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ABSTRACT

It has become a truism that the speed of technological progress leaves law and

policy scrambling to keep up. But in addition to creating new challenges, techno-

logical advances also enable new improvements to issues at the intersection of law

and technology. In this thesis, I develop new cryptographic tools for informing and

improving our law and policy, including specific technical innovations and analysis

of the limits of possible interventions. First, I present a cryptographic analysis of

a legal question concerning the limits of the Fifth Amendment: can courts legally

compel people to decrypt their devices? Our cryptographic analysis is useful not only

for answering this specific question about encrypted devices, but also for analyzing

questions about the wider legal doctrine. The second part of this thesis turns to

algorithmic fairness. With the rise of automated decision-making, greater attention

has been paid to statistical notions of fairness and equity. In this part of the work,

I demonstrate technical limits of those notions and examine a relaxation of those

notions; these analyses should inform legal or policy interventions. Finally, the third

section of this thesis describes several methods for improving zero-knowledge proofs

of knowledge, which allow a prover to convince a verifier of some property without

revealing anything beyond the fact of the prover’s knowledge. The methods in this

work yield a concrete proof size reduction of two plausibly post-quantum styles of

x



proof with transparent setup that can be made non-interactive via the Fiat-Shamir

transform: “MPC-in-the-head,” which is a linear-size proof that is fast, low-memory,

and has few assumptions, and “Ligero,” a sublinear-size proof achieving a balance

between proof size and prover runtime. We will describe areas where zero-knowledge

proofs in general can provide new, currently-untapped functionalities for resolving

legal disputes, proving adherence to a policy, executing contracts, and enabling the

sale of information without giving it away.

xi
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Chapter 1

Introduction

Like all previous years, 2021 is the year of the greatest technological change in Ameri-

can history, and I have every reason to expect that the pace will continue accelerating

in the future. Each new technology brings with it a host of new social questions.

Broadly, we can ask how the technology can improve the lives of individuals in a

society, as well as the society itself? What aspects of the technology have problem-

atic aspects that must be discouraged or prohibited, by individuals, companies and

organizations, or governments? These broad questions can be broken down into more

specific targeted puzzles: How can law enforcement use the technology constitution-

ally, or corporations use it statutorily? What statistical properties do we want from

the new technology, in terms of usage, performance, or fairness? Can we make any

targeted changes to existing technologies to make them more efficient, easier to use,

or better quality? The converse of the questions is often meaningful as well: What

legal or societal conditions could this technology improve or worsen? Can we design

tools that meet a specific societal niche?

These are questions one could ask of any technology, but they become essential

challenges in technologies that are very powerful, widely adopted, or both. In the

last decade, cryptography has become ubiquitous on the Internet. Cryptography adds

both enforceability and anonymity to electronic transactions. Consumer devices now

offer options for encryption, in many cases by default. Encrypted communication is

not only the norm for government employees, but also increasingly for average people
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in the U.S. More advanced forms of cryptography have been adopted by the U.S.

military to secure communications and operations in the field, and by government

agencies to store and compute on sensitive information.

This growth in the adoption, scale, and power of cryptography has forced more and

more legal and societal questions about how to deal with it. Cryptography is involved

not only in laws involving privacy, but also those that govern identity, accountabil-

ity, or the enforcement of requirements. Even in laws that seem technology-agnostic

on their face, cryptography often introduces new wrinkles and previously untested

edge cases. Specific laws and policies involving fundamental internet infrastructure,

surveillance, census, and commerce, are all increasingly intertwined with cryptog-

raphy. New norms brought about by cryptography and anonymity are leading to

increased scrutiny on what general people, governments, and corporations, should be

allowed – or required – to do with cryptography.

The problems posed by these legal dilemmas compound over time if they are not

dealt with. We are only just now beginning to inspect the legal dilemmas posed

by the new technologies of cryptocurrencies and blockchain. At the same time we

are also finally addressing the legal nuances of full disk encryption, a technology

that has been mature for several decades, but has only seen mass adoption within

the last several years. By the time a technology becomes ubiquitous, regulating it

becomes a challenge because the business interests of the technology’s owner become

a factor when weighing the societal benefits and costs – and the legality – of limiting

or requiring its use. Changes become much harder to make.

Deciding when to address these problems is challenging. Far-reaching questions

are often challenged by the legal community because they are only hypotheticals. And

it is difficult to predict in advance which predicted consequences of a new system will

be the most important. But if we always wait for those hypotheticals to become
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reality, we will have ensured that we will always be playing a perpetual game of

catch-up.

A good example is how algorithms have brought to the forefront a new examination

of statistical “fairness” in our decision-making processes. Algorithmic fairness seeks to

analyze decision-making methods under various formal definitions of fairness. There is

nothing special about analyzing an algorithm with these methods – human decision-

makers are subject to the same constraints. Indeed, in most algorithmic fairness

research the algorithm is treated as a black-box, and there is literally no difference

between measuring the fairness of an algorithm, and of a human judge. We could

have formulated these concepts decades, or even centuries earlier. In fact, as we will

discuss further in §3.1.1, we did formulate some of the concepts decades earlier in

the 1960s and 1970s, in the context of standardized testing, however, these methods

did not stand the test of time [87]. These mathematical ideas of “fairness” did not

rise to public prominence because technology had not yet forced the issue. Unlike

human decision-makers who can each make only so many decisions per day, the rise

of computing allowed a single algorithm to determine the fates of millions of people.

This called attention to the underlying problem that had always been there.

Extending this example, we believe the general principle is clear: research that

examines the intersection of technology and law can unearth important questions

that would otherwise go unquestioned, and in the best cases, can even begin to

answer those challenging questions. There is nothing particularly special about this

moment in time with regard to this principle. But the object-level topics change from

year to year. This work seeks to conduct interdisciplinary research in cryptography,

algorithmic fairness, law, and policy that is relevant in 2021. Without succumbing to

techno-solutionism, we believe that our interdisciplinary work provides useful tools

for policymakers in three different areas.
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1.1 Protecting information and computation in 2021

The specific technology questions we face in the U.S. today are largely to do with

the consequences of companies holding many large datasets about individuals, and

the appropriate limitations on the government’s power to collect, store, and analyze

information. These questions are intertwined with both old and new advancements

in cryptography and machine learning that are now coming into general use. These

advancements are somewhat new, but not cutting-edge – it is only their wide adoption

that is now forcing the legal issues.

Questions of data collection were amplified first in the mid 1990s-2000s with the

advent of the consumer Internet, and amplified further by the proliferation of cell

phones and then smartphones. Computing was just starting to become cheap enough

that large companies and government entities had the resources to analyze the new

“Big Data” that was being generated automatically from so many sensors and moni-

tors. Now, two decades later, even small companies have access to a wealth of data

about their users, and some challenges to government use of this information have

arisen, in part in response to first the PATRIOT Act and later the Snowden revela-

tions.

Now, we are pushing hard to understand the tools available to protect informa-

tion and computations on this data. This protection can take the form of a legal

restriction, such as Constitutional or statutory restrictions on data use or the collec-

tion of information. We will discuss a Fifth Amendment Constitutional limitation

to government information collection in §2. The protection might also take the form

of a fairness requirement, an obligation to ensure that data analysis treats different

demographic groups equally, especially by requiring the equalization of the analysis’

accuracy across demographic groups. In §3 we will examine the kind of protection that

is available for this analysis, and propose new methods for such protection. Finally,
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the protection might be a simple privacy requirement – though the implementation of

these requirements is never simple. A key invention that allows computing with sensi-

tive data without compromising privacy is the zero-knowledge proof. Zero-knowledge

proofs have risen from theoretical proposal to practicality within only a few decades,

and in §4 we will present two concrete improvements for zero-knowledge proofs to

further enhance this form of data protection.

In the remainder of this introduction, we will describe our results in each of these

three areas, which will be presented in greater detail in later chapters.

1.2 Our results

This thesis contains three main results that advance socio-technical interdisciplinary

research. In the context of the “crypto wars” and compelled decryption, we conduct

a cryptographic analysis of the foregone conclusion doctrine as an exception to the

Fifth Amendment privilege against self-incrimination. We then investigate a problem

that arises when seeking fair decision-making: how can the result of a calibrated

nonbinary classifier be post-processed into a binary decision that meets a statistical

fairness requirement? And last, in more traditional cryptography work, we improve

the tradeoff between privacy and functionality in zero-knowledge arguments.

1.2.1 Cryptography and the Fifth Amendment privilege against self-

incrimination

Two fundamental human rights in free and democratic societies are the right to remain

silent and the right to avoid self-incrimination. More than 100 countries around the

world have enshrined some version of these rights [284], which collectively protect

people from being forced by their own governments to provide the evidence needed to

convict themselves of a crime. Jewish law included a right against self-incrimination

at least as far back as the fifth century [219] and the privilege appears in Islamic law
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as well [231].

In the United States, these rights stem from the Fifth Amendment to the U.S. Con-

stitution, which states in part that “[n]o person . . . shall be compelled [by the gov-

ernment] in any criminal case to be a witness against himself” [300]. The rise of

ubiquitous, strong cryptography has forced courts to consider how all aspects of the

law apply to cryptography, including the right to silence. To date, the most promi-

nent question surrounding cryptography and the right to silence is the following: if

the government seeks as evidence a computer file that is encrypted using a key derived

from a password, can the government compel the device’s owner to use her password

in order to decrypt the file?

Taken at face value, it seems that the answer to this question should be “no”:

the device’s owner can invoke her rights in order to refuse the government’s request.

However, the answer to this question is more subtle because the rights to silence and

to avoid self-incrimination are not absolute: they only protect actions that depend

non-trivially on the contents of one’s mind. For instance, the U.S. Supreme Court has

held that the government can compel people to state their own name [165], provide

a handwriting exemplar [139], or provide a blood sample [263] despite the right to

avoid self-incrimination.

The question then arises: how significantly does decryption depend on the contents

of one’s mind? Both the court system (e.g., [175, 302] among U.S. circuit courts and

several cases at the state and U.S. district levels) and scholars with expertise in law

and technology [85,193,198,222,256,282,317] have divided on this question, and they

all provide different non-technical arguments about how to extend existing norms and

principles surrounding the right to silence so that they apply to cryptography. In §2,

we provide a technical framework for the relevant legal doctrine, which we then use

to reason that the answer to the compelled decryption question should often be “no.”
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We believe compelled decryption is an especially fruitful target for interdisci-

plinary cryptographic and law research for two reasons: First, existing legal research

on compelled decryption almost exclusively relies on analogies to various physical

objects like safes or shredders. Although analogies are helpful in many other areas of

the law, in the compelled decryption context the different choices of analogy lead to

different legal outcomes. Being able to reason about a cryptosystem directly allows

us to avoid negotiating this edge case between analogies. Second, as we will discuss

further, the underlying principles of the particular relevant legal doctrine happen to

align quite nicely with the cryptographic conception of knowledge.

We stress that this question about compelled assistance is different than the more

prominent part of the crypto wars, in which governments wish to mandate use of

cryptosystems that they can decrypt on their own. The main thrust of the crypto wars

has to do with different areas of the law. It especially involves the Fourth Amendment,

such as whether encryption provides a reasonable expectation of privacy [74,206,297],

and the First Amendment, e.g. whether free speech extends to the right to develop

encryption software or conduct encryption research [40,119].

When dealing with the Fifth Amendment, things are different: the Fifth Amend-

ment describes what the government may order you to do, in contrast with what it

may find out about you without your involvement. In §2, we will show that it is pos-

sible to design encryption schemes that are “strong” in the sense that they preclude

governments from decrypting files on their own, but are nevertheless vulnerable to

the government compelling you to decrypt files for them.

Toward a rigorous definition of the foregone conclusion doctrine

Rather than simply viewing cryptography as a technology that introduces new legal

questions, in this work we leverage the ideas of cryptography to codify legal principles

and then formally prove whether they apply to any given cryptosystem. Concretely,
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this work examines a small yet crucial part of the right to silence called the foregone

conclusion doctrine that is the source of all government cases involving compelled

decryption in the United States (we will describe it in detail in §2.2).

Interestingly enough, this doctrine has a style that is similar to the way that cryp-

tographic definitions are typically written: informally, it states that the government

may compel a specific “implicit” type of self-incriminating testimony if (and only if)

it already knows the testimony involved. This may seem tautological, but its purpose

becomes clearer in the context of compelling production of documents. The docu-

ments themselves may not be protected under the Fifth Amendment privilege against

self-incrimination, but the act of producing those documents might be; the foregone

conclusion doctrine originated with this setting in mind. We formalize the doctrine

under a cryptographic lens, providing a rigorous simulation-based cryptographic def-

inition and formally proving whether various cryptographic protocols are susceptible

to it.

At a high level, the goal of our definition is intuitive: the government can only

compel a query if it can be answered without relying heavily on the contents of your

mind, and that is the case if the government can simulate the response to the query

based upon its prior evidence about the case and access to everything in the world

except the contents of your mind. We also prove that the definition satisfies sequential

composition, which means that compelling one action cannot change the status about

whether any other action is compellable.

To justify our definition, we demonstrate that it correctly adjudicates all non-

encryption-related foregone conclusion cases argued in the U.S. Supreme Court since

the modern interpretation of the Fifth Amendment arose in 1976 [123] and the five

most important cases at the circuit court level (i.e., the next level of the court hi-

erarchy) as identified by legal scholars [96, 193, 198, 317]. We purposely ignore cases
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involving encryption since the Supreme Court has never ruled on them to date and

lower courts have split on them, leaving no reliable benchmark to use.

Determining if crypto can be compelled

We reason about the government’s ability to compel disclosure of cryptographic se-

crets. To answer the question raised above: we prove that under our definition,

decryption under a password-derived key is typically not compellable. However, if

the encryption scheme is extended with certain features (including those that are

often used to bolster security overall) then it may become compellable. Additionally,

we show that compelled disclosure composes with other parts of the crypto wars in

a debilitating way: if there exists a reliable method for the government to decrypt

data without you (even one that is somewhat costly, e.g. [319], though not one that

would require superpolynomial expected time), then the government can compel you

to perform the decryption instead. This makes various proposals for “exceptional”

law enforcement access to devices worrisome for Fifth Amendment reasons in addition

to Fourth Amendment concerns.

We also consider the government’s ability to compel a person to reveal preimages

to one-way functions, open messages protected within cryptographic commitments,

and prove statements in zero-knowledge. We find that the government is unable to

compel preimages, cannot compel the opening of commitments, and may only compel

a respondent to prove a statement already known to be true to the government, and

even then, it must be proven in zero knowledge. On the other hand, the government

generally can compel a respondent to encrypt or commit to a secret under fresh

randomness. While we are unaware of any court challenges to date that compel

use of these cryptographic primitives, they may come someday, and our definition

enables us to be forward-looking to determine whether cryptosystems can withstand

these threats.
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Bolstering cryptosystems against compelled disclosure

We consider how voluntary use of cryptographic systems exposes parties to higher

risk of compelled actions in the future. We find that secure multi-party computa-

tion (MPC) is vulnerable to this threat: engaging in MPC protocols may increase

the compellability of a party’s sensitive input data. Then, we design and implement

countermeasures that provably render secure computation protocols resilient to com-

pelled requests. Our countermeasures apply to 2-party computation via Yao’s garbled

circuits [325], with extensions to malicious security via cut-and-choose [213, 238] or

authenticated garbling [313]. We implement the latter and show that it adds a small

additive factor to the runtime that is independent of the circuit size. We also show

how to extend the construction to a multi-party protocol where several parties re-

ceive output while maintaining resilience against compelled requests, by incorporating

techniques from differential privacy.

1.2.2 Fairly post-processing calibrated non-binary classifiers to binary

decisions

The second main portion of this work concerns algorithmic fairness. Algorithmic fair-

ness is roughly divided into works that write statistical definitions of “fairness” – a

challenging task to begin with – and works that apply those definitions to decision-

making systems in society. Its broad goal is to ensure fairness, equity, and account-

ability in algorithmic decision-making, especially high-impact decision making such

as loan offerings, education and testing, employment, incarceration, and health care.

Many ideas in algorithmic fairness predate machine learning and had been previ-

ously discussed in the context of standardized testing, as we will discuss further in

§3.1.1. The increasing use of machine learning and algorithmic decision-making in

contexts where data points correspond to individual people caused a renewed interest

in the analysis of these systems for bias, especially along legally-relevant demographic
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characteristics such as race and gender.

Most recent algorithmic fairness research falls under the group fairness paradigm.

In this paradigm, inputs to the classifier belong to one or more protected groups (often,

individuals are assumed to belong to exactly one protected group, as will be true in

our work as well). For the most part, the goal in the group fairness paradigm is to

equalize some error metric between the output of a classifier when run on individuals

from the different groups. For a binary classifier, this could mean equalizing the False

Positive Rate (FPR), False Negative Rate (FNR), Positive Predictive Value (PPV), or

Negative Predictive Value (NPV), or a combination thereof. For nonbinary classifiers,

this generally involves groupwise calibration (an extension of PPV and NPV to the

non-binary setting), or “balance” of errors (an extension of FPR and FNR). Two key

works [81, 200] found slightly different variants of the same finding: equalizing all of

these metrics simultaneously is impossible unless one of two conditions is met: either

the groups have equal underlying base rates (an equal fraction of members in each

group are in the positive class as opposed to the negative class) or the classifier is

perfectly correct (and therefore PPV = NPV = 1 for both groups, and FPR = FNR = 0

for both groups).

This impossibility result has shaped the tone of the modern field of algorithmic

fairness: researchers are aware that there will be no mathematical panacea that will

cure our social ills. Some parts of the field attempted to set guidelines for when each

fairness metric should be chosen, and what value each of those encoded. This runs

into problems quickly, as we often wish to meet multiple criteria simultaneously and

feel uncomfortable with the tradeoff between them. The example of the COMPAS

recidivism prediction algorithm is well-known in the algorithmic fairness community.

Much modern interest in algorithmic fairness was spurred by a ProPublica article

decrying COMPAS for having unequal false positive rates and false negative rates
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between Caucasian and African-American defendants (African-Americans were more

likely to be labeled higher risk but not re-offend, an unequal false positive rate;

Caucasians were more likely to be labeled lower risk yet did re-offend, an unequal

false negative rate) [11]. Yet COMPAS satisfied a different metric of (approximate)

groupwise calibration and, with thresholding, equalized positive predictive value [81].

Neither metric is obviously superior to the other: The existing system which equalizes

PPV but leaves FPR and FNR unequal feels intuitively unfair – if an African-American

and a Caucasian defendant were each scored, the chance of an incorrect result would

be higher for the African-American than for the Caucasian. But a system which

equalized FPR and FNR at the cost of PPV would essentially mean that a score of

“high risk” would represent a different probability of re-offense for a Caucasian and

an African-American defendant. Lest this seem less catastrophic, notice that a judge

who learned only the “high-risk” label choosing whether to release the defendant or

not, and whose goal is to release those below a certain probabilistic threshold of re-

offense, would have to treat the two differently (see more in [229]). This also feels

unfair. Unfortunately, the underlying logical constraints force us to choose between

the above two scenarios, a perfect classifier, or equalizing the measured base rates of

recidivism between the two groups.

One final note on this topic: Although the base rates of the input dataset were

unequal between races, there are any number of biased processes that could have

led to this input state. The data itself may have been collected in a biased fashion.

Reducing unfair discrimination in all parts of this process is important. This work

focuses on the classifier only: we assume our data are the most accurate available

(the WYSIWYG assumption of [327]), and focus on the question of how to do the

best we can with what we have.
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The task of fairly post-processing groupwise-calibrated classifiers

In §3, we concentrate on the task of post-processing a groupwise-calibrated, non-binary

classifier under group fairness constraints. We suppose that individuals belong to one

of two or more disjoint protected groups. Our overall task is to decide whether a given

individual has some hidden binary property B in a way that ensures “fair balancing

of errors” across the groups.

For that purpose, we consider the following two-stage mechanism. The first stage

consists of constructing a classifier Ŝ that outputs for each individual x a “soft”

nonbinary score between 0 and 1, s ∈ [0, 1], representing the classifier’s guess at the

probability that x has property B. The only requirement we make of Ŝ is groupwise

calibration: within each group, and for each s ∈ [0, 1], the fraction of individuals in

the group that get score s and have the property, out of all individuals in the group

that get score s, is s. The second stage takes as input the output s = Ŝ(x) of the

first stage and the group to which x belongs, and outputs a “hard” binary decision:

its best guess at whether x has property B.

An attractive aspect of this two-stage mechanism is that each stage can be viewed

as aimed at a different goal: The first stage is aimed at gathering information and

providing the best accuracy possible, with only minimal regard to fairness (i.e. only

groupwise calibration). The second stage is aimed to extract a decision from the in-

formation collected in the first stage, while making sure that the errors are distributed

“fairly.”

To further focus our study, we take the first stage as a given and concentrate on

the second. That is, we consider the problem of post-processing the scores given by the

calibrated soft classifier Ŝ into binary predictions. A representative example is a judge

making a bail decision based on a score provided by a software package. Following

[81,162] we consider the following four performance measures for the resulting binary
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classifier: the positive predictive value (PPV), namely the fraction of individuals that

have the property among all individuals that the classifier predicted to have the

property; The false positive rate (FPR), namely the fraction of individuals that were

predicted to have the property among all individuals that don’t have the property;

The negative predictive value (NPV) and false negative rate (FNR), which are defined

analogously. Ideally, we would like to equalize each one of the four measures across the

groups, i.e. the measure will have the same value when restricted to samples from each

group. Unfortunately, however, we know that this is impossible in general [81, 200].

This leads us to a broad question that motivates our work:

Under what conditions can we post-process a calibrated soft classi-

fier’s outputs so that the resulting hard classifier equates a subset of

{PPV,NPV, FNR, FPR} across a set of protected groups? How can we

balance these conflicting goals?

Post-Processing with thresholds

In a first set of results we consider the properties obtained by post-processing via

a “threshold” mechanism. Naively, a threshold post-processing mechanism would

return 1 for individual x whenever the calibrated score s = Ŝ(x) is above some fixed

threshold, and return 0 otherwise. We somewhat extend this mechanism by allowing

the post-processor to “fine-tune” its decision by choosing the output probabilistically

whenever the result of the soft classifier is exactly the threshold.

We first observe that the popular and natural post-processing method of using a

single threshold across all groups has an inherent deficiency: No such mechanism can

in general guarantee equality of either PPV or NPV across the protected groups.

We then show that, when using different thresholds for the different groups, one

can equalize either PPV or NPV (but not both) across the two groups, assuming the
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profile of Ŝ has some non-degeneracy property.

The combination of the impossibility of single threshold and the possibility of

per-group threshold also stands in contrast to the belief that a soft classifier that

is calibrated across both groups allows “ignoring” group-membership information in

any post-processing decision [229]. Indeed, the conversion to a binary decision “loses

information” in different ways for the two groups, and so group membership becomes

relevant again after post-processing.

Deferrals as a post-processing tool

For the second set of results we consider post-processing strategies that do not always

output a decision. Rather, with some probability the output is ⊥, or “I don’t know,”

which means that the decision is deferred to another (hopefully higher quality, even

if more expensive) process. Let us first present our technical results and then discuss

potential interpretations and context.

The first strategy is a natural extension of the per-group threshold: we use two

thresholds per group, returning 1 above the right threshold, 0 below the left threshold,

and ⊥ between the thresholds. We show that there always exists a way to choose

the thresholds such that, conditioned on the decision not being ⊥, both the PPV and

NPV are equal across groups.

Next we show a family of post-processing strategies where, conditioned on the

decision not being ⊥, all four quantities (PPV, NPV, FPR, FNR) are equal across

groups.

All strategies in this family have the following structure: Given an individual

x, the strategy first makes a randomized decision whether to defer on x, where the

probability depends on Ŝ(x) and the group membership of x. If not deferred, then

the decision is made via another post-processing technique.

One method for determining the probabilities of deferrals is to make sure that,
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the distribution of scores returned by the calibrated soft classifier conditioned on not

deferring, is equal for the two groups (That is, let ps,g denote the probability, restricted

to group g, that an element gets score s conditioned on not deferring. Then for any s,

we choose deferral probabilities so that ps,g1 = ps,g2 .) The resulting classifier can then

be post-processed in any group blind way (say, via a single threshold mechanism as

described above).

Of course, the fact that all four quantities are equalized conditioned on not defer-

ring does not, in and of itself, provide any guarantees regarding the fairness properties

of the overall decision process — which includes also the downstream decision mech-

anism. For one, it would be naive to simply assume that fairness “composes” [112].

Furthermore, the impossibility of [81, 200] says that the overall decision-making pro-

cess cannot possibly equalize all four measures.

However, in some cases one can provide alternative (non-statistical) justification

for the fairness of the overall process: For instance, if the downstream decision process

never errs, the overall process might be considered “procedurally fair.” We present

more detailed reflections on our deferral-based approach in Section 3.7.

We note that deferring was considered in machine learning in a number of contexts,

including the context of fairness-preservation [217]. In these works, the classifier

typically punts only when its confidence regarding some decision is low. By contrast,

we use deferrals in order to “equalize” the probability mass functions of the soft

classifier over the two groups, which may involve deferring on individuals for whom

there is higher confidence. Indeed, deferring on some higher-confidence individuals

seems inherent to our goal of equalizing PPV, NPV, FPR, and FNR while keeping the

deferral rate low. Furthermore, our framework allows for a wide range of deferral

strategies which might be used to promote additional goals.
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Experimental results

We test our methodology on the Broward county dataset with COMPAS scores made

public by ProPublica [11] in order to better understand its strengths and limitations.

Indeed, it has been shown that the COMPAS scoring mechanism is an approximately

calibrated soft classifier [81,124]. We first ran our two-threshold post-processing mech-

anism and obtained a binary decision algorithm which equalizes both PPV and NPV

across Caucasians and African-Americans. In addition to minimizing PPV and NPV,

this method also resulted in the desirable property of deferring when the classifier’s

output is close to uniformly random, i.e. the classifier did not have much confidence

in its result.

We then ran our post-processing mechanism with deferrals to equalize all four

of PPV, NPV, FPR, FNR across the two groups, with three different methods for

deciding how to defer: In the first method, decisions are deferred only for Caucasians;

in the second, decisions are deferred only for African Americans; in the third method,

decisions are deferred for an equal fraction of Caucasians and of African Americans.

This fraction is precisely equal to the statistical (total variation) distance between

the distributions of scores produced by the soft classifier on the two groups. For all of

these methods, any group-blind classifier would achieve all fairness guarantees on the

un-deferred outputs. The shape of the deferrals themselves was very different across

these three methods. Due to the shapes of the input distributions, the last method

resulted in deferring only on low-risk Caucasians and high-risk African-Americans,

which creates a challenge for designing an appropriate deferral mechanism. More

details about the results along with figures are given in Section 3.6.
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Algorithmic fairness is inherently interdisciplinary

Algorithmic fairness shares several qualities with cryptography: much of its purpose

is to accomplish some goal (run a classifier, transmit a message) while ensuring some

additional property on that goal is met (statistical fairness notions, ensuring the

message is not read or tampered with). It shares a need to capture a wide set of

“adversaries” and limit their abilities – although this notion is more widespread in

cryptography than in fairness, fairness has enough overlap with data analysis that

many fairness papers adopt similar practices of treating the “analyst” as an “adver-

sary” who, instead of trying to learn as much as possible about the individuals in a

dataset, will try to justify a biased decision on the output of a classifier. It addition-

ally shares a need to model actual humans’ behavior in a formalized way that can

be mathematically analyzed, and both occasionally draw on relevant concepts from

economics or game theory.

And, like cryptography, a portion of the field tests existing systems for flaws,

for example analyzing deployed algorithms for bias or finding ways to “remove” bias

from a decision at the cost of destroying information. Recently, there has been a

positive push toward using algorithmic fairness methods to detect discrepancies in

training data rather than using it to post-process a classifier (e.g. [75, 166,257]). For

example, if facial recognition algorithms have significantly lower accuracy on one

group than another, this tells the designer of that algorithm that they must train

their algorithm on more faces in that group [66]. (Other works in the space object

to facial recognition for purely normative, ethical, or governance reasons unrelated to

the accuracy discrepancy.)

Algorithmic fairness is a field that by design interacts heavily with law, policy,

and ethics. Governments providing anti-discrimination laws, or companies justifying

their actions, are in great need of this research to inform the limits of what is pos-
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sible, and how to approach those limits as closely as possible. As mentioned before,

although the statistical analyses of algorithmic fairness are not limited to algorithms,

the increasingly widespread use of homogeneous algorithms brings new urgency to

the need for formalized analysis of these questions, which interdisciplinary research

is in a good position to provide.

1.2.3 Improvements to zero-knowledge argument systems

Chapter §4 of this thesis is not inherently interdisciplinary work; instead it de-

scribes improvements to a standard cryptographic primitive (zero-knowledge proofs)

by a standard cryptographic performance metric (proof size). At a high level, zero-

knowledge proofs allow a prover to convince a verifier of the truth of a statement

without revealing the witness that shows why that statement is true.

Interest in zero-knowledge proofs has grown in the legal sphere, between cryp-

tocurrency, smart contracts, and deployments in commercial settings. They have

been used in areas spanning from digital watermarking [2] to nuclear armament ver-

ification [141]. We describe these areas of legal interest in much greater detail in

§4.1.

Our work in §4 lessens the tradeoff between privacy and utility: by making these

proofs better, we improve their chance to be used in legal and societal settings.

TurboIKOS: improved MPC-in-the-head

The focus of the work in §4.2-§4.6 is when both public verifiability and low RAM

utilization are required and a linear proof size is acceptable. In this setting, the best

available constructions are based on the “MPC-in-the-head” paradigm developed by

Ishai et al. [177]. These proofs are constructed by executing a secure multiparty

computation (MPC) protocol, which only requires fast symmetric key crypto opera-

tions and is amenable to the Fiat-Shamir transform [120]. As a result, proofs in the
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MPC-in-the-head paradigm form the basis of the Picnic digital signature scheme that

is currently an “alternate candidate” in round 3 of the NIST post-quantum crypto

competition [5, 76, 188,224].

These sections contribute a new zero knowledge proof in the MPC-in-the-head

paradigm that provides concretely smaller proof sizes than prior work for some pa-

rameters settings. Our construction, called TurboIKOS, retains the benefits of all

constructions in the MPC-in-the-head paradigm: low RAM utilization, public verifi-

ability, avoiding structured setup, prover and verifier runtime that are linear in the

circuit size |C|, and the ability to make the proof non-interactive via the Fiat-Shamir

transform.

We describe two variants of TurboIKOS, both of which operate over an NP rela-

tion encoded as an arithmetic circuit C over a large field F. The first version is an

improvement over Baum-Nof [25] that reduces the number of field elements sent per

gate from 4 to 3, and is intended for circuits with large field size (Section 4.4.3). The

second version further reduces the number of field elements sent per MUL gate from

3 to 2, and uses a modified batched consistency check that allows the technique to be

used in smaller fields (Section 4.4.4).

BooLigero: improved sublinear zero-knowledge proofs for Boolean circuits

In §4.7-§4.11, we present BooLigero, an improvement to the sublinear (but not log-

size) ZK proof Ligero [10] tailored for Boolean circuits. Our method allows us to

utilize the “full” field element and store log |F| bits of the witness per element, rather

than storing only a single bit per (larger) field element and enforcing an additional

constraint as is required in Ligero. We can utilize the full field for XOR and NOT

operations; for AND we can use
√

log |F| bits of the field element. This buys us an

improvement in the proof size between O((log |F|)1/4) and O((log |F|)1/2) compared

to original Ligero, depending on the proportion of ANDs in the circuit. The prover
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and verifier runtime should not change much compared to original Ligero. We do this

while maintaining Ligero’s properties of being public coin, perfect honest-verifier zero

knowledge, amenability to the Fiat-Shamir heuristic, being plausibly post-quantum

secure in the standard model, and requiring no trusted setup.

Our primary tool is efficient zero-checking and tests for constraints such as if the

bits follow a certain well-defined pattern. In Ligero, the witness is encoded, and

constraints are checked by ensuring that the prover’s claims are consistent with parts

of the encoded witness that were randomly chosen by the verifier. We add the ability

to reveal masked elements of the witness directly, in such a way that the verifier may

check properties on the masked elements that will enable them to test properties of

other hidden witness elements. Tests with a certain kind of linearity are extremely

efficient, requiring only a constant overhead in the number of witness elements to test

arbitrarily many instances of the property on existing variables. This enables us to

test properties that would normally be difficult to test while representing many bits

per word, such as testing whether certain bits are zero, or testing bit “patterns” such

as masking and shifting. We can also use these to build range tests. These tests may

be helpful in frameworks outside BooLigero as well.

We evaluate our performance on the hash functions SHA-3 and SHA-2, which are

common benchmarks and have particular appeal to the cryptocurrency community.

We achieve a 1.7-2.8× improvement over Ligero for Merkle trees of SHA-3 from 21

to 215 leaves. Our circuit for SHA-3 utilizes one of our specialized tests to perform

the bit-rotation step of the SHA-3 main loop. For SHA-2, we achieve a 1.1-1.6×

improvement over Ligero for Merkle trees from 21 to 215 leaves. Note that this is in

spite of the fact that SHA-2 uses some addition modulo 232 operations, which Ligero

supports directly and BooLigero does not.
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1.3 Organization

§2 contains a cryptographic and legal analysis of compelled decryption under the

Fifth Amendment and the privilege against self-incrimination. Our modeling allows

analysis of a variety of cases under the foregone conclusion doctrine, not only encryp-

tion cases. We additionally provide a new security definition for cryptographers who

are seeking to create protocols that do not leave one vulnerable to the threat of being

compelled by the government to reveal something about the protocol.

§3 is an algorithmic fairness analysis of a common problem in which a non-binary

classifier must be post-processed into a binary decision. Our analysis has two major

impacts on policy. First, we present impossibility results that show when certain goals

are inherently in conflict with each other and cannot be achieved together. Second,

we present a “deferral” mechanism that, while it does not (indeed, cannot) achieve

our statistical fairness criterion on the entire set of inputs, it allows achieving it on

a subset of inputs and uses a different societally-acceptable method to decide on the

remaining inputs.

In §4, we turn to a more traditional-cryptographic presentation of two improve-

ments to zero-knowledge proofs. In §4.1, we motivate the improvement of zero-

knowledge proofs by discussing legal tasks that zero-knowledge proofs are well-suited

for, and in §4 we dive into the improvements themselves. Both improvements are

focused on reducing the concrete proof size, an important consideration if long-

standing records are to be kept. One improvement focuses on MPC-in-the-head style

proofs [177], one on Ligero [10].

Finally, we conclude in §5 by providing background and motivation for the growing

field of interdisciplinary law-computer science (especially law-cryptography) research

in general, and by describing some areas of cryptography-law research we believe will

be especially fruitful in the coming years.
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Chapter 2

Cryptography and the Fifth Amendment

privilege against self-incrimination

This chapter is based on joint work with Mayank Varia [261].

2.1 Introduction

As we described in §1.2, this work uses cryptography to address the legal question

of what actions the government may compel a respondent to perform while abiding

by the Fifth Amendment of the U.S. Constitution. The Fifth Amendment enshrines

the right to avoid self-incrimination in the U.S.; it states in part that “[n]o person . . .

shall be compelled [by the government] in any criminal case to be a witness against

himself” [300]. Over the last decade, a number of cases have risen through the courts

which ask the following question: if the government seeks as evidence a computer file

that is encrypted using a key derived from a password, can the government compel

the device’s owner to use her password in order to decrypt the file?

If the analysis ended there, it would seem that the answer should be “no”: asking a

respondent to decrypt the file would force the respondent to incriminate herself, which

the respondent could refuse to do under the Fifth Amendment privilege. However,

over the years a number of limitations have been applied to the Fifth Amendment

privilege. Most importantly, the Fifth Amendment only applies to testimonial actions,

which depend non-trivially on the contents of the respondent’s mind. For example,

writing one’s own name [165], providing a handwriting exemplar [139], or providing a
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blood sample [263] are all examples of actions which may be compelled as an exception

to the Fifth Amendment privilege.

Courts and legal scholars are split as to how to treat compelled requests to enter or

state passwords under the Fifth Amendment (e.g. [85,175,193,198,222,256,282,302,

317]). In this work, we cryptographically model the relevant legal doctrine, which we

then use to reason that the answer to the compelled decryption question should often

be “no.” We test our model by ensuring that it has the same outcome on all non-

encryption-related cases regarding this legal doctrine in the U.S. Supreme Court, and

five key Circuit Court cases. Additionally, we write a security definition capturing

the conditions under which the secrets used in a cryptographic protocol avoid the

threat of compelled disclosure in our modeling, and we construct and implement a

2-party protocol secure under this definition based on Yao’s garbled circuits [325]

using authenticated garbling [313] or cut-and-choose [213, 238] to achieve malicious

security.

2.1.1 Related work

Here, we focus on law-focused related work, encryption schemes that enable govern-

ments to execute search warrants in the presence of encryption, and cryptography

to prevent government overreach outside the specific context of the crypto wars. We

will discuss work on other forms of legal-cryptographic modeling in §5.3.

Legal analyses of compelled decryption. To our knowledge, Cohen and

Park [85] is the only legal analysis of the foregone conclusion doctrine by authors with

cryptographic expertise; their expository work describes several legal concepts and

how they fare against technological advances such as widespread use of deniable en-

cryption or hardware kill switches. Additionally, there exist several normative works

by law scholars whose reasonings (which often analogize encryption to other security
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mechanisms like safes or shredders) lead to very different conclusions. Winkler [317]

argues that the right against self-incrimination prevents the government from com-

pelling a respondent to use her passwords in any way. Kerr [193], McGregor [222],

and Terzian [282] make distinct yet related arguments that the government should

have the power to compel decryption in order to restore balance between government

powers and civil liberties in light of modern encryption’s strong confidentiality guar-

antees. Kiok [198] and Sacharoff [256] settle somewhere in the middle, only allowing

the government to compel decryption if they already know certain aspects of the tar-

geted files with “reasonable particularity.” Unlike all of these works, our definition

is rigorous, composable, applies directly to encryption rather than using an analogy,

and is easier for the scientific community to analyze when evaluating the security of

a new system.

Existing case law. Analyses of compelled decryption are timely because courts in

the United States are currently divided on the issue. Some courts say people can be

compelled to disclose passwords themselves (e.g. [273]), some say they can be com-

pelled only to enter the password but not reveal it (e.g. [90,91]), and others say that

only specific files already known to the government can be compelled (e.g. [266]). See

§2.4.1 for a summary of these rulings. Also in that section, we provide a description of

previous cases the U.S. Supreme Court has rejected concerning compelled decryption

via the foregone conclusion doctrine, and our prediction for future such cases.

Cryptography for search warrants. Several prior works consider using cryp-

tography to enable governments to execute search warrants where encryption is in-

volved. Smith et al. [271] and Feigenbaum et al. [117] discuss broad principles for

this topic. Specific encryption schemes with key escrow have been proposed since the

1990s [107], and more recent proposals combine cryptography with trusted hardware
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so that a device manufacturer can assist law enforcement in decryption [62,258,278].

There also exist MPC-based constructions that provide more fine-grained functional-

ities like auditable threshold decryption [77, 204] and private set intersection across

private companies [265]. Bellovin et al. [29,30] sidestep cryptography altogether and

look to lawful hacking as a resolution to the Crypto Wars.

Cryptography to prevent government overreach. Conversely, several prior

works use cryptography to limit government overreach technologically. Tyagi et

al. [291] provide “self-revocable” encryption in which a user can temporarily revoke

her own ability to access her secret data for the purpose of defending against tem-

porary compelled decryption threats such as border crossings. Traffic unlinkability

tools like Tor [110] protect against traffic analysis by governments, and encrypted

search techniques can be used to limit collection of metadata stored at rest [186,320].

There are works that protect against subversion by the government (or anyone else)

for encryption schemes [170], digital signatures [15], and hash functions [20]. None

of these works consider compelling the respondent to perform the decryption in a

court setting, and as we show in §2.5.5 security against that threat is reliant upon

the government’s inability to get the data some other way.

2.1.2 Remarks

We hope this work provides worthwhile designs of cryptosystems that withstand gov-

ernment compelled requests, inspires the community to include this threat when de-

signing secure systems, and casts new light on the value of passwords as a useful

protection against this threat. That having been said, we make several remarks to

clarify the context of this work.

First, it is difficult to judge the accuracy of any legal definition in a common law

system. We show the best possible evidence: that our definition is consistent with
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established precedents by the Supreme Court and the appellate courts (§2.4) and

that it adheres to the core principles of the Fifth Amendment (§2.3.3). Nevertheless,

subsequent decisions by the courts might strengthen or restrict government power in

a way that renders our definition moot. Even if this should happen, we believe that

our paper provides enduring value by showing a methodology to reverse-engineer a

formal definition from common law.

Second, this work only captures a subset of legal cases, albeit a subset that we

believe is useful. We presume that the government tells the truth when interact-

ing with the court system, although we do not presume that the government tells

the whole truth. This work only considers the right to silence as interpreted in the

United States. Additionally, this work considers self-composition of compelled re-

quests (§2.3.5) and reasons how compelled requests compose with the government’s

own decryption capabilities (§2.5.5), but we do not consider how the Fifth Amend-

ment itself composes with other aspects of the law. We acknowledge that this gap can

introduce two-sided error: actions that are permissible under the Fifth Amendment

might be refuted on other grounds, and conversely, information protected under the

right to silence might be accessible to the government via other means.

Third, we stress that this work only focuses on security against one specific threat:

that of compelled action by the government. Therefore, the threat model in this work

is necessarily incomplete and potentially counterproductive if protections against gov-

ernment compelled requests conflict with protections for other threats. For this rea-

son, we prove the constructions in this work secure under their traditional definitions

in addition to analyzing their resilience to foregone conclusion requests (§2.6). We

hope that this work inspires the information security community to consider govern-

ment compelled actions within scope in their threat models.
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2.1.3 Organization

This section is structured as follows. In §2.2, we describe the body of law known

as the foregone conclusion doctrine, which is the deciding factor in most decryption

cases. In §2.3, we provide our formal definition of a foregone conclusion and analyze

its properties, including sequential composition. In §2.4, we compare our approach

to legal scholarship and justify our definition by showing that it comes to the same

outcome as U.S. Supreme Court and Circuit Court decisions. In §2.5, we analyze

the compellability of common cryptographic primitives under the foregone conclusion

doctrine. In §2.6, we explore the extent to which voluntarily participating in a cryp-

tographic protocol leaves one more vulnerable to future compelled requests; we call

a protocol resilient if any compellable action after running the protocol was already

compellable before running the protocol.

2.2 Overview of the foregone conclusion doctrine

In this section, we provide a brief overview of the Fifth Amendment to the United

States Constitution (abbreviated “5A”). We emphasize one aspect of 5A law called

the foregone conclusion (FC) doctrine, which is the crux of all compelled decryption

cases.

The right to silence as an interactive protocol. The right to silence in the

United States involves three parties: a government actor G such as a prosecutor or

law enforcement officer, an individual respondent R of the compelled request, and

a neutral court. We use the term respondent rather than “suspect” or “defendant”

because people can be compelled to perform government actions even without being

accused of a crime, and we consider individuals because companies do not have Fifth

Amendment rights. Also, we stress that this work focuses on G’s compelled requests
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to R, not G’s powers or restrictions to search for information on its own.

Compelled requests follow a 3-round interactive protocol: first G issues a subpoena

asking R to respond to a query, then R responds by asserting her right to silence, and

finally G requests that a court compels R to answer the query anyway. For the court

to approve the government’s request to “override” the respondent’s right to silence,

the burden of proof falls on the government to demonstrate that the compelled request

is not covered under the respondent’s rights [172].

The Fifth Amendment’s protections are broad but not absolute: they only apply

to government requests that are compelled, incriminating, and testimonial [123]. The

first two properties are relatively simple to describe. First, 5A cannot retroactively

protect statements that R has previously provided voluntarily to the government, the

statement must have been compelled by the government in the first place. Second,

5A can only be invoked if the compelled statement would “furnish a link in the chain

of evidence needed to prosecute the claimant for a federal crime” [168]. Many cases

involve compelled actions that are non-incriminating because the government has

granted R immunity from prosecution [292]; 5A does not apply in these cases since

the respondent cannot be prosecuted for the crime at hand. Some other specific

actions, like being compelled to state one’s own name, have also been decided to

be non-incriminating [165]. Because these two criteria are usually simple to verify,

throughout this work we assume that all parties agree that G’s request is compelled

and potentially incriminating.

Testimony. We focus in this work on the final requirement: the government is

only restricted from compelling people to perform acts that are testimonial, meaning

that they “disclose the contents of [the respondent’s] own mind” [98]. Based on

this principle, speaking your password to the government is testimonial [296], but

providing a blood sample [263] does not rely on any mental state of R, so it is non-
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testimonial and therefore compellable under 5A.

The law protects pure testimony in which the written or spoken output of a

compelled request directly reveals information about R’s mind, and implicit testimony

in which the government can infer something within R’s mind by “relying on the

truthtelling” [123] of the respondent when performing an action C and producing

the result. In implicit testimony, the act of production is the testimonial object in

question, not the contents produced. For instance, G cannot compel R to provide

written documents (whose contents are not 5A-protected) if G must rely upon “the

respondent’s truthful reply [to receive] the incriminating documents” [295]. If R

provides the documents upon request, then R’s act of producing them testifies to (at

least) the existence of the documents, as well as R’s possession of them and her belief

that they are authentic [123]. Pure testimony is always forbidden within compelled

requests, although implicit testimony need not be; for this reason, we focus on implicit

testimony in this work.

We emphasize that only the testimonial aspects of a compelled request C are

covered under 5A. The output of C might reveal more or less information than the

implicit testimony implied by it, but only the latter is protected. For example, sup-

pose that G compels R to provide all documents sitting in plain sight within her

locked office. Whether the documents themselves are incriminating is irrelevant; R

only has the right to withhold from G the implicit testimony revealed by executing

C, i.e., the knowledge in R’s mind implied by her truthful response. In this example,

the only implicit testimony from the compelled action is that R has the ability to

access her own office. There is no ambiguity as to the choice of documents themselves,

and thus no testimonial aspect – the government could have sent someone to break

into her office and collect the documents themselves, without relying on R. So the

only testimonial aspect of this compelled request is R’s ability to access her office. If



31

G already has evidence that R knows the location of her office key, then executing

C would not reveal any new implicit testimony to G. This begs the question: does

it violate R’s rights for G to compel R to implicitly testify to a statement that G

already knows to be true?

The foregone conclusion doctrine. The U.S. Supreme Court case Fisher v.

United States answers the above question in the negative, thereby providing a power

to the government that can counter R’s invocation of the right to silence. The Fisher

case says that the courts can compel R to execute an action C if its implicit testimony

is a foregone conclusion to the government, in the sense that it “adds little or nothing

to the sum total of the Government’s information” [123]. Concretely, the law enu-

merates several blacklisted predicates: if G would learn about the existence, location,

or authenticity of any new evidence from its interaction with the respondent, then

the compelled action is not a foregone conclusion.

This work starts from the premise that simulation-based cryptographic definitions

can dovetail with the concepts within the foregone conclusion doctrine for 3 reasons.

First, simulatability formalizes the concept of “not learning new evidence” [146,212].

Second, simulation sidesteps entirely the task of enumerating sources of implicit tes-

timony; instead, it holistically determines whether all implicit testimony present in

a compelled action C is a foregone conclusion. Third, whereas predicate blacklist-

based definitions often allow a series of individual requests that might be deemed to

be invasive in totality, we will demonstrate security under composition.

2.3 Rigorous definition for a foregone conclusion

The crux of the foregone conclusion question is how to know when the government is

“relying” on the contents of the respondent’s mind, when compelling her to perform

an action? This work uses the cryptographic concept of simulation to codify the idea
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that running a foregone compelled action “reveals nothing” to the government about

the respondent’s mind, above and beyond what the government can learn from the

rest of the world.

In this section, we provide both informal and then rigorous descriptions of our

security game that encapsulates the foregone conclusion doctrine. Additionally, we

prove that our definition remains secure under sequential composition.

2.3.1 Informal walkthrough

In this section, we provide an informal description of our game-based definition of

the foregone conclusion doctrine. Our game proceeds interactively between the gov-

ernment and respondent to determine whether an action is (or is not) a foregone

conclusion. We abstractly represent all of the information in the rest of the world

(outside of the respondent’s mind) as “Nature.” We also assume as a pre-condition

that the government and the respondent have already agreed on the evidence E of

the case.

The government acts first in our game. It declares a compelled action C that it

wants the respondent to perform; this action may make use of both the respondent’s

mind and Nature. (For interactive protocols, the government must also output a

second machine G codifying the government’s response to each message from C.) We

stress that C represents the act of production, i.e., the process of obtaining the result

rather than the result itself. The government has the burden of proof to demonstrate

that its compelled request is a foregone conclusion, as required by the courts [193].

The government submits this proof in the form of a simulator S that tries to output

the same result as C without access to the respondent’s mind but with the significant

power to view anything else in the world.

Second, the respondent has an opportunity to demonstrate that the compelled ac-

tion depends non-trivially on her own mind. To do this, she must equivocate: specify
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a “world,” comprising Nature N and the contents of her own mind R, where the

simulation disagrees to match the compelled action with non-negligible probability.

This world must be consistent with the evidence, or else the respondent loses our

game.

Third, we run a thought experiment to test whether the government’s uncertainty

about the state of the world is too high for the compelled action to be deemed a

foregone conclusion. Concretely, we run the compelled action and the simulation,

and we ask a distinguisher to attempt to tell the two results apart. If the results are

indistinguishable, then we declare that any implicit testimony in the compelled action

is a foregone conclusion on top of the existing knowledge already available to the

simulator (i.e., everything in the rest of the world). If the results are different, then we

declare that the government is relying too much on the truthtelling of the respondent

for the compelled action to be deemed a foregone conclusion. The government could

try again with a different compelled action, an improved simulation strategy, or more

evidence; any of these options would cause the game to begin anew.

2.3.2 Formal definition

In this section, we formally define a foregone conclusion. We emphasize that the

evidence should be sufficient so that a single government simulator S can simulate

the response of any respondent R that acts consistently with the evidence; that is,

the choice of S cannot depend on the contents of any specific respondent’s mind.

Summary of participants. We describe below several components in our model:

a string representing nature, and several interactive Turing machines (ITMs) in the

manner formalized by Canetti [69].

The runtime and behavior of all machines are affected by a parameter λ. Usually

this parameter refers to “the amount of evidence”; we will explain this further both
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in this section and in §2.3.4. Machine M has a time bound of tM(λ) (for example,

the simulator S has a time bound of tS). For machines that can query N , they have

a query bound of qM(λ).

In a typical court setting, defining the machines’ time and query bounds on only

the singular setting of λ that is relevant to the case at hand (i.e. using concrete

bounds) is sufficient. For many sequential court rulings that must compose with

each other, or for security researchers attempting to design FC-resilient systems, an

asymptotic treatment of these bounds (where the machines are poly-time and have a

polynomial number of queries in λ) is likely to be more useful. For further discussion

of how to set these bounds, see §2.3.4.

We will additionally augment this model with a few special symbols and random

tapes that are specific to this work.

First, we list the machines and strings we will use:

• Nature N represents the entire world except the contents of the respondent’s

mind. It is a string that is exponentially long in λ. with characters from

alphabet Σ, where most of the time we expect Σ = {0, 1}.

• Respondent R represents the contents of the respondent’s mind. It is called

by the compelled action C via methods. (For example, the evidence might

enforce the existence of method R.pw, and the output of this method will be

used in the execution of the compelled action.) R also has a special method

called R.Equivocate that can make at most qR(λ) changes to Nature at the

beginning of the security game. It has a time bound of tR(λ).

• Evidence EN(R) restricts R’s allowed changes to Nature. E always returns

either true or false within tE(λ) time. In effect, the respondent will automat-

ically lose the security game if the Evidence returns false with greater than

probability α (which will be 0 in a typical case). The Evidence is the main
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power the government has to limit the degree to which R may equivocate. E

will return false unless N and R meet specific properties.

For example, if the evidence is that R has a valid driver’s license in her house,

E would contain an authentication function for the driver’s license, and would

return true if the portion of N corresponding to R’s house contains a chunk

that the authentication function recognizes as a valid driver’s license. (Note

that although naively we might expect E to need to be unbounded in order

to check all of N , in reality it only needs to have enough time to check R’s

Equivocate method.)

We recommend a typical setting of λ to be the sum of the queries E makes to

N plus the size of the circuit(s) it uses to check R. In the event that λ is set

separately, we cap the time bound of E at tE(λ) and the query bound of E to

qE(λ). For more on the typical setting of λ as well as other settings, see §2.3.4.

• Compelled request CN,R is the action the government wishes the respondent to

perform. C has oracle access to both nature and the respondent (via method

calls), and for some compelled actions it is interactive with an additional ma-

chine GN which has access only to Nature. C has time bound tC(λ) and query

bound qC(λ), and G has time bound tG(λ) and query bound qG(λ). We denote

the transcript of the interaction between C and G as t(GN , CN,R).

• Simulator SN attempts to reconstruct a transcript t′ that is indistinguishable

from the real interaction. It has oracle access to N , but it cannot access the re-

spondent’s mind R. It has time and query bounds tS(λ) and qS(λ) respectively.

These bounds are arguably the most important settings in the entire definition;

we discuss proper settings in §2.3.4.

• A distinguisher DN receives either the “real” execution t(GN , CN,R) or the
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“ideal” execution SN , and attempts to distinguish between the two. If no

D can distinguish between these, the result is a foregone conclusion. D has

time bound tD(λ) and query bound qD(λ). The advantage (the probability with

which the distinguisher must succeed past an even chance) is ǫ(λ), ideally a

negligible function as described in §2.3.4.

We discuss how to set time and query bounds in §2.3.4.

In the remainder of this section, we describe the general properties of all partici-

pating Turing machines and then any extra properties of each individual machine in

more detail.

General Turing machine model. For our purposes, all interactive Turing ma-

chines contain the following:

• Oracle access to one or two oracles (C, G, S, E, and R during the reading phase

all have access to N , which is queried on indices, and C also has oracle access

to R).

• A read-only random tape (except for E, which is deterministic).

• An internal read/write working tape.

Respondent. R is a Turing machine that represents the subpoena respondent’s

actions. It has time bound tR and may access Nature qR times. R has an internal

working tape, a write-only output tape, and a read-only randomness tape. Because R

often acts as an oracle, we presume that it has methods whose existence and interface

may be specified in the evidence. It receives these method calls on a read-only oracle-

input tape and writes the results to a write-only oracle-output tape. R always has one

special method called Equivocate, which is used near the beginning of the security

game. When R.Equivocate is called, R outputs a set of locations and values ∆; N
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will be modified at these locations to be these values; i.e. setting N [i] = x for each

pair in ∆. E may mandate the existence of additional methods, or verify that the

code of specific methods acts in a certain way (e.g. that an internal variable was

generated from the correct distribution using the randomness tape).

Evidence. E is a Turing machine that restricts the ways in which R can modify

N . It has oracle access to the modified N and takes the source code of R as input.

It may require R to place certain values within N : for example, if the government

knows that a certain document is in R’s house, it requires R to place that document

in a location in N corresponding to R’s house. Furthermore, it may require R to

have methods with certain behavior, for example requiring the existence of a method

R.SafeCombo that outputs the combination that will open a safe in N . E might

require only the existence of the method, or it might require the method to have

certain behavior. As such, E has oracle access to N , and may inspect the code of

R to check the method behavior. E is poly-time bounded. Although that prevents

detecting elements “anywhere” in Nature, it still allows E to check any simulatable

existence claim, since the simulator itself is bounded. It is deterministic so that the

chance that R and N are “allowed” by the evidence (defined formally in Definition

2.3.2.1) depends only on R and N themselves, and not on E’s coins. E can also

force a concrete time bound T on R: It can automatically return false if R has not

completed within time T . We will require two properties of the evidence, as described

further in Def. 2.3.2.2: First, the evidence must be satisfiable (contrary to the usual

computer science meaning of this term, we simply mean that there must exist at least

one “allowed” respondent for which E returns true with sufficient probability). This

prevents an action from being vacuously foregone. Second, E must be non-censoring

– E must not prohibit R from modifying additional locations in N it has not checked.

(For example, the evidence may check that the documents exist in R’s house, but
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it may not check that nothing else exists in her house, except in extreme cases and

when all parties in the court agree to this far-reaching evidence.)

Compelled request and government responder. C is the interactive Turing

machine representing the action compelled by the subpoena, in the form of an inter-

action with a government agent G. The compelled request C has oracle access to N

and R, whereas G only has oracle access to N . While a simple request could be done

in a single round in which C outputs a message to G, this formalism also permits

more complex requests which take multiple rounds.

Both C and G have the following tapes:

• A read-only identity tape

• A one-bit activation tape (determining whether it is currently in the process of

“executing”

• A read-only (but externally-writable) input communication tape on which it

receives messages

• A write-only output communication tape on which it sends messages

We denote the transcript between GN and CN,R as t(GN , CN,R).

At all times, the input tape of C should match the output tape ofG, and vice versa,

and their switch bits should always be opposed. When finishing sending a message,

the machine always sends a special end of line character “//”. We refer to t(GN , CN,R)

as the transcript of GN and CN,R, consisting of a “log” of the messages sent between

the two machines. This is formatted as an alternating string of messages between

each machine’s output tape, alternating to the other machine at each // character.

This transcript is formatted as a concatenation of “id:message//” for each alternating

message where id is either C or G, message is the message written on the output tape
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by id (received on the input tape of the opposite machine), and // is a reserved end-

of-line character. At the end of the transcript (sent by whichever machine sends the

last message) is a special symbol, reserved at the beginning of the computation.

After receiving or sending this symbol, both machines halt. (A computation that

consists of two separate computations concatenated together may use a different �

symbol to denote the end of the separate computations.) As an example, if G sends

a and then C sends b, completing the computation, the transcript t is “G:a// C:b//

”.

Finally, one should consider individual instances of C and G to be completely

unrelated; in other words, they fully securely erase all of their state after the compu-

tation.

Government simulator. S is the government simulator. Its goal is to generate a

result that is indistinguishable from the exchange between C and G. It runs in time

tS and may access N as an oracle qS times (and has no ability to query R). S has

a single output tape in which it will attempt to simulate the transcript of a paired

set of machines, but is not itself interactive. S is prohibited from returning ⊥ to this

output tape.

Composing Turing machines. In §2.3.5 we will also consider machines composed

with each other. Let M1 and M2 be Turing machines that, upon completion, use the

computation-end symbol �. Then let M1‖M2 denote a machine with computation-

end symbol that begins by running M1, exchanging messages as normal and ending

with �. Then it starts computingM2, exchanging messages as normal and also ending

with �. Then, since its computation has ended, it outputs . In short, M1‖M2

denotes the sequential composition of M1 and M2.
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Allowed respondents. When checking for a foregone conclusion, the respondent

is automatically “caught” if it does something that violates the evidence E. We say

that R is allowed by the evidence if E (R) returns true with overwhelming probability

over the initial random initialization of N .

Definition 2.3.2.1 (Allowed respondents). R is α-allowed if

Pr
N,R

[

N ←$ Σ
exp(1λ)

∆← R.Equivocate
for (i, x) ∈ ∆ : N [i] = x

; EN(R) = true

]

> 1− α.

Because all allowed Turing machines could represent the real state of the respon-

dent’s mind as far as the government is aware, our foregone conclusion definition will

require that the government can simulate all allowed R. Conversely, the simulator is

only required to succeed on allowed respondents. To avoid degeneracy, the definition

will require the existence of at least one allowed respondent.

Security game

GameE,C,G,S,R(λ)

1 : N ←$ Σ
2λ // initialize N randomly

2 : ∆← R.Equivocate // ∆ is a set of index-value pairs

3 : // ∆ is a set of changes to N

4 : for (i, x) in ∆ : N [i] = x

5 : // check evidence and return ⊥ if false

6 : if EN (R) = false : return ⊥
7 : // return either real or simulated transcript

8 : return N, t(GN , CN,R) , SN

Figure 2·1: Real (solid) and ideal (dashed) foregone conclusion games. Steps
without a box are common to both games.

We specify the real and ideal versions of our security game in Figure 2·1. In

the real game, the government interacts (possibly over multiple rounds) with the
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respondent who executes the compelled algorithm C. In the ideal game, the gov-

ernment’s simulator S forges a transcript using only its access to Nature (which has

previously been prepared by the respondent). The two games are identical except

for the final step. In the last step, the real game (solid box) returns the transcript

t(GN , CN,R) of all communications between the government and respondent, whereas

the ideal game (dashed box) returns the simulated transcript SN . Both games also

offer oracle access to N .

Next, we provide our formal definition of the foregone conclusion principle in

Def. 2.3.2.2. It requires that the government’s simulator S faithfully emulates real-

world transcripts. Moreover, it limits the respondent R’s ability to equivocate and

the evidence E’s ability to censor R’s use of nature.

Definition 2.3.2.2 (Foregone conclusion (FCλ)). Let λ be a security parameter.

The exchange between G and C is a foregone conclusion with respect to E and S if

the following four conditions are met:

1. Efficiency: C has time bound tC(λ) and query bound qC(λ), G has time bound

tG(λ) and query bound tG(λ), and S has has time bound tS(λ) and query bound

qS(λ).

2. Simulatability: ∀ allowed R that run in tR(λ), ∀ D that run in tD(λ) and make

qD(λ) queries,

∣

∣Pr[DN
(

t(GN , CN,R)
)

= 1]− Pr[DN
(

SN
)

= 1]
∣

∣ < ǫ(λ)

where N , t(GN , CN,R), and SN are the results of the real and ideal security

games defined in Fig. 2·1, and ǫ is the advantage of the distinguisher.

3. Satisfiability of evidence: There exists at least one allowed R. Hence, simulata-

bility cannot be vacuously true.

4. Non-censorship of evidence: For any allowed R where R.Equivocate→ ∆, all

R′ where R′.Equivocate → ∆′ such that ∆ ⊆ ∆′ are also allowed. That is, E

does not prevent R from making additional changes to N beyond the locations

it checks.
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Notice that the probability in the satisfiability requirement is taken over the ran-

domness of R and the random choice of N (modified by R), whereas the probability

in the simulatability requirement is taken over R, N , D, C, and S.

Remarks. First, notice that the definition puts the burden of proof on the govern-

ment as is true in the legal regime [193] by requiring that it construct the simulator

S rather than merely asserting that one exists, and by requiring that S is chosen

before the respondent R chooses its equivocation strategy. Second, observe that due

to the order of quantifiers and R’s equivocation ability, if the compelled action C is

deterministic then the simulator must match this action exactly. This is explained

further in the proof of Lemma 2.5.1.1.

We make several more observations which are expanded upon in §2.3.6. First, the

code of R represents the respondent’s current actions and limitations in the present

(based upon the government’s evidence) even if this doesn’t correspond to the exact

code that the respondent originally executed in the past. Second, because the sim-

ulator S can access nature, it doesn’t need to forge the contents of any documents;

rather, it must only forge the process of producing them. And third, we presume that

the government tells the truth about its evidence.

For more information on how to choose time and query bounds, and how to set

λ, see §2.3.4.

2.3.3 Adherence to Fifth Amendment principles

The other parts of this work aim to model what the foregone conclusion doctrine is.

In this subsection, I describe why this model adheres to what the foregone conclusion

doctrine should be by the principles of the Fifth Amendment in historical context.

The general attitude against self-incrimination was brought to America from the

English common law. The English common law itself developed that attitude as a



43

response to other courts: First, especially early on, the development of English legal

norms stood in contrast to the courts of the Inquisition governed by the canon law

of the Roman Catholic Church in continental Europe [210, p. 23]. And later, the

attitude about self-incrimination further evolved in the late 1500s due to the struggle

between Anglican and Calvinist Protestants, both in English ecclesiastical courts and

in the Privy Council and Star Chamber which dealt with matters of high political im-

portance to the Crown [191, p. 247]. Inquisitorial courts used a certain oath known as

the oath ex officio, which required the suspect to respond truthfully to all interroga-

tion. The ecclesiastical court and Council also used similar oaths [210, p. 23]. In the

late 1500s and early 1600s, the oath was wielded against Puritan (Calvinist) clergy in

England to force them to state their religious conviction to Anglicanism or else face

imprisonment, fine, or capital punishment [191, p. 263]. In response, a concentrated

campaign against the oath ex officio was launched by an alliance of Puritans, com-

mon law judges (who resented the expansion of ecclesiastical courts into more secular

territories), and members of the House of Commons (especially Sir Edward Coke, who

opposed it not on religious grounds but as a matter of governance believed that such

an oath could only be used if approved by Parliament) [191, 210]. In 1641, the first

formal version of the right against self-incrimination entered English law [191, p. 285],

and in 1677 this was imported into law in the colony of Virginia [210, p. 406], from

which it was eventually smithed into the Fifth Amendment to the U.S. Constitution.

In all three courts that used some version of the oath, a central common thread

is that the oath was used to compel people to share their private thoughts, especially

religious beliefs. Puritans were interrogated about their adherence to Anglican doc-

trine [191, p. 263], and heretics of various kinds were interrogated about their secret

writings or secret meetings with other potential heretics in a way that incriminated

them both [210, p. 34-35]. Especially in Inquisitorial courts in earlier years, a high
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requirement of proof (intended to help the innocent) created a perverse incentive

to obtain the suspect’s full confession at any cost: since most heresies would not

have multiple witnesses or documentary evidence, the only acceptable evidence in

many cases was confession [210, p. 26-27]. The debates at the time centered around

whether direct interrogation for self-incriminating testimony was morally permissible.

Debates about the more subtle “indirect” self-incriminating testimony resulting from

subpoena for compelled documents or actions did not arise until this first principle

was firmly established in both England and America.

In modern American interpretations, we think of the Fourth and Fifth Amend-

ments as acting separately. As discussed earlier in this work, the Fourth Amendment

governs what the government can do to you, and the Fifth governs what the govern-

ment can make you do. This interpretation was not always the case, and there was

in fact a large period of American case law in which the opposite assumption was

held: the Fourth and Fifth Amendments were meant to be understood in conjunction

with each other, defending all of a person’s “private papers” from subpoena or gov-

ernment search and seizure [59, 203]. This interpretation formally began with Boyd

v. U.S. [59] in 1886. This protection was eroded in subsequent cases for corporations

and organizations [159,299], and for papers which the respondent was legally required

to hold [269]. The biggest turning point occurred in 1966 in Schmerber v. California,

in which the Fifth Amendment’s coverage was restricted to “testimonial or commu-

nicative” information [263, l. 761], allowing the collection of a blood sample under the

Fifth Amendment. This set the stage for Fisher [123] in 1976, which found that acts

of production had “implicit” testimonial aspects, but which allowed compelling that

production anyway if that implicit testimony was already known to the government

and “the question was not of testimony but of surrender” [123, 220]. Thus, the fore-

gone conclusion doctrine was born, and Boyd became essentially defunct [123,203].
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With this context in hand, what is the “right” interpretation of the foregone

conclusion doctrine? Consider a choice between three main alternatives: First, a

strict Boyd -like interpretation that a defendant may be compelled to bring nothing

at all, not even documents that the government knows the defendant must possess

in a known location, and can authenticate. Second, the existing foregone conclusion

doctrine which we believe is accurately modeled by our simulation-based definition:

the Government must demonstrate that it knows all testimonial information implicit

in the act of production – that is, the act “adds little or nothing to the sum total

of the Government’s information” [123, l. 411] – and if this is the case, then the

respondent may be compelled to perform the action. Third, a weaker interpretation

of the respondent’s protections under the foregone conclusion doctrine that focuses on

the “verifiability” of the action: if the government does not “rely on the truthtelling”

[123, l. 411] of the respondent in performing the action, then it may be compelled.

(This last interpretation, unlike our simulation-based definition, might for instance

allow a compelling a hash preimage, since the veracity of a computationally-bounded

respondent could be tested using the hash function. For more discussion on the

differences between these two models, see [86].)

The first option (the respondent cannot be compelled to any action) has been

soundly rejected by the cases that over time rejected the Boyd interpretation. As

the courts in these cases noted [123,263,269], the principles of the Fifth Amendment,

once extricated from those of the Fourth Amendment, protect testimony, not every

single thing about the person. This reasoning is in keeping with the objections to

the oath ex officio and the other arguments against self-incrimination even back into

the English common law: the problem is “confession” of beliefs or facts that the

government would not otherwise know.

At the same time, though it has not been much discussed in the literature (old or
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new), the third option (verification rather than simulation) also goes against those

core principles. In interrogatories for secret meetings, or compelled confessions to

locations of secret texts, there were surely cases in which the government could check

the veracity of the respondent’s claims – but only after the respondent made those

claims. The first-principles approach to the Fifth Amendment would seem to reject

this approach for implicit testimony as well as explicit testimony, for this approach

forces the respondent to provide information that the government could not get any

other way. This remains true even if the government can independently authenticate

the truth of the respondent’s response after it is given.

As an aside, we furthermore reject a fourth option in which only explicit testimony

(e.g. oral or written) is covered by the Fifth Amendment and any implicit testimony

can be compelled. We expect this is uncontroversial – although the question does not

arise in the early period of the Fifth Amendment’s formation, we expect that legal

scholars of both ages would agree that the distinction between “explicit” and “im-

plicit” testimony would be meaningless if any implicit testimony could be compelled.

An order to “raise your hand if you committed the crime” is implicit but clearly may

as well be explicit, and in the same way, an order to “produce any incriminating

papers if you have them” puts the respondent at the same dilemma of perjury or

self-incrimination as an oral question. The foregone conclusion doctrine avoids this

problem purely because the implicit testimonial information is already known to the

government; the respondent does not provide any new power or evidence that the

government did not demonstrate that it already could have had.

With this in mind, the foregone conclusion doctrine is best seen as a necessary

concession to the reality that the government is not all-powerful. An all-powerful

government that could costlessly retrieve any papers from the respondent would have

no reason to subpoena the respondent to produce them herself. As described, the
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compelled action of producing the papers adds nothing to the sum total of the gov-

ernment’s information. The question “is not of testimony but of surrender” [123,220].

One could object that forcing the respondent to bring those known papers anyway is

an act against the respondent’s dignity, even if the act is non-testimonial. To any de-

gree which this is true, this does not even approach the loss of dignity of being forced

into a confession without which the government would have had no case. And since

the testimonial aspects are not at issue, the foregone conclusion doctrine remains

adherent to the principles of the Fifth Amendment. We concede that the need to

have a moderately functional justice system supercedes the minuscule loss of dignity

that the respondent faces by responding to subpoenas, while the Fifth Amendment

remains intact to prevent the much larger loss of dignity that would from giving up

testimonial information.

In this view, the fact that a whole class of compelled decryption cases seem to

hinge on the foregone conclusion doctrine being interpreted in a manner that is less

beneficial to the respondent should be a red flag for that interpretation. In contrast,

our simulation-based definition forces the government to demonstrate its knowledge

of any testimony implicit in the action before the action can be compelled, thus en-

suring that “no Constitutional rights are touched” [220] while making the concession

that the government is not all-powerful and should be able to compel the respondent

to take actions as long as those rights are not touched. It finds that, in the absence

of other evidence, there is testimonial information being given up by the respondent

in compelled decryption (see §2.5), since the government is not capable of simulating

that action even given access to everything in the entire world except the respon-

dent’s mind. We preserve the government’s ability to compel actions when they can

be simulated using only non-testimonial information outside the respondent’s mind,

while ensuring that no testimonial information is compelled.
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We conclude that our simulation-based definition of the foregone conclusion doc-

trine adheres to the Fifth Amendment principle which holds testimony in the highest

regard and prevents defendants from “confessing” new testimonial information that

would incriminate themselves. We reject alternative formulations for not adhering to

that principle, or for taking it too far and rejecting non-testimonial information as

well. Happily, it seems that the definition that we believe is the one in place happens

to also be the definition that is most in keeping with Fifth Amendment principles.

2.3.4 Choice of parameters

In this section we describe how one might choose the time and query bounds t and q

for all the components of the definition.

Choosing the parameter λ

We allow courts to pick their own choice of λ. This should be the value by which

all machines (especially S, but also D, C, G, E, and R) scale their time and query

bounds. As a recommendation, we set our λ as a measure of the amount of evidence

for the remainder of this paper. That is, λ is a sum of the amount of bits of N queried

by E, plus the size of the circuits it uses to test R.

Consider the following example: R.key() contains the respondent’s 128-bit key.

R.message() reveals a 1000-bit message, and N [1] stores a 1000-bit ciphertext which

is the encryption of R.message() under R.key() using some encryption scheme. First,

observe that if λ is set based on the amount of evidence as we suggest, then λ is at

least as big as the security parameter of the encryption scheme (since the key is at

least as big as the security parameter of the scheme). Second, note that until we

approach a 2128-bit message size, λ will not artificially allow brute forcing of the

scheme.

We expect that this setting will work for the vast majority of cases. However,
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there are three scenarios which prevent us from declaring this to always be the case;

for these reasons we allow courts to set their own settings of λ.

First, if there is only a small amount of evidence, we may encounter pathologies

in which the runtimes of other machines (especially R and S) are artificially short.

Thus we additionally set a minimum for λ, say λ ≥ 80, to ensure that all parties

still get a reasonable amount of computing power even with minimal evidence. (80

is a typical medium-low setting of a security parameter for a symmetric encryption

scheme.)

Second, in some cases an extremely high amount of evidence may be a valid model.

For example, a security researcher may wish to model a nation-state adversary as

having λ = 2128 pieces of evidence, a number so high that tS(λ) = tS(2
128) would allow

time for brute-force decrypting 128-bit cryptosystems. We believe this is unrealistic,

but we wish to allow this alternate model as an option. Note that with this setting of

λ, since Nature is exponentially long in λ, it will be doubly exponential in whatever

parameter λ itself is exponential in. This has the effect that cryptography can be

brute-forced, but arbitrary elements of Nature still cannot be.

The third reason we allow alternate choices of λ is that setting this parameter

as “the amount of evidence” encourages the government to present an inflated E

machine with many useless queries, since this will allow it to use a more powerful

simulator. This is another way in which our definition is brittle against maliciously-

crafted evidence. All parties should be in agreement on the Evidence machine E

before getting to the point of running this definition.

As a final note, the setting of λ does not matter as much in the concrete setting,

where the time and query bounds of each machine can be set individually for a single

arbitrary value of λ.
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Choosing a simulator bound

Arguably the most important choice of parameter in this system is the choice of the

time and query bound on the simulator (tS and qS respectively). The general effect

of setting tS and qS is to quantify the work the government must do without the

contents of the respondent’s mind in order to replicate an action that the respondent

can do with the contents of their mind.

To use a toy example, in order to determine whether the respondent’s glove fits

her hand, the government likely only must query two locations in Nature (the glove

and the hand), and perform the computational work of checking whether they are the

same size. Perhaps if the respondent is particularly coy about putting on the glove,

the government at worst has to do some extra work to make a plaster cast of her hand

and fit the glove to that. All this is nontrivial work, but it seems reaonably attainable

within the budget of a police department – a simulator should be fairly easy to build

for this action. If the evidence contains information about 1000 hands, each of which

is paired to a potential glove (λ is at least 2000: the sum of the 1000 hands in N and

the 1000 gloves in N) then this may take roughly 1000x more work than checking

one glove – both qS and tS are linear functions in λ (assuming λ is chosen as the

amount of evidence as described in the previous section). If it is not known which

glove corresponds to which hand, then we may have a matching problem between the

hands and the gloves: λ and qS are unchanged at 2000, but tS is now about 10002:

each of 1000 gloves must be matched against 1000 hands, a quadratic function in λ.

Increase the complexity of this example a little more and it is not clear that the

government could plausibly achieve the cost in question. A poly-time runtime and

query bound plausibly represents a stronger government than the real one. In many

cases a court might want to pick a more fine-grained option.

Furthermore, observe that all of this does not even make a scratch in the problem
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of the government needing to break or brute force cryptography, generally a problem

that requires exponential work in the cryptosystem’s security parameter. (Note that

as discussed in the choice of λ this parameter should always be at least the size of the

security parameter of a cryptosystem used where a key is stored in either R’s mind

or N .)

An unbounded simulator may be a good choice in an extreme setting where (for

example) a very paranoid security researcher wishes to create a scheme that is FC-

resilient even if the government is exceedingly powerful and has no bound on its

simulator. However, we expect most courts (and indeed most security researchers) to

be satisfied with the poly-time and poly-query bounded simulator, which as we said

is still giving the government more power than it likely actually possesses.

Choosing a distinguisher bound and advantage

The distinguisher bound may again be either concrete, asymptotic (fine-grained or

just “polynomial”) or unbounded. For the main section of this paper we focus on

computational indistinguishability, that is, the distinguisher time bound tD(1
n) is

polynomial.

The reasoning here is similar to the discussion of the simulator time bound. The

choice of computational indistinguishability is a concession to the fact that the gov-

ernment is not all-powerful, as we discussed in 2.3.3. It is hard to see how one would

operationalize an unbounded distinguisher, since in real life no party would be able to

serve as the distinguisher. A more limited distinguisher is also possible, but we find

that the standard poly-time bound is useful for analyzing cryptosystems. We see the

choice of an asymptotic polynomial time and query bound as the most useful setting

since it enables easier analysis while still being fairly realistic.

We also primarily choose to set the maximum allowed advantage of the distin-

guisher, ǫ(λ), to a (positive) negligible function, This means that for any polynomial



52

p(λ), there exists some number n such that ∀λ > n, ǫ(λ) < 1
p(λ)

. One could choose to

set ǫ to a constant function instead of a negligible one, e.g. the distinguisher must be

able to discern the simulated from the real version with at most a 1% advantage to

be a foregone conclusion. This would favor the respondent; many more things would

be foregone than with a negligible advantage. However, this does not scale with the

security parameter, and generally makes analysis more difficult. We see the negligible

setting of ǫ as the natural choice.

When to pick asymptotic versus concrete bounds

As described in the previous section, for the most part courts may wish to set a

concrete bound for each machine based on the realistic resources that could be applied

to the case.

On the other hand, asymptotic time and query bounds make analysing the com-

position of several actions easier without making the simulator too unreasonably

powerful (though still more powerful than it would likely be in real life). As we will

discuss further in §2.3.5, we make the normative claim that foregone compositions

should compose: one should not be able to “split up” one large non-foregone action

into multiple actions which are each individually foregone, and one should not be

able to combine non-foregone actions into one larger foregone action. We show in

§2.3.5 that this holds in the asymptotic setting. In the concrete setting, one can still

consider composition, but one must take careful account of the total time and queries

used so far, rather than considering each action individually. In our opinion, the

asymptotic definition is easier to analyze for composition and it does not lose much,

and so we will use it for the remainder of the paper.

One other side effect of choosing a concrete or a fine-grained bound rather than

the recommended poly-time bound is that compelling fine-grained cryptography may

become not foregone. Fine-grained cryptography aims to provide security only up to
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a specific polynomial runtime adversary (e.g. quadratic), rather than all polynomial-

time adversaries, e.g. [106, 115, 207, 223]. Compelling decryption with a fine-grained

cryptosystem would likely be foregone under the standard poly-time simulator, but

not under a more limited simulator.

2.3.5 Sequential composition

In this section, we prove that Definition 2.3.2.2 remains secure under sequential com-

position. Essentially, our theorem states that the information disclosed by a govern-

ment compelled action cannot immediately open up new actions that the government

can subsequently compel.

Theorem 2.3.5.1 (Sequential composition). Suppose C1, G1 is a foregone conclusion

with respect to E and S1. Then C2, G2 is a foregone conclusion with respect to E and

S2 if and only if there exists a simulator S1‖2 such that (C1‖C2), (G1‖G2) is a foregone

conclusion with respect to E and S1‖2.

While composition generally follows naturally in simulation-based definitions, the

proof in our setting is somewhat non-standard. For instance, proving composition

for zero-knowledge proofs requires an auxiliary input so that later instances store the

results of simulated versions of earlier instances, but our definition doesn’t have a

direct concept of auxiliary input. We proceed in the other direction: we can proac-

tively store simulated versions of later instances in nature in order to test the limits

of whether earlier instances are truly foregone conclusions.

We prove the two directions of Theorem 2.3.5.1 separately. Beforehand though,

we find it useful to make a simple observation: the transcript of a composed machine

is equivalent to the composition of the transcripts of the individual machines.

Lemma 2.3.5.2 (Concatenation of composed transcripts). If M1a and M1b are paired

interactive Turing machines with identities a and b respectively, and M2a′ and M2b′
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are paired interactive Turing machines with identities a′ and b′, then

t(M1a,M1b)‖t(M2a′ ,M2b′) = t(M1a‖M2a′ ,M1b‖M2b′).

Proof. This is a straightforward consequence of the sequential (i.e., non-parallelized)

nature of a Turing machine and the way we defined Turing machine composition in

§2.3.2.

The first direction of the theorem states that compelling two foregone conclusions

in a row is still a foregone conclusion.

Lemma 2.3.5.3. If C1, G1 is a foregone conclusion with respect to E, S1, and C2, G2

is a foregone conclusion with respect to E, S2, then C1‖C2 is a foregone conclusion

with respect to E, S1‖2, where S1‖2 first runs S1 and then S2.

Proof. Since C1, G1 is a foregone conclusion with respect to S1, E, we know that

t(GN
1 , C

N,R
1 ) ≈c SN

1 ∀R, ∀DN even with oracle access to N . This must include R

that sent NEnc(t(GN
2 , C

N,R
2 )). (R can generate this value by running the code of

G2 and C2, reading from N and responding from its own code when appropriate.)

Thus, t(GN
1 , C

N,R
1 )‖t(GN

2 , C
N,R
2 ) ≈c S

N
1 ‖t(GN

2 , C
N,R
2 )∀R, ∀DN . By Lemma 2.3.5.2 we

therefore also have

t((G1‖G2)
N , (C1‖C2)

N,R) ≈c S
N
1 ‖t(GN

2 , C
N,R
2 ) (2.1)

∀R, ∀DN .

Separately, we know that since C2, G2 is a foregone conclusion with respect to

S2, E we know that t(GN
2 , C

N,R
2 ) ≈c S

N
2 ∀R, ∀D even with oracle access to N . Since

D can run the code of S1, it must also be true that

SN
1 ‖t(GN

2 , C
N,R
2 ) ≈c S

N
1‖2 (2.2)

∀R, ∀D.
Thus, combining equations 2.1 and 2.2, we have

t((G1‖G2)
N , (C1‖C2)

N,R) ≈c S
N
1 ‖t(GN

2 , C
N,R
2 ) ≈c S

N
1‖2

Thus, t((G1‖G2)
N , (C1‖C2)

N,R) ≈c SN
1‖2, fulfilling the simulatability property of

a foregone conclusion. In order to show that the composed version is a foregone
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conclusion, we must also show efficiency and satisfiability of evidence.

Clearly, if all of the component machines are efficient (guaranteed by the efficiency

of machines in foregone conclusions), their concatenation must also be efficient. The

evidence is the same for the composed and non-composed versions, so it maintains

the satisfiability and non-censorship properties. This completes the argument.

The second direction of the theorem states that if the composed request is a

foregone conclusion, then each individual request must also be a foregone conclusion.

Lemma 2.3.5.4. Suppose C1, G1 is a foregone conclusion with respect to E, S1. Sup-

pose also C1‖C2, G1‖G2 is a foregone conclusion with regard to E, S1‖2, where S1‖2 is

S1 concatenated with some S2. Then C2, G2 is a foregone conclusion relative to E, S2.

Proof. Suppose by way of contradiction ∃R,D such that D is capable of distinguishing

t(GN
2 , C

N,R
2 ) from SN

2 .

Then we can easily construct D′ that can distinguish t((G1‖G2)
N , (C1‖C2)

N,R)

from SN
1‖2 for the same R. D′ simply removes the first set of messages (before the �

symbol of the interaction between G1 and C1) as well as the final symbol ending the

composed interaction. The result is simply either t(GN
2 , C

N,R
2 ) or SN

2 . D′ then calls D
on this input and returns the same result. It is easy to see that D′ can distinguish the

composed computation with the same advantage as D can distinguish only the second

interaction. (Notice also that by renaming the arguments, this proof also applies to

the first compelled argument.) Thus, we have a contradiction; such a distinguisher

cannot exist.

The other properties of a foregone conclusion also continue to hold: If the com-

posed machines are efficient, then the decomposed machines must also be efficient.

Furthermore, the same evidence is used in all the iterations, so the satisfiability and

non-censorship properties of the evidence remain unaltered.

This completes the proof. If C1‖C2, G1‖G2 is a foregone conclusion with regard

to E, S1‖2, then it must also be true that C2, G2 is a foregone conclusion relative to

E, S2.

Combining Lemmas 2.3.5.3 and 2.3.5.4 proves Theorem 2.3.5.1 and demonstrates

that the government gains no advantage by waiting for the result of one foregone

conclusion request before beginning the next.
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This theorem demonstrates that our foregone conclusion doctrine satisfies two

intuitively-appealing goals. First, if a compelled action C would not be a foregone

conclusion given the government’s existing evidence, then it should not be possible to

split C into smaller actions (compelled in sequence) that collectively perform C and

that are each individually deemed foregone conclusions. Second, there should not be

a way for the government to compel beforehand a different foregone conclusion C’ in

order to change the status of C into a foregone conclusion.

We emphasize that the composition theorem only applies to government requests

made in sequence without changes to Nature or the Evidence in between; it is possible

that the government could compel an action, use the response to guide its police

investigation to gather more evidence, and then compel a second action based on this

additional evidence.

2.3.6 Additional comments on the Foregone Conclusion Definition

This section describes some additional detail to the foregone conclusion definition.

Universal simulator and constructive definition

Recall that our definition (informally) states that the interaction between C and G

is a foregone conclusion with respect to S if ∀R, the exchange between GN and CN,R

is indistinguishable from SN .

First, notice that our definition uses a universal simulator: it is defined first,

before the other party (in this case, before the respondent’s equivocation strategy).

This is similar to black box zero knowledge, where the simulator is defined before

the cheating verifier. The reason we require a universal simulator can be seen by

imagining the opposite: If a different simulator was required to respond to different

equivocation strategies, then this amounts to the respondent “testifying” as to which

world state (Nature and the Respondent’s mind) is true. Instead, for an action to be
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a foregone conclusion, we insist that the government be able to simulate the action

for all equivocations that are consistent with the evidence.

Furthermore, this definition is constructive – it forces the government to submit

a construction of S as an input, rather than relying on the mere existence of such a

simulator. This puts the burden of proof on the government to present a simulator

that demonstrates that something is a foregone conclusion. This is consistent with

the legal literature in that the burden of proof is on the government [193]. Although

the caselaw has not definitely determined how high the government’s burden of proof

is [193], we argue in §2.3.3 that our high-but-achievable standard of simulation is

appropriate.

The simulator represents a process, not the contents

The foregone conclusion literature is clear that only the act of production of most

subpoenas may be protected as testimonial under the 5th Amendment, not the con-

tents of the documents themselves [123, l. 410]. (This is often because the contents of

the documents were not themselves “compelled,” but the act of production of those

documents is compelled.) Our model is in keeping with this principle – although the

items returned by the interaction or simulator do correspond to “contents” (often

elements of N), the object that the government must present in order to demonstrate

a foregone conclusion is S: a simulator for the process of getting those contents.

Our abstract encoding of “Nature” is abstract specifically to allow the government

to demonstrate its ability to simulate the process of retrieving documents from it.

If the government can simulate this process without access to the contents of the

respondent’s mind (R), then that act of production was a foregone conclusion.
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Weak to malicious evidence

One weakness of our definition is that it is brittle to a maliciously-chosen E. This can

occur in multiple ways – the most obvious is for the evidence to be chosen such that

there is only one computable result for either S or the real interaction, but it could

also restrict R’s computation time to 1, preventing it from doing its own computation.

However, we point out that in the legal system, the standards for existing evidence

are high. In particular, the “due process of law” guaranteed to all persons by the

Fourteenth Amendment [301] demands that State prosecutors may not knowingly

present false evidence or perjured testimony [228], or allow evidence or testimony

they know to be false to stand [7]. Thus, we expect that all parties in a court will

agree on the truthfulness of existing evidence before reaching the question of whether

a compelled action is a foregone conclusion; the main issue we are trying to prevent

is that the compelled action may overreach in a “fishing expedition” (as it did in, for

example, U.S. v. Hubbell [295, l. 32]).

Respondent’s previously-rolled randomness cannot necessarily be com-

pelled

A subtlety arises when compelling the result of random coins that the respondent

rolled in the past (e.g. an encryption key). Generally, this type of action is not a

foregone conclusion without additional information. However, the government could

compel a respondent to make a fresh sample from the same original distribution (i.e.

randomly pick a new encryption key).

The following example is illustrative: Suppose the compelled action is to encrypt

a fixed message using the same key the respondent uses to encrypt her hard drive

(or any key that was randomly rolled in the past, but is now fixed and known only

to the respondent at the time of the compelled action) and return the ciphertext.

This is not deterministic since presumably the encryption scheme is randomized. Yet
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as we shall see, there exists a distinguisher which will always distinguish the real

compelled action from the simulated compelled action with high probability. Because

the respondent essentially has the key hardcoded, there exists a distinguisher that

knows the same key. (Equivalently, the respondent can communicate the key to

the distinguisher via the covert channel described in §2.3.6.) That distinguisher can

always successfully decrypt the real ciphertext to recover the fixed message. On the

other hand, the simulator attempting to replicate this ciphertext does not know the

key in the respondent’s mind, and so has a minuscule chance of providing a ciphertext

that successfully decrypts under the same key to that message. This provides a reliable

means of distinguishing.

On the other hand, compelling the respondent to create a fresh key and then

encrypt the message under that key is a foregone conclusion – the respondent does

not execute the compelled action, and therefore does not roll the key, until after it

has already set Nature, and there no longer exists a single distinguisher that can

reliably reproduce the freshly-random key. So compelled encryption under a fresh

key is compellable.

As a side effect, it may be the case that the “true” way in which the respondent

acted in the past no longer corresponds to an α-allowed R. For example, if the

distribution of R’s symmetric key is known, but so is the ciphertext and nonce for

an unknown plaintext, this effectively “collapses” R’s randomness by conditioning on

the result, and forces R to sample twice in a way that would lead to the same result.

In effect, we consider this a reasonable way to describe the choices R may have

made in the past, but is now committed to. Perhaps R could have generated any

ciphertext, but in the end, we know exactly which ciphertext it generated, and so any

future interaction with R must take this into account.

If for some reason a random distribution must be described in R rather than in
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the compelled action C, this is also possible under this framework. Since the evidence

has the power to inspect R’s source code, it has the ability to verify that R chooses a

random variable correctly according to a known distribution, using randomness from

its randomness tape.

These distinctions are also relevant to the compelled encryption scenario described

formally in Theorem 2.5.5.1.

Covert channel between R and D

The adversarial respondent will equivocate and try to provide the distinguisher with

information that will allow it to distinguish the real execution from the simulated

execution. It can do this by setting a value in N to something that will help the

distinguisher realize which is correct. We define a useful functionality:

Definition 2.3.6.1 (Encoding within nature (NEncℓ, NDecℓ)). (NEnc, NDec) is an

encoding scheme within nature for R and D over messages of length capped by ℓ

defined by the syntax:

• ∆′ ← R.NEnc(z), such that ∆′ ⊆ R.Equivocate and z ∈ Σℓ

• z’ = NDecN , making queries only to indices in ∆’

where z′ = z∀z ∈ Σℓ.

This functionality represents the ability of R to hide information in N that the

distinguisher may use. There are many possible instantiations of this functionality.

As an example for messages z of length bounded by ℓ, consider R, D with a hardcoded

index i and mask m ∈ Σℓ:

NEnci,m,ℓ(z) = {(j, z[j]⊕m[j])}j=i..(i+ℓ)

NDecNi,m,ℓ = N [i]⊕m[0]‖N [i+ 1]

⊕m[1]‖ · · · ‖N [i+ (ℓ− 1)]⊕m[ℓ− 1]



61

This works because the “∀D” is defined after the “∀R.” This means that some

R will have such a code, and some D for that R will know of it. This also depends

crucially on the non-censorship property of the evidence – if E had the ability to

prohibit R from modifying cells that it did not inspect, this functionality would not

work.

This functionality is most relevant in the case of samples from a known distribu-

tion. Suppose R has a secret s sampled from a known distribution S that is specified

in the evidence. The simulator will be able to sample a fresh s′ from the same dis-

tribution S. If C compels R to reveal the specific s it sampled, however, R can use

NEnc(s) and D may run NDecN to recover s, allowing it to distinguish the real output

of the interaction between C and R (which will always return s) from the simulator

(which will return a fresh sample from S).

However, notice that no randomized action during the actual C can be recorded

in N in this way, only actions that depend on the randomness of R alone.

As a consequence, the only way for S to simulate a deterministic compelled request

is for the output of S to exactly equal the transcript of C’s interaction with G.

2.4 Legal analysis

In this section, we justify Def. 2.3.2.2 by demonstrating its consistency with prior

court cases that involve the foregone conclusion doctrine. We begin by comparing

our definition with existing legal scholarship in §2.4.1. Then, we apply our definition

to all relevant U.S. Supreme Court cases in §2.4.2 and all circuit court cases in §2.4.3

that were identified by the legal scholarship, and we demonstrate how our definition

reaches the same conclusions as the courts. We discuss encryption-related cases [88–

91,176,264,266,273,274,296,298,303,304,306] in §2.4.4 however we do not use them

in our analysis of our definition. We believe these cases are actually less illustrative
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than their non-encryption counterparts because these rulings are quite varied and

subject to being overturned by higher courts. We end the section with a discussion of

prior and potential future Supreme Court cases involving compelled decryption and

the foregone conclusion doctrine.

2.4.1 Legal scholarship context

This section provides a thorough description about how our approach compares to

prior legal scholarship on the foregone conclusion doctrine.

Other legal analyses of compelled decryption [85, 193, 198, 222, 256, 282, 317] rely

upon analogies between encryption and physical security mechanisms like safes or

shredders. Kerr recently stated “whether [the Fifth Amendment] privilege bars com-

pelled entry of the password. . . depends on a choice of analogy” [195]. These analogies

are further muddled by ambiguous language in court cases: In a now-infamous dissent,

Justice Stevens said that he “do[es] not believe [a defendant] can be compelled to re-

veal the combination to his wall safe – by word or deed” [111]. Does “reveal by deed”

mean to be forced to enter the combination without the government seeing it? We as-

sume so, but this is not the only interpretation; for example, Orin Kerr interprets the

hypothetical to mean that a person cannot be compelled to reveal their combination

to the government by opening the safe in plain sight of an investigator [193].

We wrote this paper to move the compelled decryption debate beyond the choice

of analogy. We recognize the prevalence and value of analogies in the development

of common law, but because their use leads to such differing results in this case, we

believe this situation warrants rejecting analogies. Under our model, we can reason

directly about the principle that for a compelled action to be a foregone conclusion,

it should not “rely on the contents of the mind.” This also suggests a change to the

three-prong test of existence, location/possession, and authenticity for determining

whether an action is a foregone conclusion. Rather than reasoning only about these
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(which happened to be the implicit testimony in Fisher , as we will show in §2.4.2)

we can reason in a thought experiment about the government’s ability to recreate the

act of production without using the contents of the respondent’s mind.

Because we can avoid the use of analogies, our reasoning is different than all prior

work. The closest legal landmark to our model is Sacharoff’s authentication-based

interpretation of “reasonable particularity” [256], but there are some important dif-

ferences between the two approaches. Sacharoff’s envisioned test, like our method, is

based on the idea that information entered into evidence from non-respondent sources

can be used to demonstrate a non-reliance on the contents of the respondent’s mind.

Indeed, one could argue that the simulator in our scheme must produce “reasonably

similar” output to that of the true compelled action. However, the methods are not

the same. First, addressing an issue brought up by Kerr [193], our method applies

to any compelled action even if there are no produced documents at the end that

could be described with “reasonable particularity.” Second, and more importantly,

our method highlights the fact that the action taken, not the objects produced, con-

tains the implicit testimony. For better or worse, the reasonable particularity method

makes it harder to distinguish between the “door-opening” and the “treasure,” as Kerr

would put it [193]. Our model makes it clear that the government must not learn

the new implicit testimony involved in the process of complying with the request (as

opposed to the results).

Our interpretation is very different from other prior work. As mentioned, Kerr

[193] distinguishes between “door-opening” and “treasure.” This analogy, reasonably,

tries to separate the act of production from the contents produced. In the same paper,

Kerr proceeds to claim that “‘I know the password’ is the only assertion implicit in

unlocking the device” [193, p. 779] We disagree; we described the “reliance” on the

respondent’s mind in §2.5.5. Our objection is solely in the compelled action, not the
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contents revealed.

Kiok [198] bemoans the fact that the cryptography analogies have, thus far,

“missed the metaphor.” McGregor [222] also notes that the choice of analogy greatly

impacts the outcome, and proposes the analogy of piecing together shredded papers

without knowing which order they go in. This analogy is an improvement over the

safe/combination dichotomy, but we believe our approach avoids the issue entirely.

In his discussion on foregone-conclusion-based compelled decryption, Terzian [283]

describes a split between courts that compel decryption of an entire device and de-

cryption of specific files, and places the burden of proof on those who argue for specific

files. Our analysis does not fit neatly into either of these categories, but it is closer to

the files interpretation. We do not require the government to specify “every scrap of

paper” that must be produced, but we do require the government to avoid compelling

files for which the contents of the mind are demonstrably necessary to access (since

they did not demonstrate an alternative method of production).

Finally, our conclusion does not go as far as Winkler [317], who claims that the

foregone conclusion doctrine does not apply to non-physical evidence and thus com-

pelled decryption is never a foregone conclusion.

2.4.2 U.S. Supreme Court cases

This section contains our analysis of all federal Supreme Court cases involving the

foregone conclusion doctrine. In §2.4.3, we also analyze several key foregone conclu-

sion Circuit Court cases.

The foregone conclusion doctrine dates back to Fisher v. United States [123]. We

checked all citations of Fisher in Google Scholar’s database of case law and found only

two subsequent Supreme Court cases that deal with the foregone conclusion doctrine:

United States v. Doe (1984) [294] and United States v. Hubbell [295]. In this section,

we show that our definition agrees with the result of all three cases.
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Evidence in Fisher [123] Translation into our framework

The papers... ∃k, p such that:

are in the possession of the taxpayer
[123, line 409]

k ∈ locations (where locations is a
small set of indices in ∆)

were prepared by the accountant [123,
line 411]

implies that ∃(k, p) ∈ N

are the kind usually prepared [in this
situation] [123, line 411]

∆ contains code in a small known set
of indices acc that creates p

can be authenticated by the accoun-
tant [123, note 13]

∃Auth : Authacc(x) = 1 iff x = p

Table 2.1: The evidence check E in Fisher v. U.S.

Fisher v. U.S. [123]. The Fisher case examined a hypothetical in which a taxpayer

R was compelled to produce an accountant’s papers in R’s possession (similar to the

motivating example in §2.2). As a note, although hypothetical scenarios described in

a court opinion typically do not contribute to the ruling, in the case of Fisher the

entire foregone conclusion doctrine has arisen from the basis of this hypothetical.

The court in Fisher determined that the act of producing the papers communicates

potentially testimonial and incriminating evidence to the government; “[c]ompliance

with the subpoena tacitly concedes the existence of the papers demanded and their

possession or control by the taxpayer. It would also indicate the taxpayer’s belief

that the papers are those described in the subpoena.”

Recall that Fisher determined a three-prong test for whether or not an act of

production was a foregone conclusion: the government must have knowledge of the

papers’ existence, location, and authenticity. Table 2.1 translates the circumstances

of Fisher into an evidence test within our framework. The evidence includes the

facts that the government knows that the papers p exist, they reside in one of a small

set of possible locations, the taxpayer R can produce them, and the papers can be

authenticated using only the accountant’s testimony (without the taxpayer’s help).

With the evidence described above, the compelled action is simulatable using only
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information within nature: S can search through locations and use the accountant to

test which papers are the desired ones. This simulation is perfect no matter how the

taxpayer R equivocates, as long as R puts the papers p ∈ locations as required by the

evidence check E. Moreover, E does not censor R, it allows the true taxpayer code,

and all procedures are efficient. Thus, the taxpayer R must produce the legitimate

papers p. This analysis matches the Supreme Court ruling that compelling the papers

is a foregone conclusion.

Note that in the Supreme Court’s analysis, the fact that the papers “are the kind

usually prepared by an accountant working on the tax returns of his client” [123, line

411] was used as evidence toward the papers’ existence and their possession. However,

later, in U.S. v. Hubbell, the Supreme Court rejected a similar argument, saying that

the government cannot rely on the “overbroad argument that a businessman such as

respondent will always possess general business and tax records that fall within the

broad categories described in this subpoena” [295, line 45]. We have chosen to take

the evidence presented by the court in each individual case; our framework remains

the same whether such a statement is put into evidence (and therefore part of the

government’s existing knowledge) or not.

We emphasize that all facts contained within the evidence E in Table 2.1 are nec-

essary for the simulator to succeed. The remaining two cases show how the foregone

conclusion decision changes when the government cannot pin down the location of,

or independently authenticate, the papers.

U.S. v. Doe [294] (1984). The Doe case also required the respondent R to produce

documents, but unlike in Fisher , in this case the government did not have much prior

information about the documents. As a consequence, the non-censorship requirement

states that E cannot restrict where the respondent R places the documents in nature,

or indeed whether she writes the documents anywhere at all. The wide variety of
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possible respondent equivocations defeats the simulator S from above (and indeed

any other simulator), so Definition 2.3.2.2 is not satisfied. Our definition again agrees

with the result of the case, in which the Court found that “nothing in the record that

would indicate that the United States knows . . . that each of the myriad documents

demanded by the five subpoenas in fact is in the appellee’s possession or subject to

his control” [294, note 12] and thus the act of production is not a foregone conclusion.

U.S. v. Hubbell [295]. The Hubbell case is complicated by a grant of immunity

that is outside of our model; we describe here a subset of the facts that remain rel-

evant in our setting. The government compelled Hubbell to provide “documents fit-

ting within . . . 11 broadly worded subpoena categories.” [295, line 42] In this case, the

government not only sought the documents themselves, but also the “respondent’s as-

sistance . . . to identify potential sources of information” [295, line 41] and to “testif[y]

that those were all of the documents in his custody or control that were responsive

to the commands in the subpoena” [295, line 31]. Our definition is unsatisfiable for

compelled actions that are subject to either one of these considerations: given any

simulator S, we can construct an equivocating respondent R that decides differently

from S which documents are relevant. Once again, our definition aligns with the

Supreme Court’s decision that it was “unquestionably necessary for respondent to

make extensive use of ‘the contents of his own mind’ in identifying the hundreds of

documents responsive to the requests of the subpoena” [295, line 43].

An additional case: Doe v. United States (1988) [111]. A fourth case, Doe v.

United States (1988) [111] is often brought up in discussions of the Fifth Amendment

as relevant to compelled decryption. However, the decision in that case found that the

compelled action was not testimonial at all, and thus the justices never reached the

point of asking whether it was a foregone conclusion. The case itself concerned forcing
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Doe to sign 12 consent forms authorizing various foreign banks to “disclos[e] any bank

records” Doe had at the banks under specific account numbers [111, line 203]. The

Supreme Court found that the consent directive Doe was forced to sign had been

“carefully drafted not to make reference to a specific account, but only to speak in the

hypothetical” and thus “neither the form, nor its execution, communicates any factual

assertions, implicit or explicit, or conveys any information to the Government” [111,

line 215]. I agree with the court on its specific ruling: since the papers had been

written so as not to state any claims, the compelled action was not testimonial and

therefore not privileged against self-incrimination. However, I find the outcome of this

case distasteful for a different reason. It seems natural to me that the government

should not be able to claim to external entities that you consent to an action that

you do not, in fact, consent to. So although I agree that the statement was not

incriminating, I believe there ought to be a law prohibiting the government form

compelling you to sign a consent form against your will.

2.4.3 Circuit Court cases

In addition to Supreme Court foregone conclusion cases, there are also several im-

portant foregone conclusion cases in the circuit courts. Rather than check all ap-

proximately 1200 circuit court cases citing Fisher, we rely on prior law review arti-

cles [96,181,193,198,247,282,317,318] to identify the most relevant circuit court cases.

Five circuit court cases are mentioned or cited that involve the foregone conclusion

doctrine but do not involve encryption. For a brief summary of the encryption cases,

see §2.4.4.

U.S. v. Greenfield (2nd circuit) [305]. Greenfield , a 2016 case from the 2nd

Circuit Court of Appeals, is a good example of a case that came close to being a

foregone conclusion, but needed slightly stronger evidence to prevent the recipient



69

Greenfield from equivocating. Greenfield had been accused of tax evasion and, af-

ter some back-and-forth, had been compelled to produce three categories of bank

records for accounts already known to the government, some non-bank documents

including “ownership records”, “professional services documents”, and “communica-

tion documents”, plus his expired passport and other documentation for trips in his

passport [305, line 114]. The court found that, had the government requested the doc-

uments in 2001, production of the passport and travel documents would have been

a foregone conclusion, authenticating by using the Department of State or airlines.

However, while the government showed knowledge of the existence and control of the

other documents, it would have relied on Greenfield’s testimony to authenticate them

and therefore they were not compellable. However, in 2013, when the summons oc-

curred, even the passport and travel documents were no longer a foregone conclusion,

because the government could not show that Greenfield had retained control over

them through the 12-year gap. For our purposes, the 2001 analysis is more interest-

ing than the 2013 analysis, since the categories of documents compelled were very

similar, but came to different outcomes nonetheless.

Let br or, psd, cd and td be unknown strings, and exists Auth such that Authtd(x) =

1 if x = td. Let possess be a small set of indices. The evidence established the

information shown in Table 2.2.

We first examine what would have occurred in Greenfield if the production had

been compelled in 2001. The 2nd Circuit determined that compelling the travel

documents td was a foregone conclusion, since the existence, control, and authenticity

of the documents were established. We can see that a S that reads each location in

possess and checks its authenticity with Authtd(·) will always return the same td as is

returned by R.M’.

The existence of the communication documents cd was not proven, thus, R can
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Knowledge of government Formalization in E

In 2001, the travel documents... ∃k, td such that:

existed [305, line 123] (k, td) ∈ ∆

were in Greenfield’s possession [305, line 123] k ∈ possess (possess is a small set of indices)

were under Greenfield’s control [305, line 123] ∃M : R.M = td

could be authenticated [305, line 123] ∃Auth : AuthN(x) = 1 iff x = td

In 2001, the communication documents...

would be in Greenfield’s possession [305, line 123] (∃i : N [i] = cd)→ i ∈ possess

In 2001, the ownership records...

existed [305, line 122] (j, or) ∈ ∆

In 2001, the bank records...

existed [305, line 119] (i, br) ∈ ∆

were in Greenfield’s possession [305, line 119] i ∈ possess

were under Greenfield’s control [305, line 120] ∃M’ : R.M’ = br

Table 2.2: Evidence shown in Greenfield

choose not to place them in N at all, making the chance of their recovery by SN

exponentially small. Similarly, the ownership records existed somewhere in N , but

since no knowledge is known about their whereabouts or control, SN ’s chance of

recovering them is still exponentially small.

However, the bank records br could not be authenticated. Supposing the govern-

ment has some idea of what the documents should look like (i.e. their distribution,

which we assume is not overwhelmingly in favor of one outcome; else authentication

would be trivial), S has the power to search possess (a small subset of N) and return

the document there most likely to be the correct record. However, R has the ability to

forge an alternate br’ (e.g. by resampling) and also put that in possess in addition to

the true br’. In this case, C (calling R.M and returning the result, without interacting

with G) would return the true br consistently, but S would mistake the false br’ for

the real br a non-negligible amount of the time. This allows D which has the correct

br hardcoded into it to distinguish between the two possible distributions.

As an added note, the non-foregone decision for the bank records seems to rest

on the inability of the government to authenticate them, and in fact some other
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court cases seem to be more lenient in their standards for authentication. If such an

authentication mechanism were known, the bank records would have been a foregone

conclusion by the same rationale as the travel documents.

In re Grand Jury Proceedings (8th circuit) [172]. In this 8th circuit case, the

Bayirds were served with a subpoena for several categories of documents, primarily

business documents related to their income. The circuit court found that the sub-

poena was insufficiently well-defined – the Bayirds’ choice of which documents were

covered and which were not could be testimonial [172, line 381]. In short, R could

return different distributions of documents while still complying with the evidence.

As long as it returns a different distribution than S (which must work for all choices

of R), the results will be distinguishable and therefore not a foregone conclusion.

In re Grand Jury Subpoena (9th circuit) [173]. In this case, respondent John

Doe was an employee of a corporation accused of price fixing DRAM chips. Two

subpoenas were issued: the first to John Doe, compelling the production of all doc-

uments he had related to DRAM sales, including calendars, diaries, and notes; the

second to the corporation [173, line 911]. The government had reasonably extensive

knowledge of Doe’s actions through interviews and other documents. Nonetheless,

the subpoena served to Doe was overbroad and asked for categories of documents

that the government did not know existed until the results of the second subpoena

(to the corporation) was responded to. Furthermore, the government never provided

a means to authenticate the personal documents (e.g. diaries) without Doe’s testi-

mony. S would have no means of simulating these categories of documents, and as

such, the result is not foregone.
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U.S. v. Ponds (D.C. circuit) [307]. In Ponds , a defense attorney Ponds was

accused of tax evasion and fraud with regard to a previous case, and was asked to

produce documents in several categories. For our purposes, we will consider only

two of these categories: documents referencing a white Mercedes Benz (suspected by

the government to have been illegally held by Ponds) and copies of correspondence

between the Law Offices of Navron Ponds and courts and prosecutors having to do

with the prior case. For the first category, while the government suspected Ponds had

the car, the only information in E was that the car was “normally parked at Ponds’

apartment and was registered to his sister.” [307, line 325] For the second category,

since the government was party to the correspondence [307, line 325] and Ponds was

expected to have retained a copy, E may require the value in N representing the

documents to be the exact string that the government saw before, allowing S to

duplicate it exactly. Compelling the first category was not a foregone conclusion;

compelling the second category was.

In re grand jury subpoena (2nd circuit) [174]. In this 2nd circuit case, the

government subpoenaed John Doe to produce “[t]he original version of any diary or

calendar for the year 1988, a copy of which has been produced to the SEC” [174,

line 88], and this act of production was determined to be a foregone conclusion.

Ultimately, this case is fairly straightforward in our model; the evidence demands

that a copy of the documents be in Nature in a set of indices corresponding to the

SEC, and the simulator could produce the documents by obtaining them from there.

2.4.4 Compelled decryption cases

As stated at the beginning of this section, we do not fully analyze prior encryption

cases under our model. This is because, to our knowledge, only two encryption cases

concerning the foregone conclusion doctrine have risen to the level of the circuit
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courts, and they were decided quite differently. The 11th Circuit found in In re

Grand Jury Subpoena Duces Tecum [175] that compelled decryption of a hard drive

with unknown contents was not a foregone conclusion, since the government had

not shown that the drives contained any files. That is, they impose a requirement

that the government must know what they will find on the encrypted drive with

“reasonable particularity” [96, 173, 175, 307]. However, the 3rd Circuit has rejected

this requirement [302]. They found in U.S. v. Apple MacPro Comput. [302] that

decryption of a particular hard drive was a foregone conclusion, in part because they

had verbal testimony from the defendant’s sister as to the contents of the drives.

There are also many cases in lower courts involving encryption and passwords.

Most of these courts agree that compelling the disclosure of the password (instead

of compelling the defendant to enter the password into the device to unlock it) is

not permissible even under the foregone conclusion exception to the fifth amendment

[89, 264, 306]. Only one state supreme court found that disclosure of the password

itself is allowable, stating that passwords are “of minimal testimonial value” [273].

Several states found that compelling entry of passwords (rather than disclosure) is

allowed, but cite different reasons. In Massachusetts, the standard is either that the

government must show that the defendant knows the password [91] or that she knows

the password/key, knows that the device is encrypted, and has been shown to be the

owner of the device and its contents [90]. In North Carolina, a recent case allowed

compelling entry of the password, but the defendant had already admitted to using

the device to store illegal material [303], leaving the alternative undecided. The U.S.

district court for the northern district of California decided that since biometrics are

compellable, so too passwords must be compellable [298]. On the other hand, when

denying an application for a search warrant, the same court decided a year later that

since biometrics often serve the same purpose as passwords, perhaps both biometrics
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and passwords are not compellable [221]! Finally, Indiana’s state Supreme Court ruled

that even entry of the password is not compellable unless the government can show

that it knows the existence of specific files, and that they belong to the defendant [266].

We refer readers to [234] for additional details on several of these cases.

U.S. Supreme Court cases on compelled decryption Thus far, the federal

Supreme Court has had two potential compelled decryption cases come before it,

however it has rejected both. In both cases, although the reasons for denying the

petition are not given by the Court, we suspect that the reasoning seems to be largely

independent from the question at hand. The first case, Davis v. Pennsylvania [89],

did not represent a true circuit split for its specific question at the time of its petition;

as described by Orin Kerr [194], there is therefore no reason for the Supreme Court

to get involved.

There is a split now, with Andrews v. New Jersey [273]. Orin Kerr describes [196]

that Andrews was likely rejected by the Supreme Court due to the “final judgement”

rule – the final judgement for Andrews has not been decided by the state yet, so the

Supreme Court is likely unable to claim jurisdiction.

It is not yet clear which case the Supreme Court will take to resolve the compelled

decryption debate, but we still believe it is likely to happen in the next year or two.

2.5 Compellability of cryptographic systems

In this section, we analyze whether it is a foregone conclusion for the government to

compel the respondent to use some common cryptographic constructs: one way func-

tions, commitment schemes, encryption schemes, and non-interactive zero-knowledge

proofs. We show that compelling the use of these cryptographic primitives is typically

not a foregone conclusion under our definition, although there exist fact patterns for

which it is foregone.
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For consistency, throughout this section we presume that the respondent contains

a method R.s that, if called, deterministically reveals a secret within the respondent’s

mind like a password, encryption key, or value inside a commitment. This models the

common scenario where the government has evidence that R “knows a secret.” Note

that we generally place no restrictions on the behavior of R.s, i.e., the government

does not know anything about the nature of R’s secret itself aside from the fact that

R knows it.

2.5.1 One way functions

Let f : X → Y be a one-way function. In this section, we show that compelling a

preimage of y ∈ Y is typically not a foregone conclusion. Specifically, this compelled

action is only foregone if the government can demonstrate that R knows exactly

one preimage and the government knows an alternative method to produce the same

preimage.

Lemma 2.5.1.1. Let EN(R) := ∃R.s ∈ X ∧ f(R.s) = y ∧ E ′ be the evidence that

the method R.s exists, it produces an element in X that is a preimage to y, and

any additional evidence E ′ that the government knows. Then, the compelled action

CN,R := R.s is a foregone conclusion with respect to evidence E if and only if this

evidence suffices for the government to provide a simulator S that reliably produces

R.s.

Proof. This compelled action C is deterministic, so the government must simulate it

perfectly to evade detection by the distinguisher that has the real R.s hardcoded into

it.

Whether the government can build S depends on the additional evidence E ′ at

its disposal. If E ′ = ∅ and y ← Y is sampled uniformly, then simulation is impossible

by the one-wayness of f . However, there exists evidence that permits government

simulation, such as if E shows that the respondent wrote down R.s somewhere in

Nature.
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This question has immediate relevance to existing court cases – in the most famous

example, the 3rd Circuit ruled that a device owner can be compelled to decrypt

the contents if the Government can show its knowledge (via hash values) of files on

the device, and that the owner is capable of accessing them [302, line 248]. Our

definition would arrive at a similar conclusion but via different means. By Lemma

2.5.1.1, compelling the preimage of a hash is not a foregone conclusion on its own.

Nevertheless, in the facts of the case [302], digital forensic examiners were able to

identify encrypted files with specific hash values that were known to contain child

pornography. We believe the Government could have shown that it was able to

produce testimony or evidence that would describe the files (preimages) – the forensic

examiners could likely fill such a role. This would allow the creation of a simulator

that would make requesting the files (preimages) a foregone conclusion. While the

court in [302] forced the decryption of the entire device (actually multiple devices), we

believe that only the specific files with known preimages should have been compelled.

The remaining files could not have been returned without the use of the respondent’s

mind.

2.5.2 Commitment schemes

Compelling a randomized functionality introduces a new wrinkle beyond the cases

discussed in §2.4 and §2.5.1: now the simulator merely needs to be computationally

indistinguishable from the real transcript, rather than being identical.

Concretely, we consider below a randomized commitment scheme (Com,Decom)

that is computationally binding and hiding. The algorithm Com(s) = (c, r) produces

a commitment c that is sent to the (government) receiver and a random state r that

is maintained by the (respondent) committer, and Decom(c, r) = s uses both of these

values to recover the original secret s. we show below that it is a foregone conclusion

for the government to compel the respondent to commit (but not decommit!) to the
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secret in her mind.

Lemma 2.5.2.1. A compelled action CN,R
comm to sample a hiding commitment c ←

Com(R.s) is a foregone conclusion, as long as the government has evidence E that

the method R.s exists.

Proof. The government can provide the trivial simulator Scomm that chooses a random

value x and returns a commitment to it. We claim that this simulator can even

fool a distinguisher that has R.s hardcoded into it, because R cannot communicate

the randomness used within the real commitment since it is only chosen later within

Ccomm. If there exists a distinguisherD that can distinguish a commitment toR.s from

a commitment to a random x without knowing the randomness used (i.e., without

opening), then D breaks the hiding property of Com.

Similarly, it is also foregone to compel a commitment to a value s that is not within

R. This includes the settings in which C samples a secret s at random, hardcodes s,

or obtains s from a known location in nature.

On the other hand, compelling the opening of a commitment to a secret value is

not foregone unless the government already had the ability to compel the secret via

other means. This lemma leverages the power of our composition theorem.

Lemma 2.5.2.2. Let CN,R
decom be a machine that decommits to a value c provided by

the government GN . Also, let E := ∃R.s ∧ E ′ be any evidence that includes the fact

that R.s exists, and let S be any simulator.

Then, (CN,R
decom, G

N) is a foregone conclusion with respect to E and S if and only if

there exists a simulator S ′ such that compelling the secret R.s is a foregone conclusion

with respect to E and S ′ independently of the commitment scheme.

Proof. We apply the Theorem 2.3.5.1 with the machines Ccomm and Cdecom. Combin-

ing the theorem with Lemma 2.5.2.1, there exists some simulator S ′ such that the

composed machine C := Ccomm‖Cdecom is a foregone conclusion with respect to E and

S ′ if and only if Cdecom is foregone with respect to E and S. Note that C simply com-

mits to this value, provides the commitment to the government and then receives the

same commitment back, and opens the commitment in a binding manner. Hence, C

is equivalent to the machine C ′ that outputs the secret R.s, without any commitment

scheme involved. Therefore, Cdecom is foregone with respect to E and S if and only if

C ′ is foregone with respect to E and S ′, as desired.
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2.5.3 Zero knowledge proofs

Next, we consider an interactive proof protocol Π, where R’s secret equals a witness to

an NP language. It turns out that compelling a ZK proof is possible but uninteresting.

While most of the claims in this section require the government’s evidence to contain

the fact that R knows a secret with a particular structure, in this case that is already

equivalent to the knowledge gained from the ZK proof itself. Sadly, this evidence is

required, even for languages in P! The lemma below also applies to ZK arguments

and to proofs of knowledge since it is agnostic to the knowledge soundness property.

Lemma 2.5.3.1. Let (C, G) execute an interactive ZK proof where C acts as the

Prover with witness R.w, and G acts as the Verifier. Given any evidence E, there

exists a simulator S such that (C,G) is a foregone conclusion with respect to E and

S if and only if the government’s evidence suffices to show that R.s is a witness to

the NP statement.

Proof. If the evidence E allows R to equivocate between a valid and invalid witness

for R.s, then no simulator can consistently emulate both options. On the other hand,

if E guarantees that R.s is a witness, then the compelled action is simulatable by

the algorithm S that hardcodes the circuit G and runs an execution between the ZK

simulator SZK and verifier G, potentially rewinding G as usual. The only remain-

ing equivocation available to the respondent is her choice of R.s among satisfying

witnesses, but this change is inconsequential by witness indistinguishability.

Next, we consider non-interactive ZK proofs of knowledge using a common refer-

ence string (CRS) as the trusted setup, which is sampled honestly by the respondent

and checked by the evidence. In this scenario, the government is in a weaker posi-

tion than before: in order to compel a NIZK, the government must know a witness

themselves.

Lemma 2.5.3.2. Let C denote a non-interactive ZK proof of knowledge using the

witness R.s. It accesses a CRS stored in Nature, where the CRS is placed by R and

verified by E. If there exists E and S such that C is a foregone conclusion with respect

to E and S, then there exists an extractor X that returns a witness.
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Proof. Because the S has no control over the CRS, its proofs are real. If S produces

a proof with noticeable probability (over the random sampling of the CRS, among

other things), then the knowledge soundness property guarantees the existence of

an extractor X ′ that can extract a witness when executing S multiple times with on

different choices of CRS. While the foregone conclusion game in Def. 2.3.2.2 only runs

S once (without rewinding), we can construct the desired extractor X by running the

entire game many times, since R will honestly sample the CRS independently each

time.

2.5.4 Pseudorandom functions

Next, we examine the circumstances under which the government may compel the use

of a pseudorandom function family {Fk : X → Y}k∈K. This question turns crucially

on whether the key is sampled freshly and ephemerally as part of the compelled action,

or if the action requires the use of a long-running key that can be used elsewhere in

Nature.

Lemma 2.5.4.1. Let CN,R
prf be the circuit that samples a random key k ∈ K and

outputs Fk(R.s). This compelled action is a foregone conclusion with respect to any

evidence E that includes the fact that the method R.s exists.

Proof. Just as with Lemma 2.5.2.1, the government can provide the trivial simulator

S that chooses a random output y ∈ Y . Any algorithm D that can distinguish CR
prf

from S also serves to break the pseudorandomness of Fk.

Lemma 2.5.4.2. Let C̃N,R
prf be the circuit that computes Fk(x), where the key equals

the respondent’s secret k = R.s and the constant x ∈ X is publicly known. Given the

minimal evidence E := ∃R.s that R knows the key, there is no simulator S under

which C̃prf is foregone with respect to E and S.

Proof. This evidence permits R to equivocate between two secrets k and k′ that

produce different outputs Fk(x) 6= Fk′(x), and it must be possible to efficiently sample

such keys or else making a query to x would distinguish the PRF from a random

function. Any simulator S must fail to output at least one of these strings with

noticeable probability, and R can choose this one to evade simulation.



80

Lemma 2.5.4.3. Let C̃prf be defined as in the previous lemma. Suppose the govern-

ment knows the value of k as evidence EN(R) := (R.s = k). Now, there exists a

simulator such that C̃prf is a foregone conclusion.

Proof. Simulator SN computes Fk(m) from the known values. This perfectly emulates

the real transcript.

2.5.5 Symmetric encryption

In this section, we consider the compellability of symmetric (authenticated) encryp-

tion, which is of particular importance due to its ubiquitous use within full-disk

encryption systems. We show that if the respondent keeps the secret key (or a high-

entropy password used to derive it) only in her mind, and there are no side channels

in Nature capturing the intermediate state during encryption and decryption, then

both compelled encryption and decryption are not foregone conclusions.

We focus on the Counter Mode construction of symmetric encryption from a

pseudorandom function where KeyGen samples a PRF key, Enc(k,m) = (r, Fk(r)⊕m)

and Dec(k, (r, c)) = Fk(r) ⊕ c. We remark though that the following theorem would

also hold for many other modes of operation, including ones that provide authenticity.

Theorem 2.5.5.1. Suppose the respondent stores two secrets: a secret key k and a

message m; that is, R.s = (k,m). With respect to the evidence E := ∃R.s that R

knows the secrets,

• Compelled encryption of message m under an ephemeral key k∗ ← K is a fore-

gone conclusion using the simulator that outputs a random element of the ci-

phertext space.

• Compelled encryption of message m or decryption of a ciphertext c using the

respondent’s secret key k are not a foregone conclusion with any simulator.

Proof. For the first claim, S can simply sample a random string c′ in the ciphertext

space. Any algorithm D that can distinguish (r, Fk∗(r)⊕m) from (r, c) also serves to

break the pseudorandomness of Fk.
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For the second claim, we assume without loss of generality that the distinguisher

has m or c hardcoded, and thus the question reduces to simulating Fk(r). For most

alternative keys k′ it must be the case that Fk(r) 6= Fk′(r) by pseudorandomness,

and the evidence permits R to equivocate between secrets k and k′. Any simulator

S must fail to output at least one of these strings with noticeable probability, and R

can choose this one to evade simulation.

The above theorem leverages the strength of the respondent’s key management

within her own mind and the weakness of the government’s evidence in preventing R

from equivocating. If either of these two properties changes, then decryption might

be compellable. Essentially: if there exists any method for the government to decrypt

data without your help, then they can instead compel you to do so.

Theorem 2.5.5.2. If the government knows evidence E and a PPT algorithm K

such that s ← KN recovers R’s secret key s, then there is a simulator S such that

compelled decryption of a known ciphertext c is a foregone conclusion under E and

S.

Proof. Construct the simulator SN that runs KN , fetches the ciphertext from the

known location, and uses the key to decrypt the ciphertext. This simulator is efficient

and it perfectly emulates the real transcript.

This theorem applies broadly to several categories of encryption schemes: enter-

prise or cloud backup systems that use an external key (e.g., one stored in a Hardware

Security Module), threshold encryption with a threshold smaller than the full number

of parties since the Fifth Amendment only protects against self -incrimination, and

exceptional access systems that permit law enforcement access to encrypted devices

via a key known to the vendor [62, 278], one or more courts [77, 204], law enforce-

ment [62], or the device itself [258]. In all such cases, the existence of an alternative

key bypasses the testimonial aspects of the respondent’s assistance.

In the next section, we show specific constructions of secure multi-party systems

that remain resilient to compelled actions; these can be used to build threshold and

backup systems with stronger Fifth Amendment protections.
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2.6 Resilience against compelled requests

So far, we have only considered how past actions impact whether or not a current

compelled request is foregone. In this section, we ask whether a current protocol

execution may open parties up to future compelled requests. If running a protocol

does not open a party up to additional compelled requests, we call it FC-resilient. In

this section, we formally define FC-resilience, design and implement a 2-party secure

computation protocol that is both malicious secure and FC-resilient for one party,

and leverage differential privacy to design a multi-party computation protocol that is

FC-resilient for many parties.

2.6.1 Defining FC-resilience

In this section, we ask whether running protocols that are unrelated to any current

legal issues will open the parties up to future compelled requests that would not have

been possible before running the protocol. To see why this is an issue, consider the

following scenario: Alice participates in a multi-party computation with several other

parties, including Bob, in which she and Bob receive the same output. Later, Alice is

the target of a compelled request in which the government seeks the result of the com-

putation. Since the government could access the information without involving Alice

(by compelling testimony from Bob instead), the output of the protocol is a foregone

conclusion and Alice must provide it. Depending on the function computed, this may

reveal information about Alice’s secret inputs that was not previously compellable

because it had only been stored in Alice’s mind.

We provide a proactive cryptographic countermeasure against the above scenario,

which we dub FC-resilience. Informally, we say that a protocol is FC-resilient if all

compelled actions that are foregone after running the protocol were already foregone

before running the protocol.
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Model. Concretely, we consider an interactive protocol Π between n + 1 parties

P∗, P1, . . . , Pn that is secure for computing function f with the n + 1 parties’ inputs

up to abort and with erasures. If P∗ has just as much ability to equivocate on any

compelled action before running the protocol as after, then we say that Π is FC-

resilient for P∗.

We use the nomenclature that the government’s evidence E checks a string X

if it verifies that X exists in Nature at a public canonical location, returning false

otherwise. (The evidence may still return false even if X does exist, unless some other

conditions are met as well.)

In our setting, we presume the government knows that the parties have executed

t timesteps of the protocol and that its evidence will check for this fact. Given a

protocol Π and a timestamp t, we say that Π’s modifications to nature in the F -

hybrid model with secure erasures, denoted MΠ,P∗

t , include the messages and local

state of all protocol parties after running t steps of Π, except for P∗’s tapes for its

communication with sub-module F . (Formal modeling of the Turing machines of the

parties was given in §2.3.2.)

We are now ready to define FC-resilience. Our definition requires that the execu-

tion of Π cannot subject P∗ to any new compelled actions, no matter what time the

government pauses Π to issue its request.

Definition 2.6.1.1 (FC-resilience for P∗). Let protocol Π be a protocol among parties

P∗, P1, . . . , Pn. Let E be an evidence machine. We say that Π is FC-resilient for party

P∗ if the following holds true:

Suppose (C,G) is a foregone conclusion in the F -hybrid model when addressing

party P∗ with respect to EΠ
t , S, for some t ≥ 0, where EΠ

t runs machine E and also

checks MΠ,P∗

t . Then there exist machines C0, G0, and S0 such that: (1) (C0, G0) is

a foregone conclusion with E and S0; and (2) The two compelled disclosures have

indistinguishable transcripts: ∀ R, ∀N , t(C0
N,R, G0

N) ≈c t(C
N,R, GN)

The idea is that although the government can now compel (C,G) after having



84

witnessed up to all of the transcript of Π, it could have compelled an action (C0, G0)

that yields an indistinguishable result, even without having seen the protocol tran-

script. Thus, the transcript of Π did not add any “new” possible information for

which P∗ can be compelled after running Π, but not before.

F separates P∗’s mind from local state. It would be convenient if we could keep

all of P∗’s state as part of the “contents of her mind” rather than Nature. However,

P∗ is not likely to be storing her state or performing computations in her head. More

likely, P∗ will be doing these on a local computer, and she can only hold a small

amount of state (e.g., a password) in her head.

To model this, we permit P∗ to access an ideal sub-module which encapsulates

both the small, long-term “state of the respondent’s mind” as well as the limited

operations that the respondent carefully performs only when she is not at risk of

being compelled. Qualitatively, it is preferable to minimize the number of times F is

invoked and the state that it stores.

The formal design of this sub-module is inspired by the treatment of tamper-

proof hardware tokens in UC [187]. However, it represents something very different

in this model: the occasions when the party is “currently using” the limited long-term

state of the mind. The model prevents this state from entering Nature during the

computation. However, any function of the output of this sub-module does become

part of Nature, and it is incumbent upon P∗ to choose a functionality F whose outputs

don’t trivially cause new compelled action to become foregone conclusions.

Different possibilities for the actual functionality of F are possible depending on

how assured P∗ is of a lack of sudden compelled requests. In this work, we consider

the functionality Fpbkdf that computes a PBKDF of the party’s password in a safe

space. This functionality is described in Fig 2·2. Fpbkdf samples a long-term password

from a distribution with sufficient min-entropy λ and then runs a password-based key
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derivation function on demand.

One might worry that using a password-derived key would subject our construction

to password brute-force attacks that would not occur with a non-password-derived

key K. Fortunately, as long as we store the PBKDF salt in the same manner that

K would have been stored (e.g., in a trusted enclave), then our password-derived key

resists brute-force attacks and retains the same cybersecurity protections as K.

Functionality Fpbkdf

Public parameters: λ, PBKDF f : {0, 1}∗ → {0, 1}λ
Setup: Upon receiving setup from P , do the following:

1. If there is already a stored pw, halt
2. Generate a random pw from a distribution with good min-entropy
3. Generate a random salt uniformly at random with good entropy
4. Store pw

5. Output salt to P

Refresh: Upon receiving refresh from P , do the following:

1. Generate a random salt uniformly at random with good entropy
2. Output salt to P

Query: Upon receiving (query, salt,m) from P :

1. Check whether there is a stored pw. If there is not, halt
2. Output f(pw, salt,m) to P

Figure 2·2: Ideal functionality for Fpbkdf, a possible version of F , which assumes
P will not be compelled while computing a PBKDF of her password

Government may compel at any time. Just as our foregone conclusion defini-

tion gave the government the strong power to view anything in the rest of the world,

our FC-resilience definition allows the government full freedom to determine when

to make its compelled request. An FC-resilient protocol must maintain protection

against compelled requests made against P∗ whether the protocol has completed or

has been interrupted partway through (e.g., with intermediate state that has not yet

been deleted). We presume that compelled requests only occur at one instant of the

protocol execution; because the government is non-censoring, we presume that parties

can alert each other to abort the protocol if they have been compelled to disclose in-
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formation. Due to our composition theorem, it suffices to consider a single compelled

request made by the government to P∗. Finally, we presume that the government is

aware of the protocol execution.

2.6.2 FC-resilient two-party computation

In this section, we design and implement secure 2-party computation protocols based

on Yao’s garbled circuits [325] that are FC-resilient for one party in the Fpbkdf-hybrid

setting.

This is a non-trivial objective: While executing most MPC protocols, the parties’

inputs and intermediate state are typically all foregone conclusions for the simple

reason that all the (large) state is distributed throughout Nature rather than being

stored within anyone’s mind. This compelling adversary violates the non-collusion

assumption required for secure MPC (even if the original protocol was malicious

secure, or handled adaptive or mobile adversaries).

Using fully homomorphic encryption (FHE) can protect against compelled disclo-

sure because compelled decryption is not a foregone conclusion (§2.5.5). For faster

performance, we construct and implement a new secure computation protocol that is

resilient to government compelled disclosure without the need for FHE. Our protocol

involves careful modifications to Yao’s garbled circuits at the input and output stages.

It assumes secure deletion and a reliable communication channel whereby the parties

can halt the secure computation if any or all of them are compelled to provide their

state.

Construction of FC-resilient 2PC

We consider Yao’s garbled circuits where the garbler additionally has access to the

ideal module Fpbkdf. For now assume that only the garbler receives output from the

2PC; we will relax this assumption later. Our method maintains malicious security
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against the evaluator, and it is compatible with two methods for ensuring malicious

security against the garbler: cut-and-choose [213, §3.3] and authenticated garbling

[313].

The main idea is that the garbler will “self-garble” tables for her input and output

wires, so that even she does not know how to interpret her input or output without

re-entering her password. The garbler inputs her password into the Fpbkdf module

during three phases of the protocol. First, during pre-computation when preparing the

garbled circuits, the garbler generates labels for the input wires uniformly at random

(as normal) and augments these labels with a pseudorandom tag that is based on the

PBKDF. For the outputs to the circuit, garbler appends no-op gates to the circuit

where the output wire labels are again chosen pseudorandomly using the PBKDF.

She then securely deletes the mapping of wire labels for her input and output bits,

so that it can only be reconstructed with her own password. Second, upon receiving

her own input, the garbler uses the PBKDF again and matches the resulting values

with the pre-computed tags; this informs the garbler which wire labels to send to

the evaluator while safeguarding the input itself. Third, at the end of the protocol,

the garbler uses her PBKDF to find the outputs by using the output tables of the

no-op gates. The concrete self-garbled tables for authenticated garbling are shown in

Table 2.3.

Figure 2·3 depicts the full protocol Π, including a detailed description of all

changes to garbled circuits compatible with the cut-and-choose approach. In to-

tal, our construction imposes an additive overhead to Yao’s garbled circuits equal

to a constant number of PBKDF calls per input and output wire. We emphasize

that neither the password sub-module nor the garbler’s password are required during

circuit evaluation; they are only used at the beginning and end to provide input and

read output.

Theorem 2.6.2.1 (simplified). Under the same cryptographic assumptions as
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Tag Self-garbled masked input (x̂w)

PBKDF (w, xw = 0)1···n−1 PBKDF (w, xw = 0)n ⊕ λw

PBKDF (w, xw = 1)1···n−1 PBKDF (w, xw = 1)n ⊕ (λw ⊕ 1)

(a) Self-garbled input tables for wire w (permutation not shown)

Info from E Self-garbled masked output (xw)

x̂w = 0, sw = 0 PBKDF (w, x̂w = 0, sw = 0)⊕ rw
x̂w = 0, sw = 1 PBKDF (w, x̂w = 0, sw = 1)⊕ (rw ⊕ 1)

x̂w = 1, sw = 0 PBKDF (w, x̂w = 1, sw = 0)⊕ (rw ⊕ 1)

x̂w = 1, sw = 1 PBKDF (w, x̂w = 1, sw = 1)⊕ rw

(b) Self-garbled output tables for wire w

Table 2.3: Self-garbled tables for the garbler in the authenticated-garbling-based
2PC protocol FC-resilient for the garbler. w is the wire index, x is the true wire
value, x̂ is the masked wire value, and λ = r ⊕ s is the mask on the wire. r was
held by the garbler during pre-processing but was securely deleted; s is held by the
evaluator.

malicious-secure Yao’s garbled circuits, protocol Π in Figure 2·3 is secure against

malicious adversaries and is FC-resilient for the garbler.

We prove this theorem by proving malicious security and FC-resilience individu-

ally, after proving some preliminary useful lemmas.

Definition 2.6.2.2 (Straightforwardly compellable). We say a value x is straightfor-

wardly compellable (or just compellable) under evidence E if there exists efficient C

that makes no calls to R, and exists G such that x ∈ t(C,G).

Lemma 2.6.2.3. Let X be a public distribution. Then x ∼ X is straightforwardly

compellable under any E.

If X is a distribution described at a public location in N , then x ∼ X is straight-

forwardly compellable under E that checks that X is described at the proper location

in N .

Proof. For the first statement, C can simply sample its own fresh x ∼ X. For the

second statement, C can query N to get X, then sample x ∼ X. (Oftentimes, X is

a point mass.)

Lemma 2.6.2.4. Let x be straightforwardly compellable under evidence E. Let C,G

be such that t(CN,R, GN) = x for all N and allowed R. Then there exist efficient C0,
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G0, and S, where C0 does not query R, such that (C0, G0) is a foregone conclusion

with respect to E and S.

Proof. Notice that the first three properties of a foregone conclusion are trivial to

achieve (aside from S efficiency, which we will come back to). There exist efficient C0

and G0 that output x by Lemma 2.6.2.3. The evidence is the same, so the existence

of an α-allowed R, and the non-censorship property of E, are unaltered.

S emulates the execution of C0 and G0 and outputs the result.

Thus, (C0, G0) is a foregone conclusion with respect to E and S.

Lemma 2.6.2.5. Let X be a distribution that is computationally indistinguishable

from a public distribution Y . Then there exists C,G, S such that t(CN,R, GN) contains

a fresh sample from distribution X and S returns a fresh sample from Y . Then (C,G)

is a foregone conclusion with respect to to S and any evidence E.

Proof. We know that sampling a fresh y ∼ Y is straightforwardly compellable under

any evidence E. Let (C,G) be a foregone conclusion with respect to E and a simulator

S, where S samples y ∼ Y and outputs the result.

Consider probabilistic poly-time distinguisherD attempting to distinguishX from

Y . Observe that if x ∼ X is not a foregone conclusion with respect to E and S, then

D can distinguish X from Y . Thus, compelling a fresh sample x from C,G is a

foregone conclusion with respect to E and S.

Now that we have proven these lemmas, we can go on to prove the theorem

itself. Our first goal is to ensure that this protocol retains malicious security against

(separately) corrupt G and V . Informally, we will show that if this protocol does not

have this property, then we can break either the PRF called by Fpbkdf, or the security

of the 2PC protocol described in [213].

Theorem 2.6.2.6. Let f : {0, 1}n × {0, 1}n → {0, 1}. Let Π be an instantiation of

our protocol (Figure 2·3) for f . Assume that the oblivious transfer protocol is secure,

that we have a perfectly-binding commitment scheme (used by the garbler) and a

perfectly-hiding commitment scheme (used by the evaluator for coin-tossing), and that

Fpbkdf generates a password with good min-entropy and contains a good pseudorandom

function. Then, Π securely computes f .
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Proof of Theorem 2.6.2.6. We prove this via a series of hybrids that show that an

execution of this protocol (using circuit C2) is indistinguishable from an execution of

the protocol of [213], which we know securely computes f under the same assumptions:

H0 The real protocol described above

H1 No permuted/masked tables – follow the protocol through step 6 (decommit-

ment for check-circuits), but then skip steps 7, 8, 9a, and 9b. Instead, keep the

original garbled tables and go straight to step 9c.

H2 Same as H1, but instead of sampling the outputs of the no-op gate wc,i,b from

Fpbkdf, G instead chooses them as normal wire labels (random values).

H3 The ideal functionality for a 2PC computing f(x, y).

It is easy to see that H0 ≡ H1: Observe that the messages sent in each protocol

are exactly the same; the only changes are to G’s local state. G clearly cannot learn

anything new about V ’s input in H0 that it couldn’t learn in H1, since all the extra

computation happens on information G already had. Since the distributions of H0

and H1 are equal for all x and y, no distinguisher can tell which game we are playing.

We next show that H1 ≈c H2. Let A be an adversary attempting to distinguish

Fpbkdf from random. Suppose it has access to A′ which can distinguish H1 from H2.

A first calls Fpbkdf(setup, 2λ). It then runs an entire execution of the protocol in

Figure 2·3 and inputs the transcript into A′. When it computes the wire labels for

the output wire, it sets wc,out,b = Fpbkdf(query, salt, (c, i, b)) for c ∈ [s], i ∈ [n], and

b ∈ {0, 1}. When A′ outputs its guess as to which hybrid it is in, A guesses that it is

interacting with a random function if A′ guessed H2, and a pseudorandom function if

it guessed H1. It is not hard to see that A will have the same advantage as A′. Thus,

the security of Fpbkdf ensures that H1 is indistinguishable from H2.

Finally, to show that H2 ≈c H3, we rely on the original security proof of [213].

Observe that H2 is the protocol of [213]. We can use C2 as the auxiliary input circuit

(called C0 in that paper) to that protocol, since it computes f(x, y), The proof of

security follows directly, for both a malicious garbler and a malicious evaluator.

Finally, we wish to show that the protocol in Figure 2·3 is FC-resilient for the

garbler.
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Theorem 2.6.2.7. Assuming secure deletion for the garbler G, and assuming the

existence of a channel through which the parties can halt the computation if any of

them is compelled, then the protocol in Figure 2·3 is FC-resilient for G.

Proving this theorem will require keeping track of the changes the protocol makes

to Nature over time. Given an interactive protocol Π, we wish to specify formally

the state of nature N after t timesteps. This models a scenario where the protocol is

interrupted by a request to compel information in the middle of the protocol. (After

this interruption, we assume all parties abort and do not complete the protocol.)

Following the ITM model of Canetti [69], only one machine is deemed to be active

in a given timestep. The active machine can write to or read from a tape, or move

a head. This action could represent one step of local computation (writing/reading

a local work tape) or communication to another party (by writing on that machine’s

communication input tape).

At any point in time, we consider the configuration of an interactive Turing ma-

chine to comprise the contents of all tapes (including input and output tapes), the

current state, and the location of the head in each tape. We refer readers to [69, Def. 4]

for more details.

The protocol’s changes to nature consist of the entire state of Π at a given time

except for the contents of P∗’s sub-module F .

Definition 2.6.2.8 (Protocol modifications to Nature). Let Π be a protocol among

parties P∗, P1, . . . , Pn, where P∗ has a sub-module F . Given t ∈ N, let Π’s modifi-

cations to nature MΠ,P∗

t be the set of all messages sent to and from all parties up

through t total timesteps of computation (by all parties), the current configuration of

all parties except P∗ after t timesteps, and the current configuration of P∗ except its

input tape, its output tape, and its tapes communicating with sub-module F (and

the tapes of F itself).

Now we are ready to prove Theorem 2.6.2.7.
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Proof of Theorem 2.6.2.7. Let Π be an instantiation of the protocol in Figure 2·3, and
suppose it runs on inputs x and y for parties garbler G and evaluator V respectively.

Let C,G be a compelled request, let E be an evidence machine that checks the

auxiliary inputs of Π and V ’s input, and let S be a simulator. Suppose the compelled

request is made after t ∈ N timesteps of computation of Π, and let MΠ,G
t be the

additions to Nature by timestep t, as in Definition 2.6.2.8. Let Et check MΠ,G
t and

then run E. Say (C,G) is a (λ, α)-foregone conclusion with evidence Et and simulator

S.

We will prove the claim by showing that all elements ofMΠ,G
t are straightforwardly

compellable under E.

First, notice that the satisfiability and non-censoring properties are met: E checks

a subset of the locations in N compared to Et, so all α-allowed R from the post-

protocol foregone conclusion are still α-allowed under E. And, by construction, Et is

non-censoring if and only if E is.

The remaining goal is to show that all elements of MΠ,G
t are straightforwardly

compellable. This will complete the proof, by Lemma 2.6.2.4 and by our composition

theorem (Theorem 2.3.5.1).

We can lean on Lemma 2.6.2.3 to show this, and we can instead show that all

values in MΠ,G
t were generated from known distributions or could be generated from

Nature.

Essentially, this means we must “simulate” all values added to MΠ,G
t starting from

only the auxiliary inputs and the other parties’ inputs, and show that they could have

been simulated before running the protocol. This will prove the claim, since this is

the only additional information that the evidence E and simulator S can work with.

Consider two cases, depending on t.

Case 1: The compelled request occurs before step 9. In this case, it is Pareto-optimal

for the request to occur immediately before step 8. It is always better for the

government for information to be added to N , and until step 8, MΠ,G
t only

grows as t increases. Only during step 8 is G’s local state erased, so MΠ,G
t is

smaller for t in step 8 than it is for t immediately before step 8.

We proceed to demonstrate that we can simulate these values even before run-

ning the protocol. At t immediately before step 8, the information in MΠ,G
t

is:

• The auxiliary inputs for both parties and V ’s input. These exist before the
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protocol and were checked by E, and are compellable by Lemma 2.6.2.3.

• Preprocessing phase (steps 0, 1, 2a): All values generated by G during

these steps are ephemeral random values with known distributions and are

compellable by Lemma 2.6.2.3).

• Preprocessing phase (step 2b): The output wire labels are the output

of a PRF with an ephemeral “key” (actually salt). By Lemma 2.5.4.1,

compelling the wire labels is foregone.

• Evaluation Part 1 phase (steps 3-6): All new additions to MΠ,G
t in this

phase are either new ephemeral random values, or a function of straight-

forwardly compellable information.

• Preparation phase (step 7a): As discussed in §2.5, the results of the calling

the PRF in step 7a straightforwardly compellable.

• Preparation phase (steps 7b, 7c): Step 7b involves only fresh random sam-

ples, and step 7c is a function of existing values.

• All information held by V . This is all a function of V ’s input and the

messages sent to V (which already showed was compellable).

As mentioned, running step 8 will only limit the government’s ability to create

a foregone conclusion. Thus, for t before step 9 of Π, all values in MΠ,G
t are

straightforwardly compellable.

Case 2: The compelled request occurs during or after step 9.

If the compelled request occurs during or after step 9, then it is Pareto-optimal

for the request to occur at the end of the protocol, for the same reasoning as

in the previous case. We proceed to demonstrate how to simulate Part 2 of

the evaluation. In this phase, we must also deal with G’s input x, which is not

efficiently compellable (though it also is not directly part of MΠ,G
t ).

• Step 9: Now that the mappings of wire labels to values have been deleted,

G has in effect “garbled” her own state so that simply writing mc,i,xi
or

wc,i,xi
(or tc,i,xi

) does not reveal xi itself. These values cannot be compelled

by indexing xi (since the government does not know G’s secret xi), so

the best the government can do in the existing C,G is compel one of

these values indexed by an arbitrarily chosen bit b (unless E itself contains

xi). By Lemma 2.6.2.5, these values are compellable. Furthermore, all
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values computed in the decommitments are functions of values that were

straightforwardly compellable.

• Step 10, 11a: All this is done by V , and thus is in N either way.

• Step 11b: First, note that the wc,out,b value was already compellable. Sec-

ond, recall that the output tapes of Fpbkdf (and G’s final output tape) are

not included in MΠ,G
t . Thus, all the information in this step was already

compellable.

So, for t after step 8 of Π, all values in MΠ,G
t are compellable.

Thus, by Lemma 2.6.2.4 and the Sequential Composition Theorem (2.3.5.1), we know

that if (C,G) was a foregone conclusion with respect to Et and S and the request

occurred after step 8 of the protocol, we can create machines C0, G0, S0 such that

t(C0
N,R, GN) = t(CN,R, GN) for all N,R and (C0, G0) is a foregone conclusion with

respect to E and S0. This shows that the protocol Π in Figure 2·3 is FC-resilient for

the garbler and completes the proof.

Implementation of FC-resilient 2PC

We implemented an FC-resilient two-party computation based on the authenticated

garbling work of [313]. Our implementation was forked from emp-toolkit [314], and

our source code can be found at this GitHub repository.1

The main part of our implementation was about 250 additional lines of code. The

code contained two main changes: giving the output to the garbler rather than the

evaluator, and implementing the the self-garbled tables shown in Table 2.3. The

tables were created during function-dependent pre-processing, and accessed at the

beginning and end of the online phase. The PBKDF used was Argon2i [43].

We emphasize that the added runtime is linear in the input/output wires, but

is independent of the size of the circuit itself. To demonstrate this, we tested our

implementation by running repeated iterations of SHA-256 while XORing the result

with a “chaining” value as is done in computing PBKDF2 [289]. All experiments were

1https://github.com/sarahscheffler/password-ag2pc
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performed on a Dell XPS 9370 laptop with an Intel i7-8650U processor and 16GB of

RAM. The results are in Table 2.4; they show that the FC-resilience cost of running

thousands of executions of a PBKDF (two per input wire, four per output wire) is

costly for small circuits but quickly becomes negligible.

N Total time FC-resil. parts Unmod. parts

1 G 1551 (15.48) 1161 (14.01) 389.9 (7.760)

E 1406 (17.02) 1003 (15.37) 402.5 (7.270)

10 G 4758 (37.90) 1673 (15.74) 3084 (34.50)

E 4612 (42.04) 1417 (17.98) 3195 (33.63)

100 G 35320 (1229) 2279 (175.9) 33040 (1089)

E 35180 (1216) 1073 (134.1) 34106 (1127)

Table 2.4: Performance times (ms) for our test implementation of FC-resilient
authenticated garbling, computing N iterations of SHA-256. The average time over
10 runs is shown with the standard deviation in parentheses. Pre-processing and
online times are combined.

Constructing FC-resilient zero-knowledge proofs

ZKGC [182] is a zero knowledge proof of knowledge in which the verifier garbles a

circuit and the prover evaluates the circuit using its witness as input. It follows from

the Theorem 2.6.2.1 that ZKGC with self-garbled tables is FC-resilient for the verifier.

Corollary 2.6.2.9. The ZKGC protocol combined with our self-garbled table con-

struction is FC-resilient for the verifier.

What about FC-resilience for the prover? Suppose Alice engages in an interactive

zero-knowledge proof with Bob. Interactive zero-knowledge proofs are generally not

transferable, from a cryptographic point of view. However, from a legal viewpoint,

if the government wishes to investigate Alice, it can instruct Bob to disclose his

interaction with her. Since Bob is not part of Alice’s mind, he is part of Nature,

and we presume that his testimony is truthful and can be added to the evidence E.

Hence, the government can learn one bit about Alice based on testimony from Bob,



96

so we believe that zero knowledge proofs cannot be FC-resilient for the prover. This

makes it extremely challenging to create FC-resilient protocols where anyone other

than P∗ receives output it could not have already computed. We next describe one

method for achieving this outcome.

2.6.3 FC-resilient multi-party computation

Whereas the constructions in the last section only provided results to one party, in this

section we describe a technique that permits everyone to receive the output of a large

n-party secure computation, using ideas from differential privacy. This construction

uses the BMR multi-party garbled circuit protocol [26], and it only achieves semi-

honest security.

From an FC-resilience perspective, there are two challenges that occur when mul-

tiple parties receive output. First, we require a more complicated output opening

protocol that requires all n parties to use their passwords in order to read the final

result. In the semi-honest setting, the self-garbled no-op gates from the previous sec-

tion solve this problem: each party masks the output table with a PBKDF of their

password during garbling, and then each party in sequence can de-garble the final

output wire at the end of the protocol.

Second, any party must operate under the assumption that the result of the com-

putation can be compelled by the other participants, so she must ensure that the

result reveals very little about any party’s input. We propose to address this issue

by considering MPC applied to differentially private functions. This comes at the ex-

pense of requiring a looser distinguishing bound when defining foregone conclusions,

since differential privacy does not guarantee negligible statistical distance between

neighboring distributions.

More formally, we present the following lemma to show that differentially-private

functionalities are foregone if we assume this looser distinguishing bound. Recall that
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a function f is differentially private if for all “neighboring” inputs X1 and X2, for all

possible subsets of the image of f , S ⊆ im(f), we have Pr[f(X1) ∈ S] ≤ eǫ Pr[f(X2) ∈

S], where ǫ is a parameter. In the context of MPC, inputs X1 and X2 are neighboring

if they differ by the inclusion/exclusion of one party P∗’s input.

Lemma 2.6.3.1. Let f be a differentially-private mechanism, X be a dataset in

Nature, and X ′ = X ∪ {R.s}. Consider the compelled action C := f(X ′) with the

evidence E that checks for the existence of a secret input R.s. Then there exists a

simulator S such that C is foregone with respect to E and S.

Proof. Construct the simulator SN that queries Nature to recover X and then returns

y ← f(X). Differential privacy guarantees that the two distributions CN,R and SN

are eǫ-statistically close (over the coins of f), as desired.

From a scientific perspective, widening the distinguishing bound makes actions

easier to compel, which has a two-sided impact on FC-resilience: the evidence gath-

ered from voluntarily executing a cryptographic protocol might be used to compel

more functionalities, but these functionalities may also have been compellable before-

hand. The question then arises: what distinguishing bound is desired by the courts?

This appears to be an open question: although the burden of proof to show that an

action is a foregone conclusion is on the government, “how high that burden is remains

surprisingly unclear” [193] from existing case law. Possible evidentiary standards to

apply in foregone conclusion cases include the “reasonable suspicion” standard [281]

that almost certainly does allow for noticeable chance of error, and the “beyond a

reasonable doubt” standard that may not [311]. While we have taken the approach

in this work that a negligible error rate is desirable since it suffices “to protect the

innocent who otherwise might be ensnared by ambiguous circumstances” [270] and

it yields an appealing composition property, our definition is easily extensible to any

choice that courts decide as a policy decision.
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2.7 Conclusion

This work initiates a scientific study of disclosures compelled by the U.S. govern-

ment under the foregone conclusion doctrine. We provide a cryptographic security

definition that is grounded in the law but that can be used by security researchers

without the need to understand the law. We show that existing cryptosystems can be

vulnerable to this threat, yet it is possible to design countermeasures at reasonable

cost.

Beyond this paper’s scientific contributions, this work also has significant bearing

on a potential upcoming Supreme Court case. As we discuss in §2.4.1, state Supreme

Courts and lower federal courts are divided on the issue of compelled decryption under

the foregone conclusion doctrine. Legal scholars believe that the U.S. Supreme Court

will take one of these cases soon to resolve the issue [195]. For this case to come to

a sound conclusion, the courts must analyze the foregone conclusion doctrine from

many perspectives. We hope that the technical lens provided by this paper will shine

new light on the doctrine that was not provided by prior legal analysis. The Supreme

Court’s decision will impact compelled decryption for the foreseeable future; we can

only hope that the result is not already a foregone conclusion.



99

Input: G has input x ∈ {0, 1}n, V has input y ∈ {0, 1}n.
Auxiliary input and setup: G has access to Fpbkdf and has already run Fpbkdf(setup, 2λ).
Both parties have λ, s, and a description of circuit C1 such that C1(x, y) = f(x, y). The parties
have a reliable channel through which they can indicate that they were the target of a compelled
request.

Output: G receives f(x, y),V receives no output.

Throughout the protocol, if either party receives a compelled request, communicate this on the
reliable channel and halt.

Preprocessing:
0. G generates a fresh salt salt← Fpbkdf(refresh).
1. Circuit construction and modification: The parties append a single no-op gate to the

output of C1; call the resulting circuit C2. The parties then modify C2 as in [213].
2. Commitment Construction:

(a) Output Wire Label Generation: Let the output wire of C2 (the output of the no-
op gate) be indexed by out. For c ∈ [s] and for b ∈ {0, 1}, G creates wc,out,b =
Fpbkdf(query, salt, (c, out, b))1···λ. No table from this wire to the output is created.

(b) Remaining Circuit and Commitment Generation: G generates the rest of the wire
labels and garbled tables as normal. She also computes commitments to V ’s input
wires, and commitment-sets for her own input wires as normal (see [213]). Let
wc,i,b be the wire label for circuit c, input wire i, and wire value b. Let rc,i,b be
the commitment randomness used to commit to wc,i,b.

Evaluation Part 1 (V ’s input known):
3. Execute Oblivious Transfers as usual
4. Send Circuits and Commitments. (Note that V does not have the ability to map the

final gate output to 0 or 1, it only gets wc,out,b which it must send back to G.)
5. Prepare challenge strings
6. Decommitment phase for check-circuits. Let the remaining set of evaluation circuits be

C ⊂ [n].

Continued in Fig. 2·3b.
(a)

Figure 2·3: 2PC protocol Π that securely computes f : {0, 1}n × {0, 1}n → {0, 1}
among garbler G and evaluator V with malicious security for both parties, and with
FC-resilience for the garbler. (Continued in Fig. 2·3b)
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Continued from Fig. 2·3a.
Preparation for G input:

7. Generation of Permuted Tables
(a) Tag and mask sampling: For c ∈ C, i ∈ [n], b ∈ {0, 1}, G queries zc,i,b =
Fpbkdf(query, salt, (c, i, b)), and parses zc,i,b = (tc,i,b,mc,i,b) as a “tag” tc,i,b and
a “mask” mc,i,b, each of length λ.

(b) Permutation bit sampling: G picks pc,i ← {0, 1} uniformly at random for c ∈
C, i ∈ [n].

(c) Build permuted masked tables: For each circuit c ∈ C, for each input wire
i ∈ [n], mask the wire value and commitment randomness with mc,i,b, la-
bel it with tag tc,i,b and permute the rows for b = 0 and b = 1 depend-
ing on pc,i. That is, record rows (c, i, tc,i,pc,i

,mc,i,pc,i
⊕ (wc,i,pc,i

‖rc,i,pc,i
)) and

(c, i, tc,i,1−pc,i
,mc,i,1−pc,i

⊕ (wc,i,1−pc,i
‖rc,i,1−pc,i

)) ordered by pc,i.
8. Secure deletion: G securely deletes all information except the permuted table from step

7c and the salt.

Evaluation Part 2 (G’s input known):
9. Decommitment phase for G’s input in evaluation-circuits:

(a) Now that G has her input x = x1 · · ·xn, she recomputes (tc,i,xi
,mc,i,xi

) =
Fpbkdf(query, salt, (c, i, xi)) for c ∈ C, i ∈ [n].

(b) G finds the table row indexed by c, i, tc,i,xi
and uses mc,i,xi

to unmask wc,i,xi
and

rc,i,xi
.

(c) G decommits to wc,i,xi
and sends that to V (as usual).

10. 10. Correctness and consistency checks
11. 11. Circuit evaluation

(a) For circuits c ∈ C, V evaluates the circuit up until the final wire label, wc,out,b. It
sends this value back to G.

(b) G queries w′
c,out,b′ = Fpbkdf(query, salt, (c, out, b

′)) for circuits c ∈ C and b′ ∈ {0, 1}.
If neither of these match the value sent by V , G aborts and outputs ⊥. If w′

c,out,b′

matches one of the values sent by V for all c ∈ C, then G takes the b′ that appears
the most and outputs it.

(b)

Figure 2·3: 2PC protocol Π that securely computes f : {0, 1}n × {0, 1}n → {0, 1}
among garbler G and evaluator V with malicious security for both parties, and with
FC-resilience for the garbler. (Continued from Fig. 2·3a)
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Chapter 3

Fairly post-processing calibrated

non-binary classifiers to binary decisions

This chapter is based on joint work with Ran Canetti, Aloni Cohen, Nishanth Dikkala,

Govind Ramnarayan, and Adam Smith [70].

3.1 Introduction

In this chapter, we turn to the question of fair post-processing. We suppose that

individuals belong to one of two or more disjoint protected groups. Our overall task

is to decide whether a given individual has some hidden binary property B in a way

that ensures “fair balancing of errors” across the groups. To this end, we consider

the following two-stage mechanism. Stage 1 is a nonbinary (“soft”) classifier Ŝ which,

when run on input x, returns a nonbinary score s ∈ [0, 1], representing the classifier’s

guess at the chance that x has property B. To ensure this score s is “meaningful,”

we require that Ŝ be groupwise calibrated : within each group, for each s ∈ [0, 1], the

fraction of individuals in the group that get score s is s. This stage’s goal is to gather

information and provide the best accuracy possible, with minimal regard to fairness.

Stage 2 takes as input the output s = Ŝ(x) of the first stage, and x’s group. It then

outputs a binary (“hard”) decision: its best guess at whether x has property B. This

stage is aimed at distributing the errors of the first process “fairly.” The main thrust

of our work is to design the second stage.

Following [81,162] we consider the following four performance measures based on
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the confusion matrix of the resulting hard classifier. Positive predictive value (PPV)

is the fraction of individuals that have the property among all the individuals the

classifier predicted to have the property. Negative predictive value (NPV) is defined

analogously. The false positive rate (FPR) is the fraction of individuals predicted to

have the property among all individuals that actually do not have the property. False

negative rate (FNR) is defined analogously. Ideally, we would seek to equalize all four

of these measures between the groups: that is, the PPV (resp. NPV, FPR, FNR) for

group 1 is equal to the PPV (resp. NPV, FPR, FNR) for group 2. Unfortunately, this

is impossible in general [81, 200]. Our broad motivating question is thus:

Under what conditions can we post-process a calibrated soft classi-

fier’s outputs so that the resulting hard classifier equates a subset of

{PPV,NPV, FNR, FPR} across a set of protected groups? How can we

balance these conflicting goals?

Our first set of results involves post-processing via a simple threshold mechanism.

We will show in §3.3 that using a single threshold across all groups cannot in general

guarantee equality of either PPV or NPV across groups. Using different thresholds for

the different groups, either PPV or NPV can be equalized, but not both, assuming a

non-degeneracy property on the outputs of Ŝ.

Our second set of results (§3.5) allows the hard classifier to defer some of its

outputs, that is, to respond with ⊥ or “I don’t know.” The deferred inputs are

then sent to a different process; we describe the nuances of this choice in §3.7. With

deferrals, one can equalize both the PPV and NPV of the groups using thresholds,

conditioned on the output not being ⊥. Beyond thresholds, we describe several

strategies for equalizing all four quantities (PPV, NPV, FPR, FNR) across all groups.
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3.1.1 Related work

We briefly describe the works most closely related to ours, though both the list of

works and their summaries are inevitably too short. Our work fits in a research pro-

gram on group fairness notions following the work of Chouldechova [81] and Kleinberg

et al. [200]. Those works demonstrate the inherent infeasibility of simultaneously

equalizing a collection of measures of group accuracy. Our work considers the notions

of calibration as formalized in [248] and those of PPV, NPV, FPR, and FNR from [81]

and [200].

The power of post-processing calibrated scores into decisions using threshold clas-

sifiers in the context of fairness has been previously studied by Corbett-Davies, Pier-

son, Feller, Goel, and Huq [92]. As in our work, they show that it is feasible to equalize

certain statistical fairness notions across groups using (possibly different) thresholds.

They additionally show that these thresholds are in some sense optimal. Whereas [92]

focuses on statistical parity, conditional statistical parity, and false positive rate, our

most comparable results consider PPV. In our work, we further show that in some

cases thresholds fail to equalize both PPV and NPV (called predictive parity by [81]),

unless we also allow our post-processor to defer on some inputs. Our work also studies

methods of post-processing that are much more powerful than thresholding, especially

when allowing deferrals. On the technical side, [92] assumes that their soft classifiers

are supported on the continuous interval [0, 1], simplifying the analyses. We instead

study classifiers with finite support as it is closer to true practice in many settings

(e.g., COMPAS risk scores).

Using deferrals to promote fairness has been considered also in the work of Madras,

Pitassi, and Zemel [217]. Specifically they consider how deferring on some inputs

may promote a combination of accuracy and fairness, especially when taking explicit

account of the downstream decision maker. They make use of two-threshold deferring
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post-processors like those discussed in Section 5. While it helped inform our work,

[217] takes a more experimental approach and focuses on minimizing the “disparate

impact,” a measure of total difference in classification error between groups, while

maximizing accuracy. One important difference between our works is that Madras

et al. distinguish between “rejecting” and “deferring.” Rejecting is oblivious as to

properties of the downstream decision maker, while deferring tries to counteract the

biases of the decision maker. Our work considers only the former notion, but uses

the term “defer” instead of “reject.”

An earlier chapter in algorithmic fairness

The most modern incarnation of the field of algorithmic fairness is still in a nascent

rapidly-changing phase, where the methods are highly variable and it is not yet clear

which parts of the field will coalesce into long-lasting areas of study. However, the con-

cepts in the field are much older than they seem. Cole and Zieky provide an excellent

summary of fairness research in the 1960s and 70s applied to the problem of stan-

dardized testing in the civil rights movement [87], and Hutchinson et al. [171] provide

an in-depth analysis of how that research relates to modern algorithmic fairness as

applied to machine learning. Several definitions were proposed in the late 1960s and

early 70s, most prominently Cleary’s definition of fair prediction via underpredictions

for one group (highly related to groupwise calibration) [83], Kirkpatrick’s methods

for predicting job performance using biased measurement tools [199], Thorndike’s

notion of fair representation [286], and Darlington’s four fairness definitions for corre-

lations which roughly correspond to calibration, proportionality, equalized odds, and

demographic parity [102]. In the midst of all these proposed definitions to resolve

inequities in standardized testing, some researchers began to notice that these defini-

tions are inherently incompatible with each other unless the underlying dataset has

some specific convenient properties [245].
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These incompatibilities were re-discovered in the setting of machine learning in

Kleinberg, Mullainathan, and Raghavan’s influential work Inherent trade-offs in the

fair determination of risk scores [200], and independently by Chouldechova in Fair

prediction with disparate impact [81]. Essentially, these two works show two variants

of the same theme: the four main error metrics we would wish to equalize between

groups, positive predictive value (PPV), negative predictive value (NPV), false positive

rate (FPR), and false negative rate (FNR), cannot all be simultaneously equalized

between groups simultaneously. The only exception to this rule is when the groups

have equal base rates between the two groups, or the classifier makes no errors. As we

described in §1.2.2, this impossibility result greatly limits the possible mathematical

approaches to achieving fairness.

3.1.2 Organization

We list several useful definitions and preliminaries in §3.2. §3.3 contains our main

analysis of post-processing groupwise-calibrated soft classifiers with thresholds; some

additional extensions of this analysis are presented in §3.4. In §3.5, we present our

results on post-processing groupwise-calibrated soft classifiers with deferrals, with

several different mechanisms. In §3.6 we provide some experimental data using our

methods, and in §3.7 we discuss various deferral models.

3.2 Preliminaries

We study the problem of binary classification. An instance is an element, usually

denoted x, of a universe X . We restrict our attention to instances sampled uniformly

at random from the universe, denoted X ∼ X . Our theory extends directly to any

other distribution on X ; that distribution does not need to be known to the classifiers.

Each instance x is associated with a true type Y (x) ∈ {0, 1}. Each instance x is also

associated with a group G(x) ∈ G, where G is the set of groups. We restrict our
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attention to sets G that form a partition of the universe X . We denote by Xg the set of

instances x in group g, and by Xg the random variable distributed uniformly over Xg.

Note that for any events E1 and E2, PrX∼Xg
[E1 | E2] = PrX∼X [E1 | E2, G(X) = g].

Definition 3.2.0.1 (Base rate (BR)). The base rate of a group g ∈ G, is

BRg = Pr[Y (Xg) = 1] = E[Y (Xg)]. (3.1)

When X is finite, BRg is simply the fraction of individuals x in the group g for whom

Y (x) = 1.

A classifier is a randomized function with domain X×G.1A hard classifier, denoted

Ŷ , outputs a prediction in {0, 1}, interpreted as a guess of the true type Y (x). A soft

classifier, denoted Ŝ, outputs a score s ∈ [0, 1], interpreted as a measure of confidence

that Y (x) = 1. We restrict our attention to soft classifiers with finite image. We call

a classifier group blind if its output is independent of the input group g. For all

groups g ∈ G, we call a hard classifier Ŷ non-trivial on g if Pr[Ŷ (Xg) = 1] > 0 and

Pr[Ŷ (Xg) = 0] > 0. Hard classifiers are trivial on g if they are not non-trivial on g.

A post-processor is a randomized function with domain [0, 1]×G. As with classi-

fiers, a post-processor can be hard or soft. A hard post-processor, denoted D̂, outputs

a prediction in {0, 1}. A soft post-processor, denoted D̂soft, outputs a score s ∈ [0, 1].

Observe that for a soft classifier Ŝ, D̂ ◦ Ŝ is a hard classifier, and D̂soft ◦ Ŝ is a soft

classifier. As with classifiers, we call a post-processor group blind if its output is

independent of the group g, and we restrict our attention to post-processors with fi-

nite image. The restriction to finite image is for mathematical convenience (and also

because digital memory leads to discrete universes); our results generalize to infinite

images as well.

In Section 3.5, we expand the definitions of both classifier and post-processors to

allow an additional input or output: the special symbol ⊥.

As the focus of this paper is on the post processing of classifiers, we set aside
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The probability above is taken over the sampling of X, as well as random choices

made by Ŝ at classification time.

Definition 3.2.1.2 (Groupwise Calibration (Soft)). We say that a soft classifier Ŝ

is groupwise calibrated if it is calibrated within all groups. That is, ∀g ∈ G and

∀s ∈ [0, 1] for which Pr[Ŝ(Xg) = s] > 0, we have that

Pr[Y (Xg) = 1 | Ŝ(Xg) = s] = s.

Groupwise calibration is essentially the same notion as multicalibration [164] with

the difference that in their case the true types are values in [0, 1]. We use a different

term to emphasize that we restrict our attention to collections of groups G that form

a partition of the universe X .

The two definitions above are stated for soft classifiers whose output distribution

is discrete, since we must be able to condition on the event Ŝ(X) = s or Ŝ(Xg) = s.

That said, it extends naturally to classifiers with continuously-distributed outputs

provided that the conditional probabilities are well defined.

3.2.2 Accuracy Profiles (APs)

Throughout this work, we make repeated reference to the probability mass function

of the random variable Ŝ(Xg) for a calibrated soft classifier Ŝ acting on a randomly

distributed input Xg. We call this distribution on calibrated scores an accuracy profile

(AP).

Definition 3.2.2.1 (Accuracy Profile (AP)). The accuracy profile (AP) of a cali-

brated soft classifier Ŝ for a group g, denoted by P̂g, is the PMF of Ŝ(Xg). That is,

for s ∈ [0, 1], P̂g(s) = Pr[Ŝ(Xg) = s].

Abusing notation, we denote by P̂ the collection {P̂g}g∈G, and call it the AP of

Ŝ. We denote by Supp(P̂g) the support of the AP P̂g, namely the set Supp(P̂) = {s :

∃x ∈ Xg, ∃r s.t. Ŝ(x, r) = s} ⊆ [0, 1].
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An accuracy profile is a distribution of scores for a calibrated classifier Ŝ. Because

Ŝ is calibrated, the AP conveys information about the performance of Ŝ, and is

constrained by properties of the underlying distribution on X. For example, the

AP’s expectation is exactly the base rate for the population:

Proposition 3.2.2.2. For any groupwise calibrated soft classifier Ŝ, for all groups

g ∈ G: BRg = E[Ŝ(Xg)].

Proof of Proposition 3.2.2.2.

BRg = Pr[Y (Xg) = 1]

=
∑

s∈Supp(P̂g)

Pr[Y (Xg) = 1 | Ŝ(Xg) = s] Pr[Ŝ(Xg) = s]

=
∑

s∈Supp(P̂g)

sPr[Ŝ(Xg) = s]

= E[Ŝ(Xg)]

where the third line follows from the definition of a calibrated classifier (Defini-

tion 3.2.1.2).

Accuracy profiles also provide useful geometric intuition for reasoning about the

effects of post-processing calibrated scores. We elaborate on this in Section 3.3.1 (see

Figure 3·2).

3.2.3 Group fairness measures

Several well-studied measures of statistical “fairness” (e.g., [81,162,164,189,200,248])

look at how the following key performance measures of a classifier differ across groups.

The false positive rate (FPR) of a hard classifier Ŷ for a group g is the rate at which

Ŷ gives a positive classification among instances x ∈ Xg with true type 0. The false

negative rate (FNR) is defined analogously for predicted negative instances with true

type 1. Positive predictive value (PPV) and negative predictive value (NPV) track the

rate of mistakes within instances that share a predicted type. Informally, positive
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predictive value captures how much meaning can be given to a predicted 1, and

negative predictive value is similar for predicted 0. We now define these statistics

formally.

Definition 3.2.3.1. Given a hard classifier Ŷ and a group g, we define

the false positive rate of Ŷ for g: FPRŶ ,g = Pr[Ŷ (Xg) = 1 | Y (Xg) = 0];

the false negative rate of Ŷ for g: FNRŶ ,g = Pr[Ŷ (Xg) = 0 | Y (Xg) = 1];

the positive predictive value of Ŷ for g: PPVŶ ,g = Pr[Y (Xg) = 1 | Ŷ (Xg) = 1];

the negative predictive value of Ŷ for g: NPVŶ ,g = Pr[Y (Xg) = 0 | Ŷ (Xg) = 0].

The probability statements in the definitions above reflect two sources of random-

ness: the sampling of Xg from the group g and any random choices made by the

classifier Ŷ .

Among previous works, some [162,200] focus on equalizing only one or both of the

false positive rates and false negative rates across groups, called balance for the neg-

ative and positive classes, respectively. Equalizing positive and negative predictive

value across groups is often combined into one condition called predictive parity [81].

We split the value out to be a separate condition for the positive and negative predic-

tive classes. Predictive parity appears to be a hard-classifier analogue of calibration:

both can be interpreted as saying that the output of the classifier (hard or soft) con-

tains all the information contained in group membership. Our results highlight that

the relationship between these notions is more subtle than it first appears; see Section

3.3 for further discussion.

3.3 The limits of post-processing

Suppose throughout this section that Ŝ is a groupwise calibrated soft classifier. Our

goal in this section is to make binary predictions based on Ŝ(x) — and possibly the

group G(x) — subject to equalizing PPV and/or NPV among groups. That is, we wish

to make a prediction using a hard post-processor D̂ such that Ŷ = D̂◦Ŝ equalizes PPV
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and/or NPV among groups. We chose to concentrate first on (the difficulties with)

equalizing PPV and NPV rather than FPR and FNR due to the conceptual similarity

of PPV and NPV to calibration. Also, the case of equalizing false positive rates with

thresholds is addressed in [92].

3.3.1 Fairness conditions for post-processors

We begin by making a simple observation about post-processing that provides some

geometric intuition for the rest of this section. Just as in Proposition 3.2.2.2, we can

express PPVŶ ,g and NPVŶ ,g succinctly in terms of conditional expectations over the

AP P̂g.

Proposition 3.3.1.1. Let Ŷ = D̂ ◦ Ŝ be a hard classifier that is non-trivial for all

g ∈ G where Ŝ is groupwise calibrated with respect to G. For any g ∈ G we have:

PPVŶ ,g = E[Ŝ(Xg) | Ŷ (Xg) = 1]

NPVŶ ,g = 1− E[Ŝ(Xg) | Ŷ (Xg) = 0]

Proof of Proposition 3.3.1.1. We first observe that the output of a post-processor is

conditionally independent of the true type, conditioned on the output of the soft

classifier it is post-processing and the group membership:

Fact 3.3.1.2. Consider any randomized function D̂ : [0, 1]× G → {0, 1}. Since D̂ is

a randomized function with inputs s ∈ [0, 1] and g ∈ G, we have that

(D̂(Ŝ(X), G(X)) ⊥ Y (X)) | (Ŝ(X), G(X)) (3.2)

or in other words that D̂(Ŝ(X), G(X)) is conditionally independent of the true type

Y (X), since fixing the inputs to D̂ makes its output purely a function of its random

string.

Now recall that PPVŶ ,g and NPVŶ ,g are well-defined for all groups because Ŷ is
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non-trivial on all groups. We then have

PPVŶ ,g = Pr[Y (Xg) = 1 | Ŷ (Xg) = 1]

=
∑

s∈Supp(P̂g)

Pr[Y (Xg) = 1, Ŝ(Xg) = s | D̂(Ŝ(Xg), g) = 1]

=
∑

s∈Supp(P̂g)

Pr[Y (Xg) = 1 | Ŝ(Xg) = s, D̂(Ŝ(Xg), g)]

· Pr[Ŝ(Xg) = s|D̂(Ŝ(Xg), g) = 1]

=
∑

s∈Supp(P̂g)

sPr[Ŝ(Xg) = s|D̂(Ŝ(Xg), g) = 1]

= E[Ŝ(Xg) | Ŷ (Xg) = 1]

where the fourth line follows from the fact that the group g is fixed within Xg, which

lets us apply Fact 3.3.1.2, and the fact that Ŝ is calibrated on g. Similar simplifications

give us that

NPVŶ ,g = Pr[Y (Xg) = 0 | D̂(Ŝ(Xg), g) = 0]

= 1− Pr[Y (Xg) = 1 | D̂(Ŝ(Xg), g) = 0]

= 1− E[Ŝ(Xg) | D̂(Ŝ(Xg), g) = 0]

Using Proposition 3.3.1.1, we can geometrically see how certain post-processing

decision rules will interact with the AP for a group g. For example, using a threshold,

the expected true positives, true negatives, false positives, and false negatives can be

estimated, as shown in Figure 3·2.

Proposition 3.3.1.3 below gives a characterizations of the false positive and false

negative rates in a manner analogous to how Proposition 3.3.1.1 describes PPV and

NPV:

Proposition 3.3.1.3. Let Ŷ and Ŝ be hard and soft classifiers as in Proposition
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Figure 3·2: Accuracy Profiles (APs, definition 3.2.2.1) yield useful geometric intu-
itions, which come from the calibration property (definition 3.2.1.1). With a thresh-
old, the expected PPV, NPV, FPR, and FNR can be seen visually.

3.3.1.1. Then for any g ∈ G,

FPRŶ ,g = Pr[Ŷ (Xg) = 1] · 1− E[Ŝ(Xg) | Ŷ (Xg) = 1]

1− E[Ŝ(Xg)]

FNRŶ ,g = Pr[Ŷ (Xg) = 0] · E[Ŝ(Xg) | Ŷ (Xg) = 0]

E[Ŝ(Xg)]

Assume that Pr[Y (Xg) = 1] > 0 and Pr[Y (Xg) = 0] > 0 (that is, assume 0 < BRg <

1) so that FPR and FNR are well-defined.

Proof of Proposition 3.3.1.3. We give the proof for FPR, and the proof for FNR is

similar. By applying Bayes’ rule, we can write

FPRŶ ,g = Pr[Ŷ (Xg) = 1 | Y (Xg) = 0]

= Pr[Y (Xg) = 0 | Ŷ (Xg) = 1] · Pr[Ŷ (Xg) = 1]

Pr[Y (Xg) = 0]
(3.3)

Noting that Pr[Y (Xg) = 0 | Ŷ (Xg) = 1] = 1 − PPVŶ ,g, we can apply Proposition

3.3.1.1 and rearrange to write the RHS of Equation 3.3 as follows.

RHS of (3.3) = Pr[Ŷ (Xg) = 1] · 1− E[Ŝ(Xg) | Ŷ (Xg) = 1]

Pr[Y (Xg) = 0]
(3.4)

We note that Pr[Y (Xg) = 0] = 1− E[Ŝ(Xg)] (Proposition 3.2.2.2). Substituting this
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in to the RHS of Equation 3.4, we conclude the result.

3.3.2 General impossibility of equalizing Positive and Negative Predictive

Value

It is not always possible to directly post-process a soft groupwise calibrated classi-

fier into a hard one with equalized PPV (or NPV) for all groups, as we demonstrate

by counterexample in Proposition 3.3.2.1. Before proceeding, we note that our coun-

terexample is somewhat contrived—in particular, the AP induced by the soft classifier

Ŝ in the proof of Proposition 3.3.2.1 takes only one value on each group. When the

AP of Ŝ is more nicely structured on each group (which we will make explicit in

Definition 3.3.3.1), we will see that there are general methods to equalize PPV (or

NPV).

Proposition 3.3.2.1. Fix two disjoint groups g1 and g2 with respective base rates BR1

and BR2 such that BR1 6= BR2. Then there exists a soft classifier Ŝ that is groupwise

calibrated, but for which there is no post-processor D̂ : [0, 1] × G → {0, 1} such that

D̂ ◦ Ŝ equalizes PPV, unless Pr[D̂(BRi, gi) = 1] = 0 for i = 1 or 2.

Proof of Proposition 3.3.2.1. Consider the classifier Ŝ such that Ŝ(x) = BR1 if x ∈ g1

and Ŝ(x) = BR2 if x ∈ g2. This classifier is trivially groupwise calibrated. Since

Pr[D̂(BRi, gi) = 1] > 0 for i = 1 and 2, we conclude that PPVŶ ,gi
is well-defined for g1

and g2. The proof now follows from the characterization of PPV in Proposition 3.3.1.1.

This is because PPVŶ ,gi
is equal to the expectation of Ŝ(X) where X is drawn from

a distribution with support contained in gi, and hence it is equal to BRi, and BR1 6=
BR2.

The analogous statement regarding impossibility of equalizing NPV is formulated

as Proposition 3.4.1.1 in §3.4.1.

3.3.3 A niceness condition for APs

We now give a non-degeneracy condition on APs motivated by the impossibility result

for post-processing given by Proposition 3.3.2.1.
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Definition 3.3.3.1 (Niceness of APs). Let G be a set of groups. A distribution on

calibrated scores P̂ is nice if Supp(P̂g) is the same for all g ∈ G.

Note that this condition rules out the counterexample given by Proposition 3.3.2.1,

since the APs in the counterexample had different (in fact, disjoint) supports for

different groups. Hence, we can hope to successfully post-process soft classifiers with

nice APs.

3.3.4 Equalizing Positive and Negative Predictive Value by thresholding

We pay special attention to thresholds because they are simple to understand and

therefore very widely used. We use one slight modification to deterministic thresholds

that adds an element of randomness: if a score is at the threshold, we randomly

determine which side of the threshold it falls on, according to a distribution defined

below.

Definition 3.3.4.1 (Threshold Post-Processor). A threshold post-processor D̂(τ,ρ) :

[0, 1]×G → {1, 0} is a function from a score s ∈ [0, 1] and a group g ∈ G, parameterized

by τ and ρ. The threshold parameter τ : G → [0, 1] specifies the threshold for the

group g, and ρ : G → [0, 1] is the probability of returning 1 when the input score s is

on the threshold τ(g). It returns the following outputs:

D̂(τ,ρ)(s, g) =



















1 s > τ(g)

0 s < τ(g)

1 w.p. ρ(g) else 0 s = τ(g)

In the setting of an infinite number of scores and a continuous domain (i.e. scores

are represented by a probability density function instead of a probability mass func-

tion), we can use purely deterministic threshold functions in which ρ ≡ 1, and achieve

very similar results for the rest of this section.

If both τ(g) and ρ(g) do not vary across groups g ∈ G, then the post-processor

is the same across groups. In this case, we will call the post-processor a group blind
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threshold post-processor, and will overload τ and ρ to be constants.

We now study the effectiveness of thresholds for post-processing soft classifiers

with nice APs. The main takeaways are:

1. If the APs are nice, then threshold post-processors can equalize PPV (Proposi-

tions 3.3.4.2 and 3.3.4.5).

2. However, group blind threshold post-processors are rather limited in their ability

to equalize PPV (Proposition 3.3.4.3).

3. Furthermore, equalizing PPV with thresholds (group blind or otherwise) may

have undesirable social consequences (Example 3.3.4.8).

4. Thresholds cannot always equalize PPV and NPV simultaneously, even for nice

APs (Proposition 3.3.4.9).

Results 1-3 also apply to NPV (see Proposition 3.4.1.3).

Group Blind Thresholds

We begin by classifying which group blind threshold post-processors can equalize PPV

across all groups (Propositions 3.3.4.2 and 3.3.4.3). By symmetry, our arguments give

a similar characterization for equalizing NPV.

Proposition 3.3.4.2. For every nice groupwise calibrated soft classifier Ŝ and for

every group blind threshold post-processor D̂(τ,ρ) such that τ(g) = max(Supp(P̂g)) for

all g, then the composed classifier Ŷ = D̂(τ,ρ) ◦ Ŝ equalizes PPV across all groups for

which Ŷ is non-trivial.

The existence of the threshold post-processors in Proposition 3.3.4.2 follows from

the assumed finiteness of the range of the soft classifier. In the case where the range

of the soft classifier is infinite, such post-processors may not exist.
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Proof of Proposition 3.3.4.2. Any of the given post-processors only ever maps the

largest score in the support of P̂g to 1, for all groups g. Hence, PPVg is exactly the

largest score in Supp(P̂g). By the assumption that P̂ is nice, Supp(P̂g) is the same

for all groups g, and hence the PPV is equalized across groups.

We prove the analogous statement for NPV in Proposition 3.4.1.2 in the §3.4.1. We

proceed to show that the post-processors described in Proposition 3.3.4.2 are the only

non-trivial, group blind post-processors that equalize PPV across groups in general,

as we prove in Proposition 3.3.4.3.

Proposition 3.3.4.3. There exists a groupwise-calibrated soft classifier with a nice

AP for which no non-trivial group blind threshold post-processor, other than the ones

in Proposition 3.3.4.2, can equalize PPV across groups.

At a high level, the proof of Proposition 3.3.4.3 works as follows: We can make

the AP on one group uniform, and the AP of another group strictly increasing. Then,

threshold post-processors naturally favor the latter group, as the AP for that group

gives more weight to higher scores than lower ones when compared to the former AP.

Our characterization of PPV (Proposition 3.3.1.1) features prominently in the proof.

In preparation for proving Proposition 3.3.4.3, we first prove the following lemma:

Lemma 3.3.4.4. Let g1, g2 ∈ G be two different groups, and fix a group blind threshold

post-processor D̂(τ,ρ). Let P̂g1,(τ,ρ) be the expected conditional AP on scores ≥ τ that

results from starting with the AP P̂g1 over scores in group g1 and conditioning on

the scores that D̂(τ,ρ) sends to 1, and similarly let P̂g2,(τ,ρ) denote the same type of

conditional AP when starting with the P̂g2 over scores in group g2.

If P̂g2,(τ,ρ) strictly stochastically dominates P̂g1,(τ,ρ), then

PPVD̂(τ,ρ)◦Ŝ,g1
< PPVD̂(τ,ρ)◦Ŝ,g2

Proof. We use the characterization of PPV given in Proposition 3.3.1.1, for the special

case where the post-processor thresholds as described above. We can write the PPV
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for group g1 as follows:

PPVD̂(τ,ρ)◦Ŝ,g1
= E

X1∼Xg1

[Ŝ(X1) | D̂(τ,ρ) ◦ Ŝ(X1) = 1]

= E
s∼P̂g1,(τ,ρ)

[s] (3.5)

where the second line follows from the definition of P̂g1,(τ,ρ).

Similarly, we have that

PPVD̂(τ,ρ)◦Ŝ,g2
= E

s∼P̂g2,(τ,ρ)

[s] (3.6)

Since P̂g2,(τ,ρ) stochastically dominates P̂g1,(τ,ρ), the expectation on the RHS of

Equation 3.6 is larger than the expectation on the RHS of Equation 3.5, yielding the

result.

Proof of Proposition 3.3.4.3. Fix two groups g1 and g2 and a finite set of points S ⊂
[0, 1] such that the PMFs of the soft classifier Ŝ on g1 and g2 have support equal to

S - that is, Supp(P̂g1) = Supp(P̂g2) = S.

Let the PMFs of the soft classifier Ŝ on these two groups respectively be given by

P̂g1(s) = 1/|Supp(P̂g1)| and P̂g2(s) ∝ s for all s ∈ S, where P̂g2 is normalized with

a constant such that it sums to 1. Fix a group blind threshold post-processor D̂(τ,ρ)

that is not one of the ones mentioned in Proposition 3.3.4.2. Since Ŝ(τ,ρ) is group

blind, its threshold function is a constant which we name τ .

Let P̂g1,(τ,ρ) be the expected conditional AP on scores≥ τ that results from starting

with the AP P̂g1 over scores in group g1 and conditioning on the scores that D̂(τ,ρ)

sends to 1. We can get this conditional PMF by removing scores s < τ , multiplying

P̂g1(τ) by ρ, and re-normalizing the remaining values to get a distribution. Let P̂g2,(τ,ρ)

be defined similarly.

We claim that P̂g2,(τ,ρ) strictly stochastically dominates P̂g1,(τ,ρ), which allows us

to invoke Lemma 3.3.4.4 to conclude that the PPV on the two groups are unequal.

We now show that P̂g2,(τ,ρ) strictly stochastically dominates P̂g1,(τ,ρ). This is clearly

true by design if ρ = 0 or 1: in this case, the post-processor is simply a deterministic

threshold function, and we know by design that P̂g1,(τ,ρ) is uniform while P̂g2,(τ,ρ) is a

strictly increasing function. If ρ = r for some r ∈ (0, 1), then we can write P̂g1,(τ,ρ) as

a convex combination of P̂g1,τ,0 and P̂g1,τ,1 (with weight r on the distribution where

ρ = 1, and weight 1−r on the distribution where ρ = 0). We can write P̂g2,(τ,ρ) as the
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same convex combination of the conditional distributions over g2 where ρ = 0 and

ρ = 1. Since we already established stochastic domination for the cases where ρ = 0

and ρ = 1, this establishes stochastic domination for the case where ρ ∈ (0, 1).

We achieve the same result for NPV in Proposition 3.4.1.3. In the setting where the

range of the soft classifier is infinite and continuous, we show in Proposition 3.4.2.1

that a similar negative result holds, but without the existence of the classifiers in

Proposition 3.3.4.2.

Propositions 3.3.4.2 and 3.3.4.3 demonstrate the limits of group blind thresholds

on calibrated scores. Though this method of post-processing has social appeal, it

does not actually preserve the fairness properties that one would expect. In the next

section we repeat our analysis but relax our group blindness requirement.

Group-Aware Thresholds

If we allow the different groups to have different thresholds, then we grant ourselves

more degrees of freedom to be able to satisfy binary fairness constraints. In par-

ticular, we can equalize PPV across groups in a more meaningful way than done in

Proposition 3.3.4.2.

Recall that the group blind threshold post-processors in Proposition 3.3.4.2 are

the only group blind threshold post-processors that work on certain nice APs (shown

in Proposition 3.3.4.3). However, these post-processors have the property that the

only score they map to 1 is the largest score in the support, which can be undesirable

for many applications.

In particular, all classifiers in Proposition 3.3.4.3 make the PPV on each group

gi equal to the maximum score in the support of P̂gi . However, the (not necessarily

group blind) threshold post-processors in Proposition 3.3.4.5 below can make the PPV

on each group equal to any fixed value between the maximum base rate of gi and the

maximum score in Supp(P̂gi).
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Proposition 3.3.4.5. Let G be a set of groups. For any soft classifier Ŝ with a nice

AP P̂ such that Ŝ is groupwise calibrated over G and |Supp(P̂g)| ≥ 2 for all g ∈ G,
then there exists a non group blind, non-trivial threshold post-processor D̂(τ,ρ) that is

not one of the ones from Proposition 3.3.4.2 such that the hard classifier Ŷ = D̂(τ,ρ)◦Ŝ
equalizes PPV across G.

This holds even if we require that the PPV of all the groups is equal to an arbitrary

value in (maxi BRgi , smax), where maxi BRgi is the maximum base rate among the

groups gi ∈ G and smax is the maximum score in the support of P̂gi. For the case

where the support of P̂gi is infinite, smax is instead the supremum of scores.

Moreover, since this post-processor is not group blind, it is not one of the post-

processors described in Proposition 3.3.4.2.

In preparation for proving Proposition 3.3.4.5, we first prove the following two

claims:

Claim 3.3.4.6 (Monotonicity of PPV and NPV). Fix a soft classifier Ŝ and corre-

sponding AP P̂, as well as a group g. Fix group blind threshold post-processors D̂τ1,ρ1

and D̂τ2,ρ2 such that either τ1 < τ2 or both τ1 = τ2 and ρ1 ≥ ρ2. Then:

(a) PPVD̂τ1,ρ1◦Ŝ,g
≤ PPVD̂τ2,ρ2◦Ŝ,g

(b) NPVD̂τ1,ρ1◦Ŝ,g
≤ NPVD̂τ2,ρ2◦Ŝ,g

Proof. We show conclusion (a); conclusion (b) is shown analogously. Define P̂g,τ1,ρ1

to be the conditional PMF on scores ≥ τ1 that results from starting with the AP P̂g

over scores in group g and conditioning on the scores that D̂τ1,ρ1 sends to 1, and let

P̂g,τ2,ρ2 be defined similarly for the threshold post-processor D̂τ2,ρ2 .

We claim that P̂g,τ2,ρ2 stochastically dominates P̂g,τ1,ρ1 , which yields the desired

result by the characterization of PPV given in Proposition 3.3.1.1 and more explicitly

written in Equations 3.5 and 3.6.

Claim 3.3.4.7 (Continuity of PPV). Fix a soft classifier Ŝ and corresponding AP P̂,
as well as a group g. Suppose we have two post-processing algorithms, D̂1 and D̂2.

Let P̂g,D̂1
be the expected conditional AP that results from starting with the AP P̂g

over scores in group g and conditioning on the scores that D̂1 sends to 1, and define

P̂g,D̂2
similarly. If dTV (P̂g,D̂1

, P̂g,D̂2
) < ǫ, then |PPVg,D̂1◦Ŝ

− PPVg,D̂2◦Ŝ
| < O(ǫ). Or

in words, if the distance between the conditional APs is small, then the difference in

PPV is small.
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Proof. Recall the characterization of PPV given in Proposition 3.3.1.1 (and more

explicitly written in Equation 3.5). This tells us that the PPV of group g for the

classifier D̂1 ◦ Ŝ is exactly the expectation of a random variable distributed according

to P̂g,D̂1
. Similarly, the PPV of group g for the classifier D̂2 ◦ Ŝ is the expectation

of a r.v. distributed according to P̂g,D̂2
. Since both P̂g,D̂1

and P̂g,D̂2
have support

bounded between 0 and 1, their expectations can differ by at most ǫ, from which the

claim follows. For completeness, we prove this below.

Suppose wlog that P̂g,D̂1
has the larger expectation. Let S = {s ∈ Supp(P̂g) :

P̂g,D̂1
(s) > P̂g,D̂2

(s)}. Then:

PPVg,D̂1◦Ŝ
=

∑

s∈Supp(P̂g)

sP̂g,D̂1
(s)

= PPVg,D̂2◦Ŝ
+
∑

s∈S

s(P̂g,D̂1
(s)− P̂g,D̂2

(s))

< PPVg,D̂2◦Ŝ
+ ǫ

where in the second line we use the fact that PPVg,D̂2◦Ŝ
is the expectation of P̂g,D̂2

,

and in the last line we use the fact that s ∈ [0, 1] and that the TV-distance between

the two distributions is less than ǫ.

Now we are ready to prove Proposition 3.3.4.5.

Proof of Proposition 3.3.4.5. Fix a soft classifier Ŝ with a nice AP P̂ that is groupwise

calibrated over g1, . . . , gn, and fix a desired value v ∈ (maxi BRgi , smax). We will show

that we can design a threshold post-processor (τ, ρ) such that PPVg,D̂(τ,ρ)◦Ŝ
= v for

all groups g.

Fix an arbitrary group gj. We proceed via a continuity argument to show that

we can tune the threshold on gj to achieve PPV equal to v. The maximum possible

value for PPVgj ,D̂(τ,ρ)
is smax (achieved when τ = smax, by Claim 3.3.4.6), where smax

is the largest score in the support, as defined in the proposition statement. We ignore

the trivial post-processor that never maps anything to 1, and hence leaves the PPV

undefined.

Furthermore, note that, for any group, a lower bound on the PPV of a hard

classifier on that group is the base rate of the group, where the lower bound is

matched by the trivial post-processor that sends every score to 1. This follows from

Claim 3.3.4.6.
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We now claim that there is a setting of τ(gj) and ρ(gj) that achieves PPVg,D̂(τ,ρ)◦Ŝ
=

v. We accomplish this by showing that there is a way to change (τ(gj), ρ(gj)) such

that the PPV decreases continuously. We first show:

Now, consider the following way to change (τ(gj), ρ(gj)). Fix ǫ > 0, and an initial

setting for (τ(gj), ρ(gj)) s.t. τ(gj) is not the smallest item in the support or ρ(gj) > ǫ.

Reduce ρ(gj) by ǫ, wrapping around on the interval (0, 1] and decreasing τ(gj) to the

next largest item in the support when this would otherwise make ρ(gj) negative.

This very minor transformation to the threshold changes the AP conditional on

outputting 1 very slightly - so slightly that the TV distance between the old condi-

tional AP and the new AP is at most some ǫ′ which is a function of ǫ. This lets us

apply Claim 3.3.4.7 to show that the PPV changes by at most a function of ǫ. So

as we take ǫ going towards 0, this shows that the PPV changes by an amount going

towards 0. This establishes that the PPV changes “continuously” with respect to this

deforming procedure.

By Claim 3.3.4.6, we have that the above deforming procedure can only decrease

the PPV. Therefore, we can continuously decrease the PPV, starting from smax, by

continuously deforming the threshold post-processor with the method above. Note

that smax > v > maxi BRgi ≥ BRgj . By the Intermediate Value Theorem, there must

be a setting of (τ(gj), ρ(gj)) such that PPVgj ,D̂(τ,ρ)◦Ŝ
= v.

We assert the analogous statement for the case of NPV in Claim 3.4.1.5. The

corresponding statement for the case of soft classifiers with infinite range is asserted

in Proposition 3.4.2.2.

The Limits of Thresholding

While Proposition 3.3.4.5 shows that a threshold post-processor can equalize the

PPV across n groups, this threshold post-processor can be unsatisfying. Consider an

example with two groups g1 and g2 in an image classification setting, where group

g2 is found to post more disallowed imagery. Suppose that we have an AP that is

decreasing with respect to score on group g1, and increasing with respect to score

on group g2. This is illustrated in Example 3.3.4.8 and Figure 3·3. This means that
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a group blind threshold post-processor yields larger PPV on g2, since large scores

are given more weight in g2. So, to equalize the PPV between the two groups, we

will classify more low scores as positive in g2 than g1. This effectively means that our

threshold on group g2 is more lenient than our threshold on g1, which seems blatantly

unfair, since g2 is the posting more undesirable content in the first place!

Example 3.3.4.8 (Socially Unsatisfying Example). Fix groups g1 and g2, and we fix

the AP of the soft classifier Ŝ as follows. Let Supp(P̂g1) = Supp(P̂g2), let P̂g1(s) ∝ a−s
for appropriately selected constant a > 0 and let P̂g2(s) ∝ s. Group g2 has a higher

base rate and may have social advantages over group g1.

Let D̂(τ,ρ) be a non-trivial post-processor. If D̂(τ,ρ) were group blind, then by

Lemma 3.3.4.4, since P̂g2,D̂(τ,ρ)
stochastically dominates P̂g1,D̂(τ,ρ)

, the PPV on g2 must

be larger than the PPV of g1.

To equalize PPV, by Claim 3.3.4.6, we must have either τ(g2) < τ(g1), or τ(g2) =

τ(g1) and ρ(g2) < ρ(g1). Group g1 is now held to a higher standard than the group

that posts more undesirable content (g2) in order to maintain equality of PPV. Fig-

ure 3·3 illustrates example thresholds that equalize the PPV.

Figure 3·3: Accompanying Example 3.3.4.8, the PPV for both groups is 0.77. How-
ever, the threshold for g1 (dark blue) is higher than the threshold for g2 (orange),
even though g2 is the more problematic group.

The only property needed for Example 3.3.4.8 is that the AP of one group stochas-

tically dominates the AP of another group. We suspect that this to will occur in many
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settings. Furthermore, thresholding cannot in general equalize both PPV and NPV

simultaneously, even for nice APs and using non-group blind thresholds.

Proposition 3.3.4.9. Fix groups g1 and g2. There exists a soft classifier Ŝ with a

nice AP P̂ such that no threshold post-processor can simultaneously equalize PPV and

NPV between groups g1 and g2.

Before proving the statement, we first show that the base rates of g1 and g2 can

be written as convex combinations of the PPV and 1−NPV on the respective groups:

Claim 3.3.4.10. Fix any group g ∈ G, and let the hard classifier Ŷ be non-trivial.

Then the base rate of g can be written as a convex combination of PPVg,Ŷ and 1 −
NPVg,Ŷ

Proof.

BRg = Pr[Y (Xg) = 1]

= Pr[Y (Xg) = 1 | Ŷ (Xg) = 1] Pr[Ŷ (Xg) = 1]

+ Pr[Y (Xg) = 1 | Ŷ (Xg) = 0] Pr[Ŷ (Xg) = 0]

= PPVg,Ŷ · θ + (1− NPVg,Ŷ ) · (1− θ)

where θ := Pr[Ŷ (Xg) = 1].

A simple intuition for the proof of Proposition 3.3.4.9 is as follows. Suppose we

have two groups, and the soft classifier is almost perfect on one group - for all but

a small fraction of inputs it gives the correct binary score, and gives the remaining

inputs score 0.5. On the other group, it is the opposite - almost every input is given

score 0.5, and there are only a few inputs given their ground truth score. The corre-

sponding APs of each group have equal supports, and therefore are “nice.” However,

it is clear that any threshold post-processor on the first group will have extremely

high PPV and NPV, while any threshold post-processor on the second group will

have to make a decision on where to round the inputs in the 0.5 bucket, and will

correspondingly either have low PPV or NPV.
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This example is somewhat unsatisfying, as the AP satisfies niceness by a tech-

nicality (for example, it is extremely close to a AP with disjoint supports between

groups). The proof generalizes the above example to a case where scores for one group

are slightly more “correlated” with the ground truth labels than scores for the other

group. §3.4.2 shows the corresponding result when the range of the soft classifier is

infinite.

Proof of Proposition 3.3.4.9. Let Supp(P̂g1) = Supp(P̂g2). Let P̂g1 be uniform over

scores, and let P̂g2(s) = −a(s − 1/2)2 + b for some appropriately chosen constants

a, b ≥ 0 such that P̂g2 is a valid probability distribution.

We claim that there is no threshold post-processor that can equalize PPV and

NPV simultaneously for these two groups. First, note that the base rates for the two

groups are equal to 1/2 by design, due to the symmetric nature of the AP on each

group. Just like in the proof of Proposition 3.3.4.3, we use the notation P̂g1,≥(τ,ρ) to

denote the conditional AP supported on scores ≥ τ that results from starting with

the AP P̂g1 over all scores in group g1 and conditioning on the scores that D̂(τ,ρ) sends

to 1, and define P̂g2,≥(τ,ρ) similarly. Let P̂gi,≤(τ,ρ) denote the conditional AP starting

from group gi and conditioning on the scores that D̂(τ,ρ) sends to 0.

We proceed by a case analysis on the location of the threshold for group g1 - that

is, on τ(g1).

Case 1: τ(g1) ≥ 1/2. First, suppose additionally that D̂(τ,ρ) is group blind over

g1, g2, then P̂g2,(τ,ρ) is strictly stochastically dominated by P̂g1,(τ,ρ) so the PPV is lower

on g2 than g1 (Lemma 3.3.4.4). Therefore, to equalize the PPV between the two

groups, the threshold on group g2 must be to the “right” of the threshold on g1 (that

is, either τ(g2) > τ(g1) or τ(g2) = τ(g1) and ρ(g2) < ρ(g1)), which follows from

Claim 3.3.4.6.

However, we claim that this setting of thresholds makes the NPV on group g2

lower than the NPV on group g1. It suffices to show that, for any constant threshold

post-processor classifier D̂(τ,ρ) with τ(g1) = τ(g2) ≥ 1/2, the NPV on group g2 is lower

than the NPV on group g1. This implies that the same statement holds when either

τ(g2) > τ(g1) or τ(g2) = τ(g1) and ρ(g2) < ρ(g1) as well, due to the monotonicity

property of NPV (Claim 3.3.4.6). This suffices to prove Proposition 3.3.4.9 for the

case when τ(g1) ≥ 1/2: we need to set τ(g2), ρ(g2) such that either τ(g2) > τ(g1) or
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τ(g2) = τ(g1) and ρ(g2) < ρ(g1) in order to equalize PPV, but this leaves the NPV on

group g2 lower than the NPV on group g1.

Now we proceed to show that the NPV is lower on g2 when the threshold post-

processor is constant. Fix a constant threshold post-processor D̂(τ,ρ) with τ ≥ 1/2.

We have already established that this means that PPVg2,D̂(τ,ρ)◦Ŝ
< PPVg1,D̂(τ,ρ)◦Ŝ

.

Now, since the base rates of g1 and g2 are equal, this implies that

1− NPVg2,D̂(τ,ρ)◦Ŝ
> 1− NPVg1,D̂(τ,ρ)◦Ŝ

Rearranging, this shows that NPVg2,D̂(τ,ρ)◦Ŝ
< NPVg1,D̂(τ,ρ)◦Ŝ

, finishing the proof of this

case.

Case 2: τ(g1) < 1/2. The argument in this case is symmetrical to the previous

case, where we switch the roles of PPV and NPV in the argument. We sketch it for

the sake of completeness.

Fix a constant threshold post-processor such that τ(g1) = τ(g2) < 1/2. By

design, P̂g2,≤(τ,ρ) strictly stochastically dominates P̂g1,≤(τ,ρ). Hence, the NPV on group

g2 is smaller than the NPV on group g1 (this follows from an analogous version of

Lemma 3.3.4.4 for NPV instead of PPV). This means that the threshold post-processor

cannot be constant to equalize NPVs - it must be moved such that either τ(g2) < τ(g1)

or τ(g2) = τ(g1) and ρ(g2) > ρ(g1) (Claim 3.3.4.6).

However, by the same convex combination argument as in the previous case, we get

that any such constant threshold post-processor must make the PPV on g2 strictly

smaller than the PPV on g1. By the monotonicity of PPV, this means that any

threshold post-processor with either τ(g2) < τ(g1) or τ(g2) = τ(g1) and ρ(g2) > ρ(g1)

must also make the PPV on g2 smaller than the PPV on g1, finishing the proof.

3.3.5 Equalizing APs

While thresholding is a conceptually simple approach to post-processing a soft clas-

sifier, its power is limited. We now consider a very different approach using soft

post-processors to equalize the APs across groups of a soft classifier. The intuition is

that if the APs are equal across groups, then any hard post-processor that is group

blind should result in equal PPV, NPV, FPR, and FNR. We formalize this intuition
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in Claim 3.3.5.1.

Let Ŝ be a soft classifier and for each group g ∈ G, let P̂g be the AP of Ŝ for group

g. For a soft post-processor D̂soft, let Ŝ ′ = D̂soft ◦ Ŝ and let P̂ ′
g be the corresponding

AP for group g.

Our goal is to find a soft post-processor D̂soft such that Ŝ ′ is groupwise calibrated,

and P̂ ′
g = P̂ ′

g′ for all g, g′ ∈ G. In this section, we describe only one approach to

constructing D̂soft which we call mass averaging.

The approach of equalizing APs has a fundamental weakness: if P̂ ′
g = P̂ ′

g′ and both

are calibrated, then BRg = BRg′ . This severely limits applicability of this approach.

However, this limitation will be removed in Section 3.5.2 by allowing deferrals.

Claim 3.3.5.1. If the APs are equal for two groups, then PPV, NPV, FPR, and FNR

are equalized by any hard post-processor D̂ satisfying group blindness.

The group blindness requirement in the claim is necessary: consider the (not group

blind) post-processor that outputs 0 on one group and 1 on the other; PPV will not

be equalized.

Proof of Claim: 3.3.5.1. We prove only that PPV is equalized; the remaining proper-

ties may be proved similarly. Let Ŷ = D̂ ◦ Ŝ be a hard classifier Ŷ that is a group

blind post-processor D̂ composed with a calibrated soft classifier Ŝ. All probabilities

below are over Xg ∼ Xg, and the coins of Ŝ and D̂.

PPVŶ ,g = Pr[Y (Xg) = 1 | Ŷ (Xg, g) = 1]

=
Pr[Y (X) = 1]

Pr[Ŷ (Xg, g) = 1]

·
∑

s∈Supp(P̂g)

(

Pr[Y (Xg) = 1 | Ŝ(Xg) = s] · Pr[Ŝ(Xg) = s]

Pr[Y (Xg) = 1]

· Pr[Ŷ (Xg, g) = 1 | Ŝ(Xg) = s, Y (Xg) = 1]

)

Each factor in this product is equal across groups by the assumptions. Namely,

Pr[Y (Xg) = 1] is equalized by calibration and equalized APs; Pr[Ŷ (Xg, g) = 1] by
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group blindness and equalized APs; Pr[Ŷ (Xg, g) = 1 | Ŝ(Xg) = s, Y (Xg) = 1] by

group blindness; Pr[Y (Xg) = 1 | Ŝ(Xg) = s] by calibration; and finally Pr[Ŝ(Xg) = s]

by equalized APs.

Mass Averaging

The mass-averaging technique is best illustrated with an example. Suppose that P̂g1

is uniform over {0, 0.5, 1}, and P̂g2 is uniform over {0, 1}. It is easy to define a

soft post-processor D̂soft which equalizes these two APs. On g1, we leave the score

unchanged: D̂soft(s, g1) = s. On g2, we compute the output as

D̂soft(s, g2) =















s w.p. 2/3

0.5 w.p. 1/3

.

The APs for groups g1 and g2 of the resulting soft classifier Ŝ ′ = D̂soft ◦ Ŝ are equal,

and are equal to P̂g1 .

In the example, the probability mass is being redistributed by averaging the scores.

This can be equivalently viewed as adding noise to the scores and then recalibrating

the scores, something discussed in [92].

More generally, a mass-averaging post processor D̂soft assigns to each possible pair

(s, g) a distribution over possible output scores s′. Such a D̂soft is fully specified by

k ·k′ ·|G| parameters, where k is the number of possible values of s and k′ is the number

of possible values of s′. Given a soft classifier Ŝ and a mass-averaging post processor

D̂soft, the constraint that the resulting APs are equalized across groups is linear in

these parameters. Such classifiers, therefore, may be found by a linear program. We

do not explore the choice of mass-averaging post-processors further.

Note that this method can only “remove” information from the distribution.
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3.4 Results for Negative Predictive Value and continuous,

full support APs

3.4.1 Results for Negative Predictive Value

In Section 3.3, we proved limits on the ability of post-processors to equalize PPV

given a distribution on calibrated scores with finite support. For completeness, in

this section, we give the statements of the analogous limits for equalizing NPV and

for continuous probability density functions with full support [0, 1].

We start with the analogous statement of Proposition 3.3.2.1 for NPV instead of

PPV.

Proposition 3.4.1.1. Fix two disjoint groups g1 and g2 with respective base rates

BR1 and BR2 such that BR1 6= BR2. Then there exists a soft-valued classifier Ŝ that

is groupwise calibrated, but for which there is no post-processor D̂ : [0, 1]×G → {0, 1}
such that D̂ ◦ Ŝ equalizes NPV, unless Pr[D̂(BRi, gi) = 0] = 0 for i = 1 or 2.

The nontriviality condition ensures that the NPV is well-defined on both groups

(which can be compared to the nontriviality condition in Proposition 3.3.2.1, which

ensures that the PPV is well-defined on both groups). The proof is essentially identical

to the proof of Proposition 3.3.2.1: the fraction of predicted 0’s in group gi that are

true 0’s is 1− BRi, as the post-processor has no other information by which to make

its decision, and hence the NPV remains unequal due to the differing base rates.

We now proceed to give the NPV analogs of our results on threshold post-

processors in Section 3.3. We start with the analogous statement for Proposi-

tion 3.3.4.2 - that there is a class of simple group blind threshold post-processors

that equalizes the NPV across groups.

Proposition 3.4.1.2. For every nice groupwise calibrated soft classifier Ŝ and for

every group blind threshold post-processor D̂(τ,ρ) such that τ(g) = min(Supp(P̂g)) and

ρ(g) < 1 for all g, the composed classifier D̂ ◦ Ŝ equalizes NPVs across all groups.
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The existence of the threshold post-processors in Proposition 3.4.1.2 follows from

the assumed finiteness of the range of the soft classifier. In the case where the range

of the soft classifier is infinite, such post-processors may not exist (as there may be

no minimum element of the support). The proof is once again analogous to the proof

of Proposition 3.3.4.2: these classifiers only ever output 0 on the minimum element

of the support of P̂g, and hence the NPV is simply 1 minus the smallest element of

the support for each group.

However, much like the case for PPV, other group blind threshold post-processors

cannot possibly equalize NPV.

Proposition 3.4.1.3. There exists a groupwise-calibrated soft classifier with a nice

AP for which no non-trivial group blind threshold post-processor, other than the ones

in Proposition 3.3.4.2, can equalize NPV across groups.

The example of the groupwise-calibrated soft classifier is the exact same one that

shows the statement for PPV. Indeed, we can see this in the following way. We can

make the example in the proof of Proposition 3.4.1.3 have equal base rates across

groups, in which case it follows from Proposition 3.3.4.3 due to Claim 3.3.4.10.

When we turn to threshold post-processors that are not group blind, we again get

analogous results for NPV.

Proposition 3.4.1.4. Let G be a set of groups. For any soft classifier Ŝ with a nice

AP P̂ such that Ŝ is groupwise-calibrated over G and |Supp(P̂g)| ≥ 2 for all g ∈ G,
there exists a (non-group blind), non-trivial threshold post-processor D̂(τ,ρ) that is

not one of the group blind post-processors in Proposition 3.3.4.2, such that the hard

classifier Ŷ = D̂(τ,ρ) ◦ Ŝ equalizes NPV across G.
This holds even if we require that the NPV of all the groups is an arbitrary value

in (smin,mini BRgi), where mini BRgi is the minimum base rate among the groups and

smin is the minimum score in the support of P̂gi.
2

Again the proof of this follows via the same kind of continuity argument as we

used to prove Proposition 3.3.4.5. By definition, each group has base rate at least

2For the case where the support of P̂gi is infinite, smin should be the infimum of scores.
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mini BRgi , and so if the post-processor always says 0 on some group i, then NPVgi =

BRgi ≥ mini BRgi . Hence, for each group, we can start with the always-0 classifier

and slide down the threshold until the desired NPV is reached.

Finally, the socially unsatisfying example also generalizes to NPV. A privileged

group will have higher scores than a disadvantaged group in general, and hence if

they are given the same threshold, the NPV will be lower on the privileged group. To

rectify this, the threshold for the disadvantaged group will have to moved higher, to

decrease the NPV. But then, the disadvantaged group is being subjected to a harsher

standard.

Finally we note that Claim 3.3.4.7 also can be written with NPV instead of PPV,

where the proof follows from using the characterization of NPV given in Proposi-

tion 3.3.1.1:

Claim 3.4.1.5 (Continuity of NPV). Fix a soft classifier Ŝ and a corresponding AP

P̂, as well as a group g. Let D̂1 and D̂2 be two post-processing algorithms. Let P̂g,D̂1

be the expected conditional AP that results from starting with the AP P̂g over scores

in group g and then conditioning on the scores that D̂1 sends to 0, and define P̂g,D̂2

similarly. If dTV (P̂g,D̂1
, P̂g,D̂2

) < ǫ, then |NPVg,D̂1◦Ŝ
− NPVg,D̂2◦Ŝ

| < O(ǫ).

We omit the proof of Claim 3.4.1.5, which resembles the proof of Claim 3.3.4.7

and follows from Proposition 3.3.1.1.

3.4.2 Results for continuous, full support APs

In this section, we briefly address how to extend our results on thresholds in Sec-

tion 3.3 to the setting where every AP P̂ is a continuous probability distribution with

Supp(P̂g) = [0, 1] for all g ∈ G - that is, the support equals the entire interval [0, 1]

for each group g ∈ G. Note that this automatically makes P̂ a “nice” AP, and hence

rules out the general counterexample we came up with in Proposition 3.3.2.1. For

the purposes of this section, call such an AP that 1) P̂g is a continuous probability
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density function for every g ∈ G and 2) Supp(P̂g) = [0, 1] for all g ∈ G a very nice

AP. As the name suggests, we can extend the remaining results in Section 3.3 to the

setting of very nice AP. We give the results for equalizing PPV as done in Section 3.3:

extending these results to equalizing NPV in the setting of continuous, full support

AP can be accomplished by combining the statements here with the modifications

described in Section 3.4.1.

First, we note that a threshold post-processor can be described much more easily

in the continuous setting than in the setting where the AP has finite support on

each group. Indeed, in the setting where P̂g is a continuous density function for all

g ∈ G, the post-processor can truly be a threshold, with no question of how to classify

the score that is exactly equal to the threshold τ . This is because the score τ has

probability 0 under the density P̂g.

Hence, Proposition 3.3.4.2 has no true analog in this setting. This follows because

the maximum element of the support in this case is 1, and a threshold at τ = 1 sends

every score (outside of a measure 0 set) to 0.

This allows us to strengthen Proposition 3.3.4.3 accordingly.

Proposition 3.4.2.1. There exists a groupwise-calibrated soft classifier with a very

nice AP for which no non-trivial group blind threshold post-processor can equalize

PPV across groups.

This follows from a nearly identical stochastic domination argument to the one

used for Proposition 3.3.4.3 - in fact, the natural generalization of the distributions

given for the proof of Proposition 3.3.4.3 to the continuous and full-support setting

can be used in this proof.

A non group blind threshold can still always equalize PPV for very nice APs.

Proposition 3.4.2.2. Let G be a set of groups. For any soft classifier Ŝ with a very

nice AP P̂ such that Ŝ is groupwise-calibrated over G, then there exists a non group

blind, non-trivial threshold post-processor such that the hard classifier equalizes PPV

across G.
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This holds even if we require that the PPV of all the groups is equal to an arbitrary

value in (maxi BRgi , 1), where maxi BRgi is the maximum base rate among the groups

gi ∈ G.

This follows from the same continuity approach as the proof of Proposition 3.3.4.5,

by sliding the threshold continuously down from 1 until the PPV reaches the desired

value v ∈ (maxi BRgi , 1).

The socially unsatisfying example generalizes in the natural way - Example 3.3.4.8

consists of one group having a monotonically increasing PMF and another one having

a monotonically decreasing PMF. We can skip the discretization step in the definition

of these PMFs and have them be continuous PDFs, and the example still goes through.

We cannot equalize PPV and NPV simultaneously in general, just like in the finite

support case (Proposition 3.3.4.9).

Proposition 3.4.2.3. Fix groups g1 and g2. There exists a soft classifier Ŝ with a

very nice AP P̂ such that no threshold post-processor can simultaneously equalize PPV

and NPV between groups g1 and g2.

The proof we give of Proposition 3.3.4.9 for finite support naturally generalizes

to this case - in fact, we can simply use the same proof but without discretizing

the probability distributions. The necessary lemmas about monotonicity of PPV and

being able to express the base rate as a convex combination of PPV and NPV still

hold.

It is unsurprising that the result in Section 3.5 on using thresholds with deferrals

to equalize PPV and NPV also goes through for very nice AP.

Proposition 3.4.2.4. Let Ŝ be groupwise calibrated for the n groups g1, . . . , gn, and

suppose that Ŝ has a very nice AP. Then there exists a nontrivial threshold decision

rule such that the hard classifier Ŷ = D̂ ◦ Ŝ equalizes PPV and NPV for G.

Again, the explanation is very similar to the one for Proposition 3.4.2.2. PPV and

NPV change continuously when we slide the respective thresholds, and unlike the case
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without deferrals, we can change the PPV without changing the NPV, by keeping the

“0” threshold still and sliding the “1” threshold (and deferring in the middle). Hence,

we can simply continuously slide the two thresholds on each group until they reached

the desired values.

3.5 Post-processing calibrated classifiers with deferrals

In the first part of the paper, we considered the problem of post-processing calibrated

soft classifiers, which output a score s ∈ [0, 1], into fair hard classifiers, which output

a decision in ŷ ∈ {0, 1}, subject to a number of group fairness conditions. In the

remainder of this work, we reconsider this problem, but with one important change:

we allow classifiers to “refuse to decide” by outputting the special symbol ⊥. We

call such classifiers deferring classifiers, borrowing the nomenclature from [217]. The

output ⊥ is the deferring classifier’s way of refusing to make a decision and deferring

to a downstream decision maker. For example, a risk assessment tool might aid a

parole board to make a decision by categorizing an individual as high risk or low risk,

or it might output ⊥, providing no advice and deferring to the judgment of the board.

We now modify our notation appropriately. Instances x are still associated with

a true type Y (x) ∈ {0, 1} and a group G(x) ∈ G. A deferring hard classifier Ŷ is a

randomized function Ŷ : X → {0, 1,⊥}. A deferring soft classifier is a randomized

function Ŝ : X → [0, 1] ∪ {⊥}. A deferring hard (resp. soft) post-processor is a

randomized function D̂ : [0, 1]∪ {⊥}×G → {0, 1,⊥} (resp. D̂soft : [0, 1]∪ {⊥}×G →

[0, 1] ∪ {⊥}) that takes as input the output of a deferring soft and post-processes it

into a deferring hard (resp. soft) classifier. We also introduce new versions of the FPR

and FNR, conditioned on not deferring.

Definition 3.5.0.1. The conditional false positive rate and conditional false negative
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rate of a deferring hard classifier Ŷ for a group g are, respectively:

cFPRŶ ,g = Pr[Ŷ (Xg) = 1 | Y (Xg) = 0, Ŷ (Xg) 6= ⊥]
cFNRŶ ,g = Pr[Ŷ (Xg) = 0 | Y (Xg) = 1, Ŷ (Xg) 6= ⊥].

We additionally consider a version of the accuracy profile conditioned on not

deferring, which we call the conditional AP. For non-deferring soft classifiers, Defini-

tions 3.5.0.2 and 3.2.2.1 coincide.

Definition 3.5.0.2. The conditional AP P̂g of a classifier Ŝ for a group g is the PMF

of Ŝ(Xg), conditioned on not outputting⊥. That is, for s ∈ [0, 1], P̂g(s) = Pr[Ŝ(Xg) =

s | Ŝ(Xg) 6= ⊥]. Note that the conditional AP is undefined if Pr[Ŝ(Xg) 6= ⊥] = 0.

Abusing notation, we denote by P̂ the collection {P̂g}g∈G, and call it the condi-

tional AP of Ŝ.

The conditional error rates are applicable generally, but they can be difficult to

interpret. The consequences of using the conditional FPR and FNR are discussed

further in Section 3.7 along with a discussion of different deferral models. They are

also amenable to the consideration of additional goals which we will briefly address.

For example, one could seek to minimize the total deferral rate, equalize the deferral

rate among groups, or prefer deferrals on positive instances.

3.5.1 Thresholding with deferrals

We return now to the problem of post-processing of calibrated soft classifiers, but

now with the extra power of deferring on some inputs. We revisit the two approaches

discussed in Section 3.3: thresholding and equalizing APs.

Proposition 3.3.2.1 stated PPV and NPV cannot both be equalized across groups

in general when using only a single threshold per group. By using two thresholds per

groups and deferring on some inputs, PPV and NPV can always be equalized across

groups.
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We post-process using two thresholds per group as follows: return 0 when s is

lower than the first threshold, return ⊥ between the thresholds, and return 1 above

the second threshold, as shown in Figure 3·4. This buys us more degrees of freedom

when equalizing binary constraints, and it has the useful property that we say ⊥ on

the instances where we are the least confident about the predicted type.

We adapt our notation as follows:

Definition 3.5.1.1 (Deferring Threshold Post-Processor). A deferring threshold

post-processor D̂(τ0,τ1,ρ0,ρ1) assigns to each group g two thresholds τ0(g), τ1(g) ∈
Supp(P̂g), and two probabilities ρ0(g), ρ1(g) ∈ [0, 1], with the following requirements:

1. for all g ∈ G, τ0(g) ≤ τ1(g)

2. for all g ∈ G for which τ0(g) = τ1(g), ρ1(g)+ρ0(g) ≤ 1. This corresponds to the

case where the two thresholds are the same, and therefore individuals with that

score must be mapped to 1 with probability ρ1(g), and to 0 with probability

ρ0(g), with the remainder mapped to ⊥.

The corresponding threshold post-processor is defined as follows:

D̂(τ0,τ1,ρ0,ρ1)(s, g) =































































1 s > τ1(g)

0 s < τ0(g)

⊥ τ0(g) < s < τ1(g)

1 w.p. ρ1(g), else ⊥ s = τ1(g)

0 w.p. ρ0(g), else ⊥ s = τ0(g)

1 w.p. ρ1(g), 0 w.p. ρ0(g), else ⊥ s = τ0(g) = τ1(g)

⊥ s = ⊥

Using two thresholds allows the equalization of both PPV and NPV across groups

in general, whereas without deferrals we could only equalize one or the other. We

first demonstrate the existence of post-processors that are fairly limited, analogously

to those defined in Proposition 3.3.4.2.

Proposition 3.5.1.2. Let Ŝ be a soft classifier with a nice AP for a set of groups

G. Then every threshold post-processor D̂(τ0,τ1,ρ0,ρ1) satisfying the following properties
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Figure 3·4: For threshold post-processors with deferrals, defer between the thresh-
olds.

equalizes both the PPV and NPV for all groups in G of the composed classifier Ŷ =

D̂(τ0,τ1,ρ0,ρ1) ◦ Ŝ:

1. τ0(g) = min(Supp(P̂g)) for all g

2. ρ0(g) > 0 for all g.

3. τ1(g) = max(Supp(P̂g)) for all g

4. ρ1(g) > 0 for all g.

Notice that these classifiers cannot be trivial, because we defined ρ0 and ρ1 in a

way that prohibits the possibility that the composed classifier never returns 0 or 1.

For the cases where the range of soft classifier outputs is infinite and there is no max

or min element, these classifiers do not exist.

Proof of Proposition 3.5.1.2. The reasoning is similar to the non-deferral case for

equality of PPV alone. The thresholds only allow one score s to map to 0 and

one score to map to 1. Thus, PPV for both groups is equal to the largest score in

the support and NPV for both groups is equal to 1 minus the smallest score in the

support.

Now, much like in Proposition 3.3.4.5, which showed the existence of meaningful

non-trivial threshold post-processors that equalized PPV across groups, we show the
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existence of meaningful, nontrivial deferring threshold post-processors that equalize

PPV and NPV across groups.

Proposition 3.5.1.3. Let Ŝ be a soft classifier with a nice AP that is groupwise

calibrated for a set of groups G. Suppose that |Supp(P̂g)| ≥ 2 for all g ∈ G. Then there

exists a non-trivial threshold post-processor D̂(τ0,τ1,ρ0,ρ1) that is not one of those defined

in Proposition 3.5.1.2, such that the hard classifier Ŷ = D̂(τ0,τ1,ρ0,ρ1)◦Ŝ equalizes PPVg

and NPVg for all g ∈ G.

The main idea of the proof of this proposition is to use Proposition 3.3.4.5 twice:

once for getting thresholds to equalize the PPV, and once for thresholds to equalize

the NPV. These thresholds may be invalid because there may be a group g for which

τ0(g) > τ1(g). We use Claims 3.3.4.6 and 3.3.4.7 to allow ourselves to push the PPV

thresholds toward 1 and the NPV thresholds toward 0 until they no longer overlap,

while still maintaining equalization of PPV and NPV for the other groups.

Proof of Proposition 3.5.1.3. Recall by Claim 3.3.4.6 that the PPV of Ŝ on a group

g monotonically increases as τ1(g) increases and, if τ1(g) is constant, as ρ1(g) in-

creases. By Claim 3.3.4.6, NPV monotonically increases as τ0(g) decreases, and, if

τ0(g) is constant, as ρ0(g) increases. Recall by Claim 3.3.4.7 that if the total variance

distance between conditional APs (conditioned on being post-processed to a result

of 1) for different groups is at most ǫ, then the PPV difference for these groups is

bounded by O(ǫ). Thus, PPVg is continuous and monotonically increasing with re-

gard to (τ1(g), ρ1(g)). Similarly, NPVg is continuous and monotonically increasing

with (−τ0(g), ρ0(g)).
We know by Proposition 3.3.4.5 that there exists a non-group blind threshold

rule (without deferrals) that equalizes the PPV among the groups. By the analogous

Proposition 3.4.1.4, there exists a (different) non group blind threshold rule that

equalizes the NPV among the groups. For both of these, we know that they are not

the classifiers from Proposition 3.5.1.2.

If the thresholds meet the conditions of being a deferring post-processor listed

in Definition 3.5.1.1, then the statement is proven. If they do not meet the condi-

tions because the thresholds “overlap,” we repeat the following procedure until the

conditions are met:
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1. Let g be a group for which the conditions are not met, i.e. either τ0(g) > τ1(g),

or τ0(g) = τ1(g) and ρ0(g) + ρ1(g) > 1.

2. If τ0(g) > τ1(g), define t′ = τ0(g)+τ1(g)
2

. Let t = argmins∈Supp(P̂g)
|s − t′|. Notice

that t ≤ τ0(g) and t ≥ τ1(g), but because by assumption τ0(g) > τ1(g), t

cannot be equal to both thresholds. Set the new value for both thresholds to t:

τ0(g) = τ1(g) = t(g).

3. If ρ0(g) + ρ(g) > 1, then do the following:

(a) If τ0(g) remained unaltered in the previous step, then keep ρ0(g) the same,

and set ρ1(g) = 1− ρ0(g).

(b) If τ1(g) remained unaltered in the previous step, then set ρ1(g) the same

and set ρ0(g) = 1− ρ1(g).

(c) If neither of these is true, then let r = ρ0(g)
ρ0(g)+ρ1(g)

. Set ρ0(g) = r and

ρ1(g) = 1− r.

4. These thresholds are no longer overlapping, but they altered PPVg and NPVg.

Notice that, by the monotonicity properties described above, the threshold rules

were changed in ways that can only increase PPVg or NPVg:

(a) τ1(g) has increased or remained constant

(b) if τ1(g) remained constant, then ρ1(g) also remained constant

(c) τ0(g) has decreased or remained constant

(d) if τ0(g) remained constant, then ρ0(g) remained constant

The new PPV and NPV for g may now be higher than those of the other groups.

5. For all other groups g′ 6= g, by the Intermediate Value Theorem and the conti-

nuity of NPV, there exists some (τ0(g
′), ρ(g′)) that sets NPVg′ = NPVg, and by

the monotonicity of NPV, this threshold is lower than the old one. Similarly,

there exists some (τ1(g
′), ρ(g′)) that sets PPVg′ = PPVg and it is higher than

the old one. By the monotonicity of PPV and NPV, we know that this process

will not cause non-overlapping thresholds to become overlapping.

The ultimate effect of these steps was to reduce the number of overlapping thresh-

olds by at least one. We can repeat this process up to 2|G| times until none of the

thresholds overlap.
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Notice that this classifier is not one of the ones from Proposition 3.5.1.2 - if we did

not have to correct for “overlapping,” then this is true by assumption, and if we did

do the correction process, then τ0(g) = τ1(g) for at least one g, and by assumption

we had |Supp(P̂)| ≥ 2.

Thus, we have created valid a post-processor D̂(τ0,τ1,ρ0,ρ1) that equalizes PPV and

NPV for all groups simultaneously and is not one of the ones in Proposition 3.5.1.2,

proving the claim.

The following example demonstrates that it is sometimes possible to equalize PPV,

NPV, FPR, and FNR using deferrals, but without equalizing the APs themselves:

Example 3.5.1.4 (Equalizing PPV, NPV, cFPR, and cFNR with Thresholds). This

example is presented with continuous support [0, 1] for simplicity. Consider two APs,

one for group g1 and one for g2. Let the AP for g1 be uniform (with density give by

the line P̂(s) = 1), and let the AP for group g2 have density given by the parabola

P̂(s) = 6s(1− s), as shown in Figure 3·5.
Consider the post-processor D̂soft

(τ0,τ1)
. (Note that in the case where the distributions

are continuous, the randomization values that determine what happens when the

result is on the threshold, ρ0 and ρ1, are meaningless because Pr[s = τ0(g)] = Pr[s =

τ1(g)] = 0∀s.) Let τ0(g1) = τ0(g1) = 0.5, let τ0(g2) = 1
6
(5 −

√
7) and let τ1(g2) =

1− 1
6
(5−

√
7) as shown in Figure 3·5.

The PPV and NPV of both groups is 3
4
, and the cFPR and cFNR of both is 1

4
, thus

equalizing all four values.

This example is somewhat unsatisfactory because the base rates are equal in the

two groups. We did not find a similar example without equal base rates.

3.5.2 Equalizing APs with deferrals

As with Claim 3.3.5.1, equalizing the conditional APs between groups renders trivial

the task of downstream decision-making subject to equality of PPV, NPV, cFPR, and

cFNR. Importantly, unlike in Section 3.3.5, equalizing the conditional APs between

groups does not require the groups to have equal base rates, greatly increasing the

applicability of this approach.
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Figure 3·5: This threshold post-processor equalizes PPV, NPV, cFPR, and cFNR

as described in Example 3.5.1.4.

Claim 3.5.2.1. If the conditional APs are equal for two groups, then PPV, NPV,

cFPR, and cFNR are equalized (or simultaneously undefined) by any hard deferring

post-processor D̂ satisfying (1) group blindness and (2) D̂(⊥, g) = ⊥ (∀g).

The additional condition that D̂ defers on input ⊥ is necessary: if D̂ output 1

on all inputs (even on ⊥), then PPV would remain unequal as long as the base rates

differed. The proof is similar to the proof of Claim 3.3.5.1.

Proof of Claim 3.5.2.1. We prove only that PPV is equalized; the remaining prop-

erties may be proved similarly. Let Ŷ = D̂ ◦ Ŝ. All probabilities below are over

Xg ∼ Xg, and the coins of Ŝ and D̂.

PPVŶ ,g = Pr[Y (Xg) = 1 | Ŷ (Xg, g) = 1]

=
Pr[Y (Xg) = 1 | Ŝ(Xg) 6= ⊥]
Pr[Ŷ (Xg, g) = 1 | Ŝ(Xg) 6= ⊥]

·
∑

s∈Supp(P̂g)

(

Pr[Y (Xg) = 1 | Ŝ(Xg) = s] · Pr[Ŝ(Xg) = s | Ŝ(Xg) 6= ⊥]
Pr[Y (Xg) = 1 | Ŝ(Xg) 6= ⊥]

· Pr[D̂(s, g) = 1 | Ŝ(Xg) = s, Y (Xg) = 1]

)

Each factor in this product is equal across groups by the assumptions. Namely,

Pr[Y (Xg) = 1 | Ŝ(Xg) 6= ⊥] is equalized by calibration and equalized APs;

Pr[Ŷ (Xg, g) = 1 | Ŝ(Xg) 6= ⊥] by group blindness and equalized APs; Pr[D̂(s, g) =
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1 | Ŝ(Xg) = s, Y (Xg) = 1] by group blindness; Pr[Y (Xg) = 1 | Ŝ(Xg) = s] by

calibration; and finally Pr[Ŝ(Xg) = s | Ŝ(Xg) 6= ⊥] by equalized APs.

Deferrals are a powerful tool for manipulating, and thereby equalizing, conditional

APs. Consider a function Q : (s, g) 7→ [0, 1]

D̂soft
Q (s, g) =















⊥ if s = ⊥

⊥ w.p. Q(s, g), else s otherwise

If Ŝ is a calibrated classifier, the soft deferring classifier Ŝ ′ := D̂soft
Q ◦Ŝ is still calibrated.

For a group g, let P̂g be the AP of Ŝ and P̂ ′
g be the AP of Ŝ ′. There is a simple

graphical intuition for the shape of P̂ ′
g, as shown in Figure 3·6. More formally,

P̂ ′
g(s) =

P̂g(s)(1−Q(s, g))

1−∆
(3.7)

where ∆ := Pr[Ŝ ′(Xg) = ⊥ | Ŝ(Xg) 6= ⊥] =
∑

s∈Supp(P̂g)
P̂g(s)Q(s, g).

By appropriate choice of Q, any conditional AP can be transformed into almost

any other conditional AP.

Theorem 3.5.2.2. Let P̂g be a conditional AP of a soft classifier Ŝ on group g, and

let P̂∗ be any probability mass function such that Supp(P̂∗) ⊆ Supp(P̂g). Then there

exists Q for which the calibrated AP P̂ ′
g of D̂soft

Q ◦ Ŝ is equal to P̂∗.

Proof of Theorem 3.5.2.2. Let ∆ = 1−mins∈Supp(P̂g)
P̂g(s)

P̂∗(s)
. For all s ∈ Supp(P̂g), let

Q(s, g) = 1− P̂
∗(s)

P̂g(s)
· (1−∆).

Observe that

∑

s∈Supp(P̂g)

P̂g(s)Q(s, g) =
∑

s∈Supp(P̂g)

(

P̂g(s)− (1−∆)P̂∗(s)
)

= ∆
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and hence ∆ is defined as in Equation 3.7, where we used the fact that
∑ P̂g(s) =

∑ P̂∗(s) = 1 in the last line. Plugging into the earlier formula for P̂ ′
g (Equation 3.7)

completes the proof.

Together, Theorem 3.5.2.2 and Claim 3.5.2.1 suggest a general framework for

using deferrals to post-process a soft, possibly deferring classifier Ŝ which is groupwise

calibrated into a hard deferring classifier which simultaneously equalizes PPV, NPV,

cFPR, and cFNR across groups, as follows.

For each g ∈ G, let P̂g be the conditional AP of Ŝ for group g. Let P̂∗ be

any conditional AP such that Supp(P̂∗) ⊆ ∩g∈GSupp(P̂g). Use Theorem 3.5.2.2 to

equalize the conditional APs for all groups g ∈ G. Then use any hard post-processor

D̂ satisfying the requirements of Claim 3.5.2.1 to make the ultimate deferring hard

classifier. This method is shown in Figure 3·6.

This framework allows for enormous flexibility in the choice of both P̂∗ and D̂,

even when considering just two groups g1 and g2. In Figure 3·10, we illustrate the

first step of the framework on a COMPAS dataset using min{P̂g1 , P̂g2} as P̂∗, where

g1 is African-Americans and g2 is Caucasians. In Figures 3·8 and 3·9 in Section 3.6,

we also use P̂g1 and P̂g2 as P̂∗.

One can design P̂∗ to achieve additional goals. For example, the choice P̂∗ =

min{P̂g1 , P̂g2} results in equal deferral rate across each group (equal to the total

variation distance between the two initial conditional APs). The framework can

be further expanded by combining deferrals with other methods for manipulating

conditional APs, including the mass-averaging discussed in Section 3.3.5. A better

understanding of these techniques is left for future work.
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Figure 3·6: Choosing deferrals cleverly allows transforming one AP into another
(conditional) AP. In this example, the solid orange line is the original AP P̂g =

Pr[Ŝ(Xg) = s]. By deferring at the rates indicated by the shaded region, the resulting

conditional AP P̂ ′
g = Pr[Ŝ(Xg) = s | Ŝ(Xg) 6= ⊥] is represented by the dark blue

line. The area of the shaded region is ∆.

3.6 Experiments on COMPAS data

We test our methodology on the Broward County data made publicly available by

ProPublica [11]. This data set contains the recidivism risk decile scores given by

the COMPAS tool, 2-year recidivism outcomes, and a number of demographic and

crime-related variables on individuals who were scored in 2013 and 2014. We restrict

our attention to the subset of defendants whose race is recorded as African-American

or Caucasian. These will form the two groups with respect to which we wish to

examine different fairness criteria. After applying the same data pre-processing and

filtering as reported in the ProPublica analysis, we are left with a data set on n =

5278 individuals, of whom 3175 are African-American and 2103 are Caucasian.

It has been shown that the COMPAS scoring mechanism is an approximately

calibrated soft classifier with 10 possible outcomes [81, 124]. We note here that the

distribution of the COMPAS scores differs significantly across the two groups. In

particular, the scores for Caucasians are more evenly distributed as opposed to the

skewed distribution seen with African-Americans.
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deferrals will be with this method.

3.7 Models of deferring

Whether or not a classifier is thought of as promoting fairness depends on the con-

text; this is true for both deferring and non-deferring classifiers. In addition to the

myriad considerations present for non-deferring classifiers, deferring classifiers and

downstream decision makers introduce some additional axes for consideration.

Cost to the individual. Even though it is not intended to be a final decision, a

deferral may impose burdensome costs to an individual being classified. It may mean

that a defendant remains in jail while additional hearings are scheduled, that invasive

and expensive medical tests are ordered, or that continued investigation engenders

social stigma. These costs may not be borne equally by all individuals, and may

depend on their group membership, their true type, or other factors. For example, a

delay in granting a loan to an applicant may overly burden poorer applicants, even

those very likely to repay.

Clear-cut answer. Some classification tasks have relatively clear-cut answers. Im-

age classification (e.g. for content moderation) often has a relatively simple “true”

answer as to whether the image contains a certain object or not. The more “factual”

the question, the more clear-cut the answer (e.g. “does this image contain nudity”

has a clearer-cut answer than “is this image offensive.” However, even the murkiest

image classification task is still more clear-cut than a prediction question. Recidivism

prediction tools tend to identify a group of people where a certain percentage go on

to recidivate later. This is no longer a matter of interpretation, it is now a matter of

prediction. Even though a calibrated tool will likely return accurate percentages over

a period of time, it is difficult to attribute that score to every person that has it, and
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furthermore if the circumstances change, the prediction is no longer valid.

Cost to the decider. Allowing deferrals might make the decision process more

cost-effective: Given that in most cases making a determination is cheap, one may

now invest more in the deferred cases. For instance, a team of trained moderators

might be hired to manually review content on which an automated content filter

defers, or an expensive investigation might be required to adjudicate insurance claims

that are not cut-and-dry.

Accuracy of downstream decision. One reason to defer is to introduce a delay

that will allow for a more accurate decision. Thus the usefulness of allowing a classifier

to defer depends on the accuracy of the downstream decision maker. Additional

medical tests might allow for highly accurate diagnoses. But a judge deciding bail

will be prone to a variety of errors and biases.

“Fairness” of downstream decision (and of composed classifier). Similar

to the above, the fairness of the downstream decision maker (however one wants to

interpret that) will impact our interpretation of the deferring classifier. Here one

should take into account also the “procedural” aspect of the two-step evaluation;

here it is important that the downstream classifier will be deemed as “more fair” and

“more knowledgeable” than the first stage. Exploring fairness criteria for systems

of deferring classifiers and downstream decision-makers, e.g. as done in [57] did for

non-deferring classifiers, is an interesting direction for future work.

Scale and scope of classification algorithm. Is the same algorithm being used

across many different locales (e.g. image classification by large social media compa-

nies)? Or are many different algorithms being used for small settings (e.g. judges

will judge differently from each other)?
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Frequency of decisions. In many settings, the deferring classifier is a fast, auto-

mated test (e.g., automated risk assessment) while the downstream decision maker

is a slow, manual process (e.g., parole board). However, we anticipate situations in

which there may be repeated deferring classifiers chained together which comprise

the complete decision making pipeline. For example, a doctor might have a sequence

of diagnostic tests at her disposal as needed, or a bank might allow many rounds of

appeal for loan applications, but with lengthy delays. Some applications might even

permit hundreds or thousands of near-continuous deferring classifiers. As an example,

consider a live video streaming platform that passively monitors streams for inappro-

priate content in real time. The automated passive monitor might decide the content

is inappropriate, and shut it down; appropriate, and continue passive monitoring; or

suspicious (by deferring), and begin active monitoring by devoting more computing

resources or bringing in a human moderator.

3.7.1 Technical implications of deferral model

The contextual considerations discussed above directly impact the appropriate ap-

plication of a deferring classifier and its goals. An obvious goal is to minimize the

overall rate of deferrals while maintaining the best possible FPR, FNR, PPV, and

NPV for the classifier conditioned on not deferring, and without considering the dis-

tribution of deferrals. However, one might desire very different properties from the

distribution of deferrals in different contexts. The deferrals may be distributed differ-

ently among individuals with different true type, group membership, or soft classifier

scores, while the burden imposed by deferrals and errors may differ greatly between

different populations.

In a medical diagnosis scenario, a false negative (i.e., failing to diagnose a disease)

may have serious consequences, and deferring to run additional non-invasive and

inexpensive additional tests may be generally acceptable. On the other hand, an
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insurance provider may prefer to minimize expensive investigations by paying out

more false claims.

The context may also affect the way one defines the deferral analogues of FPR and

FNR. While calibration, PPV, and NPV apply directly to deferring classifiers, it is

not clear how best to generalize the definitions of error rates. For example, consider

false positive rate: by Definition 3.2.3.1, the false positive rate of a non-deferring hard

classifier Ŷ for a group g is FPRŶ ,g = Pr[Ŷ (Xg) = 1 | Y (Xg) = 0].

The approach we take in Section 3.5 is to condition on not deferring (Defini-

tion 3.5.0.1). A deferring classifier Ŷ that output 1 on half of true negative instances

(within a g) would have conditional false positive rate as low as 0.5 (if it never output

⊥ on true negatives) or as high as 1 (if it never output 0 on true negatives). The

conditional false positive rate is agnostic towards the downstream decision maker. It

codifies no value judgements as to whether a deferral is desirable or undesirable as an

individual nor whether deferrals ultimately result in accurate or inaccurate decisions.

(This is itself a value judgement.)

A second approach is to leave the original definition unchanged. The same defer-

ring hard classifier as above would have unconditional false positive rate 0.5. This

would be true regardless of whether Ŷ output 0 or ⊥ on the other half of true negative

instances. We call this the unconditional false positive rate. The unconditional false

positive rate effectively categorizes deferrals as correct outputs. This may be appro-

priate if the downstream decision maker has very high accuracy. If, for example, a

doctor orders an additional, more accurate diagnostic test in response to a deferral,

the unconditional false positive rate might be appropriate.

Finally, a third approach is to base our measure of inaccuracy on true negatives

instead of false positives, a reverse of the above.

Just as in the case of non-deferring classifiers, the relationships among these con-



152

trasting group statistics, their meaningfulness in different settings, and their applica-

tion in different settings are not well understood and deserve further study.
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Chapter 4

Improvements to zero-knowledge

argument systems

This section is based on joint work with Yaron Gvili and Mayank Varia [157], and

with Yaron Gvili, Julie Ha, Mayank Varia, Ziling Yang, and Xinyuan Zhang [155].

4.1 Introduction

As we described in §1.2.3, the work in this chapter is not inherently interdisciplinary,

instead it focuses on improvements to the proof size of two zero-knowledge arguments

of knowledge. We provided several uses of zero-knowledge proofs in both the legal

setting and a more typical setting in §1.2.3 which described how the improvement

of these protocols is a meaningful step forward in scenarios where these proofs are

used. We will first describe the myriad of uses zero-knowledge proofs have found

in both legal settings and more traditional cryptography settings, then we briefly

summarize the main methods for creating zero knowledge proofs and their tradeoffs,

and then finally we describe our two specific zero-knowledge proof improvements for

the remainder of the chapter.

Uses of zero-knowledge proofs

Zero-knowledge proofs have transformed from a theoretical idea to a highly practical,

widely-used cryptographic primitive. Today they find uses in delegated computa-

tion [17, 73, 82], verifiable computation on secret data [94, 121, 243], digital signature
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schemes [28, 188], identification schemes [67], malicious-secure multi-party compu-

tation protocols [22, 38, 142, 190, 213], anonymous credentials and proofs of iden-

tity [27, 68, 116], digital watermarking [2, 3, 97], voting [151, 236], and a wide vari-

ety of roles in distributed computation blockchain, and anonymous cryptocurrency

applications [33, 34, 225,244,321].

Beyond these typical use cases, they have also found more specialized roles in

various legal areas, which we proceed to describe in this section.

Glaser et al. [141] propose a zero-knowledge proof for nuclear armament verifi-

cation. Under some nuclear arms-control agreements, international inspectors must

inspect individual nuclear warheads to verify that they are of the type claimed, i.e.

they contain specific quantities of various materials. However, states generally do not

want to reveal detailed classified information about the warheads themselves to the

inspectors. Glaser et al. propose a zero-knowledge proof for verifying the substances

in a warhead, taking advantage of the fact that two warheads containing the same

contents would result in similar “radiographs”: patterns of neutron transmission and

emission counts when irradiated with high-energy neutrons (aside from statistical

noise), whereas changing the contents of the warhead would yield a different “finger-

print.” Rather than revealing the fingerprint itself, inspectors would use a device to

measure the noisy “difference” between the expected and actual radiographs. If the

warheads are of the type they say they are, then the inspector will see random noise

(and learn nothing about the highly classified radiograph of the warhead itself). How-

ever, if the warhead actually contains different material than is claimed, the inspector

will see a large value: the difference between the expected and actual radiographs.

This will inform them that the materials in the warhead are different than its owner

claimed. This example demonstrates the potential for use of zero-knowledge proofs

even in highly sensitive and political situations.
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Fisch et al. [122] provided a zero-knowledge protocol for proving non-matches of

DNA with crime scene evidence while keeping the genome itself private, and one for

proving a parent-child relationship in DNA. Their methods address the privacy of not

only the abstract DNA-comparison process itself, but also the physical preparation

of samples.

A number of works propose zero-knowledge proof-based methods for cryptograph-

ically enforcing rules governing data surveillance or warrants [126, 147, 204]. This

number grows further if you liberally consider “zero-knowledge” to include multi-

party computation, private information retrieval, or private set intersection-based

approaches [186, 265]. The goal of these methods is to verify cryptographically that

policies are actually being followed, since the normal transparency that would allow

easy auditability is not present in these classified or otherwise secret contexts.

A whole host of functionalities have been proposed to be performed as “smart

contracts” [277], contracts that consist of a block of code that executes when various

conditions are met, typically enabled by a blockchain of some kind (see [227] for

a general overview, and see [16] for Bitcoin-specific smart contracts). Most smart

contracts make significant use of zero-knowledge proofs; a typical contract would be

for Alice to transfer some funds to Bob if and only if Bob proves (in zero knowledge)

that he has fulfilled the terms of the contract.

Bamberger et al.’s work on “verification dilemmas” [19] is an interdisciplinary work

that describes four particular areas of law in which zero-knowledge proofs would be

particularly helpful. The first is identity verification, where zero-knowledge proofs

would provide an appealing alternative to high amounts of aggregated data about in-

dividuals being used as a surrogate attempt at verification. “Anonymous credentials”

are a classic zero-knowledge use case [67], for instance proving your age, address,

citizenship, or other properties, all without disclosing your identity. However, as a
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practical matter, the key management and other infrastructure that would be re-

quired to enable this sort of interaction is unlikely to garner the political support

needed for its adoption in America anytime soon. The one exception is in finance,

where e- and cryptocurrency have warmed people to the idea of proving that one

has the funds to execute a transaction without revealing any other information. The

second verification dilemma involves the buying and selling of information, avoiding

Arrow’s fundamental paradox that in order to sell information to a potential buyer,

a seller must first describe that information, but doing so gives up the information

and nothing remains to sell (modulo external legal protection of the information, e.g.

intellectual property law). As the authors note, much information of this style is “not

easily digitized,” however there are good opportunities here for multiple companies

to determine what portion of their user base overlaps, prove the efficacy of a propri-

etary machine learning algorithm or a training dataset, or show that an algorithm is

“novel” by showing that it is different from other algorithms. Their third category is

cryptographic verification of government oversight, similar to the examples described

earlier but focusing more on tax auditing by the IRS. Last, since in order to accuse

an organization of trade secret violation, the plaintiff would have to reveal some in-

formation about their secret information to the courts or the other company (which

is required so as to allow the defendants to adequately defend themselves), many

potential plaintiffs choose not to sue at all, since revealing the information may be

more costly than whatever they would recover from the defendant. Zero knowledge

proofs might be used to demonstrate some property of the information without being

forced to disclose the information itself, potentially avoiding needing to reveal the

trade secret to the court in order to prosecute.

We hope these examples demonstrate that there is a good deal of interest in

improving zero-knowledge proofs for use in the legal setting. We next proceed to
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provide an introduction to zero-knowledge proofs in general, and then describe the

two specific proof improvements we created as part of this work.

The landscape of zero-knowledge proofs and arguments

As described in the last section, zero-knowledge proofs are a useful cryptographic

primitive for verifiable yet confidential computing. Both the interactive [144, 146]

and non-interactive [52, 105] variants of zero-knowledge (ZK) proofs (respectively,

arguments) allow an unbounded (resp., polynomially-bounded) prover P to convince

a verifier V that a relation C is satisfiable while hiding the witness to this fact. Our

work in §4 focuses on ZK arguments.

There have been substantial advances over the past decade to improve the effi-

ciency of ZK arguments along several metrics. We categorize these advances into

three groups based on their tradeoffs between proof size (or total communication for

interactive protocols), RAM requirements, and whether the proofs are verifiable to

the general public or a single designated verifier.

First, ZK-SNARKs and ZK-STARKs offer sublinear proof size and verification

time (between logarithmic and square root of the circuit size |C|) but require the

prover to use enormous amounts of memory. There is a long line of research into ZK

succinct interactive arguments of knowledge (SNARKs), building upon the work of

Killian [197]. Initial constructions required superlinear prover time and per-circuit

structured setup [34, 37, 44, 55, 94, 101, 136, 152, 153, 214, 243], and subsequent work

achieved linear prover time and permitted universal structured setup [56,80,130,131,

154, 218, 324]. The newest ZK-SNARKs and ZK scalable transparent arguments of

knowledge (STARKs) leverage ideas from interactive oracle proofs [36, 252] or the

sumcheck protocol [79, 215] to remove structured setup altogether but have slightly

higher proof size [10, 35, 42,64,65,267,268,312,328].

Second, there exist ZK arguments that scale to large statements due to their
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moderate RAM requirements (approximately security parameter × circuit size) and

linear prover and verifier runtime, but that sacrifice public verification because they

need a designated verifier to maintain secret randomness. ZK proofs based on privacy-

free garbled circuits [127,133,163,182,326] require a designated verifier to garble the

circuit and keep the wire labels hidden until the end of the protocol. A separate line of

research [24,316] uses vector oblivious linear evaluation (VOLE) [60,61,232] to build

proofs with a highly efficient (and optionally non-interactive) online phase, after a

one-time interactive preprocessing phase is used to establish correlated randomness

between the prover P and verifier V .

Organization of this chapter

In §4.2-§4.6, we provide a concrete proof size improvement in the MPC-in-the-head

paradigm of Ishai et al. [177]. In §4.7-§4.11, we describe a concrete proof size im-

provement based on Ligero [10].

4.2 Introduction to TurboIKOS

We begin with our improvement in the MPC-in-the-head paradigm. Our construc-

tion TurboIKOS, like most MPC-in-the-head proofs, has low RAM requirements, is

publicly verifiable, has transparent setup, has linear prover and verifier runtime in

the circuit size |C|, and can be made non-interactive in the Random Oracle Model

via the Fiat-Shamir transform [120].

We present two variants of TurboIKOS. The first variant (§4.4.3), for large fields,

improves Baum and Nof’s [25] protocol based on sacrificing Beaver triples, and reduces

the number of field elements sent per multiplication gate from 4 to 3. The second

version (§4.4.4) reduces the number of field elements per multiplication gate further,

from 3 to 2, and may be used in smaller fields.
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4.2.1 The MPC-in-the-head paradigm

MPC-in-the-head is a method to construct a zero knowledge proof from a secure

multiparty computation (MPC) protocol. Given an NP relation encoded as a circuit

C, the prover P runs all parties in a secure computation of C beginning with a sharing

of the witness, and the verifier V challenges P to open some of the views. Zero

knowledge follows from the privacy of the MPC protocol, and soundness is achieved

because a malicious P must have created inconsistent views and V finds them with

noticeable probability. The seminal work of Ishai et al. [177] demonstrated that this

transformation works for any MPC protocol. Subsequently, a line of works designed

specific protocols with increasingly better proof size: ZKBoo [138], ZKB++ [76], Katz

et al. [188], and Baum-Nof [25].

Table 4.1 shows proof sizes for MPC-in-the-head constructions in which the prover

P runs R iterations of an MPC protocol, each of which involves N parties securely

evaluating a circuit C with I input wires, O output wires, and M multiplication

gates. When using an ordinary MPC protocol like SPDZ [100], a multiplication gate

requires all parties to broadcast one message that is stored in the resulting proof,

yielding in a proof size of Ω(MNR). To do better, MPC-in-the-head constructions

make optimizations that are not acceptable for “normal” MPC protocols: they design

circuit decompositions that look like MPC party views, yet can only be computed

when a single entity P knows the inputs of all MPC parties. In circuit decompositions,

the emulated MPC parties don’t communicate to compute the views, but rather only

to check their consistency.

We briefly survey the main ideas in each construction and the impact they have

on the proof size per multiplication gate, which tends to be the largest contributor

to the proof size.

• ZKBoo [138] and ZKB++ [76] are based on the N = 3 party replicated secret
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Protocol Proof size Soundness error

IKOS+SPDZ [100,178] R · (6MN + (I +O)N) (1/N)R

ZKBoo [138] R · (2M + 2I + 2O) (2/3)R

ZKB++ [76] R · (M + I) (2/3)R

Katz et al. [188] R · (2M + I + logN + logR(P )) max0≤i≤R
(P−R+i

P−R )
( P
P−R)N i

Baum-Nof [25] R · (4M + I + logN) (1/N)R

ΠTurboIKOS (this work) R · (3M + I + logN) (1/N)R

Π̃TurboIKOS (this work) R · (2M + I + logN +NU) See Theorem 4.5.0.3

Table 4.1: Proof size (in # of field elements) and soundness error (for large fields)
for several MPC-in-the-head protocols. Some lower-order terms are omitted for
legibility. N is the number of parties, M is the circuit size (number of multiplication
gates), I and O are the number of input and output wires for the circuit, respectively,
and R is the number of times the protocol is repeated. Note that ZKBoo and ZKB++
are only constructed for N = 3. P is a parameter specific to [188] indicating how
many Beaver triples are committed to in advance. U is a new parameter introduced
in §4.4 of this work.

sharing MPC protocol of Araki et al. [13]; they do not generalize to arbitrary

choices of N . All data is secret shared using 3-out-of-3 additive sharing, and

addition can be done locally. Multiplication requires sending 3 messages, each

of which is a function of a different subset of 2 of the 3 shares of the input wires.

The verifier V receives two shares, and therefore can verify 1 of the 3 messages

sent during each multiplication.

• ZKB++ and all subsequent works sample shares pseudorandomly. Given a

seed σp for each party p, to share a value vw on wire w, only the offset ew =

vw+
∑

p PRF(σp, w) is recorded in the proof, reducing the cost per multiplication

gate but requiring a (cheap) initial setup to distribute seeds.

• Katz et al. [188] extends MPC-in-the-head to accommodate MPC protocols

with preprocessing. They build Beaver triples using a cut-and-choose approach,

where some triples are opened and checked during preprocessing. The proof size

(R logR(P )) required to assist V in the preprocessing step is independent of the
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circuit size. The remaining Beaver triples are assumed to be valid and used to

verify the real execution.

• Baum-Nof [25] also uses pseudorandom shares and Beaver triples in a variant

of the SPDZ MPC protocol, but avoids cut-and-choose in favor of sacrificing

one Beaver triple to check the validity of each multiplication gate.

For each multiplication gate: ZKB++ requires 1 field element to represent the offset

ew for the output value (but requires more repetitions than the rest), Katz et al. re-

quires 1 more field element to represent the offset for the Beaver triple value, and

Baum-Nof requires 2 more field elements to test whether the sacrificed Beaver triple

and the circuit values are consistent. In this work, we introduce two new sacrificing-

based MPC-in-the-head constructions that require 1 and then 0 field elements to

perform this consistency test; the latter introduces an additive overhead that can be

smaller than that of Katz et al. for some parameter settings. See Table 4.1 for more

details about the proof size for each protocol.

4.2.2 Overview of our construction

The simplest way to describe our first protocol variant is that we combine the tech-

niques used in the Baum-Nof ZK proof with the Turbospeedz MPC protocol [31] so

that sacrificing a Beaver triple costs only one field element instead of two, while pre-

serving the soundness error. Our second variant replaces the remaining field element

per multiplication gate with some prover advice about the overall circuit, reducing

the proof size so that it is competitive with Katz et al. [188] but with a different set of

parameter tradeoffs. In this section, we briefly describe the Turbospeedz construction

and explain the challenge when integrating it into MPC-in-the-head.

SPDZ and Turbospeedz. The SPDZ line of works [38, 100, 237] is a popular

family of MPC protocols that offloads the (expensive) generation of Beaver triples
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into a preprocessing phase so that the online phase has free additions and only requires

broadcasting 2 elements per multiplication gate (1 per input wire). Turbospeedz [31]

saves 1 element per multiplication gate by exploiting a redundancy: when generating

shares of an input wire w pseudorandomly such that the shares of the value are

[vw] = ew+[λw], the public offsets ew can also serve “for free” as the broadcast values

for the input wires, and the only effort required is to create the new offset for the 1

output wire.

The challenge of TurboIKOS. When SPDZ is used in MPC-in-the-head to check

a multiplication gate whose input and output wires are claimed to be a Beaver triple

〈vx, vy, vz〉, it suffices to use the semi-honest protocol without MAC checks, and for

the prover P to cheaply generate an independent Beaver triple 〈λ̂x, λ̂y, v̂z〉. However,

with Turbospeedz there is a problem: the protocol transmits 2 field elements in the

preprocessing stage, in addition to the 1 field element in the online stage. This is fine

from an MPC perspective where preprocessing work might be viewed as “free,” but is

unacceptable for MPC-in-the-head where all elements add equally to the proof size.

To overcome this issue, we turn to another member of the SPDZ family: Overdrive

[190]. The Overdrive protocol includes a clever method for generating a partially-

correlated Beaver triple 〈λx, λ̂y, v̂z〉 where the shares [λx] for the first element of the

Beaver triple are the same as the shares for the true value vx. With a common element

between the two Beaver triples, all of the setup calculations become linear steps

that can be computed locally by the parties. Integrating Turbospeedz’s function-

dependent preprocessing with Overdrive’s Beaver triple generation mechanism is one

of the accomplishments of our TurboIKOS protocol.

Implementing Picnic digital signatures. We provide an open source implemen-

tation of our protocol [156] and evaluate our proof size when using a variant of the
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Picnic post-quantum digital signature scheme [224] that uses AES as its block cipher,

following the techniques introduced by BBQ [104]. Picnic signatures are based on an

MPC-in-the-head proof of knowledge of a secret key k such that AESk(x) = y, where

the corresponding public key is (x, y). As we show in §4.6.1, our protocol returns the

smallest proof size among streaming- and memory-friendly systems using less than 32

emulated MPC parties. Our signature sizes are also competitive with those of Ban-

quet [23], an independent recent work that involves a memory-intensive polynomial

interpolation over the entire circuit.

4.3 Preliminaries

4.3.1 Notation

Throughout this work, P denotes the prover and V denotes the verifier. We let C

denote an arithmetic circuit corresponding to an NP relation with a canonical output

message corresponding to logical true (i.e., the witness satisfies the relation). We use

ADD, MUL to denote addition and multiplication gates, respectively.

The circuit has a set of gates G of which a subset M are MUL gates, as well as a set

W of wires, of which there are subsets I of inputs to the circuit and outputs of MUL

gates. O ⊆ W denotes the output wires for the circuit. By abuse of notation, we use

the same variables to denote the size of each set; for instance, we let M denote the

number of multiplication gates when it is clear from context that we are describing

an integer rather than a set.

We consider an MPC-in-the-head protocol execution with N parties that is re-

peated R times. If a single iteration of a protocol has soundness error δ, then we can

run R = ⌈ κ
log(1/δ)

⌉ independent iterations to reduce the soundness error to 2−κ (where

all logarithms are taken base-2 in this work).

For computation and equations, we use F to refer to a finite field and F
∗ to refer
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to the units of that field. We generally use κ as our security parameter and [v] to

refer to an additive secret sharing of a value v among the N parties.

We say a party is p.p.t. to denote that it is probabilistic polynomial time.

4.3.2 Definitions

Pseudorandom Functions and Commitments. We require the existence of a

pseudorandom function PRF and a computationally hiding commitment scheme Com

in our security analysis in §4.5. Our implementation uses hash-based commitments

that model the hash function as a random oracle and assume that AES acts as a

PRF. Below we give the formal definitions for PRF and Com:

Definition 4.3.2.1 (Pseudorandom Function). Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
be an efficient, length-preserving, and keyed function. F is a pseudorandom function

with soundness κ if for all adversaries A that run in at most q time steps, A’s advantage

AdvPRF(A) = |Prk[AF(k,−) = 1] − PrH [A
H = 1]| at distinguishing the pseudorandom

function from a random oracle H is at most q/2κ.

Definition 4.3.2.2 (Commitment). A commitment scheme is a protocol between

two parties S and R with the following algorithms:

• Com(m; r): The sender S has an input message m ∈ {0, 1}∗ and security param-

eter 1n. The algorithm Commit outputs a public commitment c to the receiver

R and stores the private randomness r.

• Decom(c,m, r): the sender S sends (c,m, r) to the receiver R, who then either

accepts and outputs m or rejects.

A computationally secure commitment scheme satisfies the following properties:

• Completeness: If (c, r) = Com(m; r), then in Decom(c,m, r) the receiver R
accepts and outputs m.

• (Computational) Hiding: For any two message pairs m,m′ ∈ {0, 1}∗, any

receiver R∗ running in q time cannot distinguish their respective commitments

AdvCom(R∗) = |Pr[R∗(Com(m; r)) = 1]−Pr[R∗(Com(m′; r′)) = 1]| except with
probability at most q/2κ.
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• (Computational) Binding: No adversarial sender S∗ running in at most q time

has more than probability q/2κ of outputting c,m,m′, r, r′ such that m 6= m′,

and Decom(c,m, r) and Decom(c,m′, r′) both accept.

While our main construction can support arbitrary commitment schemes, in this

work we focus on the hash-based commitment scheme in the random oracle model, in

which Com(m; r) = H(m, r) feeds the input message and randomness into the random

oracle and Decom(c,m, r) = (m, r) provides the preimage to the hash. The binding

of this scheme follows from a birthday bound analysis: if a random oracle has 2κ

bit output length and an adversary makes at most q queries to this oracle, then the

probability that the adversary finds a collision in the oracle is at most q2/22κ, and a

collision is necessary to break the binding property of the commitment scheme. The

hiding property can be proved similarly.

There are a few optimizations that prior works have used here to save space. First,

when committing to a list of messages 〈m1,m2, . . . ,mℓ〉, the sender can provide a

succinct commitmentH(Com(m1, r1), . . . ,Com(mℓ, rℓ)) to the entire list, again thanks

to collision resistance. Second, if m is already known to the receiver, then it suffices

to send only r during decommitment. Third and most ambitiously, because we will

only commit to strings that already have min-entropy κ, when generating a signature

scheme we can go further and remove the randomness r from the Com and Decom

algorithms to create a deterministic scheme in which decommitments are free when

m is already known to the receiver. This strategy breaks the hiding property of the

commitment and thus the zero knowledge property of the schemes we will construct,

but it will suffice for our signature construction; we refer readers to Katz et al. [188,

§3.1] for details.

Honest Verifier Zero-knowledge Argument of Knowledge. Next, we formally

define the notion of ZK arguments over an NP-relationR(x, w) as a two-party protocol
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involving two p.p.t. algorithms, a prover P and a verifier V . Both parties have the

same NP statement x, and only the prover receives its corresponding witness w. The

parties interact to determine whether R(x, w) = 1 without revealing the witness. We

restrict our attention to the honest verifier setting in which V never deviates from the

protocol.

Definition 4.3.2.3. The protocol (P , V) is an honest verifier ZK argument for the

relation R(x, w) if it satisfies the following properties:

• Completeness: If P and V are honest and R(x, w) = 1, V always accepts.

• Soundness: For any malicious and computationally bounded prover P∗, there

is a negligible function negl(·) such that a statement x is not in the language

(i.e., R(x, w) = 0 for all w), then V rejects on x with probability ≥ 1−negl(|x|)
when interacting with P∗.

• Honest verifier computational zero knowledge: Let V iewV(x,w) be a ran-

dom variable describing the distribution of messages received by V(x) from

P(x, w). Then, there exists a p.p.t. simulator Sim such that for all x in the

language, the distributions of Sim(x) and ViewV(x,w) are computationally indis-

tinguishable.

In this work, we will construct a ZK argument of knowledge, which provides a

stronger knowledge soundness guarantee that if a bounded-time malicious prover P∗

can make the verifier accept a statement x with non-negligible probability, then there

exists an extractor EP∗

(x) that can output a witness w such that the relation holds

R(x, w) = 1.

Additionally, we restrict our attention to honest verifier ZK in this work because

our protocol TurboIKOS is also public coin and constant round, so it can be trans-

formed into a non-interactive argument using the Fiat-Shamir transform.

Secure Multi Party Computation (MPC). An MPC protocol allows N players

to jointly compute a function of their respective inputs while maintaining the privacy
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of their individual inputs and the correctness of the output. In addition, the protocol

should prevent an adversary who may corrupt a subset of players, from learning

additional information or harming the protocol execution. A party’s view in MPC

contains that party’s input, randomness, and any messages received by that party.

For use in MPC-in-the-head, secure computation protocols must satisfy t-privacy,

meaning that the view of any subset t < N of the parties can be simulated (see [177]

for a formal definition).

4.4 Construction

In this section we describe the two versions of our protocol. ΠTurboIKOS has size

roughly 3M and is described in Figures 4·1 and 4·2. Π̃TurboIKOS has size roughly 2M

and is described in Figures 4·1 and 4·4. We start by describing the Baum-Nof [25]

SPDZ-like protocol and the Turbospeedz MPC protocol [31]. Then, we show how to

incorporate Turbospeedz into the MPC-in-the-head paradigm to reduce the amount

of communication per MUL gate, creating protocol ΠTurboIKOS. Last, we show how

the prover can provide a different commitment to some of the proof components,

removing another element per MUL gate and yielding protocol Π̃TurboIKOS.

4.4.1 Starting point: SPDZ and Baum-Nof

We use the MPC-in-the-head paradigm introduced by Ishai et al. [177] combined with

a semi-honest version of the (N − 1)-private SPDZ MPC protocol [100] as a starting

point for our zero-knowledge proof using MPC-in-the-head protocol. In IKOS, a

prover simulates an MPC protocol for all parties and commits to a view for each

party containing the party’s randomness, input, and messages received. To save proof

space, an additional “broadcast channel” is committed to for messages that are sent

to all parties, rather than writing the same value in all party views. Then the verifier

chooses a subset of the parties and challenges the prover to open the committed views
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of these parties. The verifier then confirms that the views of the opened parties are

consistent, that is, the message party i sent to party j is the same in views of both

those parties. For N -party MPC protocols that only send broadcast messages and do

not contain any private messages between parties, the verifier opening T parties will

have a T
N

chance of catching a prover who cheats by creating inconsistent views: the

“receiving” half of the message is always revealed in the broadcast channel, and these

are checked for consistency with the revealed parties’ “sent” messages. By repeating

this process R times with fresh randomness, the verifier can shrink the probability of

error by a power of R.

We start with the variant of semi-honest SPDZ [100] used by Baum-Nof [25]. Let

N denote the set of parties and M denote the set of multiplication gates in the circuit

C. The parties hold sharings of the inputs [xm] and [ym] for each MUL gate m ∈M ;

since this MPC protocol is being emulated by a prover who knows the value on the

wire, the parties additionally have (and commit to) a sharing of the gate’s output

[zm]. The prover generates a random multiplication triple, 〈am, bm, cm〉, which will

be “sacrificed” to check a multiplication constraint in a MUL gate. The verifier will

send a random challenge εm ← F. Each party does the following:

1. Broadcast [fm] = εm[xm] + [am] and [gm] = [ym] + [bm]

2. Use the recombined f and g to compute

[ζm] = εm[zm]− fmgm + fm[bm] + gm[am]− [cm]. (4.1)

Baum and Nof show that if either 〈am, bm, cm〉 or 〈xm, ym, zm〉 is not a valid multipli-

cation triple, this value ζm will be nonzero with probability at least 1−1/|F| over the

choice of εm. We will prove similar claims for different values, and linear combinations

thereof, in Lemmas 4.4.3.1-4.4.3.2.
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To save proof space, rather than broadcasting the ζm values for each MUL gate

m, an additional challenge variable ε̂m ∈ F is sent by the verifier V and the prover

P responds by sending a linear combination [Z] =
∑

m∈M ε̂m[ζm] of the secret values

and public coefficients. If the prover is honest then Z = 0. Baum and Nof show

(Proposition 1 of [25]) that Z will be nonzero if at least one MUL gate constraint is

violated with probability at least 1 − 2/|F|. Later in Lemma 4.4.3.2 of this paper

we will improve this bound for a batched set of ζm values to a 1/|F| error using a

very-slightly different batching technique.

If 1/|F| does not yield sufficient soundness error, we can reduce this error by doing

multiple batched checks. To do so, we reveal linear combinations [Z1], . . . , [ZU ], all

over the same [ζm] shares, but using different random ε̂m choices provided by the

verifier. Let U be the number of these checks.

Naively, this protocol broadcasts (2M+U)N elements since each party broadcasts

their f shares and g shares for each multiplication gate, plus [Z1], . . . , [ZU ]. Later in

this work we will show multiple ways to reduce this size with different tradeoffs, by

taking advantage of the fact that V has corrupted N − 1 parties. We emphasize that

all parties’ shares must still be committed to before P knows which party will remain

uncorrupted.

To compress the parties’ views, we can generate the shares of all values pseudo-

randomly, with only one public “offset” value per wire. Then, for each multiplication

gate, the prover only needs to broadcast the offset values for f and g, along with the

offsets of the true output wire z and the Beaver triple product c. Hence, the proof

contains 4 field elements per multiplication gate, as shown in Table 4.1.

4.4.2 Introducing Turbospeedz

Turbospeedz [31] generally shows how to have only one broadcast per multiplication

gate instead of two in normal SPDZ by adding a function-dependent preprocessing
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step where the circuit to be computed is known, but the input to the circuit need not

yet be known. The idea is to add a sharing of a “mask” on each wire, propagated

additively (but not multiplicatively) during preprocessing. Then, the masks of the

input wires can serve as the first two elements of a Beaver triple, which is also gen-

erated during the preprocessing. Let x and y denote the input wire and z denote the

output wire of any gate. Let vx, vy, vz denote the real values on the wires. In the

preprocessing phase, the prover performs the following:

1. For each party, the prover generates random “masking shares” [λw] for each

input wire and the output wire of each MUL, w.

2. The prover homomorphically computes the mask shares for each ADD gate

internal output wire, [λz] = [λx] + [λy].

3. For each wire w, the prover computes external value, ew = λw + vw. In MPC,

these external values are public to all parties. In MPC-in-the-head, P will give

them to V in the clear.

In Turbospeedz, given ex, ey, and a Beaver triple 〈am, bm, cm〉, each party computes

their share of MUL gate m’s output wire by locally computing

[vz] = exey − ey[am]− ex[bm] + [cm]

= (vx + am)(vx + bm)− (vy + bm)[am]− (vy + am)[bm] + [cm]

= [vxvy].

The parties then proceed to compute and open [ez] = [vz] + [λz]. Note that this relies

on the parties already possessing a sharing of a valid Beaver triple 〈am, bm, cm〉 in

advance.

The upshot of this method is that multiplication gates can be computed using

only one opening (ez) instead of two (f and g in the previous section).
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4.4.3 Adapting Turbospeedz into sacrificing-based MPC-in-the-head

Input: The prover P and verifier V receive an input circuit C comprising a set of gates G

of which a subset M are MUL gates, along with a set of wires W with subsets of input and
output wires I and O, respectively. P is the sole recipient of a witness. Both parties also
receive constants R and N (the latter of which we equate with the set {1, . . . , N} by abuse of
notation). The prover P and verifier V run R independent executions of the following protocol
in parallel.

Function-dependent preprocessing: P pseudorandomly derives shares [λw] for each wire
w ∈W and a Beaver triple for each multiplication gate as follows.

1. Generate a random master seed σ∗. Pseudorandomly derive a binary tree with root σ∗

until there are as many leaves as parties. Assign the pth leaf as party key σp.
2. For each input wire w ∈ I and party p ∈ N , pseudorandomly derive share [λw] from key

σp.
3. Go through C layer by layer, starting at the input layer. For every g ∈ G, do the

following on gate Cg with input wires x, y and output wire z.

• If Cg is an ADD gate: assign [λz] := [λx] + [λy].
• If Cg is a MUL gate:

– Derive [λz], [λ̂y,g], and [λ̂z] for every p ∈ N from σp. (Note that y can be an

input to many MUL gates, hence the two indices in [λ̂y,g].)

– Set êz := λx · λ̂y,g + λ̂z, which creates a Beaver triple 〈λx, λ̂y,g, êz − λ̂z〉.
Interactive phase: Once P receives the witness, the parties interact as follows.

1. (P → V) P executes the circuit to determine the value vw of each wire w ∈ W , and
assigns the offset ew := vw + λw for each wire w ∈W . It sends to V:

• Offsets ew for input wires w ∈ I, and offsets ez and êz for the outputs of MUL

gates. (The remaining offsets can then be computed.)
• A commitment to all shares [λw] for all output wires w ∈ O.
• A commitment to the seeds σp for all parties p ∈ N .

2. (V → P) V randomly selects two elements εm, ε̂m ← F for every MUL gate m ∈M .

[There are two ways to complete this protocol, shown in Figures 4·2 and 4·4.]

Figure 4·1: Beginning of an interactive zero knowledge protocol between prover
P and honest verifier V, given a relation represented as an arithmetic circuit with
ADD and MUL gates over a field F. All verifier messages are public coins, so the
protocol can be made non-interactive using the Fiat-Shamir transform. There are
two different endings to this protocol, given in Figures 4·2 and 4·4.

In this section, we incorporate a modified version of the Turbospeedz method from

Section 4.4.2 into the SPDZ-based MPC-in-the-head framework described above from

Section 4.4.1. For large field sizes, the resulting MPC-in-the-head protocol ΠTurboIKOS

will require only 3 field elements per multiplication, rather than the 4 elements used
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Interactive phase, continued from Fig. 4·1:
3. (P → V) P sends all αm values and commits to P commits to all [αm] and [Z] shares.

These variables are computed as follows.

• For every MUL gate m ∈M , assign [αm] := εm[λy] + ε̂m[λ̂y,m].
• For every party p ∈ N , assign [Z] :=

∑

m∈M [ζm], which is the sum of all [ζm] :=

εmez − εmexey + ε̂mêz + (εmey − αm)[λx] + εmex[λy]− εm[λz]− ε̂m[λ̂z].

4. (V → P) V randomly selects a set T = N \ {i∗} of N − 1 parties to corrupt.

5. (P → V) P reveals the log(N) seeds from preprocessing step 1 that suffice for V to
recompute σp for all corrupted parties p ∈ T , but not the remaining seed σi∗ .

Verification. V accepts only if all of the following are true:

• The output values (vw for w ∈ O) provided by P correspond to logical true.
• The commitments in rounds 1 and 3 are consistent with the opened keys σp for corrupted

parties, and with the shares of [Z], [αm], and [λw] for output wires for all parties. V
can compute N − 1 shares of these from its seeds, and the remaining shares from the
revealed αm values and the known values for Z and output wires.

Figure 4·2: End of the interactive zero knowledge protocol ΠTurboIKOS between
prover P and honest verifier V, given a relation represented as an arithmetic circuit
with ADD and MUL gates over a field F. See Figure 4·1 for the beginning of this
protocol.

in Baum-Nof [25].

Committing to all wire values. The first step of converting Turbospeedz into

an MPC-in-the-head protocol is to replace the step of opening shares of ez by having

the P simply provide ez in the clear. However, unlike Turbospeedz, we do not wish

to have a costly preprocessing process in which the verifier becomes convinced of the

validity of all Beaver triples in the circuit; instead we wish to use ζm values as in

Eq. 4.1. In order to do this without reusing masks on multiple values, we must make

some subtle changes to the original Turbospeedz protocol.

To save space, most shares held by an emulated party will be pseudorandomly

derived from a party-specific seed. To generate the party-specific seeds themselves,

we follow the same method as Katz et al. [188], namely, to derive the party seeds

pseudorandomly from a master seed via a binary tree with the parties’ seeds at the

leaves. This reduces the cost of sending the seeds from N to logN .
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P will generate all λw values for all wires in the circuit the same as in original

Turbospeedz, but by generating each party’s share pseudorandomly using the party-

specific seed. We take advantage of the external value e as an offset: the value on

wire w is defined as simply vw = ew − λw. Additionally, for each MUL gate m, the

prover will generate additional pseudorandom shares [λ̂y,m] and [λ̂z]. P computes

êz = λxλ̂y,m + λ̂z, forming a correlated Beaver triple 〈λx, λ̂y,m, êz − λ̂z〉 that will be

sacrificed. The double index on [λ̂y,m] is due to the fact that wire y may be reused in

several different MUL gates m, each of which must define their own Beaver triple for

the prover’s privacy. (For legibility, we sometimes omit this double-subscript when

the gate under consideration is clear from context.)

Creating a test for consistency of all gates. The largest change is in how ζm is

calculated for eachMUL gatem. We begin similarly to the Baum-Nof challenge: V will

send random challenges εm, ε̂m ← F. Our αm values are defined slightly differently,

for a reason we will explain shortly. The prover will send αm = εmλy + ε̂mλ̂y. Then,

the parties compute:

[ζm] = εmez − εmexey + ε̂mêz + (εmey − αm)[λx] + εmex[λy]− εm[λz]− ε̂m[λ̂z]. (4.2)

First, we wish to show that this ζm serves a similar purpose to Baum-Nof’s,

assuming (for the moment) that the prover P honestly computes all αm values from

the parties’ shares. For each MUL gate m ∈M , define:

∆z,m = (ez − λz)− (ex − λx)(ey − λy) and ∆̂z,m = (êz − λ̂z)− λxλ̂y.

Observe that if P is honest, then 〈ex − λx, ey − λy, ez − λz〉 and 〈λx, λ̂y, êz − λ̂z〉 are

both valid Beaver triples and therefore ∆z,m = ∆̂z,m = 0.

Lemma 4.4.3.1. Fix a MUL gate m ∈ M . If εm and ε̂m are chosen uniformly

randomly from F, and if either ∆z,m 6= 0 or ∆̂z,m 6= 0 (or both), then ζm 6= 0 with
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probability at least 1− 1/|F|.

Proof. Observe that

ζm = εmez − εmexey + ε̂mêz + (εmey − αm)λx + εmexλy − εmλz − ε̂mλ̂z

= εmez − εmexey + ε̂m(λxλ̂y + ∆̂z,m) + (εmey − αm)λx + εmexλy − εmλz

= εmez − εmexey + ε̂m∆̂z,m + (εmey − εmλy)λx + εmexλy − εmλz

= εmez − εmλz − εmexey + εmexλy + εmeyλx − εmλyλx + ε̂m∆̂z,m

= εm((ez − λz)− (ex − λx)(ey − λy)) + ε̂m∆̂z,m

= εm∆z,m + ε̂m∆̂z,m.

Now, consider the probability that ζm = 0 over the uniform choice of εm and ε̂m

from F. The only way for this to occur is if εm∆z,m = −ε̂m∆̂z,m. If ∆z,m = 0, this

happens if and only if ε̂m = 0, which occurs with probability 1/|F|. If ∆z,m 6= 0, then

for any choice of ε̂m there exists a single option for εm = −ε̂m∆̂z,m∆
−1
z,m that makes

ζm = 0, so again we arrive at a probability of 1/|F|. These two cases are mutually

exclusive, which yields the desired bound.

Similar to Baum-Nof, we check the consistency of all these values with one ran-

dom linear combination Z to test the values in Eq. (4.2) for all multiplication gates at

once. However, because we defined ζm to already include two different random coeffi-

cients on the different ∆ values, these coefficients already suffice to serve as challenge

coefficients for this linear combination. As we show in Lemma 4.4.3.2, the upshot is

that we can test all gates in the circuit with a soundness error of only 1/|F| by merely

revealing [Z] =
∑

m∈M [ζm].

Lemma 4.4.3.2. If εm and ε̂m are chosen uniformly randomly from F for all multi-

plication gates in the circuit, and if there exists at least one MUL gate m̄ ∈ M such

that ∆z,m 6= 0 or ∆̂z,m 6= 0, then Z 6= 0 with probability at least 1− 1/|F|.

Proof. Consider Z =
∑

m∈M ζm = (εm̄∆z,m̄ + ε̂m̄∆̂z,m̄) + Z ′, where Z ′ is the sum of

all other terms in the formula and m̄ ∈ M is the gate where the sum is guaranteed

to be nonzero; without loss of generality, suppose that ∆z,m̄ 6= 0. Then, Z = 0 if and

only if εm̄ = ∆−1
z,m̄ · (−Z ′ − ε̂m̄∆̂z,m̄), which occurs with probability 1/|F|.
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Completing the consistency test. Rounds 3-5 of the protocol provide a method

for the verifier to check whether Z = 0, up to 1/N soundness error. We will describe

two ways to perform this task: a base protocol ΠTurboIKOS described in this section

(shown also in Figure 4·2) and an improved protocol Π̃TurboIKOS in Section 4.4.4. Both

techniques involve providing some ‘advice’ in the form of the non-privacy-sensitive

αm value for each MUL gate that assists the verifier in its computation of Z.

In round 3 of the base protocol ΠTurboIKOS in this section, the prover provides

for each MUL gate m ∈ M . Importantly, the prover also commits to all shares

[αm] = εm[λy] + ε̂m[λ̂y], and analogously for all [Z] shares. There are three claims

that the verifier must check:

• The committed [αm] and [Z] are consistent with the parties’ individual views,

at least for the N − 1 emulated parties that the verifier can open.

• The committed [αm] shares in round 3 collectively sum to the provided αm

value. That is, the prover provided the public αm ‘advice’ value correctly.

• Assuming the advice is correct, then the [Z] shares committed in round 3 sum

to Z = 0. That is, the prover passes the test posed in Lemma 4.4.3.2.

After the prover reveals seeds for N−1 parties in round 5, the verifier can check these

claims as follows. First, V can compute the remaining party’s [αm] by subtracting

the known shares from the public αm value, and then check whether these shares

together constitute a valid opening of the commitment in round 3. This checks (most

of) the first two claims simultaneously. The final claim is verified similarly; the key

observation here is that if the prover is honest, then the value Z = 0 is publicly known.

So, the V computes N − 1 shares of Z, calculates what the remaining party’s share

must be in order for the overall value Z = 0 as required, and then checks whether

these shares together constitute a valid opening of the commitment.
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Putting it all together. Our protocol ΠTurboIKOS is described in detail in Figures

4·1-4·2. The prover P and verifier V interact in a 5-round protocol, and if all consis-

tency checks pass then the verifier believes that the output wire labels derived from

the circuit evaluation is correct.

Completeness is a straightforward consequence of the fact that the honest prover

computes the desired circuit (many times, in fact). We prove the privacy and knowl-

edge soundness of our ZK argument of knowledge in Section 4.5.

Compared to Baum-Nof [25], we reduce communication per multiplication gate

from 4 to 3 field elements. Concretely, for each multiplication gate, Baum-Nof must

send the f and g values described in §4.4.1. Their protocol must also send a Beaver

triple offset (analogous to êz) as well as the offset for the output wire of the MUL

gate (similar to ez). By using the Turbospeedz approach, we reduce communication

to only 3 field elements: ez, êz, and αm.

Algorithmic optimizations. There are a few optimizations that we can apply to

the base protocol ΠTurboIKOS to save space even further. Some of these optimizations

are deliberately omitted from Figures 4·1 and 4·2 for brevity; they are simple to add,

and they are built into our implementation described in §4.6.

Our first optimization saves on the cost of commitments. Recall that we need to

commit to values in each of the prover steps (rounds 1, 3, and 5), and also that the

entire procedure from Figs. 4·1-4·2 is repeated R times. It suffices to build a single

commitment per round across all repetitions: that is, just 2 commitments in total for

the entire proof.

Second, we described the SPDZ-style MPC protocol by considering pseudorandom

values for each party plus a public offset. Following prior works, we save space by

integrating the offset into a single party’s value (say, party 1). While this party no

longer has pseudorandom value, the upshot is that we only need to reveal the êz
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values within party 1’s view, or in other words we don’t need to reveal these values

for the 1/N fraction of repetitions in which party 1 is the unopened party. (Note that

we still need to publish the ez and αm values on all repetitions because V needs this

information to perform its consistency check.)

Third, if the circuit has a single known value that represents ‘logical true’ (say,

the value 0), then we can save on the cost of opening the output wire shares [λw]

for all parties (i.e., including the unopened party). Instead, we can follow a similar

trick as we described above for [αm] and [Z]. In round 1 of the protocol, the prover

P commits to all output wire mask (λ) shares. Once the verifier V learns the seeds

to reconstruct N − 1 of these shares for itself, it assumes that the output wires

collectively reconstruct to logical true and calculates the remaining share accordingly

as [λ]i∗ = e − vexpected −
∑

i 6=i∗ [λ]i, where vexpected is the expected value on the wire.

Finally, V checks that all shares match P ’s commitment.

4.4.4 Constructing smaller consistency tests

In this section, we describe an improved protocol Π̃TurboIKOS that reduces the cost

per multiplication gate from 3 field elements down to 2. Specifically, we show a new

method to check the consistency of Z in rounds 3-5 without revealing an αm element

for each MUL gate. The motivation for this change is twofold. The first reason is

obvious: reducing the number of field gates required per MUL gate shrinks the proof

size. The second and more subtle reason is to improve the performance of TurboIKOS

on smaller fields, such as the field GF(256) used in AES, without blowing up the size

of the protocol with additional zero-checks.

We will explain this second motivation at a high level here; for more detail see the

soundness analysis (Theorems 4.5.0.2 and 4.5.0.3) in §4.5. A cheating prover must

have a sufficiently low chance of getting a set of coefficients εm, ε̂m where Z = 0 even

though at least one MUL constraint is violated. For small fields, a malicious prover
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has a decently-high probability of passing a single zero-test Z by pure chance (one in

the size of the field). While one could overcome this issue by increasing the number

of repetitions R, there is an alternative solution: run several Z = 0 tests using fresh

random εm and ε̂m coefficients for each, but the same wire shares λz and offsets ez

and êz. Concretely, we create a new parameter U denoting the number of checks to

run.

This alternative method doesn’t fare well in the original protocol ΠTurboIKOS be-

cause our method requires revealing an αm value per MUL gate for each test, so each

additional Z value used to improve the soundness error would reveal an additional

field element per MUL gate, making the proof size much larger. Thus, our goal in

this section is to show how to consistency-check multiple zero-tests Z1, . . . , ZU with-

out transmitting additional information proportional to the number of MUL gates

beyond the two field elements ez and êz we already transmitted in round 1.

Recall that for a single MUL gate m,

[ζm] = εmez − εmexey + ε̂mêz + εmey[λx]− αm[λx] + εmex[λy]− εm[λz]− ε̂m[λ̂z]

is a sharing of ζm = εm∆z,m + ε̂m∆̂z,m = 0 for an honest prover. Observe that each

party can calculate most of the terms in this sum even without receiving αm. Specif-

ically, for each MUL gate, define φm := ζm + αmλx. Each party has the information

to compute its own share [φm] using information already available: the public εm and

ε̂m values, the known offsets e, and the corrupted shares [λ].

Also, recall from the original protocol that the parties never test each [ζm] directly,

but rather they only test that the sum Z =
∑

m∈M ζm equals zero. We can rewrite

the shares of this test in the following way. (We add a subscript m to the wire values
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to make it unambiguous which gate each wire belongs to.)

[Z] =
∑

m∈M

[ζm] =
∑

m∈M

[φm]−
∑

m∈M

αm[λm,x].

The corrupted parties can compute their shares for the left sum. However, the

sharing of the remaining term, which we will name

β =
∑

m∈M

αmλm,x (4.3)

is problematic because it seems to require each αm to be known in the clear to calculate

the sum. This is where the original protocol ΠTurboIKOS revealed all αm, so that each

party could compute their share of β as
∑

m∈M αm[λm,x].

We proceed to show a different way that the prover can commit to and provide

the shares for [β], which we also describe pictorially in Fig. 4·3. Let [x]i denote the

ith share of x. The crucial observation is that all shares [αm] can be revealed without

a loss in privacy; our only objective here is a performance improvement to avoid

sending these shares, even though we could safely do so. Furthermore, observe that:

β =
M
∑

m=1

αmλm,x =
M
∑

m=1

(

N
∑

i=1

[αm]i

)(

N
∑

j=1

[λm,x]j

)

=
M
∑

m=1

N
∑

i=1

N
∑

j=1

[αm]i[λm,x]j

=
N
∑

j=1

N
∑

i=1

βi,j, where βi,j =
M
∑

m=1

[αm]i[λm,x]j (4.4)

We will take advantage of the MPC-in-the-head structure of our proof to create a

sharing where each party essentially holds a “column” of these values: that is, party

j’s share of β is
∑N

i=1 βi,j. In a normal MPC protocol, each pair of parties i and j

could collaborate to compute βi,j. In MPC-in-the-head this is mostly unnecessary,

because V has corrupted N − 1 of the parties, it has N − 1 of these [αm]i shares and

therefore can compute βi,j for all corrupted parties i, j ∈ T . It is missing only βi∗,j,

where i∗ is the remaining, uncorrupted party.
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it corrupted and also the commitment hj to the concatenation of the elements in each

column. V does not get the missing share [β]i∗; instead, it is given hi∗, the missing

commitment. Using all these, it can check ĥ to ensure the corrupted party views are

consistent with the commitment to the βi,j.

Interactive phase, continued from Fig. 4·1:
3. (P → V) P commits to all βi,j by sending ĥ and commits to all [Z] shares. These

variables are computed as follows.

• For i ∈ N , for j ∈ N , βi,j =
∑M

m=1[αm]i[λm,x]j .
• For every party j ∈ N , assign [Z]j =

∑

m∈M

(

εmem,z − εmem,xem,y + ε̂mêz +

εmey[λm,x] + εmem,x[λm,y]− εm[λm,z]− ε̂m[λ̂m,z]
)

−∑i∈N βi,j .

4. (V → P) As before, V samples a set T = N \ {i∗} of N − 1 parties to corrupt.

5. (P → V) P opens commitments to V in the following way:

• As before, reveal log(N) seeds from preprocessing step 1 that suffice for V to
recompute σp for all corrupted parties p ∈ T , but not the remaining seed σi∗ .

• Reveal βi∗,j for all j 6= i∗ and reveal hi∗ .

Verification. V accepts only if all of the following are true for all executions:

• The output values (vw for w ∈ O) provided by P correspond to logical true.
• The commitments in rounds 1 and 3 are consistent with the opened keys σp for corrupted

parties, with the βi,j opened, and with the shares of [Z] and [λw] for output wires for all
parties. V computes these using the party seeds, the remaining βi∗,j values it is given,
and the known Z and output values.

Figure 4·4: Ending of the improved zero knowledge protocol Π̃TurboIKOS between
prover P and honest verifier V, given a relation represented as an arithmetic circuit
with ADD and MUL gates over a field F. See Figure 4·1 for the beginning of this
protocol. Compared to Fig. 4·2, step 3 is new, and this change affects the opening
and checking of commitments in step 5 and verification; the remainder of the pro-
tocol is unchanged from before. If multiple zero tests are desired, then steps 2, 3,
and 5 are repeated with independent εm and ε̂m, Z, and βi,j values.

Second, as in the other version of this protocol, the shares to Z are also committed

to, but where the β component of Z is shared using this method. V checks that Z = 0

by recomputing the N − 1 shares it corrupted, and then computes the last share by

subtracting those shares from 0. The recomputed shares are checked against the

commitment to the [Z] shares from round 3.

This portion of the proof sends (N − 1) field elements (the shaded elements) and

one commitment (hi∗) per repetition; the additional commitments to the shares of Z
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and the ĥ need only use one commitment for the entire proof, across all repetitions.

It bears repeating that this method was able to check the consistency of all multi-

plication gates without revealing an additional αm value per MUL gate. This allows

us to add additional fresh zero-tests independently of the number of MUL gates as

well. If there are U of these tests, our communication per repetition becomes about

(2M+UN) field elements, which can outperform Katz et al. [188] when the number of

parties N is small. The description of this version of the protocol is given in Fig. 4·4.

4.5 Security analysis

In this section we prove the honest-verifier zero-knowledge and knowledge soundness

properties of the two protocols constructed in §4.4. For each property, we first analyze

the base protocol ΠTurboIKOS, and then we describe how the analysis changes for the

improved protocol Π̃TurboIKOS.

Theorem 4.5.0.1. When instantiated with a pseudorandom function PRF and a com-

putationally hiding commitment scheme Com, both the base protocol ΠTurboIKOS and

improved protocol Π̃TurboIKOS run with N parties and R repetitions is honest-verifier

computational zero knowledge with distinguishing bound at most R·(AdvCom+AdvPRF).

Proof. We focus here on the privacy argument for the base protocol ΠTurboIKOS.

The privacy of the improved protocol Π̃TurboIKOS then follows immediately from the

fact that it provides strictly less information to the verifier than the base protocol

ΠTurboIKOS does.

Additionally, we prove the statement for a single repetition of the base protocol

ΠTurboIKOS, from which the theorem follows by a union bound over the independent

repetitions.

Let I and M ′ represent the set of input wires and MUL-gate-output wires respec-

tively. Consider a simulator that follows the following steps during the interactive

protocol.

1. The simulator samples all verifier challenges uniformly at random: all εm, ε̂m in

round 2, and a party i∗ ∈ N in round 4 to be the “uncorrupted party” whose

key will not be revealed to V .
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2. Choose keys σp for all parties p ∈ N uniformly at random, honestly following

step 1 of preprocessing.

3. For all corrupted parties, derive all shares [λw] for all wires w from the keys

honestly, as in step 3 of the preprocessing.

4. For the output wires w ∈ O, choose the ew values uniformly at random, and set

party i∗’s share of λw such that vw = ew − λw represents logical true.

5. Now, work backward through the circuit in reverse topological order.

(a) For ADD gates, choose a random setting of the ex and ey values on the

input wires to the ADD gate, conditioned on meeting the linear constraints

induced by all ADD gates at this layer.

(b) For a MUL gate with input wires x and y and output wire z, the values

of ex, ey, and the corrupted shares of λ̂y, λ̂z, and êz must all be simulated.

Note that ex, ey, or both may already be set by an existing constraint (e.g.

if the wire was reused in a later layer or used in multiple gates).

i. Generate λ̂y and initialize the λ̂z shares honestly for the corrupted

parties from the party keys (leaving it unspecified for party i∗).

ii. Generate êz uniformly (and also ex or ey, if they are unspecified).

iii. Let ∆z be the difference between the value on the output wire z and the

product of the value on the input wires xy. That is, ∆z = vz− vxvy =

ez − exey − λz + exλy + eyλx− λxλy. Let ∆̂z be the difference between

(êz− λ̂z) and λxλ̂y; that is, ∆̂z = êz− λ̂z−λxλ̂y. For an honest prover,

∆z = ∆̂z = 0, but the simulator is not honest so these values are likely

to be non-zero. Using the foreknowledge of εm and ε̂m, alter party i∗’s

share of λ̂z so that ζ = εm∆z + ε̂m∆̂z equals 0 (or alter λz if ∆̂z = 0

but ∆z 6= 0).

6. In round 1, commit honestly to all parties’ keys σp and all parties’ shares [λz]

for all output wires z ∈ O. Also, send the offsets ez for all z ∈ I ∪M ′.

7. In round 3, commit to all shares [αm] and [Z], where [Z] is computed correctly

from the already-manipulated ζ shares from above.

8. In round 5, honestly open the key commitments for all parties except i∗. Also,

honestly reveal party i∗’s shares [Z], [αm], and [λw] for output wires.
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It is straightforward to confirm that the simulated proof passes all verification

checks. It remains to show that the simulated proof is computationally indistinguish-

able from a real one. As a stepping stone, we consider a hybrid proof H that is

constructed like the real one, except using an ideal commitment scheme Com (where

it is impossible to recover an un-opened key) and a truly random function in place

of PRF. The distinguishing probability between the real game and H is at most

AdvCom +AdvPRF.

In the hybrid world, we claim that all of the information provided by P to V
throughout the proof is meaningless. The commitment to σi∗ is now useless, values

like the output wires or Z are publicly known to V beforehand, and the remaining

information (ew for all wires w ∈ W , êz and αm values for all MUL gates, and the

shares [Z]) contains masks that hide the real values from V .

• On each wire w, the revealed ew = vw + λw does not reveal anything about the

value on the wire vw because it is masked by party i∗’s share of λw.

• For each MUL gate m ∈M , information in αm is masked by i∗’s share of λ̂y.

• For each MUL gate, êz hides info about λxλ̂y by masking it with party i∗’s share

of λ̂z.

• Party i∗’s share of Z reveals no information because it can be computed as

−∑p∈T [Z] (leveraging the fact that Z = 0 is public knowledge), and the cor-

rupted parties’ shares of Z are only a function of their own data.

All of these masks are truly random in the hybrid world. Observe that ew, êz and

αm all have the uniform distribution in the simulated world as well. Therefore, the

distance between the hybrid and simulated games is 0, which completes the proof for

the base protocol ΠTurboIKOS.

Next, we examine the soundness of the base protocol ΠTurboIKOS. We focus on its

security for the non-interactive version of the MPC-in-the-head construction using

the Fiat-Shamir transform using a random oracle H with 2κ bits of output, so that

finding a collision has 2κ cost. (The interactive version of the protocol has even better

soundness because the prover cannot rewind the verifier.)
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Theorem 4.5.0.2. Consider the non-interactive version of the base protocol

ΠTurboIKOS over a large field |F| = 2κ and instantiated with a random oracle H with

2κ output length. Then, Protocol ΠTurboIKOS with R = κ
log2(N)

+ 1 repetitions provides

knowledge soundness with error at most 1/2κ.

Proof. We focus here on proving the traditional soundness property. The stronger

knowledge soundness claim immediately follows by applying the analysis from Katz

et al. [188, §3.1] in order to build an extractor that recovers a witness by observing

the inputs to the random oracle-based commitment scheme on a single execution.

The reduction is tight because the extractor never needs to rewind.

To prove soundness, consider a malicious prover P∗ that is attempting to prove a

false statement. Since an honest execution of the circuit would return logical false,

the prover must deviate from the protocol on each repetition. There are effectively

four different places where the malicious prover P∗ can deviate from the protocol in

order to gain an advantage:

1. In round 1 of the protocol, P∗ can change the offsets for one or more MUL gates,

so that the ∆z or ∆̂z values on these gate(s) are non-zero. (We presume it is

simple for the prover to determine a sufficient set of gates to tamper in order

to cause the circuit to return logical true.) P∗ will learn in round 2 whether

V catches this deviation or whether P∗ has successfully evaded detection. By

Lemma 4.4.3.2, the prover is successful with probability 1/|F|.

2. In round 3, P∗ can change one party’s [αm] and [Z] shares so that the verifier

reconstructs a Z value of 0. The success of this attack is revealed in round 4,

and P∗ evades detection with probability 1/N .

3. In rounds 1 or 3, P∗ can attempt to break the binding property of the commit-

ment scheme and open it later to different values.

4. In round 1, P∗ can change one party’s share of the final output so the result

becomes logical true. P∗ will learn in round 4 whether V catches this deviation

or whether P∗ has successfully evaded detection (this occurs with probability

1/N).

(Observe that the pseudorandom function has no impact on soundness. It only exists

to ‘compress’ each party’s share of each wire label [λw], and any tampering of these

wire labels is equivalent to tampering the corresponding offset ew.)
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The key observation in this proof is that item 1 is strictly better for P∗ than item

3 and that item 2 is strictly better than item 4. The first part of this claim follows

from the observation that items 1 and 3 both require the prover to deviate in round

1 and the first has better probability of success since the commitment scheme has

soundness κ. The second part of this claim is true because the attacks in items 4 and

2 both give the same probability of success and are both revealed in round 4, yet the

alteration of [αm] and [Z] occurs later. Delaying the start of the attack is strictly

better for P∗ because it can wait to see if the attack on wire offsets in round 1 was

successful, and only attempt this attack if necessary.

Concretely, we use the same proof technique as several recent analyses of non-

interactive zero knowledge proofs that apply the Fiat-Shamir transform to protocols

with more than three rounds [23, 41, 185]. We consider all attacker strategies (r1, r2)

in which the prover P∗ changes wire offsets in round 1 until r1 repetitions happen

to have Z = 0 anyway, and then P∗ attacks the remaining r2 = R − r1 repetitions

in round 3 by altering αm and Z. In general, the cost of any multi-round attack

strategy is given by C = 1/p1+1/p2, where p1 and p2 denote the probability that the

first and second parts of the attack succeed, respectively. To achieve κ soundness, we

must choose a sufficiently large number of repetitions R so that any attacker strategy

(r1, R− r1) has a total cost C ≥ 2κ.

In this case, one attacker strategy dominates the rest: r1 = 1 and r2 = R − 1.

In more detail, the malicious prover P∗ changes the wire offsets for all repetitions in

round 1, and rewinds until finding an input that evades detection from the verifier’s

round 2 challenge on r1 = 1 instance. Because each instance evades detection only

with probability 1/|F| = 1/2κ, the malicious prover P∗ can only expect to evade

detection on r1 = 1 instance in time less than 2κ. Even succeeding on 2 instances

is exceedingly unlikely in the adversary’s runtime, and the P∗ gains no benefit by

foregoing an attack on round 1 altogether. Thereafter, P∗ must complete the attack

on the remaining r2 = R − 1 repetitions by altering [αm] and [Z]. This change is

undetected by the verifier with probability 1/N independently for each repetition.

Hence, the overall probability of success for the second repetition is (1/N)r2 , and

thus its cost exceeds 2κ when R = κ
log2(N)

+ 1.

Theorem 4.5.0.3. Consider the improved protocol Π̃TurboIKOS that is instantiated

with a random oracle H with 2κ output length and executed over the field F with

N parties, R repetitions, and U tests per repetition. Then, the protocol satisfies
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knowledge soundness with security parameter κ if:

min
0≤r1≤R

{[

R
∑

i=r1

(

R

i

)

·
[

1

|F|

]Ui

·
[

1− 1

|F|

]U(R−i)
]−1

+N (R−r1)

}

> 2κ. (4.5)

Proof. Once again, we focus on proving traditional soundness, after which we can

build an extractor for knowledge soundness using the same technique as before. Ad-

ditionally, the analysis from Theorem 4.5.0.2 about the options for a malicious prover

P∗ to deviate from the protocol holds here too. The prover’s dominant strategy

remains to change the offsets for one or more MUL gates in a way that causes the

remainder of the circuit (computed honestly) to return logical true; note that this

will also cause the corresponding ∆z or ∆̂z values to be nonzero. For each repetition

independently, there are two ways for the malicious prover P∗ to evade detection by

the verifier:

1. Based on the verifier’s U independent random choices of εm and ε̂m in round

2, there is a (1/|F|)U probability that all of the Z tests happen to equal 0 (by

Lemma 4.4.3.2).

2. If even a single Z value is non-zero, then P∗ can commit to erroneous βi,j values

to ‘fix’ this error. Note that P∗ can only inject erroneous data in one row of

the table in Fig. 4·3 because the verifier can check the remaining N − 1 rows

directly. This attack evades detection only if the verifier chooses in round 4 to

leave this row as the uncorrupted party, which happens with probability 1/N .

As before, we can analyze the malicious prover P∗’s probability of success by

analyzing all attacker strategies (r1, r2) that operate as follows. First, the prover

P∗ rewinds round 1 until at least r1 repetitions have the property that the verifier’s

choice of εm and ε̂m are such that all of the Z tests within these repetitions equal 0.

Second, P∗ rewinds round 3 until the remaining r2 = R − r1 have been tampered in

the locations chosen by the verifier in round 4.

To achieve κ soundness, we must select enough repetitions R so that any attacker

strategy (r1, R−r1) has a total cost C ≥ 2κ. Here, the cost of this multi-round attack

strategy is given by C = 1/p1 + 1/p2, and p1 and p2 denote the probability that the

first and second parts of the attack succeed, respectively.

Because we consider an arbitrary field size in this theorem, the cost analysis here

is more complicated than in Theorem 4.5.0.2. Our argument is very similar to that
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of Banquet [23]. The first probability boils down to the chance that the attacker has

r1 successes out of R trials, where each trial succeeds with probability (1/|F|)U . This
is the right tail of a binomial distribution:

p1 =
R
∑

i=r1

(

R

i

)

· (1/|F|)Ui · (1− 1/|F|)U(R−i). (4.6)

The second probability is simply p2 = (1/N)r2 because the malicious prover must

succeed on all remaining repetitions of the protocol. Combining the costs of both

parts of the attack results in Eq. (4.5), completing the proof of the theorem.

κ N U

1 2 4 6 9

8 66 53 47 45 44

128 16 54 41 36 34 33

31 47 35 30 28 27

8 99 79 70 68 66

192 16 81 62 54 52 50

31 71 53 45 43 41

8 132 106 95 91 89

256 16 108 83 73 69 67

31 95 71 61 57 55

Table 4.2: Valid parameter settings for F28 . The body of the table shows the
number of repetitions R based on the soundness parameter κ, number of parties N ,
and number of tests per repetition U .

The goal here is to find the “minimum” choices of N , R, and U that yield a desired

soundness parameter κ for a circuit with a given field size |F|. While it is challenging

to write a closed-form version of Eq. 4.5 that connects the five parameters, it is easy

to find satisfying tuples empirically. In Table 4.2, we show several such choices for the

field F28 . We include a computer program that calculates valid parameter settings

within our open source repository [156].
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4.6 Performance and prototype implementation

In this section, we compare our Π̃TurboIKOS system’s performance against other MPC-

in-the-head based systems, and we describe our prototype Python implementation of

ΠTurboIKOS.

4.6.1 Performance analysis

To evaluate our performance, we measure our signature size when computing a vari-

ant of the Picnic signature scheme [224]. Picnic uses MPC-in-the-head (specifically, a

variant of the Katz et al. protocol [188]) and LowMC [6], a block cipher with few mul-

tiplications that is designed to be efficient in secure computation. Picnic is currently

an “alternate candidate” in round 3 of the NIST post-quantum crypto competition [5].

BBQ [104] introduced the idea of using AES in Picnic-like signatures and showed that

the signature sizes could be competitive with those using LowMC. To achieve this,

rather than evaluating the binary circuit for AES, they used an arithmetic MPC-in-

the-head system over F28 ; this facilitates proving constraints about inverses in F28 ,

the non-linear component of the AES S-box. They also show how each field inversion

can be reduced to a single multiplication gate (without testing for the case in which

the input and output are both equal to 0) with very small reduction in the soundness

of the resulting system (less than 3 bits of security). We follow their approach in this

section.

Table 4.3 shows the proof sizes of Π̃TurboIKOS when computing signatures using

AES at different security levels. We compare against the following systems:

• BBQ [104]: The figures are taken directly from their paper, except the number

of parties is not listed. We make an educated guess that they use approximately

N = 64 parties; for lower N their proof size will be larger.

• Katz et al. [188]: We calculate the proof size using the formula in [188], assuming
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that a field inversion constraint can be verified with two field elements per MUL

gate like in this work. Also, our calculations use 32 parties rather than 31; this

result should be a conservative smaller estimate of the actual proof size when

N = 31.

• Baum-Nof [25]: We calculate a conservative underestimate of the proof size

using the formula in [25], assuming that only a single zero-check is needed per

repetition. However, this is unlikely to be the case in F28 for the same reason

as in our work.

• Banquet [23]: The figures are taken directly from their paper.

Scheme N
Protocol (all sizes in KB)

BBQ [104] Katz et al. [188] Baum-Nof [25] Π̃TurboIKOS Banquet [23]

AES-128

(L1)

8 | 26.7 37.3 23.8 |

16 31.6 22.4 29.4 20.6 19.8

31 | 19.8 24.8 19.8 17.5

AES-192x2

(L3)

8 | 76.3 110.8 66.7 |

16 86.9 63.1 87.4 56.3 51.2

31 | 54.9 73.4 52.2 45.1

AES-256x2

(L5)

8 | 122.6 179.9 109.3 |

16 133.7 101.9 140.7 90.4 83.5

31 | 89.1 118.0 82.8 73.9

Table 4.3: Signature size comparison for the Picnic signature scheme at different
security levels for different systems. All signature sizes are shown in kilobytes (KB).
AES-128 has (M, I) = (200, 128), AES-192x2 has (M, I) = (416, 192), and AES-
256x2 has (M, I) = (500, 256).

Banquet [23] is independent recent work that reduce the size of AES-based Pic-

nic signatures using very different techniques based on polynomial interpolation in

extension fields of F28 [54,93] that are not directly applicable to general fields. They

achieve a smaller proof size than all competitors, including us. However, this advan-

tage comes with two downsides relative to our scheme and prior ones. First, perform-

ing polynomial arithmetic in extension fields would be costly on embedded devices
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whose CPU architectures typically have a small word size. Second, the polynomials

are proportional to the entire circuit size, making their system more memory-costly

than traditional MPC-in-the-head based methods like ours where the memory is only

proportional to the circuit width (i.e., the memory required to compute the circuit).

4.6.2 Prototype implementation

We created a prototype implementation for ΠTurboIKOS in Python. We did not opti-

mize the runtime or memory usage of our code, thus, we will likely not win on prover

runtime with other MPC-in-the-head approaches written in C or C++, e.g. [25,188].

That having been said, our protocol is amenable to all of the optimizations made by

the recent Reverie software [288] implementing the protocol of Katz et al. Our code

currently achieves runtimes about twice as long as Reverie for the same size circuit.

In this section we briefly describe our implementation.

Our Python implementation [156] supports both Bristol fashion circuits1 and

Prover Worksheet (PWS) format2 as input. The circuit is parsed into a list of Gate

objects, found in gate.py, and initializes a Wire data structure, found in wire.py, that

takes in a list of dictionaries containing the values on each wire.

Dictionaries are used extensively to manage information. Circuit information such

as the number of various types of gates are stored in a dictionary. Values on each

wire such as e and λ are also stored in a dictionary. Each wire has a dictionary of

values, resulting in a list of dictionaries with length of the number of wires. This list

of dictionaries is later used as the input to the Wire object, found in wire.py, which

defines functions to access values on the wire.

On the Prover side, P calculates all the parties as she parses through the circuit,

so P uses the Wire objects to access a party’s value. On the Verifier side, V picks

1https://homes.esat.kuleuven.be/∼nsmart/MPC/
2https://github.com/hyraxZK/pws
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one party to leave unopened and reconstructs the other N − 1 views from the seeds

given by P . We generate the shares λ, λ̂y, and λ̂z pseudorandomly using AES as a

PRF with the party’s seed as the key and the concatenation of the (fixed-length) wire

index and type of value as the message.

The prover is required to send a commitment in Round 1 and Round 3. As

discussed in §4.3, when committing to values with sufficient min-entropy, we simply

use Com(m) := H(m), thus decommitments are “free” aside from the cost of m itself.

This remains computationally hiding as long as m has sufficient min-entropy and H is

a random oracle. We use SHA2 from hashlib for our instantiation of H. To achieve

non-interactivity via the Fiat-Shamir Transform [120], the random messages sent by

the Verifier in Round 2 and Round 4 are replaced by a call to H on the info sent by

P in all previous rounds.

4.7 Introduction to BooLigero

In this work, we focus on and improve Ligero [10], a protocol that achieves a balance

between proof size and prover runtime.

4.7.1 Related work

As we described in §4.1, zero knowledge proofs are evaluated for performance on

three metrics: proof/argument size, prover runtime, and verifier runtime. There is a

spectrum of zero-knowledge proof/argument systems.

On one extreme of the spectrum, large, fast proofs construct ZK proofs from

various flavors of MPC: the garbled-circuit based approach of ZKGC [182] (with

improvements from [201]) or approaches that use the GMW [142] paradigm (e.g. [177],

improved in [138] and [76]). All of these are fairly quick to compute, but they incur

a linear proof size (except the very recent work of [316], which cannot be made non-

interactive, and is therefore not usable in most blockchain scenarios).
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On the other extreme, we have “succinct” sublinear-size arguments. The smallest

arguments are constant size, but generally suffer from two problems – assumptions

and trusted setup. Many of these arguments use unfalsifiable assumptions (e.g.,

[34,37,94,136,153,214,243]) and this is inherent at a certain level [137]. Others require

a trusted setup step performed by a central authority or a trusted committee operating

a costly multiparty computation (e.g. [33, 34, 44, 80, 131, 136, 153, 154, 218, 243, 324]),

both being undesirable or even unacceptable in many financial use cases.

In the middle, there exist transparent protocols that achieve sublinear (but not

constant) size without the need for trusted setup. A number of these protocols

use assumptions that render them vulnerable to quantum attacks (e.g. [55, 169, 267,

312]). There are three different approaches to sublinear transparent protocols with-

out trusted setup that are plausibly post-quantum secure: Ligero [10], Stark [32], and

Aurora [35].

Compared to Ligero and BooLigero, Stark’s proof size is asymptotically smaller

(O(log2 s) instead of O(
√
s) for circuit size s), but concretely larger for circuits smaller

than approximately 106 gates, as shown in [312]. Its prover runtime is more expensive

than Ligero’s both asymptotically by a log s factor, and is also concretely longer. For

circuits with repeated sub-circuits, Stark has significantly improved verifier runtime,

but there is no asymptotic difference for circuits without this property.

Aurora [35] also has a significantly smaller proof size than Ligero and BooLigero

(O(log2 s) instead of O(
√
s)) and the same asymptotic prover and verifier runtime.

However, its interactive version has a O(log s) round complexity compared to Ligero

and BooLigero’s O(1), and its prover runtime is concretely higher than Ligero’s.

Moreover, without a certain unproven conjecture involving Reed-Solomon codes, it

becomes much less efficient (see discussion in [267]).

Finally, the lattice-based ZK argument of Baum et al. [21] has proof size
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O(
√

sλ log3 s) asymptotically, but its concrete performance remains unknown (see

discussion on p. 6 of Ben-Sasson et al. [35]).

4.8 Preliminaries

Notation. We use F to refer to a finite field, and GF(2w) to refer to a finite field

with order 2w. We also often use w to refer to the “word size” and refer to elements

of GF(2w) as “w-words” when we use their w-bit representations.

For operations, we use ⊕ for bitwise XOR and & for bitwise AND, over bits or

w-words depending on context. We use ∗ to denote Galois field multiplication, and ·

for element-wise multiplication of vectors.

Bit indexing, denoted with square brackets, always begins at 1. Bitstrings are

always shown in big endian. Thus, if x = 0001, then x[1] = 1 is the least significant

bit of x.

Zero knowledge IOPs. A ZKIOP is an interactive oracle proof (IOP) [36] that is

additionally zero-knowledge. Let P and V be probabilistic polynomial-time interac-

tive Turing machines. An interactive oracle protocol between P and V occurs over

several rounds. P reads messages sent by V fully, but V queries random parts of P ’s

message rather than reading them entirely. At the end, V either accepts or rejects.

Let 〈P(x, w),V(x)〉 refer to the output of V(x) when executing an interactive oracle

protocol with P(x, w). Let R be a relation for language L so that (x, w) ∈ R if w is

a witness for x’s membership in L.

Definition 4.8.0.1 (Zero knowledge interactive oracle proof). 〈P ,V〉 is a zero knowl-

edge interactive oracle proof system for R with soundness error δ if:

• Completeness : For any (x, w) ∈ R, 〈P(x, w),V(x)〉 = 1.

• Soundness : If x /∈ L, then for all P∗, Pr[〈P∗,V(x)〉 = 1] ≤ δ
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• Perfect honest-verifier zero knowledge: Let ViewV(P ,V , x, w) be the view of V
upon completion of 〈P(x, w),V(x)〉. The protocol is perfect honest-verifier zero
knowledge if there exists a probabilistic poly time simulator S such that for all

(x, w), the distribution of S(x) equals the distribution of ViewV(P ,V , x, w).

The IOPs we deal with in this paper are also public-coin, meaning that V ’s mes-

sages to P are always chosen randomly from a known distribution, and V ’s queries

to P depend only on messages that have already occurred and that P has seen. Zero

knowledge IOPs can be converted to zero knowledge arguments in a standard way

using the Fiat-Shamir transform [36].

4.9 Ligero background

In this section we provide relevant background from [10]. We start with some back-

ground on Interleaved Reed-Solomon codes.

Definition 4.9.0.1 (Reed-Solomon Code, [10] Defn. 4.1). For positive integers n

and k, finite field F, and a vector η = (η1, . . . , ηn) ∈ F
n of distinct field elements, the

code L = RSF,n,k,η is the [n, k, n−k+1] linear code over F that consists of all n-tuples

(p(η1), . . . , p(ηn)) where p is a polynomial of degree < k over F.

Definition 4.9.0.2 (Interleaved Code, [10] Defn. 4.2). Let L ⊂ F
n be a [n, k, d]

linear code over F. We let Lm denote the [n,mk, d] (interleaved) code over Fm whose

codewords are all m× n matrices U such that every row Ui of U satisfies Ui ∈ L.

Definition 4.9.0.3 (Encoded message, [10] Defn. 4.5). Let L = RSF,n,kη be an RS

code and ζ = (ζ1, . . . , ζℓ) be a sequence of distinct elements of F for ℓ ≤ k. For u ∈ L

we define the message Decζ(u) to be (pu(ζ1), . . . , pu(ζℓ)) where pu is the polynomial

(of degree < k) corresponding to u. For U ∈ Lm with rows u1, . . . , um ∈ L, we

let Decζ(U) be the length-mℓ vector x = (x11, . . . , x1ℓ, . . . , xm1, . . . , xmℓ) such that

(xi1, . . . , xiℓ) = Decζ(u
i) for i ∈ [m]. Finally when ζ is clear from context, we say the

U encodes x if Decζ(U).



196

4.9.1 Proof size of Ligero.

Ligero [10] is a zero-knowledge argument that achieves O(
√
s) proof size, where s is

the size of the verification circuit.

Ligero encodes the witness using an Interleaved Reed-Solomon code, which can

be considered an m-vector of Reed-Solomon (RS) codewords. Each RS codeword can

itself be considered a vector of n elements which encode ℓ unencoded elements, for

n = O(ℓ). Thus, the overall interleaved Reed-Solomon code can be considered an

m× n matrix encoding m× ℓ variables.

Ligero achieves O(
√
s) proof size by being clever about how the verifier checks

constraints on this matrix. Roughly speaking, the communication will consist of

some (linear combinations of) rows and some columns of the matrix, with simplified

complexity O(n + m). Thus, one can balance m against ℓ and set both to O(
√
s)

to achieve a proof size of O(
√
s). Specifically, m is set to O(

√

s/κ) and ℓ is set to

O(
√
sκ), where κ is a security parameter.

We let L = RSF,n,k,η be a Reed-Solomon code with minimal distance. Lm refers to

the interleaved code, which has codewords that are simply m codewords of L. Lm is

best understood as a matrix where the m rows are L-codewords.

Tests in Ligero. As a zero-knowledge IPCP between the prover P and verifier V ,

the prover begins by encoding its witness as a Lm codeword – anm×nmatrix encoding

m × ℓ variables in the witness. Ligero creates three tests for constraints over this

matrix: Test-Interleaved ([10] §4.1), Test-Linear-Constraints-IRS ([10] §4.2),

and Test-Quadratic-Constraints-IRS ([10] §4.3). Each of these tests consists of

two phases:

1. Oracle phase: P creates an oracle to the Lm-encoded witness (possibly with

some additional info).
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2. Interactive testing phase: P and V interact with each other. P sends some

linear combinations of rows of the matrix. V makes queries to the oracle to

obtain columns of the Lm codeword (without receiving any L codeword “rows”

fully). After the interaction, V checks whether the linear combinations given to

it by P match the columns it queried, and either accepts or rejects.

When used as a zero-knowledge argument (instead of a ZKIPCP), the oracle is

replaced with a commitment. Before the interactive testing phase, P commits to all

columns of its encoded witness as the leaves of a Merkle tree that uses a statistically

hiding commitment scheme. To make the proof non-interactive, the verifier’s messages

can be replaced with a random oracle call on the prover’s messages up to that point.

Boolean circuits in Ligero. Ligero is presented for arithmetic circuits over a

prime field. It is possible to use Ligero for a Boolean circuit as well, but this has two

downsides.

The first downside is that one must use an entire field element to represent a single

bit. This causes a blowup of log |F| in the number of witness elements, which causes

a blowup of O(
√

log |F|) in the proof size.

How small of a field can we use? There is a minimum requirement that |F| ≥ ℓ+n

([10] §5.3), which is required so that there are sufficient evaluation points for L.

Furthermore, if the field gets too small, one must repeat the protocol several times

in order to achieve the desired soundness. At very small field sizes, the costs of

the commitments (log s times a constant hash output length) also start growing in

comparison to the rest of the proof. Concretely, testing out different field sizes for

Boolean circuits on the order of 106 to 109 gates tends to yield optimal field sizes of

about 14-20 bits. This suggests that there is approximately a 3.7-4.4x gain to be had

by packing the bits efficiently.

The second downside is that this costs additional constraints. First, each extended
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witness element e must be proven to be 0 or 1 by adding a quadratic constraint that

e2−e = 0. Second, XOR and AND are also both quadratic constraints: the constraint

e1 + e2 = a0 + 2 · a1, along with bit constraints on all variables, enforce that a0 is the

XOR of e1 and e2, and that a1 is the AND of e1 and e2. Computing only one or the

other necessitates the creation of a dummy variable for the other, and enforcing bit

constraints on all. Hence, the number of constraints is twice the maximum number

of AND and XOR gates combined.

Unlike linear constraints, which can be evaluated using only an encoding of the

witness itself, evaluating quadratic constraints like x ∗ y = z requires providing en-

codings of x, y, and z, separately from (but related to) the encoding of the witness

itself. Although the number of quadratic constraints will asymptotically be O(s), this

suggests that there may be concrete room for improvement by reducing the number

of quadratic constraints.

4.10 BooLigero techniques

We make one minor change and two major changes to Ligero [10], which we described

in §4.9.

The minor change is that we use GF(2w) instead of the prime field GF(p). Ligero’s

methods work for any finite field, where addition and multiplication now use opera-

tions in the new field. Since we are still using Interleaved Reed-Solomon codes, we

can directly reuse Ligero’s Test-Interleaved, Test-Linear-Constraints-IRS, and

Test-Quadratic-Constraints-IRS. The latter two now test bitwise XOR/NOT

constraints and GF(2w) multiplication rather than arithmetic addition and multipli-

cation. We lose the ability to natively check linear arithmetic constraints in mod 2w,

but we gain the ability to cheaply check XORs. We can still check linear arithmetic

constraints in power-of-two moduli by building an adder out of the constraint tests
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we have.

The following two larger changes to Ligero are the focus of our work:

Change 1: Additional constraint tests that reveal variables directly. We

add a number of tests for additional constraints. These new tests operate differently

than the Ligero tests, and in fact the new tests rely on the Ligero tests in order to check

linear and quadratic constraints. In the new tests, the prover modifies and extends

the witness with additional variables, some of which are based on a “challenge” sent

by the verifier. As part of the proof oracle, the prover sends some (masked) elements

of the witness to the verifier directly, and the verifier must check to see whether

the revealed elements have a certain property. These tests can be nested inside other

tests – e.g., our Test-And-Constraints procedure involves invoking Test-Pattern-

Zeros-Constraints, as described in §4.10.3.

Most of our tests use only linear constraints and cost O(κ) (a security parame-

ter) in the proof size, independent of the circuit size and the number of constraints.

Our Test-And-Constraints involves adding approximately 3
√
wN hidden variables,

where N is the number of AND gates. This is still an improvement over the approxi-

mately wN added elements that are required to represent wN Boolean wires in plain

Ligero for w ≥ 9. We describe our constraint tests in §4.10.3.

Change 2: Two oracles/rounds of commitment. Unlike original Ligero, many

of the tests we add require verifier input in order to choose which constraints we will

check – generally, the verifier will pick a random linear combination of the variables to

use in constraints. However, for this to be sound, the original variables must already

have been available in an oracle (or been committed to). This necessitates splitting

the proof oracle in two: one that presents an encoding of the “original” witness, and

one that is parameterized by the verifier’s random choices and returns an encoding
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of the added variables. We call the first oracle the “initial oracle” and the second

the “response oracle”. Thus, whereas Ligero had two phases of procedures – the

oracle phase and the interactive testing phase – we have four: initial phase (creation

of initial witness to be provided as oracle or commitment), challenge phase (verifier

sends random bits as challenge), response phase (creation of witness extension to be

provided as a second oracle or commitment), and the interactive testing phase We

describe each of these phases in §4.10.1. This process is based on the circuit sampling

idea of Baum and Nof [25].

4.10.1 Test procedures

In original Ligero, each test consists of an oracle and an interactive test procedure

which will ensure that the oracle is valid. In our protocol, each test consists of

two oracles, separated by a verifier challenge, and followed by an interactive test

procedure. The second oracle is the response to the challenge. We describe each of

our constraint test procedures in four phases:

1. Initial phase: P adds elements to the witness, encodes it, and provides the

columns of the encoding as the first proof oracle.

2. Challenge phase: V sends random bits to P , which will be required to generate

the second proof oracle.

3. Response phase: Based on the bits received in the challenge, P adds more

elements to the witness, and adds additional constraints. P encodes the exten-

sions to the witness, and provides the encoding (which can be combined with

the first oracle’s output) as well as the revealed variables.

4. Interactive testing phase: P and V run an interactive testing protocol.

At the end, V has acceptance criteria for determining whether to accept or
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reject the proof. Our tests augment the original Ligero acceptance criteria with

additional checks on properties of the revealed variables.

In slightly more detail, the variables in the witness consist of:

• v0 original variables

• v1 added hidden variables in the initial phase

• v2 added hidden variables in the response phase

• v3 added revealed variables in the response phase

P and V first set ℓ, m1, m2, and m3 so that ℓm1 ≥ v0 + v1, ℓm2 ≥ v2, and ℓm3 ≥ v3.

P creates the initial witness encoding Uw1 ∈ Lm1 from the v0 original variables and

v1 added hidden variables in the initial phase, and sets this as the initial oracle. After

receiving V ’s challenge, it creates the response witness encoding Uw2 ∈ Lm2 from the

v2 newly added hidden variables. As in original Ligero, it also creates encodings Ux,

Uy, and U z ∈ Lm′

needed for testing quadratic constraints (where m′ is set so that

m′ℓ is at least the number of quadratic constraints). P sets the response oracle as

the vertical concatenation of Uw2 , Ux, Uy, U z, along with all revealed variables in

the clear.

When doing the interactive testing phase, P also creates Uw3 ∈ Lm3 which con-

tains the revealed variables added in the response phase. During this phase, P treats

its witness encoding Uw as the vertical concatenation of Uw1 , Uw2 , and Uw3 . The

verifier will do the same with the revealed variables.

Our new BooLigero tests rely on executing the interactive testing phase of Ligero

tests on Uw. (The encodings of x, y, and z needed forTest-Quadratic-Constraints-

IRS are also built relative to the full w.) They also add additional linear and

quadratic constraints to be tested in this way. These tests may be useful in frame-

works outside BooLigero as well.
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Adding linear constraints. Ligero’s Test-Linear-Constraints-IRS checks

whether an encoding of a secret vector x is a solution to linear equation Ax = b,

where A is a public matrix and b is a public vector. In the context of testing the

protocol in a full circuit, x is the witness vector, b is the all 0s vector, and A is set

so that the jth row of Ax equals in1 + in2 − out, where the jth addition gate in the

circuit computes out = in1 + in2. To add an additional linear constraint, we simply

add an additional row to A along with an additional element to b. Doing so does not

affect the proof size.

Adding quadratic constraints. Ligero’s Test-Quadratic-Constraints-IRS

tests whether encodings of vectors x, y, z meet the condition that x·y+a·z = b, where

· represents element-wise multiplication in F. When using the protocol for testing a

circuit, the x, y, z vectors are built so that their jth entries are in1, in2, out, where

the jth multiplication gate in the circuit computes out = in1 ∗ in2. These vectors are

constructed in a public way from the witness, i.e. P and V both construct Px such

that x = Pxw. Unlike the linear constraint test, separate encodings of x, y, and z

must be provided to the verifier; thus, increasing the number of quadratic constraints

increases the proof size.

4.10.2 Testing linear operations that yield zero over bits

We first define a useful class of tests that can be batched very efficiently.

Let ℓ1 and ℓ2 be positive integers, and let t1 = ℓ1w and t2 = ℓ2w. Let T ∈

{0, 1}t2×t1 be a public t2 × t1 binary matrix. Then T defines a test on x ∈ {0, 1}t1

which checks whether Tx = ~0, where ~0 is of length t2.

To incorporate this into Ligero, we observe that one can represent a vector of

Ligero variables x ∈ GF(2w)ℓ1 as a vector in {0, 1}t1 of t1 = ℓ1w bits. Adding two

variables in one of these representations exactly corresponds to adding the variables
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in the other representation. So, we abuse notation and treat the vector x ∈ GF(2w)ℓ1

as vector in GF(2)t1 .

Observe that, given a ∈ {0, 1}t1 (which can also be represented by a vector in

GF(2w)ℓ1) such that Ta = ~0, this implies that T (x + a) = ~0 if and only if Tx = ~0.

In the full protocol, rather than guaranteeing that Ta will be 0, we will write a test

that will check whether both Ta and Tx are 0 simultaneously. This is the same idea

as sacrificing in multi-party computation.

To achieve privacy, we blind any Ligero variables we wish to test with T . P

will generate a random a subject to the constraint that Ta = ~0 and then open the

variable (x+a) directly to the verifier, who can independently check that T (x+a) = ~0.

Figure 4·5 shows a construction for a perfect zero-knowledge protocol between P and

V to test T for a batch of N variables with low soundness error. Observe that the

communication complexity for this batched test of N ℓ1-tuples is only the size of one

tuple: ℓ1 elements of GF(2w). Note that it is also independent of t2; it depends only

on t1 and w.

We will embed this construction into BooLigero to test properties discussed in

§4.10.3, such as rearranging bits in a “pattern,” checking whether certain bits are

zero, or both at the same time.

Note that the test itself is not sound without the additional tests provided by

Ligero – the soundness of the main part of the test depends on the revealed variables

being well-formed. We ensure that the all variables are well-formed by using Test-

Linear-Constraints-IRS and Test-Interleaved, and ensuring that the initial el-

ements are provided in an oracle (or committed to) before receiving the challenge.

Note also that sometimes T itself will reveal certain information about x – for ex-

ample, that x is 0 at certain bit locations. But the protocol will not reveal anything

about x other than the fact that Tx = ~0, which is already true if P is honest.

Lemma 4.10.2.1 (Security of Test-T ). The protocol described in Fig. 4·5 is com-
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Test-T (κ,F; x1 = (x11, . . . , x1t), . . . , xN = (xN1, . . . , xNt))

Auxiliary input: Soundness parameter κ. Field GF(2w) Positive integers ℓ1
and ℓ2; let t1 = wℓ1 and t2 = wℓ2. Binary matrix T ∈ {0, 1}t2×t1 .
Inputs: A batch ofN secret variables in GF(2w)ℓ1 held by P , x1 = (x11, . . . , x1ℓ1),
. . ., xN = (xN1, . . . , xNℓ1) ∈ GF(2w)ℓ1 . where P claims that (abusing notation
and treating each xi as a binary t1-vector) Txi = ~0 for all i ∈ [N ].
Protocol:

1. Initial phase: For j ∈ [κ], P picks and adds hidden variable a(j) ∈ GF(2w)ℓ1

such that Ta(j) = ~0 to the witness.

2. Challenge phase: V sends Nκ bits: r
(j)
i for i ∈ [N ] for j ∈ [κ].

3. Response phase: P adds

u(j) = a(j) ⊕
⊕

i∈[N ]
s.t.

r
(j)
i =1

xi (4.7)

for j ∈ [κ] (a total of ℓ1κ elements) as revealed elements to the witness. P
and V add the κ instances of Eqn. 4.7 to the list of linear constraints to
check.

4. Interactive testing phase: P and V run Test-Linear-Constraints-IRS
and Test-Interleaved. V accepts if both tests pass and additionally (abus-
ing notation and treating each u(j) as a binary t1-vector) Tu

(j) = ~0 for all
j ∈ [κ].

Figure 4·5: Test construction for any binary matrix T

plete, perfect zero-knowledge, and has soundness error 1/2κ + δ1 + δ2, where δ1 is the

soundness error of Test-Linear-Constraints-IRS and δ2 is the soundness error

of Test-Interleaved.

Proof. We prove each property in turn:

Completeness: If the prover is honest, then Txi = 0 for all i ∈ [N ], and Ta(j) = 0

for all j ∈ [κ]. Thus, clearly Tu = T (a(j) ⊕⊕
i∈[N ]s.t.r

(j)
i =1

xi) = 0 for all j ∈ [κ] as

desired.

Honest verifier zero-knowledge: We know by [10] Lemma 4.13 that aside from the

added revealed variables u, the remainder of the protocol is honest-verifier perfect

zero knowledge. Consider the additional u variables. Each of these is “masked” by a

random element a which is known only to P . Thus, u will have the same distribution
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as a fresh random binary vector for which Tu = 0. Thus, a simulated version of the

protocol which returns a random v for which Tv = 0, which accurately simulates the

real execution which returns u.

Soundness: Suppose the prover is lying and there exists at least one i ∈ [N ] for

which Txi 6= ~0. Without loss of generality, let i = 1 be one such index. If the

Ligero matrix itself is malformed, this will be caught with probability 1− δ2 by Test-

Interleaved. Assuming it is not malformed, if any of the u(j) values are not equal to

those given in Equation 4.7, then a linear constraint has been violated and this will

be caught with probability 1 − δ1 by Test-Linear-Constraints-IRS. We assume

u(j) is correct for now. Let c(j) = a(j) ⊕⊕i∈{2,...,N}
s.t.

r
(j)
i =1

xi (note the indexing beginning

at 2). Thus, for the remainder of this proof, we assume u is well-formed. If r
(j)
1 = 0,

then c(j) = u(j). If r
(j)
1 = 1, then c(j) = u(j)⊕x1. Consider Tc

(j). There are two cases:

Case 1. Tc(j) = ~0. If r
(j)
1 = 0, then Tu(j) = Tc(j) = ~0 and the prover successfully

cheats. If, however, r
(j)
1 = 1, then Tu(j) = T (c(j) + x1) = ~0 + Tx1 6= ~0. So V

correctly rejects in this case.

Case 2. Tc(j) 6= ~0. If r
(j)
1 = 0, then Tu(j) = Tc(j) 6= ~0 so V correctly rejects.

If r
(j)
1 = 1, then Tu(j) = T (c(j) + x1). This may equal 0, so the prover may

successfully cheat.

In each case, the prover is caught cheating with probability 1/2 over the choice of

r
(j)
1 . Note that this continues to hold regardless of how many indices within [N ] the

prover chooses to cheat on. Repeating this for κ choices of r1, the chance that the

prover successfully cheats in all of them is 1/2κ. Union bounding this with the chance

of failure of Test-Linear-Constraints-IRS and Test-Interleaved, the soundness

error of this protocol is 1/2κ + δ1 + δ2, as desired. �

4.10.3 New constraint tests

In this section, we describe our added tests for BooLigero. Each of these calls

one of the original Ligero tests Test-Linear-Constraints-IRS or Test-Quadratic-

Constraints-IRS. The later tests additionally call on the earlier BooLigero tests as

well.
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Properties tested by Test-T . We proceed to name two useful properties (and

their conjunction) that can be tested using the construction from the previous section.

As described in the previous section, they can test the property on arbitrarily many

input variables for only a constant overhead over the cost of the variables themselves.

Since we will reuse them later, we name each of these special cases of Test-T .

• Test-Zeros-Constraints: This tests whether particular bit locations in the

input are 0. Let Z ⊆ [t2] be a set of indices to be zero-tested. Formally, let TZ

be a square matrix with 1s on the diagonal for indices in Z, and 0 for all other

elements. Observe that TZx = ~0 if and only if x is 0 at the Z indices.

• Test-Pattern-Constraints: We informally define a “pattern” as a relationship

between (ti = t1 − t2) “input bits” and t2 “output bits.” The pattern property

enforces that each “output bit” is an XOR of some subset of the input bits.

In general, pattern matrices Tπ are defined as a matrix that is a concatenation

between a matrix π ∈ {0, 1}t2×ti and a t2 × t2 identity matrix. Several useful

functions can be defined as patterns:

– Masking. Suppose we wished to show in Ligero that x&µ = y for some

public mask µ, for Ligero variables x, y ∈ GF(2w)ℓ2 and mask µ ∈ {0, 1}t2 .

Let M be the t2-square matrix with µ comprising the diagonal and zeros

elsewhere. Then we can test whether x&µ = y using the pattern Tµ =

[ M | I ], because:

[

M I
]

[

x
y

]

= ~0

which, for diagonal matrix M , implies that Mx = y.

– Even parity. Suppose we wished to show that y ∈ GF(2w) is the parity of
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x ∈ GF(2w)ℓ1−1. This can be tested by checking that







. . . . .
.

· · · 0 · · · I
1 · · · 1







[

x
y

]

= ~0

which will check that the least significant bit of y equals a sum of all bits

of x. Even-parity can be batch-tested by using Zeros, testing the parity of

many variables simultaneously.

• Test-Pattern-Zeros-Constraints: Notice that a Zeros test can be performed

on the same revealed values as a pattern test, if the blinding variables are chosen

to meet both constraints. We will often perform these tests on the same revealed

variables to save space.

Bitwise AND test. Next, we describe our test for bitwise AND. Note that AND

cannot be tested using the method in the previous section, since it is not a linear op-

eration. Instead, we write a new test that calls Test-Pattern-Zeros-Constraints.

As a first step, one way to test AND would be to fully bit-decompose our single

w-bit element into w elements each representing a single bit. This would let us use

quadratic constraints directly to show AND constraints. However, doing so is expen-

sive. This method would yield roughly the same proof size as original Ligero, since it

uses an entire w-bit element to represent a single bit. Instead, we exploit the nature

of Galois field arithmetic to compute the AND of w0 = ⌊
√
w⌋ bits simultaneously in

a w-bit element using a GF multiplication. We then use our Pattern test to convert

between the original variables and the w1 decomposed variables, where w1 is the min-

imum integer such that w0w1 ≥ w. Each of these w1 “split” variables contains w0

bits of the original element (except the last, which may contain fewer if w0 6 |w).

Suppose we have elements x, y ∈ GF(2w), and want to find z = x&y. We start by
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using a Pattern to split x into w1 variables x̂1, . . . , x̂w1 , and to split y into w1 variables

ŷ1, . . . , ŷw1 . First, consider the x variables. Each split variable x̂h will consist of w0

chunks of w0 bits each. (Recall that by construction w2
0 ≤ w.) The least significant

bit of each chunk will be a bit of x, and all other bits will be 0. This is illustrated

in Equation 4.8. The y variables will be split differently: each ŷh will consist of a

single chunk of w0 bits from y, starting with the least significant bit. This is shown

in Equation 4.9.

We then set ẑh = x̂h∗ ŷh. The effect of multiplying x̂h by ŷh is that the chunk of w0

bits in ŷh is “copied” to each of the w0 chunks of output for which the corresponding

chunk of x̂h was 1. Thus, in order to figure out which bits were shared between x and

y, we go to the kth bit of the kth chunk of ẑh. This will equal the kth bit of ŷh times

the LSB of the kth chunk of x̂h. This is shown in Equation 4.10. Recomposing from

the ẑh variables back to z by using Pattern once again, we have exactly computed

the bitwise AND of x and y.

Figure 4·6 shows an example of how to split (x, y, z), where z = x&y. The full

Test-And-Constraints procedure is shown in Figure 4·7. The patterns πx, πy, and

πz, described formally in Figure 4·7 step 1(d).

Lemma 4.10.3.1 (Security of Test-And-Constraints). The protocol described in

Fig. 4·7 is complete, perfect zero-knowledge, and has soundness error 3(1/2κ) + δ1 +

δ2 + δ3, where δ1 is the soundness error of Test-Quadratic-Constraints-IRS, δ2

is the soundness error of Test-Linear-Constraints-IRS, and δ3 is the soundness

error of Test-Interleaved.

Proof. We must show that Test-And-Constraints is complete, zero-knowledge,

and sound up to error 3(1/2κ) + δ1 + δ2 + δ3, where δ1 is the soundness error

of Test-Quadratic-Constraints-IRS, δ2 is the soundness error of Test-Linear-

Constraints-IRS, and δ3 is the soundness error of Test-Interleaved.

Completeness: If P is honest, then all variables are well-formed. We must show

that following the process described in step 1(b) of Fig. 4·7 will lead to computing

bitwise AND. Elements in GF(2w) are polynomials over GF(2) of degree at most (w−
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1), and multiplication in GF(2w) is polynomial multiplication modulo an irreversible

polynomial. As in step 1(a), let w0 = ⌊
√
w⌋. Fix i ∈ [N ].

By construction, the polynomial representations of all ŷi,h variables (for h ∈ [w1])

have degree at most w0 − 1. They can be written as
∑w0−1

k=0 ckv
k, where v is the

polynomial variable and c is the coefficient (either 0 or 1).

Further, the x̂i,h variables are of the form
∑w0−1

k=0 dkv
kw0 (now using d as the

coefficient).

Thus, if we multiply x̂i,h ∗ ŷi,h, the result can be written as:

ẑi,h = x̂i,h ∗ ŷi,h =

(

w0−1
∑

k=0

dkv
kw0

)(

w0−1
∑

k=0

ckv
k

)

= d0

(

w0−1
∑

k=0

ckv
k

)

+ d1

(

w0−1
∑

k=0

ckv
w0+k

)

+ . . .+ dw0−1

(

w0−1
∑

k=0

ckv
(w0−1)w0+k

)

=
(

d0c0v
0 + . . .+ d0cw0−1v

w0−1
)

+
(

d1c0v
w0 + . . .+ d1cw0−1v

2w0−1
)

+ . . .+
(

dw0−1c0v
(w0−1)w0 + . . .+ dw0−1cw0−1v

w2
0−1
)

=

w2
0−1
∑

k=0

d⌊k/w0⌋c(k mod w0)v
k

First, notice that the degree of this polynomial is at most w2
0 − 1, so by construction,

this polynomial will not need to be reduced modulo the irreducible polynomial. Next,

notice that the coefficient ek of vk can be written as ek = d⌊k/w0⌋c(k mod w0). But

remember that the c and d coefficients correspond to the bits of x̂i,h and ŷi,h, which in

turn correspond to the bits of xi and yi. So if we wish to know the AND of ck′ and dk′ ,

we can look at the coefficient of vk, for the k for which k′ = ⌊k/w0⌋ = (k mod w0),

This will occur at k = k′w0 + k′. Thus, each ẑi,h can be used to find the AND of w0

bits. For k′ ∈ {0, . . . , w0 − 1}, bit ẑi,h[1 + k′ + k′w0] is the AND of x̂i,h[1 + w0k
′] and

ŷi,h[1 + k′].

Zooming back out to zi, we find that each bit of zi can be found as zi[k] =

ẑi,⌊ k+1
w0

⌋[1 + ((k − 1) mod w0) + w0((k − 1) mod w0)]. Since the ẑi,h variables were

formed correctly from the x̂i,h and ŷi,h variables, which were formed correctly from xi

and yi, zi will be the AND of xi and yi for all i ∈ [N ], as desired.

Zero-knowledge: The hidden variables are zero-knowledge for the same reason the

original witness variables are. The revealed variables added as part of Test-Pattern-
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Zeros-Constraints in step 3 can be simulated perfectly with random sets of elements

that meet Rx, Ry, and Rz, as described in Test-Pattern-Zeros-Constraints.

Soundness: Suppose P is cheating, that is, there is at least one (xi, yi, zi) triple

for which zi 6= xi&yi. Without loss of generality, let i = 1 be an index on which the

prover cheats.

If the Ligero matrix is not well-formed, Test-Interleaved will fail with probability

at least 1− δ3; we assume this is not the case for the remainder of the proof.

If z1 6= x1&y1, then one of the following must be true:

1. There exists an h ∈ [w1] for which ẑ1,h 6= x̂1,h ∗ ŷ1,h.

2. The x̂1,h variables were not properly formed from x1. In other words,

Tπx
[x1, x̂1,1, . . . , x̂1,w1 , x1]

⊥ 6= ~0.

The same may be true for Tπy
on the y variables, or Tπz

on the z variables.

If the former is true, then Test-Quadratic-Constraints-IRS will fail with proba-

bility at least 1−δ1. If the latter is true, then either Test-Linear-Constraints-IRS

will fail with probability at least 1−δ2, or the pattern-checking part of Test-Pattern-
Zeros-Constraints for Rx will fail with probability at most 1/2κ. Similarly for Ry

and Rz.

Thus, by a Union bound, the overall protocol has soundness error 3(1/2κ) + δ1 +

δ2 + δ3 over the verifier’s coins.

Additionally, the ẑ variables can be used to compute bitwise outer product if

desired.

4.10.4 Range tests

We now show how to do cheap range tests for power-of-two ranges, and how to build

an adder and use it to perform non-power-of-two range tests.

Power-of-two range tests Our Zeros test can be used to very cheaply test range

tests where the range is a power of two, and can be used combined with an Add-with-
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x = 10110→ (x̂w1 = 000

w0

01, x̂2 = 0

w0

00

w0

01, x̂1 = 0

w0

01

w0

00) (4.8)

y = 11101→ (ŷw1 = 0000 1, ŷ2 = 000 1 1, ŷ1 = 000 0 1) (4.9)

l l l ẑh = x̂h ∗ ŷh

z = 10100← (ẑw1 = 000

w0

01, ẑ2 = 0

w0

00

w0

11, ẑ1 = 0

w0

01

w0

00) (4.10)

Figure 4·6: Example variable splits for Test-And-Constraints for w = 5, w0 =
2, w1 = 3. Pattern constraints enforce the relationship between x and x̂, and similar
for y and z. The ẑ variables are related to x̂ and ŷ via a quadratic constraint.

modulus gadget (which makes use of AND and Pattern) to make a non-power-of-two

range test.

To check whether a variable x < 2a for some a ≤ w, we simply use the Zeros test

with Z = {k : k > a}, to see whether the higher order bits of x are 0. This scales very

efficiently – to check whether N variables are all less than the same power of 2, the

Zeros test can be applied to all N variables and costs only κ hidden and κ revealed

variables (independent of N).

Note that power-of-two range tests in F2w are especially useful in financial use

cases that require proving numbers are non-negative, i.e. the arithmetic addition or

multiplication of two such numbers never wraps around. The addition case can be

done by showing that the two numbers are each less than 2w−1, and the multiplication

case can be done by showing that the two numbers are each less than 2⌊w/2⌋ (assuming

this is an acceptably loose upper bound).

Non-power-of-two range tests. Suppose we wish to show that x < n for some

non-power-of-two n < 2w − 1. Let a be the integer such that 2a is the smallest power

of 2 greater than n. A range proof to ensure x < n can be done by showing that both

x and (x − n + 2a) have 0 for their w − a MSBs, in other words, they are less than

2a. Here, + and − denote arithmetic addition and subtraction.
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Test-And-Constraints(F = GF(2w), κ;x1, . . . , xN , y1, . . . , yN , z1, . . . , zN )

Inputs: Soundness parameter κ. Secret variables x1, . . ., xN , y1, . . ., yN , z1, . . ., zN ∈ F where
P claims that xi&yi = zi for all i ∈ [N ].

Constraint enforced: xi&yi = zi for all i ∈ [N ].

Procedure:
1. Initial phase:

(a) Let w0 = ⌊√w⌋. Let w1 be the minimum integer such that w0w1 ≥ w. (Note that
w1 ≤ w0 + 2.)

(b) Add 3Nw1 new variables to the witness as described below.
i. For i ∈ [N ], for h ∈ [w1], add new variable x̂i,h where x̂i,h[(k − 1)w0 + 1] =

xi[((h− 1)w0)+ k] for k ∈ [w0] (if the index is defined), and all other bits are
0. An example is shown in Equation 4.8.

ii. For i ∈ [N ], for h ∈ [w1], add new variable ŷi,h where ŷi,h[k] = xi[((h −
1)w0) + k] for k ∈ [w0] (if the index is defined), and all other bits are 0. An
example is shown in Equation 4.9.

iii. For i ∈ [N ], for h ∈ [w1], add new variable ẑi,h = x̂i,h ∗ ŷi,h, where ∗ denotes
multiplication in GF(2w). Observe that within ẑi,h, each of w0 “chunks” of
w0 bits, the kth bit of the kth chunk is 1 if and only if the corresponding bits
in xi and yi are 1. An example is shown in Equation 4.10.

(c) For all i ∈ [N ], h ∈ [w1], add a quadratic constraint that x̂i,h ∗ ŷi,h = ẑi,h.

Continued in Fig. 4·7b.
(a)

Figure 4·7: Witness modification procedure and costs for Test-And-Constraints

(continued in Fig. 4·7b)

This motivates the creation of an adder. A gadget to add x and y in a power-of-

two modulus of at most 2w−1 can be created by writing constraints on an additional

“carry” variable c based on a ripple-carry adder. AND and Pattern can be combined

to form a carry variable c such that c[i] = Majority(c[i−1], x[i−1], y[i−1]) for i ∈ [w],

and c[0] = 0 by convention. The XOR of c with x and y create the z variable. This

can be used to set up the (x − n + 2a − 1) equation above, and then the Zeros test

can be used to ensure that both that and x are less than 2a.

Our full modifications to the protocol from [10] are shown in Figure 4·8.

4.11 Performance

We primarily evaluate our proof on its size compared to original Ligero, since our

asymptotic prover and verifier runtime should be the same as Ligero. Recall that a
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Continued from Fig. 4·7a
1. Initial phase, continued from Fig. 4·7a

(d) We define patterns πx, πy, πz which describe the relationship between the variables
and their “hatted” versions described in 1(b) and with examples in Equations 4.8,
4.9, and 4.10.

i. Tπx
enforces the following on column-vector [xi, x̂i,1, . . . , x̂i,w1

]:
A. For all h ∈ [w1], x̂i,h is 0 everywhere except at indices (1 + kw0) for all

valid k. Additionally, x̂i,w1
is also 0 at indices where k + 1 > w mod w0.

B. For k ∈ [w], xi[k] = x̂i,⌊ k+1

w0
⌋[1 + w0((k − 1) mod w0)]

ii. Tπy
enforces the following on column-vector [yi, ŷi,1, . . . , ŷi,w1

]:
A. For all h ∈ [w1], ŷi,h is 0 everywhere except at indices 1, . . . , w0. Addi-

tionally, ŷi,w1
is also 0 at indices greater than w mod w0.

B. For k ∈ [w], yi[k] = ŷi,⌊ k+1

w0
⌋[k mod w0]

iii. Tπz
enforces the following on column-vector [zi, ẑi,1, . . . , ẑi,w1

]:
A. For all h ∈ [w1], ẑi,h is 0 at all indices greater than w2

0. Additionally,
ẑi,w1

is also 0 at indices greater than w0(w mod w0).
B. For k ∈ [w], zi[k] = ẑi,⌊ k+1

w0
⌋[1 + ((k − 1) mod w0) +w0((k − 1) mod w0)]

Run the initial phase of 3 Test-Pattern-Zeros-Constraints tests, one for each
of these predicates, using all of the corresponding variables from 1(b) as input.
That is, do a batch test for Tπx

, Tπy
, and Tπz

for all i ∈ [N ]. Each test’s initial
phase adds hidden (w1 + 1)κ elements, for a total of 3(w1 + 1)κ.

2. Challenge phase: Run the challenge phase of each of the three Test-Pattern-Zeros-
Constraints, which involves picking Nκ bits for each test.

3. Response phase: Run the response phase of each of the three Test-Pattern-Zeros-
Constraints, which will add (w1 +1) revealed variables and some linear constraints on
them.

4. Interactive testing phase: Run Test-Quadratic-Constraints-IRS on the constraints
described in 1(c), and run the interactive testing phase of Test-Pattern-Zeros-
Constraints, which involves running Test-Linear-Constraints-IRS and ensuring
that Test-Pattern-Zeros-Constraints passes using the revealed variables.

(b)

Figure 4·7: Witness modification procedure and costs for Test-And-Constraints

(continued from Fig. 4·7a)

proof for a Boolean circuit in original Ligero requires using an entire field element

to represent a single bit value on a wire. Like original Ligero, the parameters for

BooLigero can be set so that the proof size is O(
√
s) elements, where s is the circuit

size. If the field size in Ligero is b = ⌈logF⌉ bits, then we would expect BooLigero to

save a factor of O(
√
b) in the proof size. For example, if a Ligero proof used a field

with 18 bits, we would expect a
√
18 ≈ 4.2× improvement in the BooLigero proof

size. For AND gates we require w1 ≈
√
w variables to compute the AND of a single
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Protocol ZKIOP(C,F = GF(2w))

• Input: The prover P and the verifier V share a common input circuit C : GF(2w)ni →
GF(2w) and input statement x. P additionally has input α = (α1, . . . , αni

) such that
C(α) = 1.

• Initial oracle: Let v1 be the total number of variables added by P in the initial phase
all BooLigero tests. Let v2 and v3 be the number of hidden and revealed variables added
by P in the response phase all BooLigero tests. The variables themselves cannot be
known until the challenge, but the number is fixed. Let m1,m2,m3, ℓ be integers such
that m1 · ℓ > ni + s + v1, m2 · ℓ > v2, and m3 · ℓ > v3, where s is the number of gates
in the circuit. P generates an extended witness w1 ∈ F

m1ℓ where the first ni + s entries
of w are (α1, . . . , αni

, β1, . . . , βs) where βi is the output of the ith gate when evaluating
C(α). The next v1 variables are those for the initial phase section of all BooLigero
tests. Let L = RSGF(2w),n,k,η, and let ζ = (ζ1, . . . , ζℓ) be a sequence of distinct elements
disjoint from η1, . . . , ηn. The prover samples random codeword Uw1 ∈ Lm1 subject to
w1 = Decζ(U

w1).
• Challenge: V chooses and sends random bits as described in the challenge phase

section of all BooLigero tests.
• Response oracle: P generates witness extension w2 ∈ F

m2ℓ where the first v1 variables
in w2 are the hidden variables for the response phase section of all BooLigero tests.
P also generates witness extension w3 ∈ F

m3ℓ, where the first variables in w3 are the
revealed variables for the response phase section of all BooLigero tests. Let m =
m1 +m2 and let m′ = m1 +m2 +m3. Let w ∈ F

ℓ be the vertical concatenation of w1

and w2. Let w′ ∈ F
(m1+m2+m3)ℓ be the vertical concatenation of w and all revealed

variables. P deterministically chooses codeword Uw3 ∈ Lm3 . P samples random
codeword Uw2 ∈ Lm2 subject to w2 = Decζ(U

w2) and sets Uw ∈ Lm to be the vertical
concatenation of Uw1 and Uw2 .

Continued in Fig. 4·8b
(a)

Figure 4·8: ZKIOP of [10] with our modifications shown in blue (continued in Fig.
4·8b)

w-bit variable. If the Ligero and BooLigero field sizes require the same number of

bits to represent, BooLigero will use
√
b fewer variables, a proof size improvement of

O(b1/4) for AND-heavy circuits. We also add a small constant up-front cost for the

revealed variables.

Determining the size of the extended witness and proof. If the verification

circuit C consists of only XOR gates, NOT gates, and Galois field multiplications,

then the size of the witness w is simply the number of wires in C, which we call v0 as

described in §4.10.1. If C contains ANDs, or uses any other BooLigero test (e.g. using
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Test-Pattern-Constraints to perform a bit shift), then w is augmented with the

(v1 + v2 hidden and v3 revealed) variables described in §4.10.3. The combined proof

oracle becomes an Lm encoding of the v0 + v1 + v2 hidden variables in the witness,

plus the v3 revealed variables in the clear. Once the extended witness is created, the

process of choosing the parameters proceeds in the same way as original Ligero: the

number of rows m is balanced against the number of variables per row ℓ to achieve

sublinear proof size. For more details, see [10] §5. In the non-interactive version of

BooLigero, the Merkle path part of the proof is doubled since the initial and response

variables were committed to separately. We computed the parameters using our own

optimizer written in SciPy and validated them with an optimizer obtained from [308].

4.11.1 Concrete results

For both SHA-2 and SHA-3, we evaluate our proof sizes compared to Ligero on

proving membership in the list captured by a Merkle tree. This has become a common

benchmark for evaluating the scalability of zero-knowledge proofs to larger predicates.

We compare the proof sizes of Ligero and BooLigero for Merkle trees of increasing

size. For a Merkle tree with M leaves, (2M − 1) hash computations are done.

SHA-3

SHA-3 only uses bit operations, so there is no special benefit from using an arithmetic

system. Both BooLigero and Ligero may do the wordwise rotations for free; they can

be achieved by re-indexing constraints for the next step. Ligero can do the bitwise

rotations for free (since each variable represents only a single bit), but in BooLigero

we must write the additional variable and use Test-Pattern-Constraints to enforce

the constraint.

Using SHA-3 as the hash function in a Merkle tree, each invocation of the hash

function consists of a single call to the f-function.
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SHA-2

SHA-2 contains a mixture of Boolean operations and mod-232 addition. Although the

SHA-2 circuit used in [10] was not provided, we reconstruct a similar circuit using the

same techniques. As described in [10], Ligero computes modular addition by using a

dummy variable. Our SHA-2 circuit for original Ligero tracks 16 32-bit variables (11

main variables plus 5 dummy variables) throughout 64 iterations of the SHA-2 loop.

BooLigero prefers a different strategy. Although we can compute mod-232 addition

in BooLigero by implementing an adder, it turns out that a standard 135840-wire

Boolean circuit for SHA-2 leads to a smaller proof size since it uses far fewer ANDs.
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Continued from Fig. 4·8a
• Response oracle (continued from Fig. 4·8a): Let m′′ be an integer such that

m′′ℓ is greater than the number of multiplication gates plus additional quadratic con-
straints in BooLigero tests. P constructs vectors x, y, z ∈ F

m′′ℓ where the jth entry
of x, y, z contains the values βa, βb, βc corresponding to the jth multiplication gate in
w. The following entries of x, y, z contain the values for additional constraints added
in BooLigero tests. P and V construct matrices Px, Py, Pz ∈ F

m′′ℓ×m′′ℓ such that

x = Pxw
′, y = Pxw

′, z = Pzw
′. P constructs matrix Padd ∈ F

m′′ℓ×m′′ℓ such that the jth
row of Paddw equals βa+βb−βc where βa, βb, and βc correspond to the jth addition gate
of the circuit in w, and the subsequent rows correspond to additional linear constraints
added in BooLigero tests. It also samples Ux, Uy, Uz ∈ Lm′′

subject to x = Decζ(U
x),

y = Decζ(U
y), and z = Decζ(U

z). Let u′
h, u

x
h, u

y
h, u

z
h, u

0
h, u

add

h be auxiliary rows sampled
randomly from L for every h ∈ [σ] where each of ux

h, u
y
h, u

z
h, u

add

h encodes an indepen-
dently sampled random ℓ messages (γ1, . . . , γℓ) subject to

∑

c∈[ℓ] γc = 0 and u0
h encodes

0ℓ. P sets the combined oracle as (U ∈ Lm+3m′′

, R) where U is set as the vertical juxta-
position of the matrices Uw ∈ Lm, Ux, Uy, Uz ∈ Lm′′

, and R is the set of all v3 revealed
variables. When the combined oracle is queried on Q ⊂ [n], the response will be the
columns of U that are in Q, as well as R sent in the clear.

• The interactive protocol:
1. For every h ∈ [σ], V sends the first verifier message of the testing process for Test-

Interleaved, Test-Linear-Constraints-IRS applied to A = Padd, b = ~0 on Uw,
and Test-Quadratic-Constraints-IRS applied to Ux, Uy, Uz.

2. For every h ∈ [σ], P responds with the appropriate next step of the testing process
for Test-Interleaved, Test-Linear-Constraints-IRS, and Test-Quadratic-
Constraints-IRS.

3. V picks a random set Q ⊂ [n] of size t, and queries U [j] that is the vertical jux-
taposition of Ux

h [j], U
y
h [j], U

z
h [j], U

w

h [j], ux
h[j], u

y
h[j], u

z
h[j], u

add

h [j], u′
h[j], j ∈ Q. It

also receives R, the list of revealed variables. It uses the same deterministic process
as P to generate Uw3 and appends this to the bottom of the queried columns for
testing. It accepts if all acceptance criteria for Test-Interleaved, Test-Linear-
Constraints-IRS, Test-Quadratic-Constraints-IRS, Test-Pattern-Zeros-
Constraints and Test-And-Constraints are met.

(b)

Figure 4·8: ZKIOP of [10] with our modifications shown in blue (continued from
Fig. 4·8a)
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Figure 4·9: BooLigero and Ligero absolute and relative proof sizes for SHA-3
Merkle trees

Figure 4·10: BooLigero and Ligero absolute and relative proof sizes for
SHA-2 Merkle trees
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Chapter 5

Interdisciplinary cryptographic and legal

research: challenges, opportunities, and

future work

It is my privilege to study at the intersection of two fields that each individually

have enough of their own exciting challenges to last multiple lifetimes. Law and

cryptography share several key qualities: an emphasis on adversarial thinking, a

notion of “convincing” a third party via a proof or logical argument, and a desire for

rigor and consistency. Moreso than most other computer science fields, cryptography

pays more than a little attention to social principles: privacy, autonomy, non-non-

repudiation, deniability, and so on.

Although codes and ciphers have been used for over 3,000 years [184, p. 72],

this practice only began to modernize with the advent of radio in World War I and

intensive code making and breaking efforts on both sides of the war in World War

II [109]. Subsequently, cryptography grew into the field we know it as today in the

late 1970s and early 1980s, after information theory and computational complexity

had matured. Several highly influential developments emerged which would set the

tone for the next 50 years: the call for proposals for (and eventual invention of) the

Data Encryption Standard [235], Diffie and Hellman’s New Directions in Cryptogra-

phy [108] and the RSA algorithm [253] which introduced public key cryptography,

Chaum’s work on mix-nets [78] that emphasized practical privacy concerns about not

only the content of electronic communications but also the metadata, Goldwasser
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and Micali’s Probabilistic Encryption [145] which brought the rigor of computational

complexity to cryptography by basing all cryptography on problems proven to be

computationally “hard,” and the birth of zero-knowledge proofs due to Goldreich,

Micali, and Wigderson [143]. Diffie and Landau describe an additional revolution in

cryptography in the new millennium, with deregulation that led not to major adop-

tion of cryptography in every natural setting, but in specific areas such as protecting

intellectual property and the introduction of Trusted Platform Modules to ensure the

integrity of the software on computers [109]. We can add HTTPS to that list; the

majority of web browsing has been encrypted on Mozilla Firefox and Google Chrome

since 2017 [118]. In any case, as old as cryptography’s goals are, many of its methods

and impacts on society are still new.

Law, on the other hand, has always been a central part of human society, even

though the mechanisms and rules change drastically from culture to culture, from

time to time, and from place to place. Modern democratic legal systems include

methods for resolving disputes between members of the society and to address prob-

lems with the governing body. In America, law has always been a key component in

ensuring rights and freedoms; as the Constitution was being drafted, it was recog-

nized that without an independent judiciary, “all the reservations of particular rights

or privileges would amount to nothing” [160]. The American legal system, for all its

flaws, has kept America afloat for almost 250 years.

However, new technologies bring new challenges and shine new light on older chal-

lenges in the design, application, and interpretation of the law. Modern cryptography

in particular poses many new legal challenges, second only to perhaps the rise of ma-

chine learning and automated decision making more broadly. Cryptography, instead

of being used only by militaries and for secret correspondence of state leaders, is now

deployed by most companies with a digital product, and now touches every aspect
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of life on the internet or on a device. The new capabilities enabled by cryptography

directly lead to new questions of law: How should old rules apply to new technolo-

gies? What new actions can we take with these new capabilities? How, if at all, must

we restrict the use of these new methods? What principles should guide us toward

answers?

Modern data analysis is also inextricably tied to cryptography at this point, via

debates over online privacy. Cryptography is one of the most reliable methods for

obscuring information about oneself. For the last several years we have been in a

perpetual debate over what information about the average person will be revealed,

and to whom. It is telling that “statistics,” a word originally referring to “the science

dealing with data about the condition of a state or community” such as a state would

collect [275, p. 1128] is a science now performed routinely not just by governments,

but by companies, academics, and anyone who can get their hands on large datasets.

In this chapter, I argue for the benefits of joint technology-law research and de-

scribe why I believe it will lead to better and more timely outcomes than performing

siloed research in both fields. I first describe the challenges in bringing cryptographic

methods to bear on legal issues, and respond to those challenges and describe why

I believe joint research is important despite the barriers (§5.1). I then describe spe-

cific laws that are heavily affected by aspects of cryptography and statistics and how

research in the two areas can inform each other §5.2. I end the section with a discus-

sion of what I see as some promising paths for interdisciplinary research in law and

computer science both generally (§5.3) and in specific cryptographic research areas

(§5.4).
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5.1 In favor of joint research

Feigenbaum and Weitzner [117] describe common problems when seeking to perform

socio-technical research. Citing prominent legal scholar Ronald Dworkin [113], they

describe the difference in law between rules and principles : rules “can be understood

as logical propositions that are expected to yield answers about what is and is not

permitted using formal reasoning capabilities.” Principles, on the other hand, are

values that guide decisions, but will likely not yield an “unambiguous outcome.”

Principles are the only guide when rules fail us – indeed, many cases that rise to the

level of the U.S. Supreme Court do so because the topic is at an edge case of the

rules, and so are decided on principles alone.

A common criticism that technologists face when venturing into the realm of the

socio-technical is that it is difficult to logically formalize the deliberately-vague prin-

ciples and policies that guide policymakers, lawmakers, and judges. The vagueness of

these principles is valuable to the long-term stability of society, in concert with the

equal application of any hard-and-fast rules. I agree with this criticism – computer

scientists who try to transmute principles into rules do so at their peril.

However, even beyond attempts to convert principles into rules, some remaining

aversions to interdisciplinary research remain. Technologists are often wary of enter-

ing the legal sphere for fear of losing neutrality, although in my opinion this fear is

exaggerated: there is plenty of space for descriptive research to measure or predict

the effects of a technology. Even when venturing into making normative claims, there

is an important need for recommendations backed by legitimate technical evidence.

There is resistance to considering “tech law” or “cyberlaw” its own field on the

legal side as well. Most famously, Judge Frank Easterbrook, a Seventh Circuit judge,

deemed cyberlaw similar to “Law of the Horse” and claimed that law was at its best

when it studied general rules and institutions that could be applied to specific cases
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like cyberspace [114]. His criticism was specifically aimed at lawyers who were likely

to make claims about new technologies that were either false outright, or would be

outdated in five years. As he said, “put together two fields about which you know

little and get the worst of both worlds.”

There have been numerous responses to this critique, most notably from Lawrence

Lessig [209] who essentially claims that some general principles can be unearthed from

the study of the specific law of cyberspace. Lessig was talking about questions like

whether law should adapt in response to specific landscapes, or if it should try to

alter the landscape so as to be more regulable under existing law, or to what extent

the code itself supplants law in certain scenarios.

Although I respect Easterbrook’s note of caution, I find myself agreeing more

with Lessig’s point that sometimes new general points are unearthed by the study

of specifics. Although Lessig’s examples of this principle in the early days of the

Internet included things like authenticating age (often easy enough in the real world,

difficult over the Internet) and the invisibility of tracking, I see similar occurrences

in algorithmic fairness. Algorithmic fairness brought to light issues that are not new.

In some sense, though the field’s name is “algorithmic” fairness, there is nothing

“algorithmic” about the issues studied there at all – human decision makers would

be subject to the exact same statistical constraints. It is only because of the scale

of algorithms, general discomfort with passing control over a person’s life and well-

being over to an algorithm, and a suspicion of the naive promise that algorithms

could not reinforce bias, that we noticed these problems existed in the first place.

New technologies, sometimes by virtue of their power or scale, illuminate broader

issues that now must be addressed.

Thus, I reject the separation of cryptographic research from law. For one thing,

the separation has become less maintainable as technology has become more and more
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widespread. Laws must deal with technology, whether specifying legally punishable

behavior on the internet or establishing rules about autonomous weapons. So too

must technology deal with laws, though this is truer when creating products than

when performing academic research. And though technology rarely offers a complete

solution to a non-technical problem, it would be ridiculous to suggest that it can never

help. Furthermore, even the most die-hard technophobe would surely recommend

researching what negative impacts technology could have on the situation at hand,

so as to know how best to establish good practices.

5.1.1 Laws, policies, ethical codes, or societal goals?

Before moving on, let us briefly pause to describe six different sets of potential goals

for interdisciplinary research: will the research inform laws, policies, standards, best

practices, or ethical codes, or merely improve society in a broad way? We expect this

style of research to be beneficial to all six. However, the interdisciplinary researcher

benefits from understanding the differing effects and strengths of each of these objects,

so as to better determine which type is most in need of what information.

By laws, I mean stated rules which govern a populace under penalty of punish-

ment if not obeyed, and the processes by which those laws are enforced and challenged.

Laws in America, at least those that stand the test of time, are generally narrower,

and stronger, than policies and ethical codes. As a result, conducting research that

has impact on a law has strong consequences for a narrow set of circumstances. Good

examples include the fight over the census and the Appropriations Act mentioned

in the previous section, research on the GDPR in Europe, and the analysis on the

foregone conclusion doctrine presented in the next chapter of this work. As far as

research goes, a primary benefit of examining laws and lawsuits are that they are gen-

erally explicitly written, and in America have an explicit goal of self-consistency, with

a hierarchic error-correction structure built into the court system to resolve conflicts.
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These works have a good starting point in the form of reading the relevant statutes

and case law, then attempting to form formal definitions and “test” the definition

on existing legal cases. A reasonable ending point would be a recommendation to

amend or create a law, an amicus brief on a court case describing the finding, and

in some cases, a technical finding. In some cases, the legal finding may lead to ad-

ditional technical research, such as in §2 which introduces a new security definition

and constructs protocols to meet it, where the security definition was a response to

the legal finding made earlier.

Policies are formal procedures by which decisions are made. These could be

created and used by a government, or by a company or other organization. A policy

can be created in order for a company to determine how it is to comply with a law,

or set up a default set of allowable actions, or any other formal procedure short of

a law. Modifications to policies can be farther reaching, and in many cases just as

impactful as modifications to laws themselves. Interdisciplinary research in this area

can measure the general landscape of policies, whether by scraping privacy policies

or by intensely investigating one particular organization. Statistical research such as

that described in §3 should guide policies (or laws) by showing how to achieve various

statistical goals, or by showing that some different goals are incompatible with each

other.

Somewhat like a cryptographic “ideal functionality,” standards describe the de-

sign, operation, and requirements of protocols or devices. Standards tend to be

maintained by a specific organization, especially the National Institute of Standards

and Technology, or the Internet Engineering Task Force. Technical research is heavily

involved in the creation and improvement of standards, as it should be. My prior work

on the Sender Policy Framework for email, for instance, showed a mismatch between

the clear intention of the standard, and its actual implementation which allowed a
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potential denial of service vector by sending an email to a target mail server [260].

We see the primary roles of interdisciplinary research toward standards as being mea-

surement (i.e. measuring the extent to which a standard is adhered to) and finding

ways to push the state of the art forward in areas where the standard seems to be in

tension with a societal need (for example algorithmic fairness research).

Best practices are weaker than policies in that they are not generally binding.

However, they can be legally important: by adhering to an explicit shared list of best

practices, an entity can claim that it “did the best it could” and should therefore not

be held liable for any problems that occurred while following it. Within cryptography,

best practices are relevant in the context of content moderation, security, and end-

to-end encryption. Like standards, technical research already makes many rolling

changes to best practices lists, especially in security. Interdisciplinary research may

wish to go beyond the technical role in places where the best practices are having

unintended adverse effects on whatever they are governing, or to see the extent to

which various parties are following the best practices, or to tease out gray areas in

the best practices where the principles did not align properly with the rules, similar

to standards.

Ethical codes are adopted by many professional societies or companies. They

are sometimes binding (under the punishment of exile from the organization) and

sometimes not. Cryptography research itself has few intersections with ethical codes,

aside from ethical codes that set general boundaries of what is considered accept-

able research practices. In security research, this primarily consists of guidelines for

responsible disclosure, and what systems are considered valid targets for research-

ing attacks. However, in the other direction, ethical codes are beginning to encode

privacy, security, and algorithmic fairness requirements. Google’s “Responsible AI

practices” contain not only general recommendations but also specific recommenda-
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tions for fairness, interpretability, privacy, and security [148].

Finally, some research has the explicit goal of pursuing some societal improvement.

Some researchers, especially those who distrust the motives of powerful governments

or corporations laying down laws or policies, prefer to conduct research that they

believe will directly improve society, rather than focusing on improving specific codes

or laws. Of course, I would hope all research would be carried out with this ethic of

responsibility, as Rogaway would put it [254], which has been an important part of

science since at least the Russell-Einstein manifesto [255]. Moreover, if one takes a

very liberal definition of “improving society,” then nearly all research improves soci-

ety in some way. It is not the case that seemingly-theoretical research will never lead

to societal improvement. Although much theoretical research is never directly imple-

mented or used, some theoretical research has tremendous societal impact decades

after its original publication, and one cannot often tell which is which for years af-

ter its publication. However, in this case, I am referring to research whose results

would create some immediate form of societal change. These research problems are

a good candidate for interdisciplinary research, and I expect all the same criticisms

and advice for successful law-CS research would apply to social-CS research as well.

5.2 Examples of cryptography in the legal regime

In this section, I describe several recent laws which have overlap with cryptography,

privacy, or algorithmic fairness. The purpose of this section is not to be an exhaustive

list of every law that mentions cryptography, but rather to demonstrate the fact that

such laws are now fairly numerous, and show that a joint technical-legal understanding

of these laws is beneficial. Urs Gasser has described three general patterns of legal

responses to technological change [135]: subsumption, in which old rules are applied

to new technologies; innovation, in which new laws or doctrines are created to deal
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with the new technology; or gradual adaptation of society and law to deal with the

new problem without any specific intervention. We will categorize these recent laws

accordingly.

The key aspect shared among all these examples is that there is some pressure

to come to a timely decision on matters at the intersection of technology and law.

Sometimes a lawsuit comes up, and it must be decided where a technology fits into

the landscape of the law. Sometimes a new technology is invented that is so impactful

that its negative affects must be negated or mitigated, or its positive affects must be

adopted and mandated. Oftentimes, the issue is forced before an understanding of

the technical and legal issues at hand can be gained naturally by policymakers, and

interdisciplinary research becomes an invaluable tool to resolve the quandary in a

timely manner.

5.2.1 Examples of subsumption

In this section I describe cases of subsumption, where existing laws were adapted to

fit new technological challenges.

Federal privacy law The United States’ laws on privacy tend to be centered on

specific applications. Most notably, the Family Education Rights and Privacy Act

of 1974 (FERPA) protects the privacy of educational records [63], the Privacy Act

of 1974 describes allowed uses of records about individuals by federal agencies [183],

Title 13 provides additional requirements on Census data [293], the Health Insurance

Portability and Accountability Act of 1996 creates a privacy rule for health infor-

mation [14], and the Financial Services Modernization Act of 1999 (GLBA) requires

financial institutions to create and adhere to privacy policies [150]. These regulations

have inspired a fair amount of research and development, especially in the health

care setting (e.g. [8, 202, 249]) though these works tend to apply existing techniques
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rather than invent new ones. In order to create such techniques, one must have an

understanding of both the legal restrictions and the technical security goals.

An 1807 lawsuit: Aaron Burr’s secretary. Against the odds, there is actually

a very early example of an American legal case involving a cipher. Orin Kerr provides

an in-depth modern take on the case in a recent paper [195]. In the facts of the case,

Aaron Burr was under trial for treason in 1807. Some letters, written in code, came to

light; the court wished to know if Burr was sending encrypted messages to partners in

crime. At the time, having knowledge of a treasonous plot (not necessarily your own),

and concealing that plot, was itself a crime, known as “misprison of treason.” Burr’s

secretary, Charles Willie, was eventually asked whether he understood the contents

of the paper. He refused to answer, citing his 5th Amendment privilege against self-

incrimination. His right to do so was more complicated than it sounds. As examined

in much greater detail in §2, the modern interpretation of the 5th Amendment only

provides a privilege against self -incrimination, and only if the requested response is

compelled, incriminating, and testimonial. In this case, the request was clearly com-

pelled (the government was forcing Willie to answer) and testimonial (the government

sought an oral response to a yes/no question regarding Willie’s knowledge); Willie’s

lawyers argued that Willie’s response would incriminate himself for misprison of trea-

son. A lengthy and complex debate ensued among the lawyers and judge of the case.

Eventually, it was determined that since only his current knowledge of the cipher was

being asked, the government would have no way of knowing whether Willie would

have been capable of reading the letter earlier, and therefore there was no risk of

Willie incriminating himself for misprison of treason. This is a reassuring case, as we

study the 5th Amendment in a different encryption scenario, as we have a test that

shows that both the general 5th Amendment principles, and specific court doctrines,

can be subsumed to apply to encryption technologies as well. We explore technical
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and legal issues of compelled decryption in much greater detail in §2; these issues

remain challenging in both fields to this day.

Privacy in the census. For the 2020 census, the Census Bureau adopted differ-

ential privacy in order to prevent attacks that would allow reconstruction of many

individuals’ census responses as a result of the numerous statistics published by the

Census. This poses a question of how to determine how new technological methods

should be treated under existing laws. The Census is a particularly interesting exam-

ple of a function that has strict requirements that tug in different directions: on the

one hand, it must maintain the confidentiality of individual responses for 72 years;

on the other hand they provide the most accurate count of people in the country,

which is most notably used to draw districts and apportion seats in the House of

Representatives. These goals in tension with each other require a high level of tech-

nical sophistication for the Census Bureau. Moreover, previous attempts it has made

at changing their method have been explicitly prohibited by law: section 195 of the

Census Act prohibited the “statistical sampling” method the Census sought to use in

2020 [240]. Now, in 2021, after the adoption of differential privacy, a key lawsuit [285]

was brought by the state of Alabama (representing several states) challenging the use

of differential privacy. Among other claims, it calls differential privacy a “statistical

method” that can be challenged; in this context, the 1998 Appropriations Act defines

statistical method as a “statistical procedure... to add or subtract counts to or from

the enumeration of the population as a result of statistical inference.” This then

passes the buck down to asking what exactly the definition of statistical inference is.

This question of law has clearly become a question of mathematics. This case, along

with many others, demonstrates the need for timely specialized research by computer

scientists that is relevant to questions of law and policy.
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5.2.2 Examples of innovation

This section describes new laws which were innovated to deal with new technologies.

Determining the boundary of this section with the gradual adaptation category is

challenging – many new laws propose a small change, especially to limit the use of a

new technology, however these changes are usually narrow changes rather than sweep-

ing new innovations. For now, our criterion for being an “innovation” rather than a

“gradual adaptation” is a relative measure rather than an absolute one: I have called

more drastic changes “innovations” and small adjustments “gradual adaptations.”

In Europe: the GDPR The most obvious recent example of a cryptography-

adjacent law is the European General Data Protection Regulation (GDPR). Not only

did GDPR bring in sweeping new privacy laws that companies all over the world

scrambled to adhere to, it also brought specific (non-technical) definitions of several

types of deanonymization, including singling out, linking, and inferring. In addition,

a working party created an influential list of guidelines describing whether several

anonymization techniques such as pseudonymisation, noise addition, substitution, k-

anonymity, l-diversity, hashing, and differential privacy, provided adequate defense

against each of the three types of attacks. Each of these techniques requires a math-

ematical analysis to determine whether or not it meets the new security definitions.

These analyses were later further refined in a technical paper by Cohen and Nis-

sim [84]. The GDPR also stipulates that “the controller shall have the obligation

to erase personal data without undue delay” leading to technical works meant to

determine how, exactly, to erase data that has already been incorporated into some

kind of framework like a machine learning model [134]. Finally, the GDPR has also

encouraged people to apply known techniques such as multi-party computation and

homomorphic encryption to new problems, especially in health care, e.g. [128,262].
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Biometric Information Privacy Act (BIPA). BIPA is an Illinois law enacted

in 2008. It is most famous for requiring companies to collect consent each time

a biometric (fingerprint, iris/retina scan, voiceprint, facial/hand scan) is disclosed.

Additionally, it also grants individuals the right to sue in the State of Illinois if

this is violated. This law rose to prominence again in the late 2010s as Facebook

began performing facial recognition and “Face ID” was developed as an option for

logging into smartphones. Facebook settled a lawsuit for $650 million for violating

BIPA; there is currently a similar ongoing case against TikTok (in TikTok’s case, the

lawsuit alleges that the app conducts a full facial scan so as to be able to display face

filters in real time video; TikTok’s lawyers say that the app does not capture any

biometric information) [251]. This law inspires interdisciplinary questions about the

definition of “biometric” and the purposes for which they should and should not be

used.

Facial recognition bans. Several city and state governments have banned law-

enforcement use of facial recognition. As summarized by the ACLU in 2021, these

include “San Francisco, Berkeley, and Oakland, California; Boston, Brookline, Cam-

bridge, Easthampton, Northampton, Springfield, and Somerville, Massachusetts; New

Orleans, Louisiana; Jackson, Mississippi; Portland, Maine; Minneapolis, Minnesota;

[and] Portland, Oregon” [9]. Similar bans exist at the state level for Virginia and

Vermont. California prohibited facial recognition specifically in police-worn body

cameras, and New York state prohibited facial recognition in schools [9]. Two key

issues arise with facial recognition: First, current facial recognition tools developed

in the US are famously less accurate on darker-skinned faces [66]; inaccuracy in facial

recognition has now led to at least one mistaken arrest (of a black man) [129]. Sec-

ond, even if facial recognition worked perfectly accurately on everyone regardless of

appearance, the thought of applying facial recognition and tracking to omnipresent
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cameras inspires an Orwellian image of mass surveillance. Several factors are cur-

rently pushing the federal government to enact some kind of federal regulation for

facial recognition software; many are pushing for a full moratorium of government use

of facial recognition. This is likely to be an area with continuing need for research to

address a myriad of technical and legal questions for years to come.

5.2.3 Examples of gradual adaptation

This section describes proposed legislation which represents a gradual adaptation to

new technology – although they propose new changes and could therefore be consid-

ered innovations, the innovations are relatively small.

Student Know Before You Go Act. The “Student Know Before You Go Act,”

was originally proposed in 2012 by Senators Wyden and Rubio, and has been re-

introduced several times with new modifications, most recently in 2019 by Senators

Wyden, Rubio, and Warner. It is meant to allow potential college students to learn

information about various colleges’ graduates’ debt, future job situations, and so

on. The bill specifically requires that the students’ data be protected by “secure

multiparty computation technologies; or (2) may utilize technology other than secure

multiparty computation technologies if the other technology – (A) fully complies with

[security requirements given earlier in the bill]; and (B) delivers greater student pri-

vacy and security than secure multiparty computation” [323, 3(c)]. Of particular note

are the security requirements described: the system must “use[] technical protection

measures that reasonably ensure that – (A) a reporting entity’s raw data, including

personally identifiable information, shall not be accessible through the system to the

Department or any party other than the reporting entity; (B) no information about

the data components used in the system is revealed by the system to the Department

or any other party, except as incorporated into the outcome metrics described in Sec-
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tion 5; and (C) no data or information that can identify an individual is revealed by

the system to the Department or any other party” [323, 3(b)]. This proposed law

thus addresses a use case for cryptography that still remains underutilized in industry:

the ability for multiple data-holders to provide an obfuscated version of their data

to some central computing server, and receive some analysis of their data, without

revealing the data itself. The ability to state this goal in these terms is the fruit of

effective communication between cryptographers and policymakers.

Algorithmic Accountability Act. In a different technical regime, the “Algorith-

mic Accountability Act of 2019” proposed by Senators Wyden and Booker would have

required data-holding companies and organizations to conduct regular assessments of

automated decision-making systems, with extra requirements for “high-risk” systems

that pose significant risk of privacy or security violation, or discrimination [322]. The

list of what must be present in the assessment includes ideas that might already be

considered best practices for data-holders: performing data minimization, setting a

time period after which the data and results might be destroyed, determining how

much of the system is visible for public review, describing how to appeal results, and

who receives the results. This is a reasonable list of things to assess, but the bill still

begs the question of how to determine what “significant risk” means in the classifi-

cation of determining a “high-risk” system. In practice, this would likely either turn

to an existing technical standard, or create a new standard. Once again, setting this

standard requires an understanding of both the legal desiderata and the technical

capabilities of the systems analyzed.

EARN IT Act. The “Eliminating Abusive and Rampant Neglect of Interactive

Technologies Act of 2020” (or “EARN IT Act”), introduced by Senator Lindsey Gra-

ham and 16 cosponsors including Senator Dianne Feinstein, has a long and complex
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history. In summary, it was meant to encourage online platforms to adopt practices

that would make it more difficult to send child sexual abuse material (CSAM) without

detection. Primarily it does this by amending Section 230 of the Communications De-

cency Act. Currently, Section 230 broadly grants online providers immunity against

civil and criminal lawsuits: they are not “treated as the publisher or speaker” of

information [125]. This creates a “safe harbor” for websites and other providers to be

shielded from liability for what their users post. There has been a lot of discussion

recently about amending Section 230, and EARN IT is a part of that discussion.

Essentially, the EARN IT act would specify “best practices” that would allow the

platforms to keep that liability shield. (The companies could do something other

than the best practices, but they would then be open to litigation and would have to

justify their choices to the court.) The best practices would include retaining CSAM

and associated location data [149, 4(3)(C)] and using content moderators to review

potential CSAM [149, 4(3)(F)]. While EARN IT was originally understood to be an

“anti-encryption bill,” in response to criticism [246] the most recent draft explicitly

carves out an exception for the use of end-to-end encryption, stating [149, 5(7)]:

(7) CYBERSECURITY PROTECTIONS DO NOT GIVE RISE TO

LIABILITY.–Notwithstanding paragraph (6), a provider of an interac-

tive computer service shall not be deemed to be in violation of section

2252 or 2252A of title 18, United States Code, for the purposes of sub-

paragraph (A) of such paragraph (6), and shall not otherwise be subject

to any charge in a criminal prosecution under State law under subpara-

graph (B) of such paragraph (6), or any claim in a civil action under State

law under subparagraph (C) of such paragraph (6), because the provider–

(A) utilizes full end-to-end encrypted messaging services, device encryp-

tion, or other encryption services;
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(B) does not possess the information necessary to decrypt a communica-

tion; or

(C) fails to take an action that would otherwise undermine the ability of

the provider to offer full end-to-end encrypted messaging services, device

encryption, or other encryption services.

Clearly, this is a law that must interact meaningfully with several different crypto-

graphic and privacy notions in order to determine what best practices to recommend,

what technologies to carve out as an exception, and other similar concerns.

5.2.4 Interdisciplinary research accelerates the process of improving the

law

In all of these specific laws and lawsuits, there is a certain need for interoperability

between technical and legal concepts. There is a clear public interest in ensuring that

proper technological safeguards are adopted and mandated in situations that warrant

(for example) privacy or accountability tools, and in banning technologies that pose

an unacceptable risk. To some extent this interoperability happens naturally: as a

technology becomes more widespread, the concepts become more approachable even

to non-experts.

However, waiting for that natural understanding is often not an option. Few law-

makers are experts in facial recognition technology or encryption, nor should they

need to be. Without research showing disproportionate inaccuracy of facial recogni-

tion on specific demographics [66], the benefits of facial recognition in law enforce-

ment use would likely have been recognized as more “legible” than the costs – which

have been determined to be so severe that several municipalities are banning the

technology outright. The original draft of the EARN IT Act would have heavily dis-

couraged end-to-end encryption (see §5.2.3), whereas the new draft specifically carves

out an exception for end-to-end encryption, in part due to widespread criticism from
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researchers in law, cryptography, and the intersection [246]. Arguments over the al-

gorithms used in the Census require an understanding of both the legal requirements

and the technical algorithm being deployed in order to determine the right path for-

ward; since an active lawsuit is occurring over the 2020 Census process, we cannot

wait for a natural understanding of the methods involved to percolate through society.

In all of these areas described above, interdisciplinary researchers are in the ideal

position to make timely recommendations for these systems.

5.3 A path forward

The stock criticism of interdisciplinary tech-law work is correct: the weakest link is

usually interface between the model and reality. Cryptographers will be familiar with

this concept already – a theoretical framework can have air-tight security yet still be

thwarted by side channels or incorrect assumptions. The same is true of the interface

between a legal concept and a technical modeling thereof. However, this is not to

say that the technical models have no use whatsoever. As the saying goes, all models

are broken, some models are useful. And, as another saying goes, if you’re doing

anything, you’re probably using a model, so we have a desire for high-quality models.

This is exactly the problem that this area of interdisciplinary tech-law research seeks

to address: making a stronger interface between the model and reality.

At the end of their paper describing common problems when seeking to perform

socio-technical research [117], Feigenbaum and Weitzner describe two areas where

they believe socio-technical research can be especially fruitful: First, clarifying in

what situations rules and principles are the main guide, often by amending the rules

so that they are either more in line with the principles, or have fewer gray areas in

which they must be abandoned for principles. They provide location privacy as an

example: the rules are few and are either old laws that were subsumed into apply-
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ing to new technology, or very strict constitutional limits; the called-upon principles

in the location privacy debate are conflicting as well, and are at times in conflict

with the rules. Second, socio-technical research also helps bring transparency and

accountability to decision-making processes that are governed by principles, in the

areas where rules do not reach. The authors describe surveillance policy as an ex-

ample; the authors recommend both research into the state of affairs (rather than

relying on conflicting reports from various agencies and advocacy organizations), as

well as ensuring that any technical intervention remain accountable.

We agree that these two areas of socio-technical research are excellent opportuni-

ties where technology can help inform new and existing rules and principles. However,

I would like to bring this further and describe a handful of other opportunities I see

in the field where cryptography can decrypt legal dilemmas. As described in the

last section, it is usually principles, and not cryptography, that will help guide you

to a choice between two dilemma options. However, cryptography can often help to

illustrate what the dilemma options are. It can inform you when two different goals

are compatible, and when they are not. It can illustrate gaps between the principles

and the rules. It can improve the benefits, or reduce the costs, of one or both options

in the dilemma. Sometimes, it can innovate a third option, or a different resolution.

And finally, interdisciplinary tech-law research can guide us to new principles and

rules. We conclude this section with a description of these research types in a little

more detail.

Illustrating the dilemma options and revealing gray areas. Probably the

most common form of interdisciplinary tech-law research has to do with clarifying

the state of what I have dubbed “legal dilemmas.” This research either analyzes

specific technologies, determining whether they meet various legal criteria, or they

formally model laws so as to be able to apply them in new situations in the absence
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of case law. As an example, Nissim et al. [239] formally model some privacy laws

for education in the U.S. Garg et al. [134] provide a simulation-based definition of

the right to be forgotten. In addition to modeling law, determining whether cer-

tain technologies adhere to legal criteria also falls under this category. For example,

in addition to formalizing one aspect of European privacy law into a security goal,

Cohen and Nissim [84] prove that differential privacy achieves this security goal but

k-anonymity does not. There are several works analyzing the use of multi-party

computation in various privacy law contexts, for example in Estonia [53] and under

GDPR generally [262]. We find this kind of work helpful; analogies of various cryp-

tographic technologies, like all analogies, inevitably fail at the edges. I see the main

portion of §2 as an example of this category. More broadly, most interdisciplinary

has some results in this category even if the main thrust of the work sought a dif-

ferent goal. All the statistical research in algorithmic fairness, for instance, helps

illustrate the fact that the problem is not merely “algorithmic” as mentioned earlier:

replacing algorithms with humans will not rely underlying statistical invariants. This

category also includes technical researchers communicating clearer information about

new technologies to legal and social scholars and resolve discrepancies where they

arise. This is especially important with technologies that are growing quickly and

have far-reaching consequences. This touches everything from internet governance in

the earlier days, to blockchain and autonomous weapon systems today.

Compatibility of different goals. Some technical research also yields impossi-

bility results. It is clear why this is helpful from a policy standpoint: if a policy

wants to achieve two different goals, it helps to know that they are both statistically

achievable. Our work in §3 addressed some questions of this ilk. Even if not a strict

impossibility, technical research can also reveal situations where different goals are at

odds with each other. The morass of work surrounding the exceptional access debate
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is a good example here, for example [1].

Improving opportunity cost of one choice or developing a third option.

Cryptography in particular has great potential for improving the benefits (or reducing

the costs) of a dilemma option itself. It can add accountability or enforceability

to existing rules. It may improve the privacy of individuals by replacing privacy-

invasive implementations of rule-enforcement with ones that limit the information

collected. Frankle et al [126] develop a method for ensuring that data requests by

government agencies adhere to formal policies, based on work by Goldwasser and Park

[147]. Some various attempts at creating exceptional access fall into this category,

attempting to preserve some level of privacy or defense against mass surveillance while

allowing a small number of encrypted devices to be decrypted by law enforcement

(e.g. [62,77,107,204,258,278]), though unsurprisingly these do not resolve the tension

in the principles themselves. We see a similar set of research beginning in the context

of moderation in end-to-end encrypted chat [205].

Zero-knowledge proofs in particular are valuable tools that open new doors for

accountability and privacy. They are natural choices for enforcing properties that

would have previously been checked non-cryptographically, improving accountability

and enforcement. They will also potentially improve privacy by using zero-knowledge

proofs where previously any non-privacy-preserving proof would have done. Our

work in §4 provides two zero-knowledge proofs that can be used in this manner.

However, it must be said that zero-knowledge proofs can be a double-edged sword.

In addition to adding privacy to existing surveillance mechanisms, they may also

enable surveillance opportunities that did not exist before. Information that was

previously unqueriable because it was tied to sensitive information might not reveal

the sensitive information anymore. The recent Supreme Court case Carpenter v.

U.S. [74] is illustrative: the warrantless collection of 127 days’ worth of Carpenter’s
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cell phone location information (12,898 individual location points) was deemed to be

a Fourth Amendment search. However, envision a world in which law enforcement

had been able to conduct a search query that revealed only one bit of information:

whether or not Carpenter’s cell phone was at each of the nine robbery locations (and

was the only cell phone that met this criterion). In this alternate world, it is not at

all clear whether or not this would still be regarded as a search subject to Fourth

Amendment protections.

Toward new principles and rules. Last, interdisciplinary research can help cre-

ate new principles and rules for emerging technologies. The very idea that “code” can

guide people’s behavior along with laws, norms, and markets [209] is a new principle,

or at least something more abstract than a rule. The idea of “statistical fairness” as

an overall goal takes on new importance and meaning with widespread homogeneous

decision-making systems deployed on tens or hundreds of millions of people, even if

those ideas had already been applied decades previously in the context of racial bias

in standardized tests [95]. Interdisciplinary research rarely yields these types of new

broad principles, and technical research even less so, but when they do, the results

take on great significance.

5.4 Key areas for future work in joint cryptography-law re-

search

I wish to conclude this thesis by describing several questions that I believe will be

of great importance in the near to medium-term future. In particular, I identify five

key areas of interdisciplinary research that I predict will require significant attention

and research over the next several years and decades.
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Election verifiability, integrity, and auditability Election security is a promi-

nent public issue due to both real and perceived concerns about the security of all

components of the vote counting and tallying process, which became an especially

hot issue in 2020 [45,46,99,233,241]. Two issues are outstanding that cryptographers

can help address and improve the state of affairs in 2022 and beyond: First, current

electronic voting systems remain vulnerable to known attacks [48–51]. Most security

researchers flatly recommend against adopting electronic voting due to these prob-

lems, including issues with specific proposed systems and difficulties verifying their

integrity (e.g. [12,48,233,242,242,272]). However, some of the proposed security and

verifiability notions for electronic voting can still apply to more easily verified paper

ballots. At the absolute least, we should widely implement the current best advice of

election security researchers, including voter-marked paper ballots and risk-limiting

audits [47], and move to end-to-end verifiable elections [233]. This end-to-end veri-

fiability guarantee brings cryptography-style formal guarantees of integrity, counting

accuracy, public verifiability, and transparency [132,233]. The second outstanding is-

sue is one of public trust. Regardless of what actually happened in the 2020 election,

it is clear that existing systems lack the ability to “convince” someone that the elec-

tion results were legitimate in the sense that a cryptographic proof “convinces” the

verifier that a statement is true. Cryptographically-verifiable voting would not solve

the entire problem – as always, the weakest link will be in connecting the real world

to whatever cryptographic object is used to verify – but any steps that can be made

in the direction of more public verifiability in the voting process and outcome will be

helpful. One silver lining in the wake of the 2020 election is that companies that build

election infrastructure are now interested in ways they can verify their results to the

public (e.g. [216]). Cryptographers should take advantage of this renewed interest to

improve the security and verifiability of these systems more generally, beyond merely
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addressing the current public disputes.

Weapons. Militaries have had no shortage of interest in cryptography since its

invention, and this is not likely to change. What will change, however, are the tech-

nologies and methods used to wage war, and these changes will impact the types of

cryptography that is of military interest. If autonomous weapons are not banned

by treaty, they will almost certainly be used extensively, and possibly this will be

the case even if they are banned by treaty. While autonomous (or mere unmanned)

weapons started out quite expensive, with improving drone technology they are now

becoming quite cheap: numerous small cheap machines are becoming the norm rather

than large expensive ones [161, 230, 310]. My own research into autonomous weapon

systems indicates several issues with the modern legal understanding of these tech-

nologies [259]. My past research focused on the artificial intelligence aspect of the

weapons, however this technology also raises a host of key management problems

and other cryptographic questions. In the military context, the question of a device

being captured and its keys being stolen is not an if, but a when, and how many.

Communications networks among many devices are likely to be varied and inter-

mittent, unlike the standard fully-connected graph assumed by most cryptographic

multi-party protocols: there will be a greater emphasis on unusual communication

topologies and topology-hiding multi-party computation [4,18,167,208]. Lightweight

hardware will require lightweight cryptography while maintaining the security against

the compromise of individual devices – this is also true in the burgeoning civilian drone

market [211, 279, 280]. These problems are reminiscent of problems posed by the In-

ternet of Things (IoT) paradigm, but unlike IoT, the military drone setting has more

incentive to address security issues. Military research is likely to advance the field of

cryptography in these areas; cryptographers ignore this at their peril.
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Responsible and verifiable corporate and government data use. In 2021,

there is no shortage of guidelines on how to use data responsibly. We discussed

various data regulations in §5.2, but even aside from official regulations, many major

companies have their own internal guidelines for ensuring that data use is private,

secure, and fair. These solutions remain tenable, if somewhat unsatisfying. However,

the data held by these entities over the years will only grow in both quantity and

type. Envision holding millions of 50-year longitudinal browsing histories, location

data, biometrics, genome data, email, chat history, health information, social media,

augmented reality, shopping habits, food ordered, books read and videos watched,

questions searched for, and people talked to. There is already public unease at the

breadth of this data held by both companies and government agencies, but this data

will only grow unless policy is drastically changed. Many of the important upcoming

changes in responsible data use will be in machine learning and algorithmic fairness.

However, cryptography also has an extremely important place at the table. This is

true not only for data-minimization and privacy purposes, but also for verifiability

and accountability purposes: With such a wealth of information at their disposal, it

seems that the least we can do is verify that they’re actually using the data in the way

they say they are. Zero knowledge proofs such as those described in §4 are among the

best tools to implement these methods. Moreover, since no company or government

agency is incentivized to so of its own accord, law must also play a part in requiring

such verifiable actions.

Anonymity, identity, and accountability. Long-simmering arguments about

anonymity are boiling hotter now. At the application layer especially, the Ameri-

can is debating the merits of anonymity online. This argument is intertwined with

arguments about content moderation also touched upon in §3. To summarize the

situation, two schools of thought stand in tension: On the one hand, by requiring
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identity to be revealed, there are benefits to social cohesion and a discouragement to

be antisocial; moreover it may be a legal requirement if the service involves some kind

of commerce or other transaction [140, 192, 226, 276]. On the other hand, anonymity

brings positive aspects such as the ability to ask advice about private affairs without

reputational impact, a wider ability to experiment with new ideas, the autonomy to

control your own information, and being freed from the “burden of social markers”

of various identity aspects such as race and gender [39, 58, 140, 290]. There are also

practical problems associated with enforcing people’s real names, such as issues with

stage names or lack of ID [158] or people who shield their identity due to domestic

abuse or stalking [140]. Both these schools of thought have some merit to them; we

are faced with a tradeoff between the benefits of anonymity and the accountability

that comes with identity. I have stated all these problems at the application layer,

but they can be extended down to the network layer – many use Tor for the bene-

fits of traffic anonymization [250, 287], but others point to the extent to which that

anonymity enables criminal activity (e.g. [180,315]).

We wish to improve the tradeoff between these two poles. We will need both

social and technical innovations to retain the benefits of anonymity while reducing

the costs [179]. A good step in this direction is Cloudflare’s Privacy Pass [103],

which improves the browsing experience of human Tor users by limiting the number

of CAPTCHA challenges they face, while still forcing bot users of Tor to go through

these CAPTCHAs. We should investigate other improvements, both technical and

social, that improve the Pareto frontier between the benefits of anonymity and the

accountability of identity.

Deniability. As discussed in §2, the crypto wars show no sign of letting up any-

time soon. Especially in the Fifth Amendment context, and also to a lesser extent

in the Fourth Amendment context, deniability is likely to become a key aspect of
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many upcoming cryptosystems. A deniable encryption scheme [71] allows a party to

maintain some security even if coerced to reveal some state after the communication

is complete. Depending on what direction the Supreme Court goes, it may become

the case that the only way to ensure information is hidden in an uncorruptible way

is to use deniable encryption. Indeed, this has already come up in a Circuit Court

case [175]. The technical state of deniability remains primarily focused on the prob-

lem of encryption, and there is good theoretical [72] and practical [309] background

for deniable encryption. Deniable authentication is already somewhat addressed in

the symmetric setting in the form of Message Authentication Codes. However, as

cryptography progresses, so too will attempts at bypassing it, and I foresee a world

in which the entire stack must be deniable. Also, on the legal side, a gap remains be-

tween the cryptographic notion of deniability and the ability to challenge evidence in

a courtroom. A better understanding of deniability from both the legal and technical

side will be key in the coming years.
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