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ABSTRACT
In this paper, we present a rescaling simulation methodology
(RSM) to expedite simulation in large-scale TCP/IP net-
works without loss of fidelity of simulation results. Concep-
tually, we scale down the network to be simulated to reduce
the number of events, simulate the downscaled network for
a short period of time, and then extrapolate the correspond-
ing results for the original network by scaling up the simu-
lation results obtained from the downscaled network. Both
the operations of scaling down and rescaling up the network
are conducted in such a manner that the network invariant,
called the bandwidth-delay product, is preserved. In partic-
ular, since the dynamics of queues, such as the queue size,
the dropping probability, and other parameters at every link
are the same in both the original and downscaled network,
RSM can accurately infer the network dynamics behavior of
the original network (equipped with various Active Queue
Management (AQM) strategies). In contrast to SHRiNK
[17], RSM does not make any assumption on the input traf-
fic and can work with any AQM strategy. It also preserves
the queue dynamics and the network capacity as perceived
by TCP connections.

To validate the proposed methodology, we have implemented
RSM based simulation in ns-2, and conducted a simulation
study comparing RSM based simulation against packet level
simulation, with respect to the capability of capturing tran-
sient, packet-level network dynamics, the execution time and
the discrepancy in simulation results. The simulation results
indicate an order of magnitude or more improvement (max-
imally 50 times) in execution time and the performance im-
provement becomes more prominent as the network size in-
creases (in terms of number of nodes and network capacity)
or as the scaling parameter decreases. The error discrepancy
between RSM based simulation and packet level simulation,
on the contrary, is minimally 1-2 % and maximally 10 %
in a wide variety of network topologies (with various AQM
strategies) and traffic loads. The encouraging simulation re-
sults, coupled with the fact that implementation of RSM is
simple and straightforward, suggest that RSM can be used
to simulate, and accurately infer network dynamics of, large-

scale TCP/IP networks.
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1. INTRODUCTION
Modern data communication networks are extremely com-
plex and do not lend well to theoretical analysis. With com-
puter/network entities and techniques interacting and inter-
fering with one another, optimization problems do not have
a simple and regular structure that allows us to neatly fit it
into the framework of established optimization theories. As
a result, it may be more feasible to carry out simulation to
study and evaluate the performance of network entities and
protocols, and interaction among them. The major obsta-
cle in packet-level network simulation is, however, the vast
number of packets that have to be simulated in order to
produce accurate results, especially in large-scale networks.
Each packet will generate a number of events (e.g., arrival of
a packet at the router, its departure, and its queuing, just to
name a few) on the path from the source to the destination
and each event has to be executed at some specified time
point. As the CPU time required is roughly proportional to
the number of events that have to be executed, packet-level
simulation easily becomes computationally expensive, if not
infeasible, when the network size and/or the traffic amount
is extremely large. What seems to be a reasonable solution
is really to combine theoretical modeling with packet-level
simulation [14, 16, 19].

The notion of fluid model based simulation is proposed to
reduce the computational load in packet level simulation [8,
11, 13, 19, 21]. Conceptually a fluid model — a set of differ-
ential equations that characterize the network dynamics —
is adopted and incorporated into the simulation engine. In
the course of simulation, a sequence of closely-spaced pack-
ets is abstracted into a fluid chunk (usually characterized by
the fluid rate) and the fluid model is used to obtain the pa-
rameters of interest (e.g., the system throughput). In spite
of its effectiveness in terms of reducing the execution time,
fluid model based simulation is not well-suited for studying
the network behavior under light and/or sporadic traffic, as
it is built upon the assumption of existence of a large num-
ber of active flows in the network (so that the composite
traffic can be modeled as a flow). To deal with this issue,
network calculus-based simulation was proposed [9]. Kim
and Hou [9] characterize how TCP congestion control —
additive increase and multiplicative decrease (AIMD) — in-
teracts with AQM strategies with network calculus theory
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[1, 3, 5], derive upper and lower bounds on the attainable
TCP throughput, incorporate the models in ns-2, and then
instrument the simulator to regulate TCP flows in compli-
ance with the model. Although network calculus-based sim-
ulation indeed gives encouraging results, it cannot provide
the packet level dynamics, such as the instantaneous queue
length and packet dropping probability, due to the use of
network calculus. (Note that fluid model based simulation
also suffers from this shortcoming.)

In this paper, we take a dramatic departure from the above
approaches and propose a new rescaling simulation method-
ology (RSM) for simulating large-scale TCP/IP networks.
As mentioned above, as the number of events increases with
the network size and the amount of traffic, the computa-
tional cost increases accordingly. If we can scale down the
network to one that can be simulated at the packet level in
a short time interval to produce sufficient results and ex-
trapolate, without loss of accuracy, results for the original
network, we can significantly reduce the computational cost
and yet preserve the network dynamics. Now the key issue is
how to preserve the properties that characterize the original
network in the downscaled network so that accurate results
can be extrapolated after the packet-level simulation. In
particular, the network property of interest should remain
invariant in the process of scaling down and rescaling up the
network.

For the purpose of simulating large-scale TCP/IP networks,
we use the bandwidth-delay product as the network property
to be preserved, as it represents the capacity of the “pipe,”
i.e., the amount of data packets that can be transmitted
without waiting for the acknowledgment [18]. That is, we
scale down the original network by reducing the link capac-
ity by a fraction α (0 < α ≤ 1), increasing the link delay
by 1

α
, but keeping the bandwidth-delay product constant.

(Note that we change neither the number of nodes/flows
nor the queue (the maximum buffer size or the AQM pa-
rameters.)) By preserving this product invariant during the
down/up scaling operations, the network capacity as per-
ceived by each TCP connection is preserved, and we can
formally prove that the queue dynamics (e.g., the instanta-
neous queue length), the RTT dynamics, and the TCP win-
dow size dynamics remain unchanged in the operations. We
have also carried out ns-2 simulation comparing RSM based
simulation against packet level simulation, with respect to
the capability of capturing the transient, packet-level net-
work dynamics, the execution time, and the discrepancy in
simulation results. The simulation results indicate an order
of magnitude or more improvement (maximally 50 times) in
execution time and the performance improvement becomes
more prominent as the network size increases (in terms of
number of nodes and network capacity) or as the scaling
parameter decreases. The error discrepancy between RSM
based simulation and packet level simulation, on the con-
trary, is minimally 1-2 % and maximally 10 % in a wide
variety of network topologies (with various AQM strategies)
and traffic loads.

The notion of scaling down/up the network to facilitate net-
work monitoring and performance prediction has also been
used in Small-scale Hi-fidelity Reproduction of Network Ki-
netics (SHRiNK) [17]. SHRiNK proposes two methods: one
deals with IP networks with long-lived flows and the other
with a mixture of long-lived and short-lived flows. Both
methods reduce the amount of data packets by sampling
real traffic over the network, and then simulate in a down-

scaled network with the sampled traffic in order to predict
the behavior in the original network. In the first method, the
link capacity, the maximum buffer size (along with AQM pa-
rameters, e.g., the minimum/maximum thresholds in RED,
used) at each link, and the number of flows are propor-
tionally reduced, while the end-to-end delay is kept as the
invariant. (As will be elaborated on in Section 2, the queue
dynamics is changed under the first method.) The second
method resembles RSM in that the link capacity is reduced
and the link delay is proportionally increased. Their theo-
retical analysis and simulation study to validate their design,
however, focus only on the first method, and the theoretical
base for the second method is simply lacking. Moreover, in
order not to change the property of the original input traf-
fic, both methods rely heavily on the assumption that each
input flow is a Poisson process.

The rest of the paper is organized as follows. In Section 2,
we give a summary of existing work that aim to expedite
network simulation. In Sections 3–4, we present RSM, for-
mally prove that it preserves network dynamics, and validate
its correctness. Following that we elaborate on how we im-
plement RSM in ns-2, and present our simulation results in
Section 5. Finally we conclude the paper in Section 6.

2. RELATED WORK
In this section we summarize existing work that pertains to
the issue of expediting network simulation, while retaining
its accuracy.

Fluid model-based simulation:
Several research efforts have focused on fluid model based
simulation. Liu et al. [11] demonstrated the fundamen-
tal performance gain in fluid model based simulation over,
rather than a realistic network with detailed network pro-
tocols, simple network components. Milidrag et al. [13]
presented various sets of differential equations that describe
the behaviors of network components in the continuous time
domain. They showed that as long as the behavioral char-
acteristics in the continuous time domain can be exactly
specified, fluid simulation gives results with reasonable er-
ror bounds. Wu et al. [21] studied the error behavior that
simulation results exhibit in a simple M/D/1 network con-
figuration.

Fluid models have also been used to study the through-
put behavior of TCP and congestion control algorithms, to-
gether with active queue management in the steady state
[15, 16, 19]. Liu et.al. [12] solve one of the existing fluid
models with the numerical Runge-Kutta method, and in-
corporate numeric results in the simulation of large scale IP
networks. Kim and Hou [8] investigate the feasibility of fluid
model based simulation for IEEE 802.11-Operated wireless
LANs (WLANs), in which a throughput model is developed
to describe data transmission activities in wireless LANs
and then used to implement fluid model based simulation
in ns-2. Their results show two orders of a magnitude im-
provement with acceptable error bounds. As indicated in
Section 1, fluid model based simulation may not render sat-
isfactory performance (in terms of the discrepancy between
results obtained in packet level simulation and fluid model
based simulation) in the case of light and/or sporadic traffic,
as it relies on the assumption of existence of a large num-
ber of flows [12, 15, 19]. It is also limited to show kinetic
transient behaviors of the network.

Network calculus-based simulation:
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Kim and Hou [9] examine the feasibility of incorporating
network calculus models in simulating TCP/IP networks.
By exploiting network calculus properties, they characterize
how TCP congestion control — additive increase and multi-
plicative decrease (AIMD) — interact with AQM strategies
in the analytic model, and regulate TCP flows in a simu-
lation engine with the derived model. They show that as
compared to time stepped hybrid fluid simulation (TSHS),
significant improvement can be made in expediting the simu-
lation, while keeping the error discrepancy reasonably small.
As indicated in Section 1, although network calculus-based
simulation gives accurate steady state system throughput,
it cannot show, due to the nature of network calculus, the
transient behavior of the network, e.g., the instantaneous
queue length and the packet dropping probability at each
bottleneck link.

Simulation based on scaling down the network:
Pan et al. [17] introduce two SHRiNK methods to sam-
ple, simulate, and predict the network behavior. The first
method deals with IP networks with long-lived flows and
the other with a mixture of long-lived and short-lived flows.
A proportion of the traffic flows are independently sampled
and collected. The original network is reduced to a down-
scaled one and fed with the sampled traffic. In the first
method, the downscaling operation is performed by reduc-
ing the number of flows, the link capacity, the maximum
buffer sizes, and AQM parameters, while keeping the end-
to-end delay invariant. In order to keep the end-to-end delay
invariant, the queue dynamics has to be approximated (by
certain linear functions) and may respond differently to each
TCP connection. As a result, the network capacity as per-
ceived by each TCP connection during its interaction with
the network is changed. Moreover, in cases where the queue
dynamics cannot be adequately approximated with linear
functions, e.g., when DropTail is used as the AQM strat-
egy, SHRiNK cannot operate correctly. Although similar to
RSM, the second SHRiNK method was presented without
theoretical reasoning. In addition, both SHRiNK methods
rely heavily on the assumption that each input flow is a Pois-
son process. RSM can be universally applied to long-lived
and shorted-lived TCP connections, the down/up scaling op-
erations in RSM do not change the queue dynamics (which
will be rigorously proved), and its correctness does not rely
on any assumption.

3. RESCALING SIMULATION METHOD-
OLOGY

In this section, we present the rescaling simulation method-
ology. The key idea of the methodology is to preserve the
network capacity (as determined by the queue dynamics)
during the down/up scaling operation. We first discuss the
network invariant in simulating TCP/IP networks. Then
we introduce the rescaling simulation model based on the
network invariant.

3.1 Network Invariant
Our objective is to scale down a large scale network to a
small one that can be simulated in a short period of time to
produce sufficient results. The down scaling operation expe-
dites network simulation by reducing the number of events
generated/processed in the simulation. For example, if we
reduce the link capacity at each link, we can reduce the
number of sending and receiving events per unit time at the
link. Similarly, if we increase the propagation delay at each

link, we can reduce the sending rate of each TCP connection
(as a result of increased round trip time.)

One important issue is then how to scale down the network
so that the simulation results obtained from the downscaled
network can be used to accurately infer those correspond-
ing to the original network. We claim that the down scal-
ing operation should not change the network capacity as
perceived by TCP connections. Note that the network ca-
pacity is determined by the network dynamics (such as the
instantaneous queue length, to which TCP connections re-
spond) and is reflected upon the TCP throughput. Hence
for the purpose of simulating large-scale TCP/IP networks,
we use the bandwidth-delay product as the network invariant
to be preserved during the down/up scaling operations. In
the perspective of a TCP connection, the bandwidth-delay
product represents the amount of data packets that can be
in transit without waiting for the acknowledgment [18].

Specifically, let B and D denote, respectively, the available
bandwidth and delay along a path in the original network,
and PBDP the bandwidth-delay product along the path. For
notational convenience, we denote the corresponding vari-
ables in the downscaled network by attaching an apostro-
phe to the variables, i.e., B′, D′, and P ′

BDP . The following
constraint is used in the down/up scaling operations:

PBDP = B · D = B′ ·D′ = P ′
BDP . (1)

By Eq. (1), a scaling parameter, α, is determined as follows:

B′ = α ·B, (2)

D′ =
D

α
, (3)

where 0 < α ≤ 1.

Note that we do not change the number of nodes, the num-
ber of flows, or the queue-related parameters (e.g., the max-
imum buffer size or the AQM parameters). The only param-
eters that are scaled are the link capacity and the link delay.
As will be formally proved in Section 3.2, by keeping PBDP

invariant, the queue dynamics (e.g., the instantaneous queue
length), the RTT dynamics, and the window size dynamics
remain unchanged in the operations, and hence the network
capacity as perceived by each TCP connection is preserved.
As a result, the downscaled network exhibits exactly the
same behavior as the original network.

3.2 Rescaling Simulation Model
We now propose the rescaling simulation model. Let N de-
note the number of flows sharing a path with the bottleneck
link of capacity C. Let q(t) and p(t) denote, respectively,
the queue length and the packet dropping probability of the
bottleneck link at time t, and T the propagation delay of the
path. Let Wi(t) and Ri(t) denote, respectively, the window
size and the round trip time of flow i at time t. Then the
interaction between TCP flows and the bottleneck link can
be characterized with the TCP model given in [14]:

Ri(t) = T +
q(t)

C
(4)

dq

dt
=

NX
i=1

Wi(t)

Ri(τi)
− C (5)

dWi(t)

dt
=

1

Ri(t)
− β ·Wi(t) · Wi(τi)

Ri(t)
· p(τi), (6)

3



where β is the multiplicative parameter, p(·) is the packet
dropping probability, and τi = ti −Ri(t).

The rescaling simulation model reduces the link bandwidth
and increases the link delay by the scaling parameter, α
(Eqs. (2) and (3)). Hence, the time instants at which packet
events occur are also delayed by 1

α
, since each packet is

served at α times smaller bandwidth (which stretches its
transmission time by 1

α
) and experiences 1

α
times larger de-

lay. Specifically, a packet event that occurs at time t in
the original network is now delayed to t′ in the downscaled
network as follows:

t′ =
1

α
· t, (7)

where t(t ≥ 0) and t′(t′ ≥ 0) define, respectively, a time
instant for the original network and for the downscaled net-
work.

In what follows, we will investigate the dynamics of the
queue length, the round trip time, and the TCP window
size in both the downscaled network and the original net-
work. Again we denote the corresponding variables in the
downscaled network by attaching an apostrophe to the vari-
ables.

3.2.1 Queue Dynamics
We will show that queue length of the bottleneck link in
the original network is the same to that in the downscaled
network:

q′(t′) = q(t) and q̇′ = q̇

This implies that the downscaled network responds to each
TCP connection in exactly the same manner as the original
network does. Moreover, this is achieved without modifying
or approximating any AQM parameter in the downscaled
network.

We first look at dq′
dt

:

dq′

dt
=

NX
i=1

P ′
i,BDP (t)

D′
i(t)

− C′

=

NX
i=1

Pi,BDP (t)
Di(t)

α

− α · C

= α ·
(

NX
i=1

Pi,BDP (t)

Di(t)
− C

)

= α · dq

dt

=
dq

1
α
· dt

. (8)

Note that in Eq. (8), the change in the queue size is simply
the difference between the arrival rate of all flows and the
link capacity, and the arrival rate of a flow i is obtained by
dividing its current bandwidth-delay product (Pi,BDP (t)) by
its current delay (Di(t)).

Since t′ = 1
α
· t (Eq. (7)), dt′ = 1

α
· dt, and thus,

dq′

dt
=

dq

dt′
,

or

dq′ · dt′ = dq · dt. (9)

Since q′(0) = q(0) = 0 and Eq. (9) is a separable first order
equation [4], we can obtain the following result by integrat-
ing both sides of Eq. (9) when t, t′ ≥ 0:

q′(t′) = q(t). (10)

By Eq. (10), we know as long as the down scaling operation
preserves the bandwidth-delay product of the original net-
work, the queue dynamics in both the original network and
the downscaled network are the same at each event time.

3.2.2 RTT Dynamics
We can compute the round trip time in the downscaled time

domain, t′, as follows. Since Ri(t) = T + q(t)
C

,

R′
i(t

′) = T ′ +
q′(t′)
C′

=
T

α
+

q(t)

α · C
=

1

α
· (T +

q(t)

C
)

=
1

α
Ri(t). (11)

Note that we have used q′(t′) = q(t) in the second equality
in Eq. (11).

With Eq. (11), we can now re-express dq′(t′)
dt

in Eq. (8) as
follows:

dq′

dt
=

NX
i=1

W ′
i (t)

R′
i(τ

′
i)
−C′

=
NX

i=1

Wi(t)
Ri(τi)

α

− α · C

= α ·
(

NX
i=1

Wi(t)

Ri(τi)
−C

)

= α · dq

dt
,

where the first equality results from the fact that the current
TCP window size (Wi(t)) can be represented by the current
bandwidth-delay product (Pi,BDP (t)) as perceived by each
TCP connection i.

3.2.3 Window Size Dynamics
Eq. (11) implies that each TCP connection in the down-
scaled network exhibits the same window dynamics but the
response is 1

α
times slower than that in the original network

(since a TCP connection in the downscaled network adjusts
its rate per round trip time R′

i(t)). To further verify this,
we define the window dynamics in the downscaled network
based on Eq. (6) as follows:

dW ′
i

dt′
=

1

R′
i(t

′)
− β ·W ′

i (t
′) · W ′

i (τ
′
i)

R′
i(t

′)
· p(τ ′

i), (12)

where τ ′
i = t′ −R′

i(t
′).

By plugging Eq. (11) into Eq. (12), we have

dW ′
i

dt′
=

1
1
α
·Ri(t)

− β · Wi(t) · Wi(τi)
1
α
· Ri(t)

p(τi)

= α ·
�

1

Ri(t)
− β · Wi(t) · Wi(τi)

Ri(t)
· p(τi)

�

= α · dWi

dt
, (13)
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where τi = t − Ri(t). Note that in the first equality of
Eq. (13), we use the current bandwidth-delay product of
the path as the current window size, and hence W ′

i (x
′) =

Wi(x), for ∀x′ = 1
α
· x. Additionally, τ ′

i = 1
α
· τi since

R′
i(t

′) = 1
α
· Ri(t) (Eq. (11)), and p(·) = p′(·) since q′(t′) =

q(t) (Eq. (10)), for ∀t′ = 1
α
· t.

As implied in Eqs. (11) and (13), all the events that occur
in the original network are delayed by the factor of 1

α
in the

downscaled network. This is consistent with Eq. (7).

3.2.4 Comparison with SHRiNK
As compared to SHRiNK [17], RSM possesses several desir-
able features: (i) RSM does not make any assumption on
the input traffic, while SHRiNK relies heavily on the Pois-
son assumption for the input traffic. (ii) RSM preserves the
queue dynamics and hence preserves the network capacity
as perceived by TCP connections. In contrast SHRiNK ap-
proximates the queue dynamics in the downscaled network
in order to preserve the queuing delay. As a result, the down-
scaled network may respond differently to TCP connections.
(iii) RSM can work together with any AQM strategy, while
SHRiNK cannot be used if the modified queue dynamics
cannot keep the queuing delay invariant in the downscaled
network. For example, as reported in [17], if the AQM strat-
egy is DropTail, SHRiNK cannot produce accurate results.

4. VALIDATION OF RSM WITH MATLAB
In this section, we validate RSM (Section 3) with MATLAB
[20]. The specific effect when we use the RSM model with a
scaling parameter α is that all the events that occur at time
t(t ≥ 0) in the original network are delayed to t′(t′ ≥ 0) =
1
α
· t in the downscaled network. This is attributed to the

fact that the link bandwidth is scaled down by the factor of
α and the link delay is scaled up by the factor of 1

α
during

the down-scaling operation. The dynamic network behavior
that the original network exhibits at any time instant can be
observed in the downscaled network, except that the time
instant at which each event occurs is delayed by the factor
1
α

(Eqs. (13) and (7)). In what follows we investigate the
trajectory of the queue length and transient alteration of the
dropping probability at a link to verify Eqs. (13) and (7).

Figure 1 gives a MATLAB Simulink diagram that imple-
ments the interaction between a bottleneck link (equipped
with RED) and multiple TCP flows. In the figure, the RTT
module executes the operation given in Eq. (4), the queue
module executes the function given in Eq. (5), the RED mod-
ule performs the RED operations at the link [6] and the TCP
module carries out the dynamics given in Eq. (6). Addition-
ally, the prop. delay module and the link capacity module
represent, respectively, the delay and the capacity of the
link, and N is the number of flows.

Figures 2 and 3 give, respectively, the kinetic dropping prob-
ability and the instantaneous queue length for the bottleneck
link in Figure 1 (N = 100). Figure 2 (a) presents the dy-
namic trajectories of the packet dropping probability of the
link in the down-scaled network, where each trajectory cor-
responds to a different value of the scaling parameter α.
Note that events are delayed by the factor of 1

α
. Figure 2

(b) gives the trajectories of the packet dropping probabil-
ity after the network is re-scaled up with α. Note that all
the trajectories agree with one another. Figure 3 gives the
instantaneous queue length of the link in the down-scaled
network ((a)) and after the network is re-scaled up ((b)).
Conclusions similar to those made for Figure 2 can be drawn.

prop. delay

capacity

queue size

RTT

round trip time

capacity

arrival rate
queue size

queue
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prop. delay
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number of nodes
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queue size drop prob.
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Figure 1: The MATLAB Simulink diagram for TCP
dynamics
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Figure 4: The network configuration used in the
second set of experiments.

5. SIMULATION STUDY
In this section, we discuss how we implement RSM in ns-2 [2]
and conduct a simulation study, comparing the network be-
haviors (e.g., the queue dynamics) and the steady state be-
havior (e.g., the TCP throughput) obtained in RSM-based
simulation and packet level simulation.

5.1 Implementation
Recall that the key idea of RSM is to reduce the number of
events in the simulation by scaling down the original network
(i.e., decreasing the link capacity and increasing the link de-
lay by the same factor), while preserving the bandwidth-
delay product invariant in the down-scaled network (Sec-
tion 3). As a result, neither the number of flows nor the
queue-related parameters (e.g., the maximum buffer size and
AQM parameters) need to be changed. As a matter of fact,
the implementation of RSM is quite simple and straightfor-
ward. The network simulator takes as input the network
topology and the scaling parameter, scales down the origi-
nal network, carry out packet-level simulation in the down-
scaled network for a short period of time, and then extrapo-
lates the results corresponding to the original network. Only
a light-weight preprocessor and a post-processor are needed
to scale down the network and to extrapolate the simulation
results.

5.2 Simulation
We have carried out an extensive ns-2.1b9a simulation study
in a wide variety of network topologies and traffic loads, to
assess the effectiveness of RSM in terms of reducing the
execution time and capturing both the transient, packet-
level network dynamics and the steady state network per-
formance. Due to the space limit, in what follows we present
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is re-scaled up with the same scaling parameter α.
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Figure 5: The network configuration used in the
third set of experiments.

only simulation results obtained in the two network config-
urations given in Figures 4 and 5. (Note that the configura-
tion in Figure 4 has one bottleneck, while that Figure 5 has
two bottleneck links.) Both the link bandwidth and the link
delay are labeled in the figure, unless otherwise specified.
Both short-lived and long-lived TCP connections, as well as

different variations of TCP, are used in the transport layer,
but due to the space limit, we only present results with TCP
Reno connections.

Each router is equipped with a buffer of size 100 packets,
and the default packet size is set to be 500 bytes. Different
AQM strategies are employed at routers in different simu-
lation runs. The setting of parameters in the various AQM
strategies is as follows. The minimum and maximum thresh-
old of RED is 30 and 70, respectively. The update interval,
reference value, and gain of REM are 10 ms, 50, and 0.1, re-
spectively. The reference queue size and sampling frequency
of PI is 50 and 100 times per second, and the remaining pa-
rameters, such as kp and ki (which in turn decides a and b)
are determined in compliance with [7]. The desirable uti-
lization, γ, of AVQ is set to 0.98 , and the damping factor,
α, is determined in compliance with Theorem 1 in [10] to
ensure system stability (α = 0.15).

All the experiments are conducted in Linux 2.4.18 on a Pen-
tium 4/1.9 Ghz PC with 1 GBytes memory and with 2
GBytes swap memory.
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5.2.1 Performance in the presence of long-lived TCP
connections

In this section, we study how effective RSM based simulation
is in simulating long-lived TCP flows.

Performance of RSM based simulation w.r.t. net-

work dynamics
First, we examine how closely the network dynamics ob-
tained under RSM based simulation exhibit to that under
packet level simulation. Figure 6 depicts the instantaneous
queue length versus time in the network configuration given
in Figure 4. The number of nodes in each class varies from
5 to 100, and the scaling parameter varies from 0.02 to 1.0
in these simulation runs. Also, router nodes employ a differ-
ent AQM strategy in each simulation run. Due to the space
limit, we only present in Figure 6 the case of 100 nodes
per class. Regardless of the AQM strategy employed or the
value of the scaling parameter, the queue length extrapo-
lated from the downscaled network agrees extremely well
with that observed in the original network.

Figure 7 depicts the instantaneous queue length of the sec-
ond bottleneck link versus time in the network configuration
in Figure 5, but two cases are presented: the case of 20 nodes
per class and the case of 100 nodes per class. Again the
instantaneous queue lengths extrapolated from the down-
scaled network (the curves labeled with “scale 0.2”) agree
extremely well with that in the original network.

Performance of RSM based simulation w.r.t. error

discrepancy
We now quantitatively evaluate the discrepancy between re-
sults obtained in RSM based simulation and those in packet
level simulation. In both simulation modes, the TCP through-
put is measured at a receiver and summed up to give the
total throughput per class and the total throughput for the
network. Figure 8 gives the total number of packets received
at class 0 nodes and at all the nodes, in the network configu-
ration given in Figure 4. Each simulation run lasts for 1000
seconds. The error discrepancy observed between two simu-
lation modes is at most approximately 10 % of the capacity
of the bottleneck link.

Figure 9 gives the total number of packets received at class
0 nodes and at all the nodes, in the the network configu-
ration given in Figure 5. Again each simulation run lasts
for 1000 seconds. Again the error discrepancy is at most
approximately 10 % of the capacity of the bottleneck link.

Performance of RSM based simulation w.r.t. execu-

tion Time
We now evaluate the performance gain of RSM (as com-
pared to packet level simulation) in terms of the execution
time required to carry out the simulation. Figure 10 depicts
the execution time versus the number of nodes in a 1000-
second simulation run in the network configuration given in
Figure 4. The simulation results indicate an order of magni-
tude or more improvement (maximally 50 times) in execu-
tion time and the performance improvement becomes more
prominent as the network size increases (in terms of number
of nodes and network capacity) or as the scaling parameter
decreases.

Figure 11 depicts the execution time versus the number of
nodes in a 1000-second simulation run in the network con-

figuration given in Figure 5. The speed-up in execution time
as a result of using RSM can be as large as approximately
50 times.

5.2.2 Performance in the presence of long- and short-
lived TCP connections

In this section, we explore more dynamic scenarios in which
long-lived and short-lived TCP connections co-exist and in-
terfere with each other. Each short-lived connection is gen-
erated by a Pareto traffic generator in ns-2 in the way that
packets are sent at a fixed rate of 200 Kbps during the on
periods and no packets are sent during the off periods. The
length of each on/off period follows a Pareto distribution
with the Pareto shape parameter of 1.5 and the mean value
of 100 ms. The application frame size is set 210 bytes. Each
simulation run lasts for 300 seconds, and short-lived con-
nections are only active in the interval [100, 200] seconds.
(We have also carried out experiments in which all the TCP
connections are short-lived. As the results exhibit similar
trends, they are not repeat here.)

Performance of RSM based simulation w.r.t. net-

work dynamics
Figure 12 depicts the instantaneous queue length versus time
in the network configuration given in Figure 4, except that
the capacities of all the link, excluding the bottleneck link,
are increased to 100 Mb. There are 100 nodes per class.
As shown in Figure 12, the dynamic changes of the queue
length in the downscaled network agree very well with the
original behavior.

It should be noted that the simulation results in Figure 6
are the instantaneous queue lengths rescaled from the down-
scaled network, while those in Figure 12 are not rescaled.
The same queue dynamics can still be observed even if the
events (arrival/departure of short-lived TCP connections)
are not delayed (by the factor of α) in the time-stretched,
down-scaled network. This result shows that we do not have
to worry about one pitfall of RSM-based simulation that if
the simulation time is not proportionally increased in simu-
lating the downscaled network, some of the dynamic events
may not be executed in time before the simulation ends.
Figure 13 gives the total number of packets received at class
0 nodes in the network configuration given in Figure 4. Er-
ror discrepancy claims that similar to those in the presence
of only long-lived TCP connections can be make here.

Performance of RSM based simulation w.r.t. error

discrepancy
We again quantitatively evaluate the discrepancy between
results obtained in RSM based simulation and those in packet
level simulation. Figure 13 gives the total number of packets
received at class 0 nodes in the network configuration given
in Figure 4. Each simulation run lasts for 300-seconds. The
error discrepancy observed between two simulation modes
is still within approximately 10 % of the capacity of the
bottleneck link.

Performance of RSM based simulation w.r.t. Exe-

cution Time
We evaluate again the performance gain of RSM (as com-
pared to packet level simulation) in terms of the execution
time required to carry out the simulation. Figure 14 depicts
the execution time versus the number of nodes in a 300-
second simulation run in the network configuration given in

7
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Figure 6: Instantaneous queue length versus time in the network configuration given in Figure 4 when the
number of nodes per class is 100. The curve labeled with “scale 1.0” is the instantaneous queue length in
the original network and that labeled with “scale 0.2” is the instantaneous queue length extrapolated from
the down scaled network.

Figure 4. The same conclusion made in the case of only long-
lived TCP connections can be applied here, except that a
performance improvement of at most 30 times (rather than
50 times) is observed.

6. CONCLUSION
In this paper, we present the rescaling simulation method-
ology (RSM) for simulating large-scale TCP/IP networks.
Specifically, we scale down the original network by reducing
the link capacity by a fraction α, increasing the link delay
by 1

α
, but keeping the bandwidth-delay product constant.

(Note that we change neither the number of nodes/flows
nor the queue (the maximum buffer size or the AQM pa-
rameters.)) By preserving this product invariant during the
down/up scaling operations, the network capacity as per-
ceived by each TCP connection is preserved, and we for-
mally prove that the queue dynamics (e.g., the instanta-
neous queue length), the RTT dynamics, and the window
size dynamics remain unchanged in the operations. Im-
plementation of RSM in a network simulation is simple,
straightforward, and requires only a simple preprocessor/post-
processor to scale down and re-scale up the network.

We have also carried out ns-2 simulation comparing RSM
based simulation against packet level simulation, with re-
spect to the capability of capturing transient, packet-level
network dynamics, the execution time and the discrepancy
in simulation results. The simulation results indicate an
order of magnitude or more improvement (maximally 50
times) in execution time and the performance improvement
becomes more prominent as the network size increases (in
terms of number of nodes and network capacity) or as the
scaling parameter decreases. The error discrepancy between
RSM based simulation and packet level simulation, on the
contrary, is minimally 1-2 % and maximally 10 % in a wide

variety of network topologies (with various AQM strategies)
and traffic loads. The encouraging simulation results, cou-
pled with the ease in implementation, suggest that RSM can
be used to simulate, and accurately infer network dynamics
of, large-scale TCP/IP networks.

We have identified several directions for future work. First,
we will theoretically analyze the relationship between the
error discrepancy and the scaling parameter. Second, we
will carry out experiments with a mixture of TCP and UDP
traffic. We conjecture that UDP traffic has to be scaled
down in the down scaling operation, and will look into this
issue. Finally, we will also include in our study wireless
LANs in part of the large scale networks.
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Figure 7: Instantaneous queue length versus time in the network configuration given in Figure 5.
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Figure 8: The total number of packets received at class 0 nodes and at all the nodes in a 1000-second
simulation run in the network configuration given in Figure 4.
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Figure 9: The total number of packets received at the class 0 nodes and at all the nodes in a 1000-second
simulation run in the network configuration given in Figure 5.
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Figure 10: Execution time (sec.) required to carry out a 1000-second simulation run in the network configu-
ration given in Figure 4.
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Figure 11: Execution time (sec.) required to carry out a 1000-second simulation run in the network configu-
ration given in Figure 5.
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Figure 12: Instantaneous queue length versus time in the presence of both long-lived and short-lived TCP
connections in the network configuration given in Figure 4, except that the capacities of all the links, excluding
the bottleneck link, are increased to 100 Mb. The curve labeled with “scale 1.0” is the instantaneous queue
length in the original network and that labeled with “scale 0.2” is that in the downscaled network.
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Figure 13: The total number of packets received at class 0 nodes in the presence of both long-lived and
short-lived TCP connections in a 300-second simulation run in the network configuration given in Figure 4,
except that the capacities of all the links, excluding the bottleneck link, are increased to 100 Mb.
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Figure 14: Execution time (sec.) required to carry out a 300-second simulation run in the presence of both
short-lived and long-lived TCP connections in the network configuration given in Figure 4, except that the
capacities of all the links, excluding the bottleneck link, are increased to 100 Mb.
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