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ENABLING STATISTICAL ANALYSIS OF THE MAIN

IONOSPHERIC TROUGH WITH COMPUTER VISION

GREGORY WALTER SIDOR STARR

ABSTRACT

The main ionospheric trough (MIT) is a key density feature in the mid-latitude

ionosphere and characterizing its structure is important for understanding GPS radio

signal scintillation and HF wave propagation. While a number of previous studies have

statistically investigated the properties of the trough, they have only examined its

latitudinal cross sections, and have not considered the instantaneous two-dimensional

structure of the trough. In this work, we developed an automatic optimization-

based method for identifying the trough in Total Electron Content (TEC) maps and

quantified its agreement with the algorithm developed in (Aa et al., 2020). Using

the newly developed method, we created a labeled dataset and statistically examined

the two-dimensional structure of the trough. Specifically, we investigated how Kp

affects the trough’s occurrence probability at different local times. At low Kp, the

trough tends to form in the postmidnight sector, and with increasing Kp, the trough

occurrence probability increases and shifts premidnight. We explore the possibility

that this is due to increased occurrence of troughs formed by subauroral polarization

streams (SAPS). Additionally, using SuperDARN convection maps and solar wind

data, we characterized the MIT’s dependence on the interplanetary magnetic field

(IMF) clock angle.

v
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Chapter 1

Introduction

1.1 Motivation

The plasma in the ionosphere affects all electromagnetic waves that pass through

it. This can have a big impact on trans-ionospheric communication via radio. If

the signals pass through a quiet / uniform region of the ionosphere, the effects are

not significant or they can be easily corrected for, however, when the ionosphere be-

comes more turbulent communications can be disrupted. Every year, we rely more

and more on being able to send signals through the ionosphere. More satellites are

sent into orbit every year and they are becoming a part of every aspect of our lives.

Crucial portions of our infrastructure rely on satellites including weather forecast-

ing, positioning and navigation, and recently even internet. In the distant future,

communicating with humans on other planets will require sending signals through

two ionospheres. Understanding the ionosphere’s effects on our communications and

being able to predict ionospheric conditions are crucial to humanity’s future in space

and on other planets.

One particularly disruptive ionospheric phenomenon is the main ionospheric trough

(MIT). The MIT is a band of low electron density which forms between the high lat-

itude and mid latitude regions of the ionosphere. It is among the most consistently

observed and largest scale features of the ionosphere. It can occur in both hemispheres

and during any season. The trough can negatively affect communication signals due

to the large electron density gradients as well as smaller scale irregularities which form
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Figure 1·1: An example of the MIT in TEC measurements. It appears
here as a dark curve spanning the entire night-side ionosphere. Dashed
lines show satellite orbits (see text).
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in it (Rodger et al., 1992), (Kintner et al., 2007), (Le et al., 2017). Because of the

trough’s continental size, it can have a serious impact on our ability to communicate

with satellites. Understanding the trough in particular will help us predict where in-

terruptions will occur and how to mitigate them. However, the trough is also a major

part of the larger ionospheric and magnetospheric systems of the earth, so advancing

our knowledge of the trough will also help us understand those systems on earth and

other planets. Finally, because the trough is dynamic and spread across the world,

measuring it is a challenge. The only way we can accomplish this is with a large and

diverse set of sensors, and analyzing such a dataset requires new techniques. These

new techniques for data collection and analysis will be hugely beneficial to science

and engineering in general.

Despite the importance of the MIT, it is still not fully understood. Many of

its characteristics have been established through measurement and its position is

well-modeled empirically. Additionally, the primary mechanisms which create and

maintain the trough have been identified. However there is still a lot left to discover.

The relative importance of the various mechanisms has not been fully established,

and some of the most popular ionospheric models do not properly reproduce its

behavior (Yang et al., 2015). Finally, adequate statistics of how the MIT behaves

during heightened periods of geomagnetic activity have not been obtained. The full

spectrum of MIT behavior including what edge cases exist is not yet known.

Progressing our understanding of the MIT is difficult. Because it can get very

large, simultaneously measuring the MIT along its length requires a vast network

of sensors. Most existing studies have been conducted with satellite measurements

which inherently can only collect data at a single location at a time. Understanding

the generation mechanisms requires measurements of many different ionospheric pa-

rameters, some of which can only be made with expensive radar facilities, e.g. plasma
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flow. In order to specifically study the MIT in a dataset, you first need to identify it.

This is also difficult because there is no concrete definition which qualifies an electron

density depletion as the MIT. To make things worse, there are also other troughs

which occur in the ionosphere like the high latitude trough or the ring ionospheric

trough. These troughs can physically overlap with one another which makes it diffi-

cult to decide whether they should be classified differently. Such phenomena should

be classified according to the underlying physics which produce them, but this is also

tricky because the MIT is caused by many different processes. While datasets exist

that contain global measurements of total electron content, it is more difficult to label

a 2D dataset than 1D, either manually or automatically and no one has undertaken

the task of developing and testing a method to accomplish this.

Though two-dimensional data is more difficult to process, we believe that it will

ultimately lead to a much better dataset of the MIT. Previous statistical studies of

the MIT have mostly only considered latitudinal cross sections rather than global 2D

or 3D scalar measurements. This has two drawbacks. The first is that it inherently

has less data. For example, in Aa 2020, they analyzed data from the SWARM con-

stellation which has 3 satellites, each of which have an orbital period of roughly 1.5

hours. Over 10 years, they would make 350,000 measurements of the trough region.

A two-dimensional TEC dataset has measurements at most local times (conserva-

tively 90) and so you could think of it as having almost 8,000,000 measurements of

the trough. Looking at figure 1·1 gives an idea of the vastly increased coverage with

2D data over 1D. Using a 2D dataset like Madrigal GPS TEC will allow for statistics

to be compiled at a much higher level of detail.

Given that such significant progress has been made in the field of machine learning

recently, it is an exciting prospect to utilize some of the new techniques for space

physics problems. However, it has been difficult for researchers in the space physics
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to find good uses for such techniques. The most popular problem settings in machine

learning, for example image classification, do not have an obvious application for

space physics. One reason for this is that the ionosphere does not produce discrete

categories. Most ionospheric phenomena exist on a continuum and are caused by a

variety of interacting processes which makes categorizing them difficult and sometimes

futile. Additionally, complex machine learning models which have the best chance of

being able to represent ionospheric phenomena are notoriously difficult to interpret. If

you want to model a phenomenon then there is a trade off you have to make between

expressibility and interpretability and this becomes a difficult choice if your goal is

to understand the underlying physics.

1.2 Thesis Overview

The goal of this thesis is to enable statistical analysis of the MIT by developing meth-

ods to automatically identify it in global maps of total electron content. Creating an

automatic method is crucial because it allows us to apply it to large datasets, which

is necessary to properly establish the statistics of the trough. To accomplish this, we

cast the problem into the framework of image segmentation, where a label is assigned

to each pixel of an input image. In this case, the labels are binary: a pixel can either

be part of the trough or not. This approach has the advantage of producing a very

descriptive and flexible dataset from which a large variety of measurements can be

easily taken. We developed two methods and established their validity by quantifying

their agreement with the method used by Aa et. al for satellite measurements of elec-

tron density (Aa et al., 2020). Finally, we performed three "replication" experiments

to further validate our labeled dataset, and two experiments in which we produced

novel results about the mechanisms responsible for MIT formation.

In this chapter we explained the importance of the MIT, the gaps that exist in
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our understanding of it and we outlined the goals of this project. Next, in chapter

two, we introduce background information about the ionosphere and MIT. In chapter

three we describe the datasets we are used, how we processed them and the details

of the trough identification methods. In chapter four we discuss the experiments we

performed to demonstrate the labeled dataset’s value and improve our understanding

of the MIT. Lastly in chapter five, we summarize the project and our plans for future

work.
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Chapter 2

Background

2.1 Space Environment Near Earth

The various "-spheres" of the atmosphere are defined by the characteristics and be-

haviors of the gas contained in them. Through various processes, the gasses of the

atmosphere can become ionized. The ionosphere is the region from about 100km to

1000km in altitude, where the atmospheric gas has been ionized to a significant level

such that it behaves as a plasma rather than neutral gas. At higher altitudes, the

atmosphere becomes thin and collisions between particles rare. In this region, the

motion of particles is determined by the earth’s magnetic field and so it is called the

magnetosphere.

2.1.1 Electron Density and Total Electron Content

Electron density is defined as the number of free electrons per unit volume. It can be

measured by instruments on satellites, rockets, or with radar. The refractive index

of the ionospheric plasma depends on the wavelength of the incident radiation and

the electron density of the plasma. The plasma imparts a phase shift on all radio

waves which pass through it. The additional phase shift of a wave travelling through

the ionosphere is proportional to the electron density integrated along the path from

transmitter to receiver.

∆Φ ∝ TEC =

∫

P

N(r)dl (2.1)
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In the above expression, ∆Φ is the ionospheric phase shift of a wave travelling along

the path P , N is the electron density at point r, and dl is an infinitesimal distance

along P . Integrated electron density is called total electron content (TEC) and it

is a density value which varies in two dimensions rather than three. It has units

of electrons/m2 but it is usually presented in "total electron content units" (TECu)

where 1 TECu = 1016 electrons/m2. Since the total phase shift on waves transmit-

ted through the ionosphere depends on their frequency, TEC can be measured by

transmitting and receiving on two separate frequencies. Global Navigation Satellite

Systems (GNSS) utilize this method to remove phase shifts and improve their po-

sitioning accuracy, and as a by-product, they provide useful data for space science

research.

There are two ways to define TEC. Slant TEC (sTEC) is the quantity shown in

equation 2.1, which is integrated along the satellite-receiver line-of-sight (LOS). While

sTEC is useful for correcting GPS errors, it strongly depends on the geometry of the

measurement, in particular, the elevation angle of the satellite-receiver LOS. A lower

elevation LOS has a longer intersection with the ionosphere, increasing the sTEC. This

makes it difficult to compare measurements of TEC from multiple satellite-receiver

pairs. To address this shortcoming, researchers use vertical TEC (vTEC) instead,

which is the integrated electron density along a vertical line. In the special case

where a satellite-receiver LOS is a vertical line, the sTEC and vTEC are equivalent.

Since true vTEC measurements are only available for a small subset of LOS’s, it is

always estimated from sTEC measurements. This is accomplished by assuming some

electron density altitude profile for the ionosphere and deriving a "mapping function"

which, when multiplied by the sTEC, produces the vTEC. The most common way

to perform this general process is to assume the ionosphere is a thin shell at a fixed

height. Then the mapping function only depends on the elevation angle. Figure 2·1
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Figure 2·1: Copied figure 1 from (Vierinen et al., 2016) illustrating
sTEC (S line) vs vTEC (V dashed line).

was copied from figure 1 in (Vierinen et al., 2016) and it illustrates the concept. It

shows a slightly more complicated altitude profile (which they call "Shape function"),

but is still results in a mapping function v which only depends on the LOS elevation

angle α.

2.1.2 Ionospheric Continuity Equation

The electron density in the ionosphere changes according to the continuity equation:

∂N

∂t
= q − βN −∇ · (NV) (2.2)

where N is the electron density, q is the production rate, βN is the loss rate due to

chemical recombination and the final term represents change due to the bulk motion

of the gas, whose velocity is V. The two main sources which make up the production

term q are solar ionization and ionization from energetic particles. The rate of solar

ionization depends on the elevation of the sun, the intensity of the radiation, and

the availability ionizable gas, which decreases at higher altitudes. At night, the only

source of ionization is energetic particles.
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The earth’s magnetosphere contains trapped electrons in regions known as radi-

ation belts. Electrons gyrate around magnetic field lines due to the Lorentz Force.

The angle between an particle’s velocity and the field line around which it gyrates is

called the pitch angle. As an electron travels from the equatorial plane towards the

poles along a field line, the magnetic field strength increases which causes the pitch

angle to increase. At some point, called the mirror point, the magnetic field strength

will cause the pitch angle to become greater than 90◦ , at which point the electron

will begin moving in the opposite direction along the field line. The altitude of the

mirror point is determined by the electron’s pitch angle at the equator. For a range

of equatorial pitch angles, the mirror point is at a low enough altitude to be inside

the atmosphere. This is called the loss cone because most electrons within that pitch

angle range will collide with the particles in the atmosphere rather than reversing

their direction. This is known as electron precipitation. A precipitating electron can

ionize or excite the gasses in the atmosphere, depending on its energy. The high

latitude region where most electron precipitation occurs is called the auroral oval.

Electrons with pitch angles outside the loss cone continue to bounce between north-

ern and southern mirror points. Various interactions can occur which will change a

trapped electron’s pitch angle, possibly causing it to precipitate.

Magnetic Coordinate Systems

Within 2 earth radii (RE = 6, 371km) of the surface, the magnetic field is roughly

approximated by a dipole. Because so many ionospheric phenomena are related to the

magnetic field, it is usually more revealing to study them using magnetic coordinate

systems. The simplest of these coordinate systems is called centered dipole, in which

the z axis is aligned with the magnetic dipole (positive north), the y axis is defined

such that it is perpendicular to the plane containing the magnetic dipole axis and the

earth’s rotation axis, and x completes the right handed coordinate system (Laundal
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and Richmond, 2016). At ionospheric altitudes (100 - 1000km), the dipole approxi-

mation is valid but not very accurate, and so if a closer correspondence is required,

then researchers will use a coordinate system based on a more detailed model. One

such coordinate system is called magnetic apex coordinates (Richmond, 1995), (Em-

mert et al., 2010), which determines longitude and latitude by tracing the field lines

of the International Geomagnetic Reference Field (IGRF). The IGRF is a periodically

updated spherical harmonics model of the earth’s magnetic field. Magnetic apex co-

ordinates have the property that latitude and longitude are constant along any field

line. Since the sun is a major driver of the dynamics of the ionosphere, often times

researchers will replace longitude with magnetic local time (MLT). MLT is defined

so that the magnetic longitude of the subsolar point is noon and 180◦ longitude from

the subsolar point is midnight. In the below equation for MLT, φs is the magnetic

longitude of the subsolar point and φ is the magnetic longitude of the point (Laundal

and Richmond, 2016).

MLT = (φ− φs)/15 + 12 (2.3)

We utilize magnetic apex coordinates with magnetic local time throughout this work.

Solar Wind and Interplanetary Magnetic Field

The sun constantly emits a stream of particles, mostly electrons and hydrogen ions,

called the solar wind. The wind carries a weak magnetic field with it which is called

the interplanetary magnetic field (IMF). The magnetopause is the boundary between

the earth’s magnetosphere and the solar wind. The magnetosphere is where a par-

ticle’s motion is controlled by the earth’s magnetic field. On the other side of the

magnetopause, the motion of the particles is controlled by the sun. As the solar wind

and IMF encounter the earth’s magnetic field, it is distorted into a tear-drop shape.

The coordinate system which is typically used for solar wind measurement is called



12

geocentric solar magnetic (GSM), in which the x axis points from the earth to the

sun, the y axis is perpendicular to both the x axis and the dipole axis, and the z axis

completes a right handed coordinate system (Laundal and Richmond, 2016). Key

variables of the solar wind plasma include its speed, density and temperature. More

important to this study are the IMF parameters including its z and y components,

its magnitude, and its angle in the yz plane, clockwise from +z, called the IMF clock

angle. In the equation below for clock angle, arctan is the full 360-degree version.

θclock = arctan(By, Bz) (2.4)

Convection

Circulations and plasma flow velocity in the ionosphere can be described with electric

fields according to the following equation:

V =
E × B

|B|2
(2.5)

This is the drift a charged particle would experience in both an electric and magnetic

field (called "E-cross-B drift"). Fields are just a mathematical tool to describe elec-

tromagnetic interaction. The laws of electromagnetism can be thought of in multiple

ways depending on the reference frame. For example, if a magnet passes through a

loop of wire, in the reference frame of the magnet, you would say that the current

is due to the electrons accelerating because of the Lorentz force. However, in the

reference frame of the wire, you would say that the changing magnetic field created

an electric field according to Faraday’s law. The two viewpoints are equivalent, which

is why we can describe plasma motion in the ionosphere with electric fields.

Part of the IMF merges with the earth’s magnetic field, and pulls it back in

the antisunward direction. The magnetic field lines moved by the solar wind drag

ionospheric plasma with them, creating circulations. In the sun-earth reference frame,
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Figure 2·2: Copied figure 5 from (Thomas and Shepherd, 2018) show-
ing average convection patterns for different IMF clock angles.
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the ionosphere has two electric fields. One is due to the magnetosphere’s interaction

with the solar wind and is called the convection electric field, and the other is due to

the earth’s rotation and is known as the corotation electric field. Close to the equator,

the plasma mostly moves according to the corotation electric field and towards the

poles, it moves according to convection. Since convection is driven by the solar

wind, its shape is related to the IMF. An example of average convection patterns at

different IMF clock angles is shown in figure 2·2, which was copied from (Thomas

and Shepherd, 2018). The convection electric field and the resulting convection flows

are typically visualized with the scalar electric potential. E × B drift implies that

plasma motion is perpendicular to the electric field, which means that plasma travels

along electric equipotential surfaces. From figure 2·2 we can see that at all IMF clock

angles, plasma generally flows over the polar cap from MLT 12 to MLT 0 (magnetic

noon to midnight), then returns to the dayside at lower latitudes. The two "cells"

of the convection pattern are referred to as the dawn cell (right) and dusk cell (left).

The z component of the IMF controls the overall strength of the convection electric

field and the y component rotates its orientation about the dipole axis.

2.2 Main Ionospheric Trough

The main ionospheric trough (MIT), sometimes called the mid-latitude ionospheric

trough, is a large region of decreased electron density occurring in the sub-auroral

ionosphere. It does not have a concrete definition, but it is usually distinguished from

other trough-like features in the ionosphere (e.g. high latitude trough, ring trough

(Karpachev, 2019), light ion trough) based on its location (Rodger et al., 1992),

(Rodger, 2008). When writing about the MIT, authors will often begin by specifying

what their definition is. At this time, it is best defined by its characteristics, though

a better definition would be based on its physical mechanisms. Though some of these
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mechanisms are known, their interactions and relative contributions are still unclear.

A better understanding of the ionosphere in general will be required to properly

classify ionospheric troughs.

The main ionospheric trough is often described as having three parts: the poleward

wall, equatorward wall and the minimum in between. The poleward wall is associated

with the equatorward boundary of the auroral precipitation region (Rodger, 2008),

(Rodger et al., 1992), and the equatorward wall is associated with the ionospheric

footprint of the plasmapause (Zou et al., 2011), (Rodger et al., 1992), (Pedatella

and Larson, 2010). The electron density gradient is typically much stronger at the

poleward wall than at the equatorward wall (Spiro et al., 1978). The MIT is observed

most often in darkness and has an average width of about 5◦ to 10◦ of latitude

(Aa et al., 2020), (Yang et al., 2015), (Collis and Häggström, 1988). It can be

observed in wide-area TEC maps (Zou et al., 2011) and sequential radar scans (Nilsson

et al., 2005) that the MIT is very elongated longitudinally. Since it mainly occurs

in darkness, its length (longitudinally) is strongly correlated with season (Rodger,

2008), though its length has not yet been directly quantified.

The most frequently studied parameter of the trough is the latitude at its mini-

mum. Like many of the MIT’s other parameters, this latitude varies across its length.

Depending on how the MIT is defined, its highest is 75◦ to 80◦ latitude at noon

and steadily decreases with MLT until it reaches its minimum of 55◦ to 60◦ latitude

3 - 5 hours MLT after midnight (Werner and Prölss, 1997) (Aa et al., 2020) (Yang

et al., 2015). This latitude also varies with the level of magnetic disturbance. As

magnetic activity level increases, the convection pattern and the auroral precipita-

tion region expand. This causes the MIT to move to lower latitudes. Many studies

have estimated linear models relating the latitude of the MIT to various measures of

magnetic activity. Less common examples include a time-averaged version of the au-
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Figure 2·3: Diagram of the stagnation mechanism copied from (Spiro
et al., 1978)

roral electrojet index (Werner and Prölss, 1997) and the Dst index (Karpachev et al.,

1995), but many researchers have used the Kp index (Yang et al., 2015), (Collis and

Häggström, 1988), (Deminov and Shubin, 2018), (Dudeney et al., 1983), etc. A recent

example is from (Aa et al., 2020):

TM = 65.8◦ − 1.7Kp (2.6)

Many mechanisms which could contribute the trough have been proposed and

evaluated. The most commonly mentioned is called the stagnation mechanism. In

the evening side ionosphere near the equator, the plasma flow is corotational i.e.

antisunward, but at higher latitudes, in the return flow of the dusk convection cell,

the flow direction is sunward. At some latitude in between, these two flows must cancel

each other out and create a stagnation zone. Plasma equatorward of the stagnation

zone, having recently corotated from the daysize, would have a relatively high electron

density. Similarly, plasma poleward of the zone would have increased electron density

from auroral precipitation. However plasma that winds up in the stagnation zone

would remain for an extended period, during which time it would recombine. A

schematic of the scenario is shown in figure 2·3. Regions B and C are where flow
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reversal and stagnation occurs, whereas region A is dominated by corotation and

region D by convection (Spiro et al., 1978). This theory was analyzed, compared

with measurements and determined to be plausible in (Spiro et al., 1978) and (Nilsson

et al., 2005). In (Collis and Häggström, 1988), the authors found that the trough

minimum typically occurs in a region bounded equatorward by the transition from

corotating to convecting flow, and poleward by the electron precipitation boundary.

The stagnation mechanism can explain evening and premidnight troughs but not

postmidnight or morning troughs. A more general convection based theory, of which

the stagnation mechanism is a special case was explained in (Quegan et al., 1989).

The authors emphasize that the electron density at any location is due to all of the

production and loss along the path on which that plasma travelled. The convection

pattern is very complex which can result in two paths with very different histories

being brought close together. A trough can form when a path with a short transit

from the dayside ends up near a path which meandered on the night side. The

poleward wall is built up from auroral precipitation and dayside plasma convected

across the polar cap.

Another mechanism which can form troughs is sub-auroral polarization stream

(SAPS). SAPS is a high speed flow channel in the sub auroral ionosphere. In a

nonlinear process, the high wind speed increases frictional heating, and the increased

temperature increases the plasma recombination rate. This creates a local plasma

depletion. The occurrence of SAPS was quantified in (Foster and Vo, 2002), and

a map copied from their paper is shown in figure 2·4. Because the behavior of the

MIT at high Kp, namely that it moves equatorward and is observed having a higher

occurrence rate, matches that of SAPS, many researchers believe that SAPS troughs

could be contributing to the statistics of the MIT (Aa et al., 2020). Whether or not

SAPS troughs should be considered along with or separately from the MIT is up for
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Figure 2·4: Map of SAPS occurrence rate copied from (Foster and
Vo, 2002)
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debate, though distinguishing them from electron density measurements alone can be

difficult.

2.2.1 MIT Identification

In past statistical studies of the MIT, many different methods were utilized to identify

the trough. Of course one option which is frequently used is manual identification,

but this becomes infeasible for large datasets. Algorithmic approaches have so far

only been developed for one-dimensional data. It seems that existing methods follow

the same basic two steps: (1) estimate a background value for their measurements

and (2) threshold the ratio between the measurements and their background value.

If the data is not already one-dimensional, the first step is to process it into a

latitudinal profile. For latitude-altitude measurements from the European Incoherent

Scatter radar (EISCAT), the authors of (Ishida et al., 2014) averaged the electron

density along magnetic field lines between 300 and 350km. For background estima-

tion, they took the median of the upper half of the sorted electron density values,

then they found troughs where the electron density fell to 20% below the background.

A similar approach was taken in (Voiculescu et al., 2006) for latitude-altitude mea-

surements of electron density estimated by tomography. They averaged the electron

density between 200 and 400km, then looked for regions where it dropped below 50%

of the "outside value". In (Yang et al., 2015), the authors used the same TEC dataset

as us, but they computed latitudinal profiles by averaging TEC over the course of

a day in two hour MLT bins. They computed the background as the mean TEC

between magnetic latitude 45 and 70 then determined the trough minimum from the

minimum of each profile, i.e. they assumed the trough was present in every profile.

An identical approach was taken in (Pryse et al., 2006) except using TEC computed

from tomography data. In (Aa et al., 2020), they computed the background electron

density measured in-situ by satellites, then used a threshold of 50% to identify the
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trough. This is described in greater detail in section 3.1.2. Finally, one exception is

(Pedatella and Larson, 2010), in which the authors defined the equatorward wall of

the MIT as the location in a latitudinal TEC profile equatorward of the minimum

where the latitudinal TEC gradient is -0.1 TECu / degree.

2.3 Inverse Problems and Regularization

Often times in science and engineering we have a set of measurements and we wish

to compute a set of physical parameters which produced our measurements. This is

known as an inverse problem. The purpose of solving an inverse problem is to obtain

an estimate for parameters which are difficult or impossible to measure directly. So

we take measurements of related parameters and attempt to estimate the parameters

we are actually interested in. The measurements are related to the parameters of

interest via the forward model function f , as shown in the following equation, where

x is a vector of measurements and u is a vector of the parameters we are interested

in.

x = f(u) (2.7)

Then the goal of the inverse problem is to estimate f−1(x). The difficulty is that in

most practical cases, f−1 has no closed form or is not a function because it does not

map x to u one-to-one. To get around this, the inverse problem is solved by searching

for a value of u which minimizes a norm of the error between the measurements x

and the theoretical measurements resulting from u. This is shown in the following

optimization problem where u∗ is the estimated vector of parameters.

u∗ = argmin
u

‖x − f(u)‖ (2.8)

However, one difficulty which is often present is that multiple, possibly infinite, values

of u can produce the same output of f . A simple example of this is when f is a linear
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function, i.e. f(u) = Au; A ∈ Rm×n;m < n. Then f(u) = f(u + v) for any

vector v in the null space of A. In this case, equation 2.8 will not be sufficient to

solve the inverse problem because every time you perform the minimization you could

get a different answer. Problems which have this property are known as "ill-posed"

problems, because they don’t have a unique solution.

One way to deal with this difficulty is to to incorporate prior information into

the objective function by adding additional terms. This is called regularization. The

additional terms are meant to increase the cost for values of u which don’t conform to

prior beliefs. The most common regularization terms are the L2 and L1 norms of u.

Both improve the posedness of the inverse problem by favoring low-norm solutions.

Using the L1 norm tends to produce sparser solutions, but also is more computation-

ally expensive. A more typical example of an inverse problem is given in the following

equation, where λ is a positive scalar which controls the regularization strength.

u∗ = argmin
u

‖x − f(u)‖2
2
+ λ‖u‖2

2
(2.9)

Depending on the form of f , the above equation could even have a closed form

solution, which would make the inverse problem very fast to solve.
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Chapter 3

Methods

The goal of this project was to create a large, flexible labeled dataset of the trough

in TEC images. In order to make the dataset large, we needed to develop methods

to automatically estimate the labels. There were many ways we could have param-

eterized the trough labels. One option was to estimate the latitudes of the MIT’s

poleward wall, equatorward wall and minimum at each MLT, producing a matrix of

shape (n × l × 3), where n is the number of timesteps in the dataset and l is the

number of longitude / MLT bins. The problem with this type of approach is that you

need to specify ahead of time all of the parameters you wish to estimate, i.e. it is not

flexible. If we estimate the three latitude parameters and later decide that we also

want to measure the TEC values or the TEC gradients at those positions, then we

either have to reprocess the dataset, or we have to come up with a somewhat complex

procedure to collect those parameters. This became especially inconvenient because

we did not know which parameters would be useful to collect when we started.

Instead of that, we decided that the most natural and flexible way to parameterize

the trough labels for a two-dimensional dataset would be to assign a binary label to

each pixel of the input. An example of this can be seen in figure 3·5 on the bottom left.

One of the biggest advantages of this approach is that it makes fewer assumptions

about the shape of the trough, for example, whether it can exist at multiple latitudes

at the same MLT. This approach also allows us to refine our estimates of specific

parameters down the road. For example, if we wanted to measure attributes of the
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(a) Madrigal GPS receiver network in 2020 (b) Example of a TEC map from Madrigal

Figure 3·1: Madrigal GPS TEC

poleward wall, we could take the top pixel at each MLT, or take some average of the

surrounding area, etc. The important thing is that we did not lock ourselves into a

particular way of doing anything by choosing this approach. Another advantage of

this approach is that it makes it easy to select other types of data in the vicinity of the

trough as long as it is on the TEC grid, for example, ion flow vectors. This flexibility

may make the labeled dataset more useful for other researchers in the future.

3.1 Datasets

In this section we describe the various datasets we utilized and how we processed

them. An overview of the different data sources we used is presented in figure 3·5.

3.1.1 Madrigal GPS TEC

The Madrigal GPS TEC dataset consists of over 20 years of TEC maps from 1998 to

2021. The line of sight TEC measurements from a global network of GPS receivers

are binned and averaged into (1 degree latitude x 1 degree longitude x 5 minutes)

bins. The network on 1/1/2020 had over 6000 receivers and is shown in figure 3·1a.

The coverage is good over the United States and Europe but sparse everywhere else.

An example of a corresponding TEC map is shown in figure 3·1b. The coverage is

improved from the binning, but there is still very little over the oceans. Each file in
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Figure 3·2: Conversion and averaging process for Madrigal TEC maps

the dataset has a TEC array of size (180 x 360 x 288) with NaNs (Not a Number)

where data is missing.

Since we intended to use this dataset to study the MIT, a phenomenon organized

by the magnetic field, we converted the coordinates to magnetic apex (Richmond,

1995). In magnetic apex coordinates, all points along the a magnetic field line are

mapped to approximately the same coordinates. During this process, we also average

several Madrigal TEC maps together to further improve their coverage. To do this, we

first convert each lattitude - longitude grid point in the Madrigal grid to apex latitude

- MLT. The grid points of several consecutive Madrigal TEC maps are all converted,

the number depends on how much averaging we want. Finally all these converted

measurements are binned and averaged into a regular magnetic apex latitude - MLT

grid which we call the TEC Grid. This process is illustrated in figure 3·2, where each

dot in the left and middle plots are one grid point from a single Madrigal TEC map,

and the right plot shows the resulting average over one hour in a magnetic coordinates

grid. The grid cell size we chose is (1 degree latitude x 2 degrees longitude x 1 hour).

Larger amounts of time-averaging result in higher coverage in each map, but less

time resolution. For our dataset, we chose 1 hour because it seemed like a good

balance between coverage and time resolution. Additionally, because the northern

hemisphere has better coverage in the Madrigal dataset, we chose to limit our study

to only magnetic apex latitudes above 30◦ North. Thus our resulting TEC images

have a shape of (60 x 180).

Figure 3·3 shows the coverage of our TEC dataset from the years 2010 to 2020.
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Figure 3·3: (Left) TEC data coverage over magnetic longitude.
(Right) TEC data coverage over time.

In the left plot, the coverage of each latitudinal profile is averaged over the dataset.

If the “Data coverage Proportion” is 1 for a particular magnetic longitude (MLon),

that means that every grid cell along a latitudinal slice had data for every image in

the dataset. This plot shows clearly the sparse coverage the data has over the oceans

and Asia. This means we should expect any product or analysis based on this data

to exhibit a strong 24 hour periodicity. We should treat any frequency analysis based

on this data with caution. One way to avoid this problem is to add or average 24

maps together. The right plot shows the average coverage over time in the dataset in

6 month bins. If the “Data Coverage Proportion” is 1, that means that every grid cell

had data during that particular 6 month interval. This plot shows that the receiver

network is expanding over the course of the dataset. The years prior to 2010 have

even less coverage and so the resulting TEC images are of limited value.

3.1.2 SWARM

In this project, we utilize the SWARM satellite in-situ electron density dataset (Lo-

midze et al., 2019), which we downloaded via FTP from swarm-diss.eo.esa.int
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(specifically: /Advanced/Plasma_Data/2_Hz_Langmuir_Probe_Extended_Dataset).

The SWARM satellite constellation consists of three satellites named A, B and C,

which have been providing data since the end of 2013. Satellites A and C orbit at

an altitude of 450km and are separated by 1.4◦ longitude. Satellite B orbits at about

510 km. All three satellites take about 1.5 hours to complete one orbit. The SWARM

satellites carry a variety of instruments but we only used the electron density mea-

surements which are provided at 2Hz. After downloading the dataset, we converted

the satellite positions from geographic coordinates to magnetic apex coordinates, and

consolidated the daily files into more convenient monthly files.

MIT Identification From SWARM

To verify and calibrate our TEC image trough identification methods, we used the

method developed in (Aa et al., 2020) as a baseline. Their process is as follows. First

they convert the electron density measurements to log-electron-density and remove

noise with a three-point moving median filter. Then they estimate and remove the

background plasma density level using a 480-point moving average filter, which cor-

responds to a horizontal distance of about 1800km. At this point, they split up

the satellite orbits into segments in both hemispheres between 45◦ and 75◦ magnetic

latitude (MLat). Within these segments, they identify negative peaks which achieve

a minimum of -0.3 or lower as the MIT minimum, which they label with TM . They

label the poleward, TP , and equatorward, TE, walls of the trough at the latitudes

closest to the minimum where the detrended-log-electron-density returns to zero. If

more than one negative peak within the segment achieve a minimum which passes

the threshold, then the equatorward one is selected. Examples of identified troughs

are shown in figure 3·4 which was copied from (Aa et al., 2020), as well as in figure

3·5, where they are shown with green lines and red lines in the bottom and bottom

left plots respectively.



27

Figure 3·4: Copied from figure 1 in (Aa et al., 2020). Examples of
the trough identification method for SWARM data. The dotted line in
the "Ne" plots shows the background electron density.

With some parameter adjustment, this algorithm could identify the MIT in any

satellite in-situ electron density measurements. Because it does not require any hand-

labeling, this process can be used for very large datasets. Another advantage is that

it is simple and so its failure modes are understandable.

3.1.3 Defense Meteorological Satellite Program - Special Sensor Ultravi-

olet Spectrographic Imager (DMSP - SSUSI)

The Defense Meteorological Satellite Program (DMSP) has 4 satellites of interest to

this project named F16, F17, F18 and F19 which orbit at around 850km ( 100 minute
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period). These satellites were launched between 2003 and 2014 and one of the pay-

loads they carry is an imaging system called Special Sensor Ultraviolet Spectrographic

Imager (SSUSI) (Johns Hopkins University Applied Physics Laboratory, 2021). One

of the data products that the SSUSI team provides is an estimate of the boundaries

of the auroral oval. This estimate is the result of fitting a model to measurements of

auroral precipitation. The SSUSI team provides the latitudes of the auroral boundary

at regularly spaced geographic longitudes once per orbit. We convert the geographic

latitudes to magnetic apex latitudes, then linearly interpolate them onto the MLT

coordinates that we use for TEC and the MIT labels. We save all the boundary esti-

mates into monthly files, then when we open the files, we interpolate the boundary in

time to match the TEC map times. This product is useful because the poleward wall

of the trough is usually found just equatorward of the auroral boundary and so we

use the boundary to guide our trough identification algorithm. This will be explained

in greater detail in section 3.3.

3.1.4 Geophysical Indices and Solar Wind

The primary science goal of this project was to clarify how the MIT responds to

various ionospheric drivers and conditions. One way to do this is to sort the trough

into bins of a geophysical index. The purpose of any geophysical index is to quantify

some complex aspect of the ionospheric state with a single scalar value. One example

is the planetary K index, more commonly called Kp, which is meant to be a measure

of the global level of geomagnetic activity. Every three hours, local geomagnetic

disturbances are measured at 13 subauroral location, and these measurements are

standardized and averaged to obtain the global estimate (GFZ Helmholtz Center

Potsdam, 2021).

While Kp provides a representation of the current state of the ionosphere, it does

not directly measure ionospheric drivers. For that, we use measurements of the solar
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wind. The Goddard Space Flight Center Space Physics Data Facility provides a

low resolution version of these measurements which consist of hourly averages. An

example of the solar wind magnetic field measurements is shown in the top left plot of

figure 3·5. Missing data is common in any space physics data source and the solar wind

measurements are no exception. These averages are made up of measurements from

several different satellites which have been time-aligned to account for the different

satellite locations. The time alignment procedure is explained in detail in (NASA

Goddard Space Flight Center Space Physics Data Facility, 2021). When comparing

the solar wind data to the trough, we add an additional delay of 1 hour to improve

correlation. This is because there is some delay between a change in the solar wind

and the corresponding change in the ionospheric convection pattern, and there is

a further delay between a change in the convection pattern and the corresponding

change to the MIT.

3.1.5 SuperDarn

The Super Dual Auroral Radar Network (SuperDARN) is made up of over 30 high-

frequency phased-array radars distributed in both hemispheres. Each radar measures

the backscatter from decameter-scale irregularities in the ionosphere. These irregu-

larities drift with the convection pattern, and by estimating the doppler shift of the

scattered wave, the radar is able to determine the LOS component of the E × B

plasma drift. Radars are operated in pairs so that multiple velocity components are

measured. This strategy allows for the drift velocity to be fully determined. A Super-

DARN radar only receives a backscattered signal if the irregularities are present and

the radar wave encounters them from a direction orthogonal to the magnetic field.

Though the radars operate continuously, these conditions are met only a portion of

the time (Ruohoniemi and Baker, 1998). Using the individual velocity measurements,

the SuperDARN team fits a spherical harmonics model for the electric potential. An
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example is shown in the top middle plot of figure 3·5.

We were provided 10 years of 2-minute SuperDARN convection measurements

from 2010 to 2020. The maps are organized on an equal area grid based on altitude

adjusted corrected geomagnetic coordinates (AACGM). To make the data more easily

comparable to our dataset, we binned and averaged the 2-minute values into the 1

hour-1 degree latitude-2 degrees longitude grid that our labels and TEC data is on.

Finally, for each pixel of the processed SuperDARN maps, we classified it as SAPS or

not using the following procedure. We initially label a pixel as SAPS if the westward

component of its velocity is above a threshold. For the threshold, we tried 300 m/s

and 400 m/s. Then we expanded the positively labeled pixels using a binary dilation

operation. Finally, we removed positive labels from within the auroral oval. This is

discussed in greater detail in section 4.3.

3.2 Problem Setup

In the computer vision community, the task of labeling each pixel of an input image

is called image segmentation. In this setting, the input is set of images, X ∈ Rm×n

where m is the size of the image and n is the size of the dataset, and our goal is to

estimate a set of binary labels, Ŷ ∈ {0, 1}m×n which has positive values corresponding

to the trough. Note that X and Ŷ are the same size which means that every pixel in

the input is assigned a label. In the supervised learning setting, we would also have

a set of ground truth labels YGT ∈ {0, 1}m×n. Typically, one would choose a class

of models controlled by a set of parameters Θ and a loss function L(X, YGT ,Θ) such

that L can be minimized with respect to Θ.

Our setting is slightly different in that we do not have proper ground truth labels.

The MIT is not a precisely defined phenomenon and so in one sense, ground truth

labels do not exist. Ideally, with a better understanding of the MIT in the future,
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Figure 3·5: Overview of the data used in this project. Top left is a plot
of solar wind measurements. The solar wind influences the ionospheric
convection pattern shown top middle. The convection pattern carries
plasma around the ionosphere and is largely responsible for the TEC
distribution, shown on the right. Under the TEC plot and to the left
are trough labels identified in TEC and SWARM data.

we could come up with a precise definition which distinguishes it from other trough-

like phenomena in the ionosphere. Although we could have hand-labeled a significant

number of TEC images and used that as training data, our labels would be subjective

and may be influenced by our biases. Instead, we decided to replicate the algorithm

used in (Aa et al., 2020), which identifies the MIT in measurements of electron density

by the SWARM satellite constellation (described in section 3.1.2). However, this

approach also introduces complications because the SWARM labels only provide a

sample of the MIT at a six MLTs (one sample on each side of the north pole per

satellite), whereas our labels sample the MIT at all MLTs. Mathematically, you
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could think of this as partially observing a noisy version of YGT .

YSWARM = h(YGT + η) (3.1)

Equation 3.1 models using the SWARM labels as ground truth. YSWARM are the

SWARM labels from Aa 2020, YGT are the (theoretical) ground truth labels, η is a

noise process which corrupts the true labels into the labels determined by the Aa

2020 algorithm, and h is an observation function which samples the noisy labels at

particular MLTs. Unfortunately, since the performance of the Aa 2020 algorithm is

probably affected by the shape, size and background conditions of the MIT, the noise

process η is not likely to be independent from YGT . The hope in any study like this

is that the noise process is almost independent from the ground truth labels and so

sample statistics are close to their true values. What this means for our study is that

the Aa 2020 labels provide a good check to see whether our algorithm is working

properly, but we should not be overly concerned with fitting their results as closely

as possible.

3.3 MIT Labeling Methods

During this thesis, we developed two methods for identifying the MIT in TEC images.

Our approach is very much inspired by previous work by others: (Yang et al., 2015),

(Ishida et al., 2014), (Aa et al., 2020), (Pryse et al., 2006), (Voiculescu et al., 2006).

First we (1) perform a preprocessing step to the TEC image, then we (2) assign a

score to each pixel, then we (3) threshold the scores and (4) do a postprocessing

step. The scoring step is different for the two methods we developed, and each

has advantages and disadvantages. We found that for two-dimensional data, the

preprocessing by itself was insufficient to separate the trough from the rest of the

ionosphere which is why we add additional processing before and after thresholding.
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While two dimensional data may be more complicated to process, we believe that it

should lead to a more accurate determination of the MIT because of the longitudinal

coherence of the trough. For example, a small dip in a latidudinal profile of TEC

might be a trough or might not, but if it is part of a longitudinally extended region

of low TEC, then that gives us higher confidence that it is indeed part of the MIT.

While developing these methods, we made an effort to keep our processing as

consistent with previous methods as possible. This is important because the MIT

is not a precisely defined phenomenon. In fact, the most precise definition that the

MIT has is provided by the algorithms which are used to identify it. By making our

methods similar to previously developed ones, we prevent our implicit definition of

the trough from being too far away from what is accepted.

3.3.1 General Considerations

Before we explain the details specific to each method, we will describe the processing

steps that are utilized in both methods. For the remainder of this section, the input

will be called the TEC vector (T), the output of the preprocessing step will be called

the preprocessed vector (x), the output of the scoring step will be called the score

vector (u), the output of the thresholding step will be called the thresholded vector (q)

and the final output after postprocessing will be called the label vector (ŷ). Examples

of the input (TEC) and output (labels) can be seen in the top right and bottom left

plots of figure 3·5 respectively.

Preprocessing

The input to this stage are the TEC vectors, and the output are the preprocessed

vectors, both of which can be thought of as either (60× 180) arrays or (10, 800× 1)

vectors. We have shown an example of the input and output from this stage in figure

3·6a. Each grid cell in the input holds the TEC in TECu for that location. We begin
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(a) Input (left) and output (right) to the preprocessing step: TEC and pre-
processed vector, respectively

(b) Distributions of TEC (left) and Log TEC (right)
(c) Distributions of preprocessed
values with different filter sizes

(d) Examples of preprocessed vectors calculated with different
filter sizes. Left: (9 x 9), right: (21 x 21)

Figure 3·6: Preprocessing
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preprocessing by throwing out any out-of-bounds data which we decided to be values

below zero or above 150 TECu.

We then converted TEC to log-TEC. By converting to log-TEC we are placing

importance on the relative decrease in TEC in the trough as opposed to absolute

decrease. This means a dip from 2 TEC to 1 TEC might be considered a trough

but a dip from 15 to 10 might not. This could exaggerate the occurrence rate of

the trough during the winter when the TEC values are lower in general, but this

isn’t necessarily a problem because the trough doesn’t have a true definition. Using

the log scale more closely aligns our definition of the MIT with previous work. The

distribution of log-TEC is more symmetric than the distribution of TEC which is

generally beneficial for analysis and machine learning. This can be seen in figure 3·6b

where we have plotted histograms of TEC and log-TEC from random sample of the

TEC dataset.

Next, we estimate the background using a sliding window average. We experi-

mented with different window sizes, but anything around (17 × 17) seems to work.

The sliding window size used in (Aa et al., 2020) corresponds to about 17◦ of latitude.

By padding the log-TEC at the top and bottom with the edge value and at the left

and right with the values at the opposite side of the array, we avoid MLT edge effects.

Finally, following (Aa et al., 2020), we subtract the background from the log-TEC im-

age. This step is equivalent to high pass filtering with the cutoff frequency controlled

by the size of the sliding window. A larger window sets a lower cutoff frequency. We

have shown examples of the preprocessing step performed with different filter sizes

in figure 3·6d and the resulting output distributions in figure 3·6c. The larger filter

size results in an output distribution with more variance, which means more of the

input power has been let through. This can also be seen in the examples in figure

3·6d where the plot on the right appears to have higher amplitude.
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By viewing this step as a high pass filter, we see that its purpose is to filter

out variations in the data that aren’t helpful for identifying the MIT. The highest

amplitude of those variations will be low-frequency including seasonal TEC variations

and day-night variations. This can be seen in figure 3·6a where in the left TEC plot,

there is a large difference between the TEC on the day side versus on the night side,

but there is no such difference in the right plot of the preprocessed vector. There

is some optimal value for the cutoff frequency which we don’t know. If the cutoff

frequency is too low, then low frequency variations like day-night are allowed to pass

and if the cutoff is too high, then large troughs will be filtered out. We estimated

the moving average filter size as part of our random parameter search. If our data

were higher resolution, then we might have considered also using a low pass filter,

effectively creating a bandpass filter. The highpass portion of the filter essentially

sets the maximum size for the trough and a lowpass filter would set a minimum size.

In our case, we would like to be able to detect troughs that are only one degree wide

in latitude and so additional low pass filtering is not needed.

At this point in past studies, the authors would set a threshold to identify MIT

regions. The reason we could not threshold the preprocessed vectors directly is be-

cause there are other trough-like structures at high and low latitudes that would be

misclassified as the MIT. Additionally, the preprocessed vectors contain noise which

we would prefer to get rid of. Both the noise and the non-MIT trough-like structures

can be seen in figures 3·6a and 3·6d.

Thresholding

Many binary labeling methods rely on estimating some continuous score value, then

thresholding it to make a final decision. By varying the threshold and measuring true

positive rate and false positive rate, you can trace out the receiver operating char-

acteristic (ROC) curve. Therefore to choose our threshold, we wanted to maximize
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accuracy and minimize the poleward wall and equatorward wall errors. We could have

choosen a cost function which balances these metrics, performed a grid search, and

picked the threshold with the lowest cost, but this has a problem. Varying the thresh-

old also affects the size of the trough labels, i.e. if the threshold is lower, more pixels

will be considered trough and the resulting output will have larger / more troughs.

The continuous errors are only measured where both methods say that a trough is

present. For this reason, as the threshold increases, fewer and fewer of the continu-

ous errors are being considered, and the ones that are considered are only for very

high confidence troughs, i.e. where the score value is above a high threshold. This

causes the poleward and equatorward absolute errors and error variances to decrease

as the threshold increases, which means they are not a good indicator of a properly

set threshold. An example of this is shown in figure 3·7. Both the top and bottom

plots show performance metrics over a range of threshold values. In the bottom plot

you can see, after an initial increase, both error standard deviation lines decrease

with increasing threshold. Instead, we used accuracy to determine the threshold. In

the top plot of figure 3·7, you can see that the red accuracy line exhibits a maximum.

During our parameter search, we looked for settings which resulted in low bias and

variance in the continuous errors even though the threshold was not explicitly chosen

to minimize them.

Prior MIT Model

One of the key ways in which we rejected trough-like structures at high and low

latitudes was by performing a sort of weighted regularization based on the expected

location of the MIT. We experimented with two models for expected trough position:

the empirical model developed in (Deminov and Shubin, 2018), and one based on the

auroral boundary measured by SSUSI. SSUSI is described in section 3.1.3. Examples

of both prior models can be seen in the top right plot of figure 3·5 as red and black
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Figure 3·7: TLM1 performance metrics at different thresholds. Top:
Accuracy (Acc.), true positive rate (TPR), true negative rate (TNR),
false positive rate (FPR), false negative rate (FNR). Bottom: Poleward
("P") and equatorward ("E") wall latitude error mean and standard
deviation ("mean", "std. dev.")

dashed lines. From these models, we got a vector of MLats for each time step cor-

responding to our MLT coordinates. We then computed weights for each cell of our

TEC grid using the following formula:

w(λ, φ) = c|λ−m(φ)|p + 1 (3.2)

where w(λ, φ) is the weight at MLat λ and MLT φ, m(φ) is the latitude of the prior

MIT model at MLT φ, c is a scalar which sets the maximum weight and p sets the order

of weighting to either linear or quadratic. Using this sort of weighted regularization

helped prevent our methods from scoring pixels far from the expected trough location

too highly.



39

3.3.2 Trough Labeling Method 1 (TLM1)

Motivation and Overview

As mentioned earlier, the problem with thresholding the preprocessed vector is that

any relative low region will be labeled as trough such as isolated noisy pixels or low

regions within the auroral oval or at low latitudes. We wanted to threshold a vector

which more closely approximated our level of confidence in each pixel being part

of the MIT. We called this vector the score vector. The idea behind TLM1 is to

model the score vector’s contribution to the preprocessed vector (forward model),

then invert the model to find a score vector given a preprocessed vector. An example

of a preprocessed vector is shown in figure 3·8a and its corresponding score vector is

shown in 3·8b. In both plots, red indicates a high value and blue indicates a low value

so we should expect blue regions in the preprocessed vector to be shaded blue in the

score vector. Note how the preprocessed vector has some non-MIT low regions both

higher and lower latitude than we would expect the trough, e.g. near MLT 22 and

MLT 6. Thresholding the preprocessed vector directly would result in these regions

being mislabeled. In the score vector these regions are not scored as highly as the

pixels within the MIT.

Trough Image Model

We modeled each preprocessed vector as a linear combination of radial basis functions

(RBFs) with the weights given by the score vector values, plus noise. In general an

RBF is any function which only depends on the radial distance from a point c (Bishop,

2006).

s(x) = h(‖x− c‖) (3.3)
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The most common choice for RBFs is the Gaussian RBF:

s(x) = exp(−
‖x− c‖2

2σ2
) (3.4)

where c is the center and σ is a size parameter which is sometimes called the band-

width. For the remainder of this thesis, "RBFs" will refer to Gaussian RBFs unless

otherwise noted. Our forward model for the preprocessed vectors xi based on the

score vectors ui has the following form:

xi = −Aiui + ǫi (3.5)

where ǫ is noise. Each column of the matrix Ai contains an RBF centered on a pixel of

the grid. The negative sign means that higher score values will result in lower values in

the preprocessed vector. Nominally, all the Ai’s are identical, but because xi is always

missing data, Ai refers to the full basis matrix with rows dropped corresponding to

the elements that are missing in x. If Gi is the set of indices where xi has data, then

the size of Ai is (|Gi| × 10800). By using RBFs, we cause the score vector elements to

affect all the elements in the corresponding neighborhood of x. We were motivated to

choose a forward model with this property by the fact that the MIT is a large scale

structure, i.e. a single low pixel in the preprocessed vector does not constitute the

trough, only when many contiguous pixels are low should the region be considered

part of the MIT.

This processing step is meant to capture three aspects of / assumptions about the

MIT, as it appears in TEC images. The first, which we described above, is that the

trough is a large-scale structure which should cause regions of low TEC. The second is

that the MIT should appear where we expect it to, i.e. not too far from a prior model

like the ones described in section 3.3.1. Lastly, the trough should mainly appear

as one large contiguous region of low TEC, not as many smaller regions scattered



41

around. The first aspect is part of the forward model via the RBF basis, but the

second two aspects are implemented in the inversion using regularizers. During the

inversion, we search for a score vector which fits the forward model, but constrain

the search to score vectors which also satisfy our assumptions about the MIT. We

express the trough image model inversion mathematically as:

u∗
i = argmin

ui

xT
i Aiui + α‖Wiui‖

2

2
+ β‖Cui‖1 (3.6)

where u∗
i is the fitted score vector, Wi is a diagonal matrix which implements the

weighting described in equation 3.2 and C is a matrix which computes the differences

between all neighboring pixels of u. α and β are nonnegative coefficients which

weight the relative importance of the three components. The cost function is convex

because each individual term is convex: the first term is linear which makes it convex

and the second two terms are convex given that α and β are nonnegative. In fact,

for α > 0, the second term makes the cost function strongly convex, guaranteeing

that it has a single unique minimum. We performed the minimization using the

commercial software Gurobi (https://www.gurobi.com/) but Python also has open

source optimization problem solvers which we could have used, e.g. CVXPY (https:

//www.cvxpy.org/).

Typically in a problem like this, the first term would be ‖xi + Aiui‖
2 in order

to minimize the euclidean distance between xi and −Aiui. We instead minimized

the negative dot product between the forward model and the preprocessed vector.

Minimizing this without the other terms would send ui to infinity wherever xi is

negative. The regularization terms prevent this from happening. We found that

setting up the cost function in this way produces sharper score vector boundaries. One

intuitive reason for this is that a linear cost term is less restrictive than a euclidean

distance cost term, which results in a greater influence from the regularization terms
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on u∗
i . For example, the level set of a euclidean distance term is a sphere, which

is finite, whereas the level set of a linear cost function is a plane which is infinite.

Another reason is that in the transition region between trough minimum and wall,

where x becomes close to zero, the first term has essentially no influence on those

pixels. Ultimately, this form of cost function strengthens the regularizers.

The second term is weighted L2 regularization which serves two purposes: the

first is to prevent ui from going to infinity where xi is negative and the second is to

prevent ui from taking high values far away from where we expect the trough to be.

Together with the L1 norm, the C matrix implements the total variation (TV)

regularizer.

(Cui)j =
∑
k∈Nj

uij − uik (3.7)

The jth element of Cui is the sum of the differences between the jth element of ui and

all of its neighbors. The set of indices of the 4 neighbors of the jth pixel in the grid

is denoted Nj. Minimizing the L1 norm of this tends to make it sparse, which means

the gradients of the score vector will be sparse. This encourages the score vector to

have larger contiguous regions of the same value and is minimized when every pixel

is the median of its neighbors. The goal of using this is to get score vectors which are

less influenced by noise and missing values, instead tending to have one or two larger

contiguous trough regions.

Post-processing

The purpose of postprocessing is to clean up specific errors which remain after thresh-

olding the score vector. These errors include small patches classified as MIT due to

noise in the preprocessed vector and trough-classified pixels within the auroral oval.

Examples of the input and output to the postprocessing step are shown in figures

3·8c and 3·8d respectively. The corresponding auroral oval estimate is shown as



43

(a) Input to the TLM1 scoring step: the pre-
processed vector. Blue color indicates local
plasma depletion

(b) TLM1 score vector. Red color indicates
high score.

(c) Thresholded vector. Still has small
patches and patches within the auroral oval
(dotted line) which we want to remove.

(d) Final labeled vector

Figure 3·8: TLM1 intermediate vectors
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a dotted black line in figure 3·8c. For removing small patches, we set thresholds

for the perimeter and area of each patch, then utilized connected component anal-

ysis to determine whether each patch passed (https://scikit-image.org/docs/

stable/api/skimage.measure.html#skimage.measure.label). We considered the

latter scenario an error because the community generally accepts that the auroral

precipitation makes up the poleward wall of the trough (Karpachev et al., 1995). We

removed positive pixels from within the auroral oval because according to many other

papers, electron depletions within the auroral oval are “high latitude troughs” and not

the MIT. This error is common because, due to the grid projection, the pixels in the

polar cap are very small. This means that a relatively small-scale disturbance in the

ionosphere can affect many pixels near the polar cap, which has a disproportionate

influence on the cost function. Finally, the output of this step is our label vector ŷ.

3.3.3 Trough Labeling Method 2 (TLM2)

While TLM1 performs well, its two main drawbacks are that it is complicated and

that it is slow. It has many parameters which require manual tuning and to run

TLM1 on a 10 year dataset takes a few hours or overnight. Other researchers are

more likely to utilize the method if they are able to run it quickly and it is simple

enough for them to adapt it to their specific needs. The time it takes to run TLM1

is dominated by optimizing equation 3.6. The goal of TLM2 is to approximate the

scoring step of TLM1 without having to perform any optimization.

If you take the preprocessed vector and add the prior model vector (diagonal of

Wi from equation 3.6), then when you threshold the result, the pixels far away from

the prior model latitudes are less likely to have a positive label. In this way, we have

approximated the L2 regularization term from TLM1. If we could do the same for

the other two aspects of TLM1, then we would have a simpler algorithm with similar

performance and less computational cost. TLM2 uses the same preprocessing and
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Figure 3·9: Overview of TLM2 scoring step (see "TLM2 Overview
Diagram Description" in text for details).

postprocessing steps as TLM1, the only difference is in the scoring step.

Scoring Step

The score vector is a linear combination of three vector components, each meant to

mimic a component of equation 3.6. The first component is just the preprocessed

vector x, the second component is the prior model vector w, and the final component

is a modified version of the preprocessed vector called the integrated sparse gradients

vector v.

ui = xi + αwi + βvi (3.8)
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Equation 3.8 shows the computation of the TLM2 score vector.

The sparse gradients vector is meant to approximate the TV regularizer from

TLM1 and is the most complicated part of TLM2. The TV regularizer causes score

vectors with more dispersed values to cost more, i.e. it favors score vectors with a

single contiguous region. While the TV regularizer "tends to" result in solutions with

sparser gradients, to approximate it in TLM2, we directly applied operations to the

preprocessed vector to sparsify its gradients. We processed the x and y gradients

separately and combined them at the end. For each gradient vector, we first applied

a sliding median filter to reduce noise, as the initial gradient calculation can result in

a noisy vector. Then we applied a "sliding max filter" to create a sparse vector. The

max filter, which uses a single-pixel-width window, sets values that are the maximum

within the filter window to the sum of the values within the filter window, otherwise

it sets them to zero. This has the effect of compressing a neighborhood of gradients

into a single pixel. If we were to integrate the gradients, instead of seeing a ramp up,

we would just see a single jump. We then spread out the sparsified gradients in their

orthogonal direction using a sliding mean filter. Finally, we symmetrically integrated

each gradient by adding the forward integration to the negative of the backwards

integration. Adding the two integrated gradients together gave us our "integrated

sparse gradients vector". The integration process is shown below in equation 3.9,

where v(r, s) is the total integrated sparse gradient at the pixel in the rth column and

sth row, vx(r, s) and vy(r, s) are the separately integrated sparse x and y gradients,
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and ∇xv(r, s) and ∇yv(r, s) are the sparsified gradients in the x and y directions.

v(r, s) = vx(r, s) + vy(r, s)

vx(r, s) =
r∑

i=1

∇xv(i, j) +
R−r∑
i=1

−∇xv(R− i, j)

vy(r, s) =
s∑

j=1

∇yv(i, j) +
S−s∑
j=1

−∇yv(i, S − j)

(3.9)

TLM2 Overview Diagram Description

Figure 3·9 shows an overview of the TLM2 scoring step. The bottom left image is the

preprocessed image xi. The sparsified x and y gradients are labeled with ∆x and ∆y

respectively and the sparsified y gradient image is shown above and to the left of the xi

image. These two sparse gradient components are integrated and summed to produce

the "sparse gradients vector" vi which is shown in the top image. Along with the

prior model vector wi, which is shown in the bottom right image, the preprocessed

vector and the sparse gradients vector are summed together to produce the score

vector ui. As the final operation of the scoring step, this sum is shown with a bold

green arrow and the output score vector is shown in the right image.

3.3.4 Performance

As mentioned earlier, we used several error metrics to measure the performance of our

algorithms. Since the Aa 2020 labels are not actually a source of ground truth, we

were not expecting or even hoping to match them perfectly. The key characteristics

we wanted to observe were low bias and decent binary accuracy.

To test an algorithm, we randomly selected N days from the 7 year span of

SWARM data we downloaded and ran the algorithms on all of the data from those

days. The Aa 2020 algorithm splits the SWARM orbits into segments between 45◦

and 75◦ MLat, through which each satellite passes twice in the northern hemisphere
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(a)
(b)

Figure 3·10: (a) SWARM satellite MLAT vs time, showing time align-
ment of satellite orbital segments with TEC maps. Black vertical lines
indicate one TEC map, blue and yellow lines mark selected segments.
(b) SWARM trough vs TEC trough comparison diagram.

per orbit. The segments in which the satellites’ latitude is increasing, we called

"up" segments and the other segments we called "down". Each of our label vectors

correspond to one hour and for comparison, we chose the "up" segment and the

"down" segment which were closest in time to each one. This is illustrated in figure

3·10a where the dashed black line indicates a SWARM satellite’s MLat over time, the

vertical black lines indicate the time span of a TEC map and the blue and yellow

lines indicate the selected SWARM orbital segments.

We then extracted a 3-pixel-wide path of our label vectors under the selected

SWARM satellite orbital segments and marked the highest and lowest MLats where

our labels were positive, corresponding to the poleward and equatorward walls of the

MIT, respectively. We compared these latitudes to ones from the Aa 2020 algorithm.

In the case of multiple trough candidates within a single orbital segment, the Aa

2020 algorithm, as written in the paper, chooses the one with the lowest MLat. For

our comparison, we instead chose the one which best agreed with our labels. This

should result in better ground truth labels because rather than somewhat arbitrarily

choosing the lower MLat troughs, we are chose troughs that are confirmed in two

separate datasets. If our algorithm did not detect the trough, then we used the
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Error Type TEC SWARM

No Error: True Negative No Detection No Detection

Error: False Negative No Detection Trough Detected

Error: False Positive Trough Detected No Detection

No Error: True Positive Trough Detected Trough Detected

Table 3.1: Binary error types

original strategy of choosing the lowest latitude trough.

Aligning the Aa 2020 labels with ours nominally resulted in 6 comparisons per

TEC map (3 satellites, 2 orbital segments, but often less due to missing SWARM)

and 6 variables per comparison. There are two binary variables, one for SWARM

and one for TEC, indicating whether any trough was detected in the comparison.

There are also four continuous variables indicating the latitudes of the poleward and

equatorward walls for each of the two data sources. Of course, if no trough is detected

in one of the data sources, then there are no values for these latitudes and so we did

not perform any comparison. With the two binary variables, there four possible

situations: true negative, false negative, false positive and true positive. These are

listed in table 3.1. In the true positive case, when a trough is detected by both

our algorithm and the Aa 2020 algorithm, then we computed the errors of the wall

latitudes as:

EP = λTP − λSP

EE = λTE − λSE

(3.10)

Where EP is the poleward wall error, EE is the equatorward wall error, λSP is the

poleward wall latitude from SWARM, λTP is the poleward wall latitude from TEC,

etc. With 6 comparisons per TEC map and 24 TEC maps per day, we got a total

of 144N comparisons, from which we computed accuracy, rates for the binary error

types, and statistics (mean / standard deviation) for the continuous errors.

To find good parameters for our algorithms, we utilized a random search. Because
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Parameter Setting

Background Filter Size (19, 17)

RBF Bandwidth (distance to half power) 1 pixel

L2 Regularization Strength α .05

Total Variation Regularization Strength β .15

Horizontal TV strength Double

Perimeter Threshold 40 pixels

Area Threshold 40 pixels

Prior model (Deminov and Shubin, 2018)

L2 weighting order (p in eq. 3.2) 1

Max weight (c in eq. 3.2) 15

Threshold 0.7

Table 3.2: Parameter settings for TLM1, found with random search

we do not have actual ground truth labels, we did not simply pick the parameters with

best metrics, but rather used the metrics and manual debugging to guide us towards

parameters that seemed subjectively reasonable and resulted in good performance.

The parameters which we settled on are listed in tables 3.2 and 3.3 for TLM1 and

TLM2 respectively.

Baselines

It is always a good idea to test out new methods against a simple baseline. Because

there is no other method for MIT identification in TEC maps, we used a 2D analog of

the Aa 2020 algorithm. We used the same preprocessing step as described in section

3.3.1, which is already a 2D version of the Aa 2020 algorithm. We applied a small

(5×5) median filter to smooth out the preprocessed image, then we identified possible

troughs by searching for closed < −0.05 contours. We eliminated any contours which

did not contain any pixel values < −0.2. Finally, we labeled all pixels within the

remaining contours as trough and applied the postprocessing operations described in
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Parameter Setting

Background Filter Size (19, 17)

"Prior" weight α 1

Max weight (c in eq. 3.2) 1

"Prior" order (p in eq. 3.2) 1

Prior model auroral boundary - 1

Integrated sparse gradients weight β .5

Perimeter Threshold 40 pixels

Area Threshold 40 pixels

x "max filter" size 3

y "max filter" size 5

median filter size 7

mean filter size 15

Threshold 0.0

Table 3.3: Parameter settings for TLM2, found with random search

section 3.3.2. Though not identical to the Aa 2020 algorithm, this is fairly close 2D

analog with a few modifications to improve performance. Importantly, this baseline

algorithm has very few parameters and represents a reasonable first attempt at this

task.

To put the following performance results into perspective, the Aa 2020 dataset

has positive labels in about 60% of cases, which means an algorithm that guessed

positive for every timestep and MLT would have around 60% accuracy. To add

additional context to our results, we have also included a baseline which labels every

vector with a 6◦ -wide trough centered on the (Deminov and Shubin, 2018) empirical

model. The two dimensional generalization of the Aa 2020 algorithm will be referred

to as B1 and the positive-guesser based on the Deminov 2018 empirical model will

be referred to as B2.
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Results

Table 3.4 summarizes the performance of TLM1, TLM2 and the baselines. For the

metrics in table 3.4, we considered all longitudes. Because of the uneven coverage of

the TEC maps, we also computed performance metrics ignoring all SWARM - TEC

comparisons in the range [130, 260] MLon, which are listed in table 3.5. We roughly

estimated this range by looking at figure 3·3. In general, the metrics listed in table 3.5

show improvement over those in table 3.4. The "Time" metric is the time in minutes

it took to run the algorithm on 200 days (4800 TEC maps). While we do list "time"

as a metric in the tables, our focus is mainly on accuracy, bias and variance because

we only need to run the algorithm once through the TEC dataset. In figure 3·11, we

show the continuous error distributions for the three algorithms. These distributions

are shown for the higher coverage longitude range.

B1 performs well in terms of binary accuracy, agreeing with Aa 2020 in 80% of

cases. However, it has a rather high error standard deviation for its estimates of the

MIT walls at 4.28 and 5.06 for the poleward and equatorward walls respectively. From

figure 3·11c we see that the equatorward error distribution has an especially heavy

negative tail. The postprocessing operations most likely prevent the poleward wall

estimate from being too far off, but the equatorward wall estimate is less constrained.

In general, the equatorward wall of the MIT is less well-defined than the poleward

wall, and other authors have found it difficult to parameterize (Prölss, 2007).

TLM1 appears to have the best accuracy. Especially appealing is the fact that

it performs the best when we include the poorly covered longitudes. TLM1 should

be able to handle missing data more gracefully because it is simply masked out in

the scoring step. In areas with missing data, the cost function is only determined

by the L2 and TV regularizers. TLM1 ’s estimate of the poleward wall has lower

bias than TLM2 and somewhat higher standard deviation. TLM1 ’s estimate of
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Metric TLM1 TLM2 B1 B2

Accuracy 0.81 0.75 0.74 0.59

True Positive Rate 0.76 0.78 0.62 1.0

True Negative Rate 0.87 0.67 0.92 0.0

False Negative Rate 0.24 0.22 0.38 0.0

False Positive Rate 0.13 0.33 0.08 1.0

Poleward Error Mean -0.04 1.02 -1.41 -0.47

Poleward Error Std. Dev. 4.12 3.79 5.80 3.91

Equatorward Error Mean -1.74 -0.41 -2.85 -0.92

Equatorward Error Std. Dev. 4.08 4.01 6.45 4.69

Time (minutes) 108 4.14 3.50

Table 3.4: Performance comparison at all longitudes. B1 : 2-D Aa
2020; B2 : Deminov 2018

the equatorward wall has higher bias than TLM2 but they have the same standard

deviation. Both overestimate the width of the MIT on average but TLM1 by slightly

less. The lower standard deviation for TLM2 indicates that it may be more strongly

controlled by the prior model. The one place where TLM2 is a clear winner is in

speed, which is what it was designed for. TLM1 behaves more predictably in the

presence of missing data, so it is what we ended up using for this particular study.

However, with a larger dataset of higher resolution samples, the speed of TLM1 would

be too low to be feasible. Both algorithms outperform the baselines and have good

enough agreement with Aa 2020 to give us confidence in our results, and they would

both be useful in different scenarios.
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(a) TLM1 (b) TLM2

(c) Baseline 1

Figure 3·11: Poleward and equatorward wall latitude error distribu-
tions for the three methods
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Metric TLM1 TLM2 B1

Accuracy 0.84 0.80 0.80

True Positive Rate 0.83 0.91 0.70

True Negative Rate 0.86 0.63 0.93

False Negative Rate 0.17 0.09 0.30

False Positive Rate 0.14 0.37 0.07

Poleward Error Mean 0.37 1.41 -0.15

Poleward Error Std. Dev. 3.88 3.62 4.28

Equatorward Error Mean -1.49 -0.63 -1.62

Equatorward Error Std. Dev. 3.90 3.90 5.06

Table 3.5: Performance comparison excluding magnetic longitudes
[130, 260]. B1 : 2-D Aa 2020
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Chapter 4

Experiments

In this chapter we demonstrate some of the scientific applications of our labeled

dataset. We explain how our flexible labeling scheme allowed us to compute a wide

variety of measurements and statistics of the MIT. In order to avoid quantization

artifacts in our histograms, we applied a small dither to some variables, e.g. Kp.

The dither is sampled independently and identically distributed (IID) from a zero-

mean Gaussian distribution and we set the variance as small as possible to make

the histograms reasonably smooth. The variables we applied a dither to and the

corresponding Gaussian standard deviations are listed in table 4.1. Unless otherwise

noted, the dithered versions of the variables in table 4.1 were used throughout this

section.

Variable Dither Std. Dev.

Kp 0.1

MLT 0.02 hours

MLat 0.01 degrees

By 0.05 nanotesla

Bz 0.05 nanotesla

Season 0.25 days

Table 4.1: Gaussian dithering standard deviations



57

4.1 Replication

In order to provide further evidence that our labeled dataset was valid, we first

verified that previously known statistical relationships of the MIT were reproduced

in our dataset. We have provided an explanation of these effects as well as general

background on the MIT in section 2.2.

4.1.1 MLat vs Kp

That the MIT’s latitudinal position decreases with increasing Kp is probably the most

well documented aspect of the MIT’s behaviors. Therefore, this was the first result

we wished to replicate with our dataset. Because our dataset contains an order of

magnitude more measurements than previous studies (section 1.1), we were able to

view these statistical relationships with a much greater level of detail.

Figure 4·1a is a copy of figure 8b from (Aa et al., 2020) which shows the linear

regression results of Kp versus trough minimum position from eight different papers,

including their own (black solid line). In figure 4·1c we show our computation of the

same line. Because our labels are low level, i.e. pixel level, it takes a small amount

of additional computation to estimate the latitude of the MIT minimum. To do

this, we used our labels to mask out non-trough pixels of either the TEC vectors or

preprocessed vectors, then we searched for the latitude which achieves the minimum

value at each MLT. This gives us an array with shape (N × 180) where N is the

number of TEC maps in our dataset. The array has NaNs at each MLT which has

no trough pixels. Since MLT also has a large effect on trough position, in figure

4·1c we limited our regression data to only include MLT values within two hours

of midnight. Finally, we binned the MIT positions into 20 Kp bins. Figure 4·1b

shows the overall regression line as well as the mean of each bin as a dot and the

standard deviation of each bin with error bars. In general, our results agree well with
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(a) (b)

(c) (d)

(e)

Figure 4·1: MIT position and occurrence rate dependence on Kp. (a)
Figure 8b Aa 2020: MIT position vs Kp in various studies. (b) Figure
8a Aa 2020: MIT occurrence rate vs Kp. MIT position vs Kp in our
dataset, within 2 hours (c) and 5 hours (d) of midnight. (e) (left)
Distribution of MIT Kp and MLat, (right) occurrence rate of MIT in
Kp - MLat bins.
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the results from other studies. The Aa 2020 line is slightly higher than most of the

others, which they attribute to the fact that they averaged over 19 - 5 MLT whereas

other studies only averaged around midnight. The trough before midnight rapidly

increases its latitude while after midnight, it decreases its latitude only marginally.

We verified the plausibility of this explanation by computing our trend line for the

wider range used in (Aa et al., 2020), which indeed caused the line to move poleward.

Our midnight line is very close to the line from (Yang et al., 2015) which also was

computed from Madrigal TEC maps.

Figure 4·1b, copied from figure 8b of (Aa et al., 2020), shows how the occurrence

rate of the MIT varies with Kp. One of the benefits of our large dataset is that we are

able to simultaneously show these two relationships with the same histogram, which

we have done in figure 4·1e. The left plot of figure 4·1e shows the overall distribution

of the MIT’s Kp and MLat in our dataset, and the right plot shows the occurrence

rate of the MIT in the same bins. To compute these histograms, we checked for

any positively labeled pixels within the MLT range [-1.5, 1.5] at each latitude. This

resulted in a binary array of shape (N × 60), of which each column has the same

MLat and each row has the same Kp. We then sorted the positive entries of this

array into Kp - MLat bins. The left plot of figure 4·1e shows the count of each bin.

To compute the occurrence rate shown in figure 4·1e, we divided the count of each

bin by the number of times it was observed, i.e. the number of data points, trough

or not, we had for that bin. The left side of figure 4·1e shows that the trough moves

equatorward with higher Kp and that high Kp occurs less frequently than low Kp.

The right side of 4·1e shows the same trough position effect, but also shows that

the occurrence rate of the MIT increases with Kp. Finally, it gives a sense of the

variability of the trough’s position. Overall figure 4·1 confirms the results of previous

studies.
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4.1.2 MLat vs MLT

Another well-known behavior of the MIT is that its latitude decreases from evening

until after midnight. This behavior has been shown in many past studies. Figure

9 from (Yang et al., 2015) is copied in figure 4·2a and it shows the median trough

position as well as the upper and lower quartiles of 1 hour MLT bins. They limited

their averages to an F10.7 range of [90, 150] and a Kp range of [.3, 2]. A similar

plot from (Le et al., 2017) (figure 4) is shown in 4·2b. Theirs was computed from

average low-Kp TEC profiles. Both (Yang et al., 2015) and (Le et al., 2017) used the

same Madrigal TEC dataset as us. Figure 4·2c shows part of figure 2 from (Aa et al.,

2020). All three studies limited their averaging to low-Kp conditions to lessen the

variance due to magnetic activity. Our plot, shown in figure 4·2d, was computed in

a similar way to figures 4·1c and 4·1d, except we sorted the MIT positions into MLT

bins rather than Kp bins.

4.1.3 Occurrence Rate

One of the most interesting contributions from (Aa et al., 2020) was their detailed

maps of seasonal MIT occurrence rate, copied in figure 4·3a. Since they utilized

data from SWARM satellites which, over the course of the dataset, cover all latitudes

and local times, they were able to improve their field of view and detail over the

earlier maps of (Ishida et al., 2014). The occurrence rates in figures 4·3a and 4·3b

are restricted to Kp ≤ 3. We computed our maps, which are shown in figure 4·3b,

by counting the number of times the MIT was observed and dividing by the number

of times we had TEC data in each grid cell. We used the same season groups as (Aa

et al., 2020) which are November – February for winter; March, April, September, and

October for equinoxes; and May – August for summer. No dithering was performed

for these plots.
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(a) (b)

(c)

(d)

Figure 4·2: MIT Position vs MLT as shown in several studies (a)
(Yang et al., 2015); (b) (Le et al., 2017); (c) (Aa et al., 2020), bars
indicate poleward and equatorward walls; (d) ours, bars indicate stan-
dard deviation

Our plots agree on all of the general patterns. The shapes of the distributions are

generally similar. The difference in distribution between the seasons have the same
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(a)

(b)

Figure 4·3: MIT Occurrence rates for Kp ≤ 3. (a) (Aa et al., 2020),
(b) ours

relationship: in the winter the distribution has 2 modes, a small one at around 16-17

MLT and a large one at 3 MLT. In the equinox season, the distribution loses the

evening sector mode, and in the summer the trough occurrence rates are the lowest.

Because we had more data, we computed the statistics on the same grid that as our

labels, which resulted in a more detailed map. The winter bimodal distribution was

not explicitly mentioned in (Aa et al., 2020), but both of our plots show it clearly.

Because these plots were compiled from low-Kp data, the evening mode is likely

caused by an interaction between the sunset terminator and the convection pattern.

In all three seasons the trough occurrence rate is diminished in around 21 MLT which

is especially interesting because that is where flow stagnation is most likely to take
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place. The morning mode of our winter distribution is much wider than in (Aa et al.,

2020) and our equinox one seems a bit narrower.

Our trough identification algorithm uses a less strict threshold for classification

and so our occurrence rates are considerably higher. The choice of threshold is rather

arbitrary, so we do not see this as a problem. It would be more concerning if the

general patterns differed significantly. The occurrence rates presented in (Ishida et al.,

2014) are even higher than ours.

One of the unique plots of (Aa et al., 2020) was of MIT occurrence rate in season

- MLT bins. Figure 4·4a shows the plot copied from their paper (figure 4a) and figure

4·4b shows our version. Both are limited to Kp ≤ 3. We created our plot (right) by

counting the number of times a trough was observed at any MLat in a season - MLT

bin and dividing by the number of times there was any data. For the left plot we left

the histogram counts unnormalized. The occurrence rates are higher than in figure

4·3 because all MLats were considered for each bin. Our plot agrees well with (Aa

et al., 2020). The high occurrence rate region is bounded by the sunset terminator

in both plots. There is a subtle decrease in occurrence rate in the premidnight sector

around 21 MLT. Again, because we have more observations of the trough, we were

able to make our bins smaller and the occurrence rates in our plots appear less noisy.

By reproducing several results of previous statistical studies on the MIT we have

accomplished several things. First, we added detail to many of the plots. Addition-

ally, by confirming a relationship with a separate set of measurements from different

instruments, we add confidence to the results. Finally, these results serve as an

additional piece of evidence that our dataset provides a valid representation of the

distribution of the MIT.
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(a)

(b)

Figure 4·4: MIT occurrence rate in season - MLT bins. (a) (Aa et al.,
2020), white lines indicate average solar terminator at 60◦ MLat. (b)
MIT season-MLT distribution and occurrence probability on the left
and right respectively.
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Figure 4·5: Trough occurrence rate during east, south and west IMF
clock angle. Top: absolute occurrence rate. Bottom: Occurrence rate
differences between top row plots.

4.2 Clock Angle

One aspect of the MIT’s behavior that has not been adequately studied is its rela-

tionship with the solar wind and interplanetary magnetic field (IMF). As explained

in section 2.2, the trough’s shape strongly depends on ionospheric convection and

precipitation, both of which are influenced by the solar wind. In this section we com-

bine our dataset with measurements of the solar wind and ionospheric convection to

investigate how the MIT is affected by the IMF clock angle (equation 2.4).

In figure 4·5 we show the MIT occurrence rate in MLT - MLat bins for different

IMF clock angles. For clock angle bins, we used an angular radius of 30 degrees and

clock angle centers of 270 for west, 180 for south and 90 for east. We restricted the

averaging to time steps where the B field magnitude is between 2 and 6 nanotesla to
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isolate the effect of clock angle. B field magnitude has a similar effect on the trough

as Kp, i.e. increased B field magnitude expands the auroral oval and convection

pattern, pushing the MIT to lower latitude. Another detail is that we delayed the

TEC maps by 1 hour from the IMF samples, because this exaggerates the effects.

There is some delay between a change in the IMF and the corresponding change in

the convection pattern and there is a further unknown delay between a change in the

convection pattern and the corresponding change in the trough. A change in the IMF

should cause a change in the MIT which develops over a few hours. In the top row

of figure 4·5, the difference between the histograms is very subtle. One detectable

difference is that for westward IMF conditions, the occurrence rate in the evening

sector is higher than for the east IMF condition. Another is that the southward IMF

condition produces troughs at lower MLats.

To more clearly show these effects, In the bottom row of figure 4·5 we show the

relative change in occurrence rate between the IMF conditions. We created the plots

by subtracting the occurrence rate histograms of each pair from the top row. For

example, a value of .05 in the left plot means that in a particular MLT - MLat bin,

there is a higher occurrence rate during westward B than southward B by 5%, e.g.

westward has a 20% occurrence rate and southward has 15%. Both westward and

eastward IMF appear to produce the trough at higher MLat. The south IMF produces

troughs farther towards noon on the evening side and not as far on the morning side.

Additionally, as seen in the top row of figure 4·5, the MIT has a significantly higher

occurrence rate in the evening sector during westward IMF than during southward or

eastward. One reason that the MIT MLat is higher for eastward and westward IMF

could be that MLat decreases with Bz due to expansion of the convection pattern, as

seen in figure 2·2.
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(a) MLT in [1.5, 4.5] (b) MLT in [-2, 2]

Figure 4·6: MIT position and occurrence rate dependence on Bz.
2 ≤ |B| ≤ 6 nanotesla, MIT labels delayed by 1 hour from IMF mea-
surement

4.2.1 Bz Effect on MIT Position

In figure 4·6, we show the dependence of the MIT minimum on Bz with |B| limited

to [2, 6] nanotesla. As before, the trough labels are delayed by one timestep. It was

created in the same fashion as 4·1e except with Bz bins. We can see that the MIT’s

occurrence rate is inversely proportional with Bz and that the MIT’s MLat increases

with Bz. Figure 4·6b plot shows the MLat of the MIT’s minimum as a function of

Bz. The dots are averages, the error bars are one standard deviation and the linear

regression is plotted.

4.2.2 IMF Effect on MIT Occurrence Regions

To investigate how the IMF clock angle changes the MIT occurrence rate pattern, we

looked at the average TEC distribution and average convection pattern during the

three IMF configurations. The largest contributors to TEC variance are season and

local time. To isolate the IMF effect, we fit a simple sinusoidal model to TEC and

subtracted it from the maps. The resulting model is as follows, where T is TEC and

t is the day of the year. The subscripts m and c stand for "model" and "corrected"
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Figure 4·7: Average TEC profile of evening MIT (16 - 20 MLT) cor-
rected for season

respectively.

Tm(t) = 0.98 sin(2πt/365)− 2.10 cos(2πt/365) + 9.08

Tc(t) = T (t)− Tm(t)
(4.1)

We chose not to remove the MLT variation because we did not want to obfuscate the

interaction between solar ionization and the convection pattern.

The left plot of figure 4·7 shows the average evening latitudinal TEC profile of

the MIT for the three different IMF conditions. We selected the corrected TEC

from within 2 hours MLT of 18, then removed any examples which had no trough

pixels, then averaged the profiles for each IMF condition (applying the 1 hour delay

as before). In the right plot of figure 4·7, we show the differences between each pair

of TEC profiles. Figure 4·8 has the same plots except for the morning sector within

2 hours MLT of 6.

The plot in figure 4·7 show that the increase in evening sector trough occurrence

rate during westward IMF conditions is associated with increased plasma density
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Figure 4·8: Average TEC profile of morning MIT (4 - 8 MLT) cor-
rected for season

in the poleward wall region. The left plot shows the eastward IMF MIT minimum

forming at about 68− 69◦ MLat and the poleward wall forming at about 75◦ MLat.

For westward IMF, the minimum is around 70− 71◦ MLat and the poleward wall is

closer to 80◦ MLat. From the right plot we see that the west IMF poleward wall is

over 1 TECu higher on average (orange line). Another interesting thing about figure

4·7 is that at magnetic latitudes below 60◦, southward IMF is associated higher TEC

by 0.5 - 1.5 TECu.

In figure 4·9, we are comparing the average convection pattern in the vicinity of the

MIT with TEC. Limiting the B field magnitude to between 2 and 6 nanotesla, for each

IMF clock angle bin, we selected the corresponding SuperDarn image and the TEC

image and labels from 1 hour later, i.e. if at time t the clock angle is in a particular

bin, then we select the SuperDarn image from time t and the TEC image and labels

from time t+ 1 for that bin. To isolate the convection and TEC patterns contribut-

ing to the MIT, we enlarged the labels by applying a binary dilation operation with

a square element of size (15× 15) (https://scikit-image.org/docs/stable/api/
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Figure 4·9: Average convection and corrected TEC in the vicinity of
the MIT
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skimage.morphology.html#skimage.morphology.binary_dilation), then only se-

lected convection and TEC pixels which coincide with the enlarged labels. Finally,

we averaged the convection and TEC in each bin (and grid cell) and discarded any

which had less than 100 samples.

In the west (left) plot of figure 4·9, there is strong average flow from the TEC

enhancement around 15MLT over the evening side of the polar cap. The flow appears

to bend around the north pole towards the evening side, which deposits high-TEC

plasma from the dayside in the evening sector around 80 MLat. From figure 4·7, this

is where the trough poleward wall should be. Contrasting this with the east (right)

plot, we see the high-TEC plasma from the dayside is transported around the north

pole on the morning side instead of the evening side. This would deposit the high

TEC dayside plasma on the morning side instead of the evening side which explains

why the east IMF evening poleward wall is weaker. This also explains why, figure

4·8, there is a higher secondary TEC enhancement at around 85 MLat for eastward

IMF. Finally, the south IMF plot (middle) shows the convection passing straight over

the north pole. This would cause the high TEC plasma to be distributed on both

the evening side and the morning side of the polar cap. The plots of the evening

and morning average TEC profiles in figures 4·7 and 4·8, respectively, match this

description well.

While not a new finding, this experiment demonstrates and clarifies the major role

that convection and the IMF play in the formation of the MIT. Most descriptions

of convection and the MIT focus on the stagnation mechanism in the premidnight

sector. However, from this analysis, we are reminded that convection also contributes

directly to the TEC enhancement making up the poleward wall of the MIT.
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(a)

(b)

Figure 4·10: Motion of MIT towards pre-midnight with increased Kp
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4.3 Kp - MLT

In section 4.1.1, we demonstrated that known behaviors of the MIT, like Kp-associated

latitudinal motion, are readily observable in our dataset. In this section we will show

that Kp also appears to have an effect on the MLT of the trough: it forms mostly

post-midnight at low Kp and shifts towards pre-midnight at higher Kp. While the

MLat of the MIT has been thoroughly researched in the past, less attention has been

paid to its MLT. This is partially due to the fact that satellite and radar studies

provide very limited sampling of MLT, though even past work which utilized the

Madrigal TEC dataset did not focus on it. Our dataset simultaneously has a long

time span and good MLT sampling which makes it ideal for this type of study.

In figure 4·10a we plot the regional MIT occurrence rate at different Kp levels.

The Kp bins were chosen according to the quantile edges: [0.0, 0.6, 0.8, 0.95, 1.0].

At the lowest Kp, the region of highest MIT occurrence is from midnight to 4 MLT

and at each successive Kp level, this region appears to expand towards the evening

sector. At the highest Kp level, the distribution rotates towards evening without

expanding significantly. We show this relationship more directly in figure 4·10b by

plotting the trough occurrence rate in Kp - MLT bins. The left plot shows the total

Kp - MLT distribution in the dataset and the right plot shows a normalized version

(same procedure as figure 4·1e). Also included in the right plot is the average trough

MLT in Kp bins (dots), the standard deviation of each Kp bin (error bars) and a

regression line of Kp vs MLT. The line has a small downward slope of -0.24 MLT

per Kp. The linear regression only explains about .06 of the variance of the trough’s

MLT. Of course there are many factors that determine the MLT of the trough and

additionally some variance is added by the incomplete coverage of the dataset. For

both figures, we dithered Kp as explained in 4. For figure 4·10a, we left the labels on

the original TEC grid, but for figure 4·10b we dithered MLT according to table 4.1.
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Figure 4·11: SAPS contribution to MIT occurrence rate
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A likely cause for the trough’s MLT dependence on Kp is subauroral polarization

streams (SAPS). To investigate this possibility, we identified SAPS in SuperDarn

convection maps with the procedure described in section 3.1.5. Then for each element

in our MIT labels we determined whether or not it was associated with SAPS using

a procedure similar to the one described in section 4.2.2 (for flow vector averaging).

We expanded the SAPS labels using a structuring element which was (5× 5) at time

t and (3× 3) at time t− 1. This way, a trough pixel would be associated with SAPS

if there was a simultaneous high-speed flow within 5 pixels, or if there was previously

a high-speed flow within 3 pixels. The purpose of this was to account for possible

delay between the measurement of a high-speed flow and the associated formation of

a trough, as well as SAPS-associated troughs which remain for more than one hour.

This procedure is a proof-of-concept and can only identify SAPS-associated troughs

imprecisely. Finally, for low and high Kp, we determined the occurrence rates of non-

SAPS-MIT, SAPS-associated-MIT, and total MIT, which should just be a sum of

the previous two. These results are displayed in figure 4·11. To calculate these rates,

we could only consider MIT labels where we also had SuperDarn data, otherwise

we would mistakenly be counting all instances of missing convection data as "Non

SAPS". As in section 4.2.2, we discarded grid cells in which we did not have at least

100 data points.

The bottom row of figure 4·11 shows the overall trend between low and high Kp,

which is a shift of the MIT pre-midnight and equatorward. In the top row, we see

that the peak occurrence rate of non-SAPS-MIT decreases at high Kp. The middle

row shows that the increase in pre-midnight MIT occurrence rate is in large part due

to higher SAPS occurrence rate. The peak of high-Kp total MIT occurrence in the

bottom row is colocated with the peak of high-Kp SAPS-associated-MIT occurrence

in the middle row. Finally, figure 4·12 shows the portion of total MIT that can be
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Figure 4·12: Portion of troughs associated with SAPS

associated with SAPS. From these plots, it is apparent that evening-side troughs are

often associated with high-speed westward flows, and this increases significantly at

high Kp.

Together, these plots provide reasonable evidence that SAPS is a major contribu-

tor to the increased pre-midnight MIT occurrence rate at high Kp. Because we have

not performed any verification on our SAPS identification method, this evidence is far

from conclusive. These statistics depend on choices we made during data processing,

and before we can have confidence in our results, our choices need to be interrogated.

For example, we performed the same experiment with a flow speed threshold of 400

m/s instead of 300, which reduced the apparent contribution of SAPS. Regardless,

this experiment indicates that this is a promising direction of research.
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Chapter 5

Conclusion

5.1 Summary

In order to perform a large-scale statistical study of the main ionospheric trough, we

developed methods for automatically identifying the MIT in total electron content

images. We evaluated these methods by measuring the degree to which they agreed

with the algorithm from Aa 2020. Our first method achieves high agreement with Aa

2020 and is well behaved in the presence of missing data. Our second method reduces

the computation time from the first method by two orders of magnitude, but does not

perform as well. Running our first algorithm on a 10 year dataset of TEC maps from

the Madrigal database provided us with the large-scale dataset we wanted. To further

validate our labeled dataset, we demonstrated that well known MIT characteristics,

such as the MIT positional dependence on Kp and MLT, and the MIT occurrence

dependence on season, are present.

Finally, we presented two novel findings about the MIT. First we showed how the

IMF and convection pattern contribute to the MIT occurrence rate. Specifically we

demonstrated that the evening poleward wall is much larger for westward IMF than for

eastward which results in a higher average evening MIT occurrence rate. During this

experiment we showed how the high latitude convection pattern intuitively contributes

to the poleward wall of the MIT at all IMF clock angles and all MLTs. Our second

finding is that the highest MIT occurrence rate occurs postmidnight at low Kp, but

high Kp is associated with increased premidnight MIT occurrence rate. We then
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provided evidence indicating that SAPS significantly contributes to this shift. At this

stage, our findings are only preliminary, but we intend to verify them in the near

future.

5.2 Future Work

This project provided a proof-of-concept for our labeling strategies and demonstrated

the potential value of a large, annotated TEC image dataset. We are proud of what

we have accomplished, but have many ideas for how to continue this research. The

future projects we have planned fall into two broad categories: improvements to our

data processing and applications for the dataset.

5.2.1 Data Processing

One improvement we wish to make is to improve the performance of TLM2 or another

fast algorithm. While TLM2 seems to perform adequately, most of the project was

spent developing TLM1. With a few tweaks, TLM2 or some other filtering-based

algorithm would become a better choice. The largest difficulty we had in working

with the Madrigal TEC maps was dealing with missing data. Of course there is

no replacement for actual measurements, but a fast algorithm which also gracefully

handles missing data would improve on this work.

The optimization framework which we used for TLM1 is very flexible and so an-

other possibility is to incorporate additional measurements from satellites and radar.

To accomplish this task, we would come up with additional forward models for each

data source, then we would add the corresponding terms to the inversion problem.

This would make our labeling strategy more dependent on measurements, allowing

us to reduce our reliance on regularization, or equivalently, reduce the strength of our

prior assumptions.
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Finally, there are a number of ways in which neural networks could help with

this project. Our approach suffered from several drawbacks which could potentially

be remedied with a neural network approach. At a high level, when optimizing the

parameters of our algorithms, we were trying to balance a few factors: that our labels

agreed with the Aa 2020 MIT labels and that they appeared to correspond well to

the TEC data. While the first factor we could quantify directly, the second factor

was evaluated more subjectively. A potentially more principled way to balance these

factors would be to train two neural networks, one to estimate the MIT labels from

the TEC image, and a second to reconstruct the TEC from the estimated MIT labels

(similar to architecture in (Xia and Kulis, 2017)). The reconstructed TEC data would

be reasonable only if the MIT labels correspond well to the input TEC image. This

approach provides a way to quantify the estimated labels’ agreement with both the

SWARM data and the TEC data.

5.2.2 Applications

The first follow-on effort we will make will be to finalize our two novel experiments.

To finish the experiment from section 4.3, we will need to verify our SAPS labels.

We can accomplish this by comparing the labels to ion drift data from the SWARM

satellites. In section 4.2.2, we showed that on average, there is a relationship between

IMF and the MIT poleward wall. A quick follow up on this would be to try and show

a direct relationship between the clock angle and MIT poleward wall position and

size.

Investigating the two dimensional inter-dependencies of different sections of the

MIT is an opportunity that is uniquely enabled by this dataset. Unfortunately, we

did not have time to pursue this possibility during this thesis, but it is something we

would like to try in the future.

Finally, it is well known that plasma irregularities the MIT can have negative
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effects on satellite communications, but no previous study has directly quantified the

frequency and severity of such interruptions. One exciting application of our dataset

would be to combine it with the scintillation event dataset developed in (Mrak et al.,

2020) and determine the relationship between these two phenomena.
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