and 0.22, respectively and the

mean of residuals was 0.00.

2. By classifying if the prediction range with three standard deviation included

the true copy number change, accuracy was 100%. A total of 28/30 predictions

were within two standard deviations.

3. By considering the problem a classification of three categories: gain, loss, and

reference, all predictions were correct and accuracy was 100%.

Figure 6·12: Validation results of macrosatellites. The X-axis
is the observed copy number change estimated from the agerose gel.
This was performed by dividing the average difference of bands from
the expected reference band by the pattern size. Y-axis is the MaSUD
prediction. The error bars are 10% to represent the agerose gel error
rate. The line is the Y∼X regression line with R2 = 0.917.
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6.3.4 Results of MaSUD on NYGC

On 2,137 reference macrosatellites in the NYGC samples, a total of 1,084,869 (19%)

had gain of copies, 1,521,923 (27%) has loss of copies, and 3,012,184 (54%) were un-

changed (reference genotype). Figure 6·13 shows the number of samples that were

non-reference per macrosatellite locus. Some loci are more variable in certain pop-

ulations, e.g. Europeans (shown in purple) have the least number of variable loci,

probably because of the reference being mostly European. In 21 loci, the reference

was never seen. Minimum number of VNTRs per macrosatellite loci was 474.

(a) Frequency (b) Proportion

Figure 6·13: Number of VNTRs per macrosatellite locus. In
the NYGC genomes, the number of samples with non-reference alle-
les were counted for each macrosatellite locus. The X-axis are the
macrosatellite loci sorted by the total number of samples with VNTRs.
The different populations are shown in different colors. The height of
each bar represents the number of samples with non-reference genotype.
Left plot shows the frequency of VNTRs per locus. Right plot shows
the relative proportions of VNTRs per locus.

6.3.5 Prediction of Super-population using MaSUD

To examine whether the macrosatellite copy numbers are predictive of the super-

population, I applied unsupervised clustering using Principal Component Analysis

(PCA) on the NYGC genomes. The first 30 principal components were used (captur-
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ing 61% of the variation) to train a decision tree on 75% of the data and tested it on

the remaining 25%. The decision tree could predict the super-population with 93%

accuracy (Table 6.10).

AFR AMR EAS EUR SAS Precision

AFR 658 6 1 1 4 98%
AMR 2 294 10 28 19 83%
EAS 1 9 483 3 10 95%
EUR 0 23 1 453 16 92%
SAS 0 15 9 18 440 91%
Recall 100% 85% 96% 90% 90%

Table 6.10: Confusion table of prediction model. The precision
of each class (super-population) in shown in the last column. The recall
is calculated in the last row. The overall accuracy was 93%.
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(a) (b)

(c) (d)

(e) (f)

Figure 6·14: Population specific loci by ANOVA.



201

6.3.6 Population-biased VNTRs

We detected population specific macrosatellite loci in two ways: first, using an

ANOVA model to compare the mean MaSUD values of each super-population (MaSUD ∼

Superpopulation), and second by SHAP values (see methods). Using the first ap-

proach, a total of 397 loci had population-bias with a minimum difference of at least

one copy change. These loci could predict the super-population with 87% accuracy.

Figure 6·14 shows the loci with the highest difference in mean compared to the overall

mean.

In the second approach, we used SHAP values to find population-speific macrosatel-

lites. ShAP values methodology to determine feature importance in a predictive

model usin Gradient Boosted Trees (Liu and Just, 2020). The top macrosatellite loci

by SHAP value was id=182571530, with reference pattern length 105 bp and copy

number 3.07 located at chr17: 401846-402168 (hg38) (Figure 6·16).

Figure 6·15: Top features by SHAP values.
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Figure 6·16: Macrosatellite 182218798 has the highest predic-
tive value. The violin plot shows the distribution of MaSUD prediction
for each super-population. The macrosatellite with the highest SHAP
value (0.489) could predict super-population ancestry with 63% accu-
racy. The macrosatellite (id 182218798) had reference pattern length
105 bp and copy number 3 and is located in at chr17:400,531-411,263.

There were 2,245 macrosatellites with SHAP values with mean impact score of at

least 0.1. Using the MaSUD predictions of these loci, I could predict the superpopu-

lation class on the test dataset with 95% accuracy (Table 6.11). The top 10, 20, 50,

and 100 macrosatellite loci by SHAP value, the super-population prediction accuracy

was 82%, 86%, 87%, and 88%, respectively (not shown).

6.3.7 Association of macrosatellite genotypes with gene expression

To find the association of macrosatellites on gene expression, we used gene expression

in blood tissue of 445 indivuals from the Geuvadis 1 dataset. A regression model

was used to remove the effect of known covariates (i.e. sex and common SNPs) and

unknown covariates which were calculated using SVA. Then, a regression model was

used to examine association between the residuals of the gene expression with Ma-

SUD predictions. A total of 979 macrosatellites-gene pairs were tested, out of which

23 macrosatellites were in eQTL with at FDR <5%. Figure 6·17 shows the eQTL
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True AFR True EAS True EUR True SAS Class precision

Pred. AFR 179 1 3 0 98%
Pred. EAS 0 124 0 2 98%
Pred. EUR 0 1 113 13 89%
Pred. SAS 0 1 6 105 94%
Class recall 98% 98% 89% 94%

Table 6.11: Prediction of superpopulation using features with
SHAP value >0.1. Using the macrosatellites with SHAP value >0.1,
an SVM model was trained on 75% of the samples. The model was
tested on the remaining 25% and the class precision and recall was cal-
culated. The overall performance was 95%. Note that the individuals
with American ancestry were excluded from the analysis, because they
have admixed genomes.

macrosatellite genes. These genes included CDK11A, NBPF3, NBPF26, NBPF11,

MUC1, LRRC27, TUBGCP2, AL442125.2, GAS6-AS1, NEO1, OSGIN1, ACSF3,

CPNE7, P2RX5, RBFADN, INSIG2, AP001056.2, CEP63, SLC9A3-AS1, SLC9A3,

DUSP22, and KIF25-AS1. CDK11A have been associated to neuroblastoma (Duan

et al., 2012) as well as Neuroblastoma Breakpoint Family Members NBPF3, NBPF11

and NBPF26. The MUC1 macrosatellite is a known marker for cancer therapy (Singh

and Bandyopadhyay, 2007).

The top two macrosatellite eQTLs by FDR are shown in Figures 6·18 and 6·19.

Figure 6·18 shows the association of NBF26 with macrosatellite 182180200. This

macrosatellite spans the NBF26 gene and has pattern length 1,559 bp and reference

copy number 2.4. MaSUD predicted changes from loss of one copy to gain of 10 copies.

Most individuals from the Yoruban population had loss of one copy. In another ex-

ample, Figure 6·19 shows the association of CDK11A with macrosatellite 182169588.

This macrosatellite is located in the fourth intron of CDK11A and has a pattern

length 483 bp and reference copy number 2.2. MaSUD predicted up to two copies of

gain or loss across the 445 individuals.
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Figure 6·17: Macrosatellite eQTLs. A regression model was used
to determine the association of macrosatellite genotypes with the gene
expression. The Estimate of this model is shown on the X-axis, and the
-log10 FDR value on the Y-axis. The horizontal line is the 5% cutoff
for FDR. A total of 22 macrosatellite eQTLs were deteced.

6.4 Summary

In this chapter a novel computational tool, MaSUD, was presented that genotypes

macrosatellite copy number changes using short WGS reads. MaSUD was tested vig-

orously on simulated data and shown to have 90% accuracy with an average error of

half a copy. To further evaluate the accuracy of MaSUD, it was applied to real data

of related genomes. The macrosatellite predictions on the Y chromosome of father

and sons agreed with 94% accuracy. A random set of 10 loci were also tested on

three related genomes and the accuracy of copy number change was 92% with an

error of 0.6 copies. However, agerose gels also have about 10% error, which was not

considered in our validation. Overall, MaSUD performs with high accuracy.

To characterize 4,292 macrosatellites in human populations, MaSUD was applied to

a cohort of 2,504 unrelated individuals with ancestries from five super-populations.

On average 474 VNTRs per sample were observed, which consisted of 19% gains,
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Figure 6·18: Association of macrosatellite 182180200 with
NBPF26.

27% loss and 54$ reference alleles. Similar to minisatellites and microsatellites, in

macrosatellite VNTRs loss of copied is more common than gain.

A total of 2,245 macrosatellites genotypes were population-specific and using these

loci, the ancestry of the individuals could be predicted with 95% accuracy. In blood

tissue, a total of 21 macrosatellites were in eQTL with 22 genes. These results show

that macrosatellites are highly polymorphic and can be used in GWAS studies to

further the knowledge of germline variation.
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Figure 6·19: Association of macrosatellite 182169588 with
CDK11A. This macrosatellite is located in the intron 4 of CDK11A,
has pattern length 483 bp and reference copy 2.2.
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Chapter 7

Conclusions and future work

In this thesis I present the most comprehensive analysis of human copy number vari-

able tandem repeats (VNTRs), based on currently available whole genome sequencing

data., This research greatly expands our knowledge of this class of genetic variation,

whose important role in biology and human disease is becoming increasingly evident.

In Chapter 2, approximately191,000 minisatellites were genotyped. The pattern

sizes ranged from seven to 100 bp. Our results reveal that nearly 20% (35,828) of the

minisatellite loci in the human genome are variable. This percentage is in agreement

with previous findings in the literature (Näslund et al., 2005). In comparison to other

forms of variation, such as SNPs, minisatellite VNTRs have high heterozygosity (40%–

60%) and many exhibit multiple alleles, which is consistent with previous predictions

(Denoeud et al., 2003). The number of polymorphic minisatellite detected per genome

depends on the statistical power (read length and coverage); however, at similar

statistical power, the specific genetic population was the deterministic factor with

Africans and East Asians exhibiting the highest number of VNTRs per individual,

suggesting a greater evolutionary distance from the reference genome. On average,

the African genomes had the highest ratio of heterozygous calls, which suggests higher

diversity in the African population.

In Chapter 3, population-wide analyses of the minisatellite VNTRs in 2,504 un-

related genomes from five super-populations were presented. A total of 5,676 com-

monly polymorphic minisatellite VNTRs (VNTRs in at least 5% of the population)
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were identified. Each genome had, on average, 1,783 polymorphic minisatellites.

These minisatellite loci overlap with 2,173 protein coding genes including 254 exons,

and are generally enriched in upstream and downstream regions of genes, 3’ UTRs, 5’

UTRs, introns, exons, transcription factor binding site (TFBS) clusters, CpG islands,

and DNAse clusters. Association of VNTR alleles with proximal gene expression in

blood, showed that 193 minisatellite VNTRs had alleles that were correlated with

nearby gene expression. Previous studies have also shown that minisatellite VNTRs

affect gene expression in a tissue-specific fashion (Bakhtiari et al., 2020).

We also showed that minisatellite VNTRs can be used to predict ancestry with

>98% accuracy (Table 3.5). One third of the minisatellite VNTRs had at least one

population-biased allele (Figure 3·17). The VNTRs with population-biased alleles

were enriched in gene sets with functions related to neuron function, and were to be

gene markers of various mid-brain cell types.

In Chapter 4, the precision of VNTRseek predictions was evaluated. Minisatel-

lite VNTR predictions were validated in vitro and in silico. A total of 66 alleles

predicted by VNTRseek on three related genomes were tested experimentally us-

ing B-Lymphocyte DNA, and all predictions were confirmed. Twelve previously de-

scribed experimental validations on the NA12878 genome (Bakhtiari et al., 2018) were

compared against our predictions and 11 were predicted correctly and only one was

incorrectly predicted by VNTRseek. The consistency of VNTRseek across genomes

sequenced by two different sequencing platforms was measured: overall 76%-–91% of

the predicted VNTR alleles were detected in both platforms. Consistency was also

evaluated in four trios (child-father-mother) and only 15 inconsistent alleles out of

16,040 were found.

Chapter 5 presents a statistical tool named mlZ (machine learning on Z-scores)

to predict whether genotyped variants are heterozygous or homozygous. Using mlZ,
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we were able to predict tens of thousands of new VNTR loci. Also, mlZ can identify

erroneous genotypes. The performance of mlZ on simulated data is >95%, and the

results are consistent across different sequencing platforms.

Chapter 6 focuses on macrosatellite TRs. Macrosatellites have pattern lengths

of 100 bp or longer and are significantly longer than minisatellites, which makes

them more difficult to genotype. A novel computation tool, MaSUD, to genotype

macrosatellites was presented. At this time, MaSUD is the only computational tool

capable of precisely genotyping macrosatellites in a high-throughput fashion using

short WGS reads. The performance of MaSUD was demonstrated on various simu-

lated datasets and validated in vitro and in silico on real data from related genomes.

A genome-wide analysis of macrosatellites showed that over 2,000 macrosatellites

have population-specific genotypes, which could be used to predict ancestry with

95% accuracy. In DNA from human blood cells, 22 macrosatellites were found to

have genotypes associated with nearby genes. However, more studies are required to

find eQTL macrosatellites in other cell and tissue types.

7.1 Comparison of minisatellite VNTR predictions to the lit-

erature

As discussed in Section 1.8.4, different characteristics of minisatellites have been used

to predict their variability (Denoeud et al., 2003; Näslund et al., 2005). These two

previous studies showed that the reference copy number and the similarity of repeat

units are predictive of TR variability. In our study, of the 35,638 VNTRs detected in

2,504 unrelated genomes from NYGC, a regression model was applied to predict the

variability of minisatellites using pattern length, reference copy number, array length,

and annotation of the minisatellite loci. Variability was determined as the number of

alleles observed for any minisatellite. We found that the reference copy number was
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the most predictive of the number of alleles (Table 7.1) with effect size 0.52 (p-value

< 10−16). TRs inside TFBS, CpG islands, and 1 Kbp upstream of genes were slightly

more likely to have higher number of alleles. Figure 7·1 shows the distribution of the

number of alleles per VNTR.

Estimate Std. error t value p value Significance

(Intercept) -3.79 0.04 -88.75 <2e-16 ***
pattern -0.01 0.00 -9.58 <2e-16 ***
copy number 0.52 0.00 107.53 <2e-16 ***
TFBS 0.06 0.00 22.41 <2e-16 ***
Upstream 0.07 0.01 12.53 <2e-16 ***
Exon -0.01 0.01 -1.17 2E-01
Intron -0.01 0.00 -2.33 2E-02 *
CpG 0.35 0.01 44.11 <2e-16 ***
Conservation 3.66 0.04 87.88 <2e-16 ***
pattern:copy number 0.01 0.00 28.12 <2e-16 ***

Table 7.1: The effect of reference TR characteristics on the
TR variability.

Another way to examine variability is to consider the number of individuals that

have non-reference alleles at a given minisatellite locus. We used a binary label

to determine if a minisatellite is commonly polymorphic, i.e., polymorphic in >5%

of the population, or private (<5% of the population). TRs with higher reference

copy number are more likely to be commonly polymorphic (Table 7.2). Minisatellites

overlapping TFBS, upstream of genes, and in CpG islands are more likely to be

common VNTRs. In contrast, TRs inside exons are less likely to be common VNTRs.

7.2 Limitations of VNTRseek

At high read length (250 bp) and coverage (>30×), over 90% of the reference TRs

were genotyped. Despite the high sensitivity of VNTRseek, our curation of VNTR

loci has almost certainly produced an undercount or the total number VNTRs. This

is true because VNTRseek requires that a given tandem array fit within a read of
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Figure 7·1: Distribution of number of alleles per VNTR loci.

250 bp. Longer reads can span longer TR arrays, but long reads are noisy with high

indel rates (Korlach, 2013).

Another limitation of VNTRseek, which results in not detecting TR losses, comes

from using the Tandem Repeat Finder (TRF) that is used to find TRs inside reads.

TRF requires that the array contains at least 1.9 copies to be detected. At a read

length of 150 bp, gain of one copy compared to the reference genome could be detected

in 82% of the TR loci, whereas loss of one copy could be detected in only 16% of

the reference TRs (Table 5.4). Despite this imbalance, loss of one copy was observed

nearly 40% more often than gain of one copy (Figure 7·1). This suggests that loss of

one copy is the most common allele in minisatellite VNTRs.

The data in Figure 7·2 suggest that loss of one copy is the most common allele,

and is not an effect of bias in the VNTRseek detection range. Graph (a) in Figure 7·2
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Estimate Std. error t value p value Significance

Estimate Std. error t value p value Significance
(Intercept) -31.30 0.69 -45.09 <2e-16 ***
pattern -0.16 0.01 -19.76 <2e-16 ***
copy number 0.46 0.04 11.25 <2e-16 ***
TFBS 0.30 0.04 7.40 1E-13 ***
Upstream 0.34 0.07 4.91 9E-07 ***
Exon -0.59 0.18 -3.34 8E-04 ***
Intron -0.10 0.04 -2.61 9E-03 **
CpG 0.93 0.08 11.17 <2e-16 ***
Conservation 25.90 0.68 38.06 <2e-16 ***
pattern:copy number 0.09 0.00 32.76 <2e-16 ***

Table 7.2: The effect of characteristics of reference TRs on
the likelihood of common VNTRs.

shows information on the entire NYGC dataset with read length 150 bp. The upper

subgraph is a histogram showing the number of non-reference alleles detected, grouped

by the reference array length. Bin sizes are 1 bp. The data have been filtered so that

only those reference loci are shown in which both gain and loss of one copy could

be observed. Copy number change of ±1 is by far the most common as seen in

Figure 2·4.) The lower subgraph counts, for each reference array length, the number

of gain alleles (increase in copy number) minus the number of loss alleles (decrease in

copy number). Negative numbers (aqua) indicate that more losses than gains were

observed for loci at that reference array length, and the more negative, the greater

the bias towards loss. As can be seen, loss with respect to the reference is much more

common than gain, except for the shortest reference array lengths. Graph (b) shows

this same trend 250 bp reads from the 1000 Genomes data. The same can be observed

in individual data as shown in graphs(c) and (d). The bar graph (e) shows that this

trend persists in the entire NYGC dataset if one considers loci for which both gain

and loss of 1, 2, 3, etc. copies is observed.
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(a) (b)

(c) (d)

(e)

Figure 7·2: Copy gain versus loss relative to the reference. In the
upper quartet of graphs, the upper subgraph is a histogram showing the
number of non-reference alleles detected for those loci where both a gain
and loss of one copy could be observed. Bin sizes are 1 bp. The lower
subgraph counts, for each reference array length, the number of gain alleles
(increase in copy number) minus the number of loss alleles (decrease in copy
number). Negative numbers (aqua) indicate more loss than gain. (a) the
entire NYGC dataset, (b) the entire 1000 Genomes dataset, (c) NA18517
(150 bp), (d) NA12878 (250 bp), which is labeled HG001 in GIAB. Graph
(e) shows, the aggregate excess of loss over gain for the entire NYGC dataset,
when considering loci for which both gain and loss of 1, 2, 3, etc. copies could
be observed.



214

Observing more loss than gain has also been observed in previous studies. Bakhtiari

et. al. (2018) genotyped approximately 10,000 loci in the NYGC dataset using ad-

VNTR, which does not have the same array length limitations as VNTRseek, and

they also reported finding more losses than gains (see Figure S4 of Bakhtiari et al.,

2018). Loss has also been reported to be more common in STR variants using the

lobSTR computational tool (Willems et al., 2014). Observing more loss of copies

than gain is likely due to a bias during genome assembly whereby a higher number

of copies is preferentially selected in repetitive regions (Kent and Haussler, 2001). In

Chapter 5 a method to infer missing alleles using read support was proposed.

7.2.1 Error types in VNTRseek

Computational tools that use short WGS reads for detecting genomic variation are

evaluated for their sensitivity and type 1 error rate. The main sources of erroneous

calls are ambiguous mapping due to reads originating from repeat-rich regions of the

genome and sequencing errors. Setting a requirement of minimum read support for

each prediction reduces false-positive calls at the cost of reducing sensitivity. The sen-

sitivity of VNTRseek increases as the read length and coverage increase (Figure 2·1).

However, as the read coverage increases, sequencing errors accumulate, and cause type

1 errors (Figure 4·9). The type 1 error of VNTRseek was measured by counting the

Multi loci, i.e., the loci that were genotyped with more alleles than logically possible.

About 1% of the VNTR loci were multi per genome and about one third occurred

in only one genome, suggesting type 1 errors are occurring at random. Similarity in

sequence of reference TRs accounted for 46% of the Multi loci (Figure 4·8).

Another source of type 1 error was due to sequencing errors. Filtering alleles

with low read support reduces the type 1 error with the trade-off of sensitivity. On

the haploid genomes, increasing the minimum read support requirement reduced the

number of multis by almost two-fold. Requiring higher read support for predicted



215

alleles reduces the number of multis, controlling the type 1 error. However, this would

result in less sensitivity as larger TR arrays with lower coverage are filtered.

7.2.2 Effect of read coverage of VNTRseek precision and recall

In order to do determine the effect of read coverage on VNTRseek, the performance

of VNTRseek was tested on a simulated genome. Using all the reference set TRs,

random gain or loss of one pattern copy was inserted such that:

- one-sixth of the TR loci had heterozygous gain of one copy (0/+1),

- one-sixth of the TR loci had homozygous gain of one copy (+1/+1),

- one-sixth of the TR loci had heterozygous loss of one copy (0/-1),

- one-sixth of the TR loci had homozygous loss of one copy (-1/-1), and

- two-sixths of the TR loci had no change (0/0).

The ratios were chosen to balance the different classes.

Two genotypes, paternal and maternal, were simulated using simuG (Yue and Liti,

2019) with 3,000,000 random SNPs and the TR changes in copy as VCF files. Paired-

end Illumina reads were simulated using the ART read simulator (Huang et al., 2012)

to represent the same profile as the NYGC data: HiSeq2500 error profile, read length

of 150 bp, fragment length mean of 550 bp, and fragment length standard deviation

of 150 bp. The fragment coverage was calculated to give read coverage of 30X, 50X,

70X, and 100X. In each case, half the reads were from the paternal genome and half

from the maternal genome.

VNTRseek was run on each dataset at the different coverages, and the precision

and recall were determined for alleles overall and within the detectable range of VN-

TRseek, i.e., allele copy number of at least 1.9 (TRF limitation) and array size of
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130 bp or less (allowing for flanking sequence of 10 bp on each side of the array).

Results are presented in Figure 7·3 and Table 7.3 to Table 7.6. The runtimes are

given in Table 7.7.

The precision, or positive predictive value, reduced slightly as the coverage in-

creased, but in all cases was greater than 93%. The recall for the detectable alleles

ranged from 41% to 44% for the -1 alleles, from 85% to 90% for the +1 alleles, and

above 98% for the reference alleles. The very low level of detection for -1 alleles in

the “all alleles” graph is due to the TRF limitation. Because a very high percentage

of the reference TRs had copy number under 2.9 copies. loss of one copy put them

outside the detectable range.

(a)
(b)

(c)
(d)

Figure 7·3: VNTRseek performance by coverage. Precision and
recall for the entire collection of simulated TR alleles (sub-figures a and
b) and the alleles in the detectable range of VNTRseek (sub-figures c
and d) are shown. Precision, or positive predictive value, is the fraction
of the predicted alleles that are correct (TP/(TP+FP)). Recall is the
fraction correctly detected out of the total of that type (TP/(TP +
FN)).
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30X True -1 True 0 True 1 Other

TP 3,056 106,065 49,005 0
FP 95 2,275 96 106
FN 4,380 2,463 8,942 0

Precision 97% 98% 100% NA
Recall 41% 98% 85% NA

Table 7.3: Detectable alleles confusion matrix of simulation
at 30X coverage.

50X True -1 True 0 True 1 Other

TP 3,161 106,833 50,405 0
FP 149 3,037 118 154
FN 4,275 1,695 7,542 0

Precision 95% 97% 100% NA
Recall 43% 98% 87% NA

Table 7.4: Detectable alleles confusion matrix of simulation
at 50X coverage.
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70X True -1 True 0 True 1 Other

TP 3,246 107,084 51,076 0
FP 226 3,524 143 184
FN 4,190 1,444 6,871 0

Precision 93% 97% 100% NA
Recall 44% 99% 88% NA

Table 7.5: Detectable alleles confusion matrix of simulation
at 70X coverage.

100X True -1 True 0 True 1 Other

TP 3,297 107,294 52,225 0
FP 265 4,954 161 220
FN 4,139 1,234 5,722 0

Precision 93% 96% 100% NA
Recall 44% 99% 90% NA

Table 7.6: Detectable alleles confusion matrix of simulation
at 100X coverage.
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Coverage User time System time Wall clock time CPU time Max memory

30X 6:16:26:45 5:49:42 14:44:06 6:22:16:28 37G
50X 11:01:02:20 8:24:16 1:00:32:53 11:09:26:37 38G
70X 15:03:35:49 9:10:04 1:08:58:30 15:12:45:53 39G

100X 22:02:53:22 10:39:42 2:07:48:25 22:13:33:04 40G

Table 7.7: Run time of VNTRseek on simulated datasets.

7.3 Limitations of mlZ

In Chapter 5, I describe mlZ, which can be used to infer missing alleles or incorrect

alleles using read support. mlZ requires simulated data to train its machine learning

model. However, due to limitation of VNTRseek, few heterozygous calls (less than

1%) are detected per simulation. Thus, at higher array length, the heterozygous

machine learning model of mlZ is underfitted and lacks precision. More simulation

data should be created for mlZ to overcome this problem.

7.4 Limitations of MaSUD

In Chapter 6, I describe MaSUD for genotyping macrosatellites using short WGS

reads. MaSUD can only report the total copy number change from all chromosomes

and cannot report the exact genotype at a given locus. For example, a MaSUD

prediction of zero is found for genotypes of both -1/+1 and 0/0. While the first

is a VNTR, while the second is not. Thus, for small MaSUD predictions the true

copy number change is unreliable and this is why the results for values close to 0 are

reported at N/A (e.g., see Table 6.6 and Figure 6·12). MaSUD can only genotype

macrosatellites with arrays longer than the read length. When array sizes are small,

the number of reads covering the array is low and MaSUD reports higher standard

deviation. This standard deviation can be used to eliminate noisy predictions.

Finally, MaSUD requires a genome sequence coverage of at least 40× to precisely
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genotype macrosatellites. Shorter reads and higher coverage increase the performance

of MaSUD. While these requirements are a limitation for prior data, such as the 1000

Genomes, recent datasets (e.g., NYGC and SGDP) meet this requirement.

7.5 Future work

7.5.1 Correcting reference TRs

In a small number of VNTRs (150 minisatellites and 21 macrosatellites), the reference

allele was never observed (e.g., Table 2.4). This suggests that the reference genome

is inaccurate at these loci. In addition, for many VNTRs the major allele was not

the reference allele. The findings of this dissertation could be used to further improve

the reference genome assembly.

7.5.2 Effects of VNTR alleles on proximal gene expression

Many of the VNTRs what we and others (some refs) have identified are found within

or near to genes; however, a limited number of studies have analyzed the effects of

VNTR changes on gene expression or protein function. As such, further studies are

required to provide more evidence of changes in gene expression or function associated

with VNTR genotype (Sulovari et al., 2019; Bakhtiari et al., 2020). For example,

additional studies are required to determine if correlations between VNTR number

and gene expression levels can be directly attributed to specific VNTR alleles, such as

altering the binding of transcriptional regulatory proteins. The genotypes presented

in this dissertation could be used to detect VNTR eQTLs.

7.5.3 Ancestry DNA

Population-biased alleles have the potential for use in tracing early human migration.

We have shown that super-populations can be predicted using the VNTR genotypes

(Section 3.3.3). Based on common VNTR alleles, I have constructed a decision tree
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that obtains nearly perfect classification of individuals at the super-population level

(Figure 3·16). It will be interesting to determine whether, with more information,

classification can be further refined to encompass specific sub-populations, whether

a minimal minisatellite VNTR set can be established for high accuracy population

classification, and whether VNTR alleles can be used to estimate mixed ancestry as

is done now with SNP haplotyping (Bulbul and Filoglu, 2018; Pritchard et al., 2000).

7.5.4 GWAS

The frequency of VNTR occurrence and the possible effects of VNTRs on gene expres-

sion suggest that minisatellite VNTR loci can be useful in genome-wide association

studies (GWAS). Relevant to this, we have determined that 1,096 of the common

VNTR loci contain alleles show significant population specificity and that these loci

intersect with 689 genes. Including VNTRs in GWAS models will be useful in future

studies should. For example, VNTRs could be incorporated into GWAS on publicly

available datasets on Alzheimer’s disease, autism, and centenarians. Further investi-

gate is required to determine whether there are haplotype linkages between specific

VNTR alleles and nearby SNP alleles.

7.5.5 VNTR alleles under selection

Commercial cancer diagnosis kits using minisatellite VNTRs have been introduced (Leem

et al., 2011) and it has been proposed that VNTRs associated with cancers be used

for targeted sequencing in personalized therapies (Singh and Bandyopadhyay, 2007;

Yoon et al., 2016; Rose, 2015). VNTR genotypes presented in this dissertation could

be studied under the Hardy-Weinberg equilibrium to find deleterious alleles. This

would be beneficial to find disease causing VNTR loci which could be included in

targeted sequencing panel for clinical purposes.
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7.5.6 Visualization of VNTR genotypes

Currently I am developing an Rshiny application to allow users to visualize VNTR

genotypes and their characteristics.

7.5.7 Improvement and generalization of mlZ

mlZ can be generalized to be applicable to outcomes from other CNV tools that report

the genotype and read support.

7.6 Overall summary

The results presented in this thesis have described several computational tools for

identifying and characterizing tandem repeats in the human genome. Although for a

long time, such repeats were overlooked as having biological functions, it is becoming

increasingly clear that tandem repeats do play roles in biology and disease, in many

cases probably by affecting gene expression and/or function. As methods, such as long

read sequencing, improve for reading these highly repetitive sequences in the human

genome, computational tools for identifying and predicting tandem repeat variations

will also become increasingly useful. Applications of computational tools, such as

those described in this thesis, may be in areas of predicting disease susceptibility,

biological function, forensics, and ancestry.
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