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ABSTRACT 

Decisions often require weighing the costs and benefits of available prospects. 

Value-based decision making depends on the coordination of multiple cognitive faculties, 

making it potentially susceptible to at least two forms of variability. First, there is 

heterogeneity in brain organization across individuals in areas of association cortex that 

exhibit decision-related activity. Second, a person’s preferences can fluctuate even for 

repetitive decision scenarios. Using functional magnetic resonance imaging (fMRI) and 

behavioral experiments in humans, this project explored how these distinct sources of 

variability impact choice evaluation, localization of valuation in the brain, and the links 

between valuation and other cognitive phenomena.  

Group-level findings suggest that valuation processes share a neural 

representation with the “default network” (DN) in medial prefrontal cortex (mPFC) and 

posterior cingulate cortex (PCC). Study 1 examined brain network variability in an open 

dataset of resting-state fMRI (n=100) by quantitatively testing the hypothesis that the 

spatial layout of the DN is unique to each person. Functional network topography was 

well-aligned across individuals in PCC, but highly idiosyncratic in mPFC. These results 
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highlighted that the apparent overlap of cognitive functions in these areas should be 

evaluated within individuals. 

Study 2 examined variability in the integration of rewards with subjective costs of 

time and effort. Two computerized behavioral experiments (total n=132) tested how 

accept-or-reject foraging decisions were influenced by demands for physical effort, 

cognitive effort, and unfilled delay. The results showed that people’s willingness to incur 

the three types of costs differed when they experienced a single type of demand, but 

gradually converged when all three were interleaved. The results could be accounted for 

by a computational model in which contextual factors altered the perceived cost of 

temporal delay. 

Finally, Study 3 asked whether the apparent cortical overlap between valuation 

effects and the DN persisted after accounting for individual variability in brain 

topography and behavior. Using fMRI scans designed to evoke valuation and DN-like 

effects (n=18), we reproduced the idiosyncratic network topography from Study 1, and 

observed valuation-related effects in individually identified DN regions. Collectively, 

these findings advance our taxonomic understanding of higher-order cognitive processes, 

suggesting that seemingly dissimilar valuation and DN-related functions engage 

overlapping cortical mechanisms. 
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CHAPTER ONE: INTRODUCTION 

Preamble 

Value-based decision making emerges from the integration of many cognitive 

faculties spanning attention, perception, and memory. This makes it potentially 

susceptible to at least two forms of variability both within and across individuals. First, at 

a neuroscientific level, there is a marked heterogeneity in brain organization across 

individuals in areas of association cortex that exhibit decision-related activity. Second, at 

a behavioral level, responses to the same decision-making situation can shift between or 

within individuals depending on what information is either explicitly highlighted or 

covertly attended.  

Recent evidence suggests that brain networks related to higher order functions can 

be spatially misaligned across individuals (Braga & Buckner, 2017; Gordon, Laumann, 

Adeyemo, et al., 2017), which results in obscuring of intricate functional organization 

during traditional group averaging (Fedorenko, Duncan, & Kanwisher, 2012; Michalka, 

Kong, Rosen, Shinn-Cunningham, & Somers, 2015; Tobyne, Osher, Michalka, & 

Somers, 2017). This topographic variability is at least in part distinct from sulcal 

delineation and other structural features (Conroy, Singer, Guntupalli, Ramadge, & 

Haxby, 2013), and has been proposed as an important predictor of individual differences 

in behavior (Bijsterbosch et al., 2018; Kong et al., 2018). 

Behavioral variability can stem from the unique perspective people adopt during 

decision making scenarios. Work in behavioral economics has shown that choices can be 

molded by manipulating the salience of features in a decision’s context (Kahneman & 
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Tversky, 1984; Prelec & Loewenstein, 1991) or an individual’s interpretation of the task 

(Feher da Silva & Hare, 2020). We can therefore enrich our understanding of subjective 

valuation by probing the interactions between contextual manipulations and how 

individuals cognitively construe a decision scenario. 

The goal of the present doctoral thesis will be to understand how these distinct 

types of individual variability (and their interaction) impact our understanding of choice 

evaluation, localization of value in the brain, and the links between valuation and other 

cognitive phenomena. 

Shortcomings of a Group-based Taxonomy of Neurocognitive Processes 

Regions of human medial prefrontal cortex (mPFC) and posterior cingulate cortex 

(PCC) have consistently been found to participate in diverse aspects of value-based 

decision making (Bartra, McGuire, & Kable, 2013; Clithero & Rangel, 2014). However, 

overlapping swaths of cortex have also been implicated in various cognitive functions 

such as memory (Schacter, Addis, & Buckner, 2007), self-referential thought (Gusnard, 

Akbudak, Shulman, & Raichle, 2001), and affective regulation (Reddan, Wager, & 

Schiller, 2018), speaking against a dedicated role of these areas in valuation processes.  

Diverse cognitive functions are often grouped under a common theme in 

functional brain networks of regions distributed throughout cortex, with each network 

subserving general aspects of cognition, perception, and behavior (Power et al., 2011; 

Uddin, Yeo, & Spreng, 2019; Yeo et al., 2011). Among these, the network that covers 

most of value-related mPFC and PCC is called the default network (DN; Buckner, 

Andrews-Hanna, & Schacter, 2008; Buckner & DiNicola, 2019). This network was 
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originally identified as a set of regions that cohesively reduced their activity when 

attention had to be exteriorly directed in order to confront demanding tasks (Laird et al., 

2009; Shulman et al., 1997), but was later observed when individuals were scanned 

during wakeful resting (Greicius, Krasnow, Reiss, & Menon, 2003). Based on these two 

observations, researchers have theorized that the DN is in charge of introspective 

processes. 

 However, even though many of the aforementioned effects are in concert with 

this type of introspective dynamics, the connection between these and the increases in 

activity evoked by subjectively-valuable exterior stimulation is less clear. Fig. 1.1 shows 

aggregated activity across studies from meta-analyses of subjective valuation (Bartra et 

al., 2013) and default-related deactivation (Laird et al., 2009), conveying a high degree of 

overlap between these two phenomena. Indeed, a recent meta-analysis that examined this 

qualitative juxtaposition failed to dissociate these effects in mPFC and portions of PCC 

(Acikalin, Gorgolewski, & Poldrack, 2017). The apparent correspondence of these 

phenomena at the neural level has prompted theories of a common cognitive mechanism 

that supports all these functions (Euston, Gruber, & McNaughton, 2012; Northoff & 

Hayes, 2011). This has fueled interest in the degree to which task-related effects truly 

overlap spatially with the DN (DiNicola, Braga, & Buckner, 2020).  

However, conclusions from group-level functional colocalization are limited by 

our ability to align brain activity patterns across individuals (Guntupalli, Feilong, & 

Haxby, 2018). Individual-specific studies of brain organization have qualitatively 

described spatially variable organization of functional networks that encompass both 
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mPFC and PCC (Gordon, Laumann, Adeyemo, et al., 2017; Laumann et al., 2015). In 

fact, careful examination of canonical DN in individuals has shown that the core regions 

of the network—including mPFC and PCC--can be sub-divided into two interwoven 

networks whose layouts differ across people (Braga & Buckner, 2017; Braga, Van Dijk, 

Polimeni, Eldaief, & Buckner, 2019), and whose functional roles can be dissociated 

(DiNicola, Braga, & Buckner, 2020). The problem is accentuated in ventral mPFC, which 

displays considerable idiosyncratic cortical folding (Lopez-Persem, Verhagen, Amiez, 

Petrides, & Sallet, 2019; Mackey & Petrides, 2014). It is therefore possible that the 

apparent meta-analytic overlap between the DN and valuation is due to a lack of 

Figure 1.1: Meta-analytic results aggregating studies of subjective valuation and the default 
network. On the left are regions that increase their activity with obtained reward. The right 
shows areas that decreased their activity with increased demands across studies. These 
group-level analyses suggest an apparent overlap of these phenomena in medial prefrontal 
(mPFC) and posterior cingulate (PCC) cortices. 
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consideration for this variability in mPFC and PCC, and might be better examined at the 

individual level. 

Variability in Choice Behavior 

The traditional approach to mapping function to brain structures using functional 

magnetic resonance imaging (fMRI) often assumes that contrasts among conditions 

remain consistent throughout an experimental session (Huettel, Song, & McCarthy, 

2014). However, people often change their attitudes towards repetitive choices. This is 

often observed in people’s willingness to exert effort in everyday situations. For example, 

we might choose to take the effortful route home that we normally avoid rather than 

waiting for a delayed train, even if both avenues take the same amount of time. In 

neuroeconomics, demands for both time and effort have traditionally been identified as 

costs that detract from the net subjective value of rewards (Westbrook & Braver, 2015). 

Indeed, decision makers tend to prefer low-effort and immediate rewards over larger 

rewards that demand longer delays and higher effort (Ainslie, 1975; Hull, 1943; Kool & 

Botvinick, 2018; Kool, McGuire, Rosen, & Botvinick, 2010; Treadway, Buckholtz, 

Schwartzman, Lambert, & Zald, 2009; Westbrook, Kester, & Braver, 2013). However, 

understanding the sporadic attractiveness of effort exemplified above has been elusive, 

and presents an important research avenue (Inzlicht, Shenhav, & Olivola, 2017).  

Recent theoretical and experimental accounts have suggested that the perceived 

subjective costs of effort and delay may stem from missing out on concurrent 

possibilities, meaning that decision makers track the opportunity cost of time when 

evaluating whether to pursue costly behavioral avenues (Kurzban, Duckworth, Kable, & 
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Myers, 2013; Otto & Daw, 2019). Flexible preferences for effort might therefore arise 

from the availability of other types of demands in the same choice environment (Kool & 

Botvinick, 2018). Traditional accounts in behavioral economics and neuroeconomics are 

limited in addressing this possibility, as measuring the cost of effort and delay has often 

been done by offering higher payouts for an increment of the respective demand 

(Westbrook & Braver, 2015).  Single choice foraging paradigms provide an ecological 

solution to this problem, by asking individuals whether the current offer outweighs what 

could be obtained and experienced during that time instead (Mobbs, Trimmer, Blumstein, 

& Dayan, 2018). The sequential nature of these tasks can help us capture an important 

source of variability, namely that choices to similar or repetitive scenarios can fluctuate 

depending on what features of a decision are explicitly highlighted (Kahneman & 

Tversky, 1984) or covertly construed (Feher da Silva & Hare, 2020), by encouraging 

individuals to emphasize different elements of the decision context (such as the 

availability of alternative ways to achieve rewards in the environment, or the 

characteristics of the present offer). The rich modeling tools afforded to foraging 

paradigms can help us computationally identify such emphases (Stephens & Krebs, 

1986).  

Understanding the degree of choice variability in this type of ecological scenario, 

as well as the underlying reason for such dynamics (i.e. what individuals might covertly 

attend to), can improve our ability to control for such fluctuations when mapping 

valuation processes to the brain. 
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Interactions Between Topographic and Behavioral Variability 

Individual differences in fine-grained functional brain organization can 

complicate the mapping of task effects. Careful experimentation in individuals has shown 

that canonical Broca’s area is adjacent to a domain-general region that can confound 

group-level neural localization of language with task difficulty (Fedorenko, Duncan, & 

Kanwisher, 2013). Individualized investigations have also revealed that attention-related 

areas of lateral PFC have interleaved sections that are biased for visual and auditory 

information, a spatial pattern that is sensitive to the spatial or temporal emphasis of a 

short-term memory task (Michalka et al., 2015; Noyce, Cestero, Michalka, Shinn-

Cunningham, & Somers, 2017; Tobyne et al., 2017). This susceptibility  of functional 

topography to the nature of the task has been further demonstrated in recent work by 

Salehi et al. (2019), who suggested that functional regions can spatially reconfigure 

within individuals depending on the cognitive perspective induced by different tasks--

even though the activity pattern associated with each task is reliable over time. In the 

domain of value-based decision making, different sub-regions of mPFC appear to 

evaluate outcomes that are truly desirable to an individual versus those that are only 

selected because of their congruity with the task’s goals (Hare, O’Doherty, Camerer, 

Schultz, & Rangel, 2008; Shenhav & Karmarkar, 2019). Moreover, the variability of 

network layouts across people has been linked to differences in trait-like psychological 

characteristics (Bijsterbosch et al., 2018; Kong et al., 2018). 

These findings imply that an individual’s cognitive construal of a task can interact 

with idiosyncratic brain topography to produce variability in functional brain mapping 
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results. Even for people with similar functional topography, or within the same individual 

over time, activity patterns in valuation cortex could differ if individuals covertly engage 

with (or attend to) decision making tasks differently. For instance, some individuals 

might make decisions according to a decision rule rather than outcome value, which 

could potentially free up cognitive resources and allow them to introspect. Shifts between 

these perspectives could also occur within individuals as they gain experience with the 

task. These distinct cognitive approaches to the same task could potentially recruit 

different functional networks that are identifiable within individuals, but are otherwise 

obscured by group averaging. Therefore, it is important that we account for these 

behavioral and neural sources of variability before we conclude that valuation is among 

the many processes ascribed to the DN.  

Organization of Dissertation 

Subsequent sections of this dissertation are organized into four chapters. In 

Chapters 2-4, I use a combination of neuroimaging and behavioral studies in humans to 

examine both cortical topographic variability and behavioral variability in value-based 

decision making. Both types of variability have implications for assessing the overlap 

between default and valuation networks. The final chapter summarizes the research 

findings, and presents possible avenues for future study.  

Chapter 2 takes a first quantitative step in addressing the present issue by testing 

the hypothesis that the topography of the DN in the vicinity of valuation cortex is 

heterogeneous across individuals. Using fMRI, this work first establishes that a gradient-

based network clustering algorithm, spectral partitioning (SP), can efficiently capture an 
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individual’s functional network topography. Using this method, it shows that that the 

functional topography of mPFC is composed of at least two sub-networks, one of which 

appears to correspond to the DN by means of a meta-analytic anchor. Further, even 

though the spatial organization of these sub-networks shares common organizational 

principles across individuals (i.e. interdigitated along a dorsal-ventral axis), their precise 

layout is heterogeneous across individuals (particularly in mPFC), but reliable across an 

individual’s scanning sessions and days. The refined estimate of the DN can be 

consistently mapped to sulci within ventral mPFC (vmPFC), but not so in PCC and dorsal 

mPFC. Finally, the resulting layouts are validated against a recently proposed subdivision 

of DN that has fruitfully distinguished among cognitive phenomena (Braga & Buckner, 

2017; DiNicola et al., 2020). 

Chapter 3 focuses on possible choice variability either within or across 

individuals. This study tests the hypothesis that preferences should vary depending on 

whether individuals face a single type or multiple types of behavioral demands, and 

probes what computational factors drive these effects. Based on two foraging 

experiments and computational modeling, it first shows that preferences for mental effort 

are stable when individuals face a single form of demand, but fade over time when other 

types of costs are also experienced in the same environment. Second, based on a 

combination of traditional foraging and reinforcement learning models, it suggests that 

these dynamics are not due to people’s inability to estimate the value of each option 

relative to its environment, but instead arise because each demand biases the estimate of 

the opportunity cost of time. I propose that this bias arises from the way each task 
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modulates the subjective passage of time, which could hypothetically be recalibrated 

when multiple tasks are interleaved. 

Chapter 4 combines the knowledge gained from previous chapters, and tests the 

hypothesis that the valuation network can be spatially distinguished from the DN in 

mPFC, PCC, and striatum when accounting for sources of individual variability. Using 

fMRI, it first introduces evidence that the same idiosyncratic subdivision of the DN 

observed in Chapter 2 also subserves working memory and decision-making tasks. 

Second, and contrary to expectations, it finds that the spatially refined DN within these 

partitionings facilitates multiple types of valuation processes. Third, it suggests that 

striatum cannot be discretely paired to each DN sub-network, in line with anatomically-

based theories that this subcortical region instead mirrors a dorsal-ventral axis of 

prefrontal cortex (Haber & Knutson, 2010). Finally, it shows that this alignment was not 

modulated by people’s degree of engagement with the decision-making task over time. 
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CHAPTER TWO: SPECTRAL PARTITIONING IDENTIFIES INDIVIDUAL 

HETEROGENEITY IN THE FUNCTIONAL NETWORK TOPOGRAPHY OF 

VENTRAL AND ANTERIOR MEDIAL PREFRONTAL CORTEX 1 

Introduction 

 Human medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) are 

jointly associated with a diverse set of cognitive processes (Hiser & Koenigs, 2018; 

Kragel et al., 2018), and contain subregions that are part of the brain’s default network 

(DN; Buckner, Andrews-Hanna, & Schacter, 2008; Buckner & DiNicola, 2019). DN 

regions are characterized by a decrease in BOLD activity during externally oriented tasks 

that require attention or cognitive control, in comparison with less-demanding task 

conditions or periods of rest (Buckner et al., 2008; Laird et al., 2009; McKiernan, 

Kaufman, Kucera-Thompson, & Binder, 2003). The DN can also be identified on the 

basis of a distinctive pattern of inter-region correlations in resting-state fMRI data 

(Buckner et al., 2008; Fox et al., 2005; Greicius et al., 2003; Yeo et al., 2011). 

Many different cognitive task manipulations evoke patterns of brain activity that 

overlap with DN regions in ventral and anterior mPFC and in PCC. Examples include 

manipulations of self-referential thinking (Gusnard et al., 2001; Mitchell, Banaji, & 

Macrae, 2005), memory (Euston et al., 2012; Schacter et al., 2007), affective regulation 

(Reddan et al., 2018; Schiller, Levy, Niv, LeDoux, & Phelps, 2008), and subjective 

valuation (Bartra et al., 2013; Clithero & Rangel, 2014; Kable & Glimcher, 2007; Levy, 

                                                
1	This work has been previously published as Toro-Serey, C., Tobyne, S.M., & McGuire, 
J.T. (2020) Spectral partitioning identifies individual heterogeneity in the functional 
network topography of ventral and anterior medial prefrontal cortex. NeuroImage, 205	
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Lazzaro, Rutledge, & Glimcher, 2011). Some of these task-related effects are thought to 

reflect processes integral to the functional role of the DN, such as internally oriented 

cognition, scene construction, and self-projection (Buckner & Carroll, 2007; Hassabis & 

Maguire, 2007). For other task-related effects, such as subjective valuation (i.e., greater 

BOLD activity in response to more highly valued choice prospects and outcomes, relative 

to prospects and outcomes that are less highly valued), the degree of overlap with DN 

regions is only partial and the reason for the overlap is less obvious (Acikalin et al., 

2017). Insofar as the DN shares a subset of nodes in common with the distributed brain 

systems that support valuation and other functions, this has potential to inform our 

theoretical understanding of the cognitive operations involved in those functions 

(Northoff & Hayes, 2011). As a result, there is widespread interest in understanding the 

degree to which DN regions overlap topographically with task-related effects (Buckner & 

DiNicola, 2019; DiNicola, Braga, & Buckner, 2020; Spreng, 2012). 

However, strong conclusions about functional colocalization require consideration 

of individual-level heterogeneity in topographic patterns of brain activity. A recognized 

limitation of group averaging and meta-analysis is that the functional topography of 

individual brains can be misaligned and blurred (Fedorenko et al., 2012; Guntupalli et al., 

2018; Michalka et al., 2015; Tobyne, Sean M. et al., 2018; Wang et al., 2015; Woo et al., 

2014),  exaggerating the apparent overlap across domains. This concern is especially 

pronounced in ventral mPFC, which is subject to considerable idiosyncratic cortical 

folding (Lopez-Persem et al., 2019; Mackey & Petrides, 2014; Zilles, Palomero-

Gallagher, & Amunts, 2013) and inter-subject functional variability (Mueller et al., 
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2013). An alternative approach is to focus on analyses at the individual-participant level. 

Individual-level analyses of fMRI data have identified idiosyncratic, reliable, and valid 

patterns of functional organization that would be blurred in aggregative estimates 

(Gordon, Laumann, Gilmore, et al., 2017; Gratton et al., 2018; Laumann et al., 2015; 

Michalka et al., 2015; Tobyne, Sean M. et al., 2018), and subject-specific network 

arrangements have been found to predict behavioral characteristics (Kong et al., 2018). 

Recent work has uncovered fine-grained subdivisions within the DN using both data-

driven clustering and individually customized seed-based connectivity analysis (Braga & 

Buckner, 2017; Braga et al., 2019). It is therefore possible that the apparent overlap of the 

DN with task-related effects might, in some cases, be attributable to low effective spatial 

resolution, and that the organization of mPFC and PCC might be better understood at the 

individual level. An important first step in investigating this possibility, and the goal of 

the present study, is to quantify the degree of variability in the topography of the DN 

within mPFC and PCC across a large sample of individuals.  

A useful way to characterize individual-specific brain organization is to examine 

patterns of resting-state functional connectivity. Connectome-based analyses of resting-

state functional connectivity have been fruitful in identifying individualized functional 

subregions that correspond well to task-induced activity patterns (Gordon, Laumann, 

Gilmore, et al., 2017; Laumann et al., 2015; Smith et al., 2009; Tobyne et al., 2018). A 

functional connectome can be represented in the form of a network, and graph theoretic 

methods can be applied to analyze the network’s structure (Bassett & Sporns, 2017; 

Rubinov & Sporns, 2010). In the context of network analysis, community detection 
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algorithms subdivide brain networks into sets of nodes that share more connections with 

each other than with the rest of the network (Fortunato & Hric, 2016; Garcia, Ashourvan, 

Muldoon, Vettel, & Bassett, 2018). Here we use the technique of spectral partitioning 

(SP), an efficient community detection algorithm that deterministically subdivides a 

network into two communities (Belkin & Niyogi, 2003; Chung, 1997; Fiedler, 1975). SP 

has previously been used to characterize the posterior-anterior functional gradient of the 

insula using resting-state fMRI data (Tian & Zalesky, 2018), and was shown to robustly 

and reliably separate both simulated and actual primate ECoG networks (Toker & 

Sommer, 2019). We use SP here to identify subsets of nodes within mPFC and PCC that 

share spontaneously covarying temporal activation patterns during rest.  

Here, we aimed to subdivide mPFC and PCC into individual- specific DN and 

non-DN communities, and to quantify the degree of topographic heterogeneity in the 

resulting community structure over time and across individuals. We did this by 

capitalizing on the respective strengths of meta-analysis and subject-specific analyses of 

brain networks. We used a data-driven network-analysis procedure to identify two 

communities that each spanned both mPFC and PCC in each individual participant. We 

found that the resulting communities had a stereotyped topographic layout within PCC 

(according to a label-agnostic similarity metric), whereas their layout in mPFC was 

variable across individuals but stable across test/re-test. We took advantage of the more 

consistent configuration within PCC to assign meta-analysis-derived labels to the two 

communities. Because our data-driven method established correspondence between PCC 
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subregions and mPFC subregions, the labels defined in PCC could then be indexed into 

the more heterogeneous community structure of mPFC in each individual.  

The outline of this chapter is as follows. First, we defined a search space by 

selecting parcels from an established brain atlas (Glasser et al., 2016) that corresponded 

to previously defined DN and limbic networks on the medial cortical wall (Yeo et al., 

2011). A cortical surface-based meta-analysis of the DN and valuation literatures 

identified a parcel in PCC that was DN-specific at the aggregate level. Valuation was 

selected as an example of a cognitive domain in which group-average activity patterns 

overlap extensively with DN regions on the medial surface, despite being segregable 

elsewhere (Acikalin et al., 2017). We then derived a functional connectivity network of 

all the surface vertices within the search space for each of 100 individual resting-state 

fMRI data sets from the Human Connectome Project (HCP; Van Essen et al., 2012), and 

used the SP algorithm to subdivide each individual’s network into DN and non-DN 

communities (labeled according to which community included the meta-analytically 

identified DN-specific parcel in PCC). Focusing on individual vertices in the search 

space rather than the parcels (as is typical in brain network analyses) allowed us to finely 

delineate the topographic extent of each community. The resulting communities varied 

topographically across individuals, while also appearing to follow common 

organizational principles. Test-retest analyses showed that these partitionings were 

similar across scanning days within (but not between) individuals, and that individual-

level idiosyncrasy was greater in mPFC. Partitionings obtained from the SP algorithm 

had higher test-retest reliability than did analogous results from seed-based functional 
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connectivity. We observed a trend for the DN community to be located within principal 

sulci in ventral mPFC and left PCC, but in gyri within superior mPFC and right PCC. 

Lastly, we describe how the structure of the resulting automatically defined DN and non-

DN communities both aligns with and differs from a recently proposed scheme for 

identifying subdivisions within the DN (Braga & Buckner, 2017; Braga et al., 2019). Our 

work highlights the usefulness of estimating brain effects at the individual level in mPFC 

and PCC, and provides a new framework and tool set for future investigations of overlap 

across cognitive domains.	 

Methods 

Search space  

For all analyses, we defined our search space based on the 17-network 

parcellation proposed by (Yeo et al., 2011). First, we selected vertices on the medial 

cortical surface that were contained by the DN and limbic networks in HCP’s 32,000 

vertex surface space (fs_LR_32k). Next, we overlaid those networks on a parcellated 

atlas of the human cortical surface (360 regions; Glasser et al., 2016), and retained a set 

of parcels that covered approximately the same brain regions (visually inspected, 

retaining parcels that appeared to have at least 15% overlap). This resulted in a search 

space that consisted of 40 parcels across hemispheres (Table 2.1). The search space in 

each hemisphere was naturally divided into two spatially non-contiguous clusters in PCC 

and mPFC, facilitating the examination of each region separately.  
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Meta-analysis  

We used a novel approach to cortical surface parcel-based meta-analysis to assess 

whether individual parcels within the search space were preferentially associated with 

subjective valuation or with decreased activity during externally oriented tasks, which 

served to operationalize the DN. For subjective valuation, we gathered peak activation 

coordinates from 200 studies that reported positive effects in contrasts of higher-value 

minus lower-value outcomes or prospects (Bartra et al., 2013). For the DN, we acquired 

coordinates from 80 studies that reported reductions in BOLD during externally directed 

tasks compared to a baseline (Laird et al., 2009). The coordinates represent areas that 

exceeded the statistical significance threshold in each original study. For each study, we 

created an indicator map in standard volumetric space (MNI152, 1 mm resolution) which 

contained values of 1 in a 10 mm radius sphere around each reported activation peak, and 

values of 0 elsewhere (Wager, Lindquist, Nichols, Kober, & Van Snellenberg, 2009). The 

indicator map for each study was then projected to a standard cortical mesh (fsaverage, 

160,000 vertices, projfrac-max from 0 to 1 by 0.25, registered using mni152.register.dat) 

using FreeSurfer’s mri_vol2surf (Dale, Fischl, & Sereno, 1999a; Fischl, Sereno, & Dale, 

1999) (http://surfer.nmr.mgh.harvard.edu/). We then resampled the Glasser et al. (2016) 

parcellation to fsaverage, and tallied how many studies had positive indicator values 

intersecting with each cortical parcel (the details of the resampling procedure are 

described in https://wiki.humanconnectome.org/display/PublicData/HCPþUsersþFAQ 

#HCPUsersFAQ-9.HowdoImapdatabetweenFreeSurferandHCP, and were implemented 

using a custom script available at https://github.com/stobyne/Spherical-Surface-
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Swapper). Two studies from the subjective valuation corpus were removed because they 

did not contain activation peaks that overlapped with cortex, leaving a final number of 

198 studies.  

To test for parcels that were significantly more strongly associated with one 

domain than the other, we performed per-parcel chi-squared tests comparing the 

proportion of studies with activation in that parcel between the two domains. We 

permuted the study domain labels (DN or valuation) 5000 times while preserving the 

total number of studies in each domain, and on each iteration stored the maximum 

resulting chi- squared statistic across all parcels. This gave us a null distribution of 5000 

maximum chi-squared values. The 95th percentile of this distribution served as an FWE-

corrected significance threshold to evaluate unpermuted chi-squared values.  

Resting-state fMRI data  

Our fMRI analyses used resting-state fMRI data from the Human Connectome 

Project (Van Essen et al., 2012) Q6 release (N =100, randomly sampled from the total 

pool of 469 available subjects). The Washington University Institutional Review Board 

approved all experimental procedures, and all subjects provided written informed consent 

in accordance with the guidelines set by the institution. Each subject’s data was acquired 

over two days at Washington University in St. Louis on a Siemens CONNECTOM Skyra 

MRI scanner (Siemens, Erlangen, Germany). Four resting state runs (repetition time =	

0.720 s, echo time =	33.1 ms, flip angle =	52º, multiband factor =8, 72 slices, 2 mm 

isotropic voxels) each comprised 1200 time points (14 min 24 s) for a total of 4800 time 

points. Two runs were acquired on each day, with the phase encoding direction set to left-
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right for one run and right-left for the other. Only subjects with both left-right and right-

left phase encoding for each day were included (i.e. subjects with four resting-state fMRI 

sessions). In addition, only datasets with low motion levels (under 1.5 mm) and fewer 

than 5% of points over 0.5 mm framewise displacement (FD; Power et al., 2014) were 

used. See (Van Essen et al., 2012) for more details about the data acquisition protocol.  

Data initially underwent the HCP minimal preprocessing pipeline (Glasser et al., 

2013), which included gradient nonlinearity correction, motion correction, EPI distortion 

correction, high-pass filtering (0.0005 Hz threshold), MNI152-based normalization, 

surface reconstruction, and mapping of functional data to a standardized cortical surface 

model (details can be found in Glasser et al., 2013). In addition, data underwent temporal 

denoising based on independent components (FMRIB’s ICA-based X-noiseifier, FIX; 

Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Data were further preprocessed 

using an in-house pipeline described previously (Tobyne et al., 2017). Steps (in order) 

included linear interpolation across high motion timepoints with over 0.5mm of FD, 

band-pass filtering (allowed frequencies ranged from 0.009 to 0.08 Hz), and temporal 

denoising via mean grayordinate signal regression (Burgess et al., 2016). Interpolation of 

high-motion time points was performed to avoid temporal smoothing of noisy signal from 

head motion into the filtered signal during the bandpass procedure. After filtering and 

denoising, the interpolated high-motion time points were censored by deletion and each 

run was temporally demeaned. The processed time series had a median of 4799 time 

points (minimum =	4661) across participants. Each subject’s brain was comprised of 32k 
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standard grayordinates per hemisphere (combined in a CIFTI file). We retained only the 

cortical surfaces, which resulted in 59,412 total surface vertices per subject.  

Network definition  

All network analyses were performed using the igraph package (v. 1.1.2; 

https://igraph.org/r/; Csardi & Nepusz, 2006) in R (v. 3.4.1; https://www.r-project.org/;  

R Core Computing Team, 2017). To establish each subject’s network, we selected all the 

vertices contained within the mPFC/PCC search space (n =	4801 per subject; mPFC =	

2854, PCC =	1947) and computed the Pearson correlation of the time series for every pair 

of vertices. All correlation values were transformed using Fisher’s r to z. This produced a 

weighted network for each subject, in which the nodes were surface vertices and the edge 

weights were the correlations among them. Edges mostly consisted of positive 

correlations (mean proportion positive =	0.65, SD =	0.03). We chose not to threshold the 

network, as the SP algorithm is well equipped to operate on complete (i.e. fully-

connected) weighted graphs (Chung, 1997). However, our results were unchanged if we 

retained only significant correlations (p	<	0.05, uncorrected) in the weight matrices. Next, 

we took the exponential of the z-transformed correlations so that all weights became 

positive while maintaining their ordinal ranks. Ensuring that all edges were positive 

facilitated the construction of the graph Laplacian (see below), which requires all off-

diagonal elements to have the same sign by design. We generated and analyzed network 

weight matrices at four levels: (1) for each subject’s full concatenated dataset (up to 4800 

TRs); (2) on each step of a sliding window analysis (see Section 2.7 for more details); (3) 
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for the concatenated time series for the two runs on each day (up to 2400 TRs); and (4) 

for each run separately (up to 1200 TRs).  

Community detection  

Communities (i.e. clusters) were identified using the SP algorithm (Belkin & 

Niyogi, 2003; Chung, 1997; Fiedler, 1975; Higham, Kalna, & Kibble, 2007). First, each 

network was represented as an n	x n	network weight matrix W	as described above (where 

n	equals the number of vertices in the search space, 4,801). The matrix was then 

transformed into its symmetric normalized Laplacian form  

𝐿 = 𝐼 − 𝐷&
'
(	𝑊𝐷&

'
( 

where I	is an identity matrix of size n, and D	is a diagonal matrix containing the strength 

of each vertex (i.e. the sum of its edge weights with all other vertices). This resulted in a 

matrix wherein each entry was the negative normalized value of the connection (from 0 

to 1) between any two vertices relative to their combined connectivity strength, and with 

ones along the diagonal. The transformation ensures that every row sums to 

approximately zero. We then computed the eigenvalues and eigenvectors of the 

symmetric normalized Laplacian matrix, and used the eigenvector associated with the 

second-to-lowest eigenvalue (traditionally called the ‘Fiedler vector’) to divide the 

network into two. The Fiedler vector consists of a set of positive and negative values and 

is binarized by sign to partition the network into two similar-sized communities (Fiedler, 

1975). In this way, SP avoids producing communities that are too small to be 

physiologically meaningful (for example, small sets of vertices that are spuriously 
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correlated due to measurement noise). Given that this data-driven method does not label 

the two communities or establish correspondence across participants, we defined each 

individual’s “DN”	community as that which contained the majority of the vertices in the 

DN-specific PCC parcel identified in our meta-analysis (area 7 m). The completeness of 

the graphs ensured that SP did not face the issues associated with its use in sparse 

networks (Fortunato and Hric, 2016).  

In order to evaluate the validity of the resulting partitionings across community-

detection methods, we also estimated network communities using the more traditional 

approach of modularity maximization (Garcia et al., 2018), based on the algorithm from 

Clauset et al. (2004). The method heuristically iterates through many possible 

combinations of vertices, and selects the partitioning that maximizes the within-

community edge weights, relative to a random network containing the same number of 

edges and communities. Unlike SP, modularity can fractionate a network into more than 

two communities. Agreement between the partitions provided by the bounded (SP) and 

unbounded (modularity) community detection methods would suggest the results are not 

distorted by the restriction of SP to binary partitionings.  

Partition evaluation  

We used the Adjusted Rand index (ARI) to evaluate the stability and 

topographical heterogeneity of the communities within and across individuals (Hubert & 

Arabie, 1985), which was calculated using the “mcclust”	package in R (Fritsch, 2012). 

The ARI is a metric that quantifies the similarity between two alternative clusterings of 

the same data. The base of the ARI is computed by the formula  
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𝑎 + 𝑏
𝑎 + 𝑏 + 𝑐 + 𝑑 

where a	is the number of pairs of nodes that were grouped together in both partitionings, 

b	is the number that were grouped separately, and c	and d	denote the number of pairs 

grouped together (separately) in one partitioning, but separately (together) in the other. 

Therefore, the ARI estimates the fraction of all possible node pairs that had the same 

status (connected or not) in both partitionings (with the denominator equal to n(n – 1)/2). 

The resulting ratio is adjusted against a baseline given by the expectation assuming 

independent partitionings to yield an index that ranges from 0 to 1, where 0 denotes the 

value expected by chance. This means that even though differences are heavily penalized, 

positive ARI values compare favorably against chance clustering (and the index can take 

negative values if the ratio given by the formula above falls below the chance level). In 

short, the ARI quantifies the chance-corrected agreement between any two partitions 

while being agnostic to the labeling scheme.  

We performed a number of comparisons among partitions. First, we computed the 

degree of agreement between SP and modularity maximization per subject. SP and 

modularity maximization have been previously found to show a tendency toward 

underfitting and overfitting, respectively, in their community detection performance in a 

diverse set of network types (Ghasemian, Hosseinmardi, & Clauset, 2019), so alignment 

between the two algorithms would increase our confidence in the validity of the resulting 

partitionings. Next, we compared the subject-level SP partitionings across individuals, 

and calculated the mean pairwise ARI for the group. We then performed the same 

evaluation for PCC and mPFC separately, and examined whether there were differences 
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in overall agreement within these regions by performing a paired permutation analysis. 

For each individual and region, we took the mean ARI with all 99 other individuals, then 

took the difference between regions to get an ARI difference per subject. On each of 

5000 permutations each subject’s ARI difference was independently sign-flipped and the 

group mean difference was added to a null distribution. The unpermuted group mean 

difference was then evaluated against this permuted distribution.  

To identify vertices whose community assignment was more stable or more 

variable, we performed a sliding window analysis (20 min windows, 1 min increments, 

median number of windows per subject =	37, range =	35 37), comparing each window’s 

resulting partitioning against the partitioning derived from the subject’s whole data set. A 

20-min window has previously been found to yield relatively stable and unbiased 

estimates of individual-level brain network characteristics (Gordon et al., 2017). We 

assessed whether the magnitude of the Fiedler vector value for a given vertex (for the full 

subject-level data set) was associated with the stability of that vertex’s sub-network 

assignment across time windows. To do this, we fit a mixed effects logistic regression 

model, in which the dependent variable was the proportion of times each vertex 

participated in the DN community across windows, and the explanatory variables 

included a random effect of subject and a fixed effect of the Fiedler vector value for that 

vertex (derived from their full time series). Based on this significant relationship, we 

identified a threshold Fiedler vector value for each subject, such that empirical above-

threshold vertices were persistently associated with either DN or non-DN more than 99% 

of the time.  
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We then estimated the level of agreement between network partitions estimated 

using data across individual scan days (with 2 days per participant). If the functional 

organization estimated by SP is indeed individual-specific, we should see higher 

agreement within individual (test/re-test across days) than across individuals. We tested 

this idea by computing the ratio of the mean ARI within and between individuals. Ratios 

close to one would denote similar within-participant and across- participant alignment, 

whereas ratios considerably higher than one would suggest that partitions were more 

similar within-participant than across participants. We then extended this idea by 

computing the agreement across individual runs (4 per subject). Similar to the day-based 

analysis, we assessed whether run-level data showed higher agreement within-subject 

than between subjects.  

Seed-based resting-state functional connectivity versus community detection  

We evaluated the performance of the SP algorithm in comparison to a simpler 

partitioning approach based on seed-based functional connectivity. Independently for 

each day (2 per individual), we estimated each subject’s DN partition in mPFC based on 

its vertex-wise functional correlations (Pearson) with the spatially averaged activity 

across all vertices in the PCC search space. We used the whole PCC region because it is 

traditionally thought to be a prominent node of the DN (Buckner et al., 2008), and is a 

common area for researchers to place seeds for vertex- and volume-based connectivity 

analyses (e.g. Fox et al., 2005). We compared these seed-based maps with the 

unthresholded Fiedler vectors produced by SP, with the sign of the Fiedler vector 

oriented so the DN community was marked by positive values in every subject. We 
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calculated three sets of across-day similarity values for each individual: 1) between the 

two seed-based maps; 2) between the two SP-based maps; and 3) between seed- and SP-

based maps. Because the values in the maps were continuous-valued (and not categorical 

labels, which would be amenable to ARI), we quantified the similarity between maps in 

terms of the spatial Spearman correlation across vertices. These spatial correlations were 

meant to determine the test/re-test reliability of each approach, as well as the overall level 

of agreement between them. For 8 subjects, the communities produced with one of the 

days’	data sets had split coverage of area 7 m, and our community labeling scheme for the 

Fiedler vector produced a sign mismatch across days. ARI is robust to such labeling 

issues, but the inconsistency produced strong negative correlations of the Fiedler vector 

across days for these individuals. Visual inspection showed that the community layout 

was well aligned across days, and so we matched the labeling of their partitionings based 

on the day that sufficiently covered area 7 m.  

The two methods were expected to produce somewhat similar results, but the one 

displaying greater within-subject agreement across days should be preferred (for a 

discussion on the stability of functional networks see Kong et al. (2018) and Gratton et al. 

(2018)). We therefore compared the within-subject spatial correlation coefficients 

produced by each method through a paired permutation analysis. For each of the 100 

individuals, we computed the difference in inter-day correlations between methods, 

randomized the sign of these values 5000 times, and computed the mean of these 

differences on each iteration. The empirical difference in means was then evaluated 

against this permuted distribution.  
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Associations with sulcal morphology  

Next we asked whether the location of the DN and non-DN communities was 

systematically related to sulcal morphology. Based on a previous report of individual 

alignment of DN within sulci in ventral mPFC (vmPFC; Lopez-Persem et al., 2019), we 

subdivided our search space into three regions: vmPFC, which matched the ROI used by 

Lopez-Persem and colleagues (2019; areas 25, s32, a24, 10v, 10r, p32, and OFC); 

superior mPFC (sup-mPFC), encompassing the remaining dorsal areas in our mPFC 

space; and all of the PCC search space. We used each subject’s curvature maps from the 

HCP (transformed to fs_LR 32k space), in which cortical depth is quantified by negative 

numbers for sulci and positive numbers for gyri. For each individual, we computed the 

Spearman correlation between curvature and the unthresholded Fiedler vector values in 

each region and hemisphere separately (6 correlations per individual). Since the DN was 

indicated by positive FV values, negative correlations meant that the DN was more likely 

to be contained in sulci, with non-DN located in gyri. Finally, we collected all individual 

correlations for each combination of hemisphere and region, and performed a one-sample 

t-test on each set to determine whether correlations were significantly different from 0 in 

our group (6 tests total).  

Results 

Meta-analysis 

 We performed a coordinate-based meta-analysis to identify cortical surface 

parcels within mPFC and PCC that were preferentially associated with the DN or with 

subjective valuation. Volumetric coordinates from 80 studies with task deactivation 
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contrasts and 198 studies with valuation contrasts were projected onto a cortical surface, 

and mapped to discrete parcels from a multimodal cortical parcellation (Glasser et al., 

2016) to produce a list of brain areas reported per study. The 40 parcels considered were 

limited to the medial portion of the default and limbic networks defined by the Yeo et al. 

(2011) 17-network parcellation. Domain-specificity was tested by first permuting the 

domain labels across studies (DN or valuation) to create a null distribution for the 

maximum chi-squared statistic in the search space (see Methods for details). The null 

distribution was used to identify regions that were reported significantly more often in 

one literature or the other.  

Fig. 2.1 shows the proportion of times each parcel was reported for each domain, 

as well as the significant differences between domains. The 95th percentile of the 

permuted chi-squared distribution was 8.87. Based on this threshold, area 7 m in 

PCC/precuneus was the only parcel to show a preferential association with the DN 

bilaterally (Left: observed χ2 =10.07, p	=0.029; Right: observed χ2 =18.89, p	<	0.001). The 

adjacent area v23 exhibited a similar effect, albeit only unilaterally (Right: observed χ2 

=11.51, p	=0.011; Left: observed χ2 =8.25, p	=0.067). There appeared to be a bilateral 

preference toward valuation effects in mPFC area 25 (Left: observed χ2 =12.91, p	=0.005; 

Right: observed χ2 =12.83, p	=0.005); however, closer inspection suggested this effect 

was driven by subcortical foci centered in adjacent ventral striatum. No other parcels 

were preferentially implicated in valuation relative to DN. We therefore selected area 7 m 

as an interpretable, bilateral reference point for labeling DN and non-DN communities in 

the analyses that follow. We note that the area labeled 7 m in the parcellation used here 
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(Glasser et al., 2016) is different from (and located inferiorly on the medial surface to) 

the non-DN area 7 m discussed in previous work (Andrews-Hanna, Reidler, Huang, & 

Buckner, 2010).  

Individual-level DN and non-DN communities  

 Within the mPFC/PCC search space, we estimated the topography of the DN for 

each individual. Using each individual’s full time series (approximately 4800 total TRs 

from four 14-min scanning runs acquired over two days), we calculated the full vertex-to-

vertex correlation matrix for the 4801 surface vertices in the search space. We 

represented each individual’s correlation matrix in the form of a network, with cortical 

surface vertices as nodes and transformed correlation values as edge weights. We then 

applied the SP community detection algorithm to partition the network into two cohesive 

functional communities.  

 Fig. 2.2 shows a representative partitioning of the search space for a single 

participant (100307), with additional examples presented in the first two columns of Fig. 

2.3. The SP algorithm subdivides a network according to the positive versus negative 

values in the Fiedler vector (the eigenvector related to the second-to-lowest eigenvalue of 

the network’s normalized Laplacian matrix, see Methods). Since this is a data-driven 

approach, there is no a priori labeling for the two communities. We assigned the DN label 

to the community that contained the majority of the DN-specific PCC parcel from the 

meta-analysis (7 m). We oriented each individual’s Fiedler vector so positive values 

corresponded to the DN community (K. H. Nenning et al., 2017), and were assigned a 

value of 1 in the binarized partitionings (with 0 denoting non-DN). In qualitative terms, 
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the resulting patterns contained substantial DN coverage in posterior PCC (as dictated by 

our labeling strategy), with non-DN vertices in anterior PCC. The mPFC region tended to 

include DN vertices in its ventral-anterior and dorsal-anterior areas, with a persistent non-

DN pocket between them. This non-DN section extended posteriorly into pregenual 

cingulate cortex (area a24). We note that the addition of restrosplenial cortex (an area 

commonly regarded as part of canonical DN) to the search space did not change these 

results; as expected, that area tended to be largely assigned to the DN community (Fig. 

2.3).  

 Before evaluating the degree of generalizibility of this topographic pattern across 

individuals, we examined the validity of the partitionings by comparing them to results 

from an alternative community detection algorithm, modularity maximization (Clauset et 

al., 2004). Modularity seeks to find the set of communities that maximizes within-

community connection weights relative to a null model. Since modularity is not 

constrained to a predetermined number of communities, it was capable of finding more 

than two in our data set. We quantified the cross-method agreement in terms of the 

Adjusted Rand Index (ARI; see Methods), which measures the proportion of node pairs 

in a network that were either clustered together or separately in both partitionings, while 

being agnostic to labeling schemes and controlling for chance clustering. The ARI 

normally takes values ranging from 0 to 1, with 0 indicating chance agreement (but can 

take negative values if the similarity falls below chance). Fig. 2.4 contains examples of 

ARI values in real and simulated contexts.  
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 The two clustering methods had high agreement (mean ARI = 0.87, SD = 0.13). 

Modularity showed a tendency to produce additional communities (median = 3, range = 

2, 5). However, the additional communities encompassed a small number of vertices 

(median = 16.5, IQR = 6–41.5) compared to the principal two (median = 4783.5, IQR = 

4759.5–4795), suggesting that a binary partitioning provided a reasonable approximation 

of the network’s true community structure.  

 Next, we examined the similarity of SP-based partitionings across individuals by 

computing the ARI between every pair of subjects, and found modestly above-chance 

agreement overall (mean = 0.13, SD = 0.05). Qualitative inspection of the community 

organization showed good alignment for PCC, whereas the pattern in mPFC was 

consistent but shifted topographically across subjects. To quantify this heterogeneity in 

mPFC, we calculated the between-subject ARI for each region separately (Fig. 2.5). The 

functional topography of PCC was better aligned across individuals (mean = 0.19, SD = 

0.09) than mPFC (mean = 0.1, SD =0.05; paired permutation, p < 0.001; Cohen’s D = 

1.26).  

Pattern variability over time  

 We next sought to estimate whether individual vertices had a stable or unstable 

community affiliation over time. We did so by performing a sliding window analysis on 

each subject’s full time series (20 min windows shifting by 1 min). We compared the 

partitioning derived from each window with the partitioning computed using the entire 

time series (Fig. 2.6). Our focus here was not on the overall level of agreement (which is 

expected to be high given the use of overlapping data), but on differences in stability 
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across nodes. The sliding window analysis provided a means to identify nodes that were 

highly variable, and allowed us to determine whether these variable nodes followed a 

specific spatial structure.  

 The mean ARI along each subject’s time series was significantly higher for PCC 

(mean =	0.59; SD =	0.14) than mPFC (mean =	0.5; SD =	0.13; paired permutation, p	<	

0.001; Cohen’s D =	0.65). A subset of nodes showed exceptionally high stability, in that 

they were assigned to the same community in every time window. The percentage of 

stable nodes ranged from 0 to 73% across individuals (median =	49.5%, IQR =	29% - 

60.25%).  

 We next tested whether the continuous-valued Fiedler vector (before binarization 

into discrete communities) carried information about the stability of individual nodes. 

There is precedent in the literature for the idea that the magnitude (and not just the sign) 

of the Fiedler vector values conveys important information about the role of each node in 

the network (Gkantsidis, Mihail, & Zegura, 2003; Tian & Zalesky, 2018). Therefore, we 

tested whether the magnitude of the eigenvector values was associated with the stability 

of nodes over time. Specifically, we estimated the proportion of DN affiliations per node 

as a function of Fiedler vector values, using a logistic mixed effects model (Fig. 2.6). The 

model identified a positive significant relationship between these features (β	=	217.02, SE 

=	0.67, p	<	0.001), signifying that vertices with higher absolute Fiedler vector values 

were more persistent in their relationship with their corresponding community over time.  

These analyses suggest that there is potential value in thresholding the Fiedler vector as a 

means to identify reliable DN and non-DN vertices on an individual subject basis. We 
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therefore thresholded each subject’s Fiedler vector to produce these refined maps. For 

each individual, we estimated the threshold by selecting the empirical smallest absolute 

Fiedler vector value that yielded an average stability across supra- threshold nodes of 

99%, for positive (mean =	0.0132, SD =	0.006) and negative (mean =	-0.0139, SD =	

0.0069) values separately. Individuals without such stable nodes (n =	19) were not 

thresholded, and were included in the subsequent analyses in unthresholded form. The 

median proportion of retained vertices per individual was 0.49 (IQR =	0.29 0.65). Sub-

threshold vertices were set to zero in Fiedler vector maps and 0.5 in the binarized maps 

(so that they would not bias the calculation of averages). Fig. 2.7A shows the thresholded 

partitioning for the same individual shown in Fig. 2.2. The maps used in all subsequent 

analyses were thresholded by this individualized criterion.  

 With these thresholded partitions, we recomputed the overall similarity across 

participants. Compared to before, there was lower topographic agreement across 

individuals (mean ARI =	0.07, SD =	0.04). The same was true for both PCC (mean =	0.1, 

SD =	0.07) and mPFC (mean =	0.05, SD =	0.03) separately, although the significance of 

the differences between areas was preserved (paired permutation, p	<	0.001; Cohen’s D =	

1.11). Fig. 2.7B shows the average of the thresholded partitions across all participants, 

denoting the proportion of times a vertex was affiliated with the DN community. This 

summary illustrates the common organizational layout of both communities, but also 

highlights the considerable variability across individuals.  

 To test the possibility that the higher inter-subject variability in mPFC was driven 

merely by lower signal quality in the retained vertices, we quantified the temporal signal 
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to noise ratio (tSNR) for each region, both before and after thresholding. We calculated 

tSNR using time series that were not demeaned, but were otherwise equivalent to the data 

originally used. A map of the mean tSNR across individuals can be found in Fig. 2.8. In 

terms of tSNR variability across vertices within each region, mPFC had overall greater 

spatial standard deviation both before and after thresholding (mPFC: pre-threshold mean 

spatial SD =33.96, post-threshold mean spatial SD =30.15; PCC: pre-threshold mean 

spatial SD =15.28, post-threshold mean spatial SD =14.59). However, mean tSNR after 

thresholding was significantly higher for mPFC than PCC (mPFC: mean =77.34, SD 

=13.77; PCC: mean =64.99, SD =10.19; permutation p <	0.001, Cohen’s D =1.02). This 

reflected a significant increase in mean tSNR in mPFC as a result of the thresholding step 

(pre-threshold mean =	66.5, SD =	7.87; paired permutation p <	0.001, Cohen’s D =	0.97), 

whereas the mean signal quality in PCC increased only slightly (pre-threshold mean =	

64.56, SD =	10.02; paired permutation p-value =	0.04, Cohen’s D =	0.04). In short, mPFC 

had higher overall tSNR, albeit with greater variability across nodes. Applying the 

thresholding step focused the analysis on vertices with high signal quality.  

Test/re-test reliability across days  

 The relatively high inter-individual variability seen in the aggregate map could 

reflect at least three factors: (1) measurement noise, (2) dynamic variation in mPFC 

network organization, and (3) stable patterns of functional organization that differ across 

individuals. To arbitrate among these possibilities, we examined the test/re-test reliability 

of thresholded mPFC/PCC community structure across separate days of testing. Insofar 

as the observed variability reflects individual-specific brain organization, across-day ARI 
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values should be consistently higher within-individual than between individuals (an 

example comparison for two individuals is provided in Fig. 2.4). Fig. 2.9 shows pairwise 

comparisons among ten example subjects for PCC and mPFC separately (left).  

 Once again, we found low alignment across individuals for PCC (mean =	0.08, 

SD =	0.06) and mPFC (mean =	0.03, SD =	0.03), but both areas showed comparatively 

high levels of within-individual agreement (PCC: mean =	0.36, SD =	0.14; mPFC: mean 

=	0.26, SD =	0.1). We calculated an index of relative specificity by computing the ratio of 

each individual’s across-day (within-participant) ARI to the mean of all between-

participant ARI values involving that individual. The index is expected to take on a value 

near 1 if partitionings are well aligned across individuals and are subject to a common 

level of measurement noise. It is expected to exceed 1 insofar as functional network 

organization is reliable and individual-specific. This index is intended to factor out the 

potential contributions of measurement noise or dynamic instability, which would 

introduce variability both across individuals and across days.  

 Fig. 2.9 shows ARI ratios for PCC and mPFC. A signed-rank test showed 

evidence for specificity (i.e. ratios >1) in both mPFC (median =	7.45, IQR =	6.08 8.65, V 

=	5037, p	<	0.001) and PCC (median =	4.25, IQR =	3.53 5.29, V =	5030, p	<	0.001). 

Moreover, the ratios for mPFC were significantly greater than those for PCC when 

compared in a paired permutation test (p	<	0.001; Cohen’s D =	0.5). This pattern was 

mostly unchanged when computed using modularity maximization to detect the 

communities, showing that the results persisted even without a forced binarization 

(mPFC: median =	4.46, IQR =	3.55 5.33; PCC: median =	2.85, IQR =	1.94 3.38; 
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difference: p	<	0.001; Cohen’s D =	0.52). These test/retest results suggest that the 

topographic variability seen in mPFC arose at least in part from stable and subject-

specific organizational patterns (examples of these partitionings can be found in Fig. 

2.10). We stress that our similarity metric, the ARI, measured the similarity of 

partitionings in a label-agnostic manner. The greater inter-individual consistency in PCC 

was therefore not merely an artifact of having used a PCC subregion as the basis for label 

assignment.  

Test/re-test reliability across runs  

 We extended the analysis of per-day data by examining whether the organization 

of the DN could be extracted using per-run data only. The duration of each run 

(approximately 14 min) falls well below a previously suggested stability threshold for 

fMRI-based modularity estimations, which asymptotes at around 20 mins per individual 

(Gordon et al., 2017). Nonetheless, high ARI ratios could indicate that the SP algorithm 

can still obtain information about individual-specific patterns of DN organization from a 

single run of data.  

 Run-specific SP results captured unique organizational patterns to some degree, 

even though the overall levels of agreement decreased (PCC between subjects: mean =	

0.04, SD =	0.05; mPFC between subjects: mean =	0.01, SD =	0.02; PCC within subjects: 

mean =	0.17, SD =	0.14; mPFC within subjects: mean =	0.09, SD =	0.08). Fig. 2.10 

shows that even though the community estimates were indeed less reliable within-

individuals than those captured using per-day data (and sometimes even failed to produce 

meaningful partitionings), the layout of DN and non-DN was still observable in many 
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cases, and was comparable to the organization seen using larger amounts of data. We 

again computed each subject’s ARI ratio in order to quantify the specificity of the 

partitions, this time using the mean of 6 across-run (within-participant) ARI values in the 

numerator of the ratio (Fig. 2.9, right).  

 As before, a signed rank test showed that both regions had ARI ratios 

significantly greater than 1 (mPFC: median =	6, IQR =	4.14 7.99, V =	4953, p	<	0.001; 

PCC: median =	3.51, IQR =	2.4 4.26, V =	4971, p	<	0.001), and ratios for mPFC were 

higher than those of PCC (permutation p	<	0.001; Cohen’s D =	0.94). This result further 

confirms that the intrinsic functional organization of mPFC is uniquely arranged per 

individual, and provides evidence that information about such patterns can be extracted 

from relatively small amounts of data.  

Correlation versus community detection in mPFC  

 We next explored the possible advantage of community detection relative to a 

more conventional seed-based functional connectivity analysis for estimating the 

individual-specific functional topography of mPFC. We examined whether maps 

generated with SP were more similar per participant across days than those computed 

from seed-based correlations. We generated a seed time-series by averaging all vertices 

in the PCC region of our search space, and calculated its correlation with the activity of 

each vertex in mPFC. The use of the whole PCC region (instead of just 7 m) was meant 

to represent a typical approach to seed-based connectivity that relies on the group-

average location of canonical DN regions. We compared the map of correlation values in 

mPFC to the map of unthresholded Fiedler vector values using Spearman correlations 
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across vertices. Pairwise spatial correlations were calculated among maps computed for 

each day and method from all individuals. Fig. 2.11A shows that these pairwise 

comparisons resembled those from the across-day comparisons above, and suggested 

good alignment between methods, but particularly high agreement within subject and 

method.  

 Fig. 2.11B shows the test/re-test reliability across days for patterns derived using 

community detection, seed-based correlation, and across methods (e.g. Day 1 community 

detection versus Day 2 seed-based correlation). While both approaches were reliable, 

community detection displayed a significantly higher median correlation coefficient 

across days than seed-based correlation (Community: median =	0.77, SD =	0.19; Seed-

based: median =	0.63, SD =	0.12; paired permutation p	<	0.001; Cohen’s D =	0.54). 

Agreement across methods was fair (median =	0.48, SD =	0.23), signifying that the two 

approaches identified similar topographic features but also had systematic differences. 

These findings suggest that graph-theoretic community detection algorithms are 

advantageous for detecting stable functional topologies, in addition to their other 

advantages of being data-driven, unbiased and observer agnostic.  

Relationship between functional organization and sulcal morphology  

 Next, we asked if the idiosyncratic organization of the DN corresponded to 

patterns of sulcal morphology. Several previous studies have provided evidence that 

sulcal and gyral organization informs the location of functional effects (Amiez et al., 

2013; Amiez & Petrides, 2014; Zlatkina, Amiez, & Petrides, 2016). Recent work has 

suggested that DN regions in individuals lie mostly within sulci in vmPFC (Lopez-
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Persem et al., 2019). We sought to reproduce this relationship using the SP communities, 

and interrogated whether it persisted in PCC and more superior mPFC regions.  

 Fig. 2.12A shows a qualitative comparison between the thresholded DN and non-

DN communities and curvature maps for two individuals. In agreement with findings 

from Lopez-Persem et al. (2019), the DN community appeared to overlap with the 

superior rostral sulcus in vmPFC in these individuals, whereas the non-DN community 

included both gyri and sulci. A similar trend was observable in left PCC, where the DN 

community traced sulcal layouts and non-DN was more likely to appear in gyri.  

 We quantified these observations by dividing the search space into three regions: 

a ventral mPFC area corresponding to the region tested by Lopez-Persem et al. (2019), a 

superior mPFC area (sup-mPFC) that contained the remaining mPFC regions, and PCC 

(Fig. 2.12B, left). For each individual, we correlated the unthresholded Fiedler vector 

with cortical curvature for each combination of region and hemisphere. Negative 

correlations in this context imply that the DN was found in sulci and non-DN in gyri. 

Results are shown in Fig. 2.12B. Correlations tended to be slightly negative in vmPFC, 

both on the left (mean correlation =	-0.02, SE =	0.01) and right (mean correlation -0.02, 

SE =	0.01); the distribution was only significantly different from zero in the right 

hemisphere, and weakly so (one sample t-test: t =	-2.18, p	=	0.031, uncorrected; Cohen’s 

D =	0.22). Correlations between FV and curvature were positive and significantly 

different from zero in sup-mPFC, both on the left (mean correlation =	0.09, SE =	0.01; 

one sample t-test: t =	6.95, p	<	0.001; Cohen’s D =	0.69) and right (mean correlation =	

0.04, SE =	0.01; one sample t-test: t = 4.49, p < 0.001; Cohen’s D = 0.45). Correlations in 
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PCC were negative and significantly different from zero in the left hemisphere (mean 

correlation =	-0.08, SE =	0.01; one sample t-test: t =	-6.89, p	<	0.001; Cohen’s D =	-0.69), 

but significantly greater than zero in the right hemisphere (mean correlation =	0.03, SE =	

0.01; one sample t-test: t =	2.19, p	=	0.031; Cohen’s D =	0.22). The difference across 

hemispheres was significant (paired t-test: t =	-7.07, p	<	0.001; Cohen’s D =	-0.88). These 

results provide preliminary indications that the association between function and structure 

is heterogeneous across subregions of the canonical DN.  

Alignment of mPFC community structure with a proposed DN sub-network organization  

 The thresholded partitions we identified had conceptual and topographic 

similarities to DN sub-networks A and B proposed by Braga and Buckner (2017). We 

explored the relationship between the two sets of sub-regions by reproducing the 

previously described seed-based connectivity approach in two of our subjects. In previous 

work, Braga and Buckner (2017; Braga et al., 2019) manually selected individual vertices 

in dorsolateral prefrontal cortex (DLPFC) that produced two spatially anticorrelated, 

interdigitated networks with distinctive patterns in the temporo-parietal junction (TPJ), 

inferior parietal lobule (IPL), parahippocampal cortex, mPFC, and PCC. We 

hypothesized that if the SP communities corresponded to one or both of the previously 

proposed sub-networks, our partitionings should match networks A and B generated by 

seed-based functional connectivity in these diagnostic areas. For whole-brain functional 

connectomes from two individuals (100307 and 101006), we evaluated seeds in each 

diagnostic region that reproduced networks A and B (correlation coefficients thresholded 

at 0.2), and confirmed their placement based on functional connectivity patterns observed 
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in the remaining areas. In both individuals, seeds in posterior IPL and TPJ most clearly 

identified networks A and B, respectively. The whole-brain seed-based functional 

connectivity maps for the two individuals are juxtaposed with the corresponding 

community detection results in Fig. 2.13. It is worth noting that a few distinguishing 

features are missing due to below-threshold correlation values (e.g. default network B in 

right PCC of 100307).  

 Visual inspection of these networks showed high similarity between our DN 

community and the previously reported sub-network A. However, the non-DN 

community filled areas not covered by either DN-A or DN-B. Since this three-network 

configuration is at odds with the two- network solution suggested in our previous 

analyses (i.e. comparison with modularity), we ran additional evaluations to confirm its 

existence. First, we reproduced the whole-brain k-means clustering analysis (12 clusters, 

100 iterations) performed by Braga et al. (2019) using the full time series for two subjects 

(Fig. 2.14A). In addition to identifying DN networks A and B through this approach (in 

line with previous findings), we found a third cluster that aligned well with the non-DN 

community. To understand why modularity maximization did not identify the same three 

discrete clusters within the search space, we performed a silhouette analysis to determine 

the ideal number of clusters in our search space (Fig. 2.14B). For all 100 individuals, we 

ran k-means clusterings restricted to the mPFC/PCC search space with a specified 

number of clusters ranging from 2 to 5, and computed a silhouette score for each solution 

(higher silhouette scores indicate a better fit). Scores decreased as the number of clusters 

increased beyond 2 for all individuals, suggesting that a bisection was indeed the best 
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solution. Paired permutations comparing silhouette scores across individuals indicated 

that the difference between two (mean =	0.042, SE =	0.001) and three (mean =	0.032, SE 

=	0.0009) cluster solutions was significant (p	<	0.0001, Cohen’s D =	0.96). Visualization 

of a two-cluster k-means revealed a close match with partitionings estimated through 

modularity, and are comparable to those produced by SP prior to thresholding (Fig. 

2.14A, bottom rows). These analyses suggest that SP isolated DN-A and the non-DN 

community as the dominant opposite signals within our search space, but that DN-B is 

observable once we take advantage of the continuous information contained in the Fiedler 

vector.  

 These results support the idea that the two approaches serve complementary 

purposes. Whereas Braga and colleagues (2017; 2019) identified subdivisions within the 

DN, the present community detection approach might be better understood as partitioning 

DN from non-DN cortex. Furthermore, the results show that the continuous-valued 

output of our approach provides a method for estimating the location of the three 

networks in PCC and mPFC that is less computationally demanding than full-brain 

clustering.  

Discussion 

A considerable amount of meta-analytic work has been dedicated to 

characterizing the brain activity patterns associated with psychological processes in 

medial prefrontal cortex (mPFC), revealing both dissociable and overlapping activation 

across domains (De La Vega, Chang, Banich, Wager, & Yarkoni, 2016; Hiser & 

Koenigs, 2018; Kragel et al., 2018). For example, topographic patterns associated with 
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subjective valuation and with the default network (DN) have been suggested to be 

indistinguishable in mPFC, with overlap also partially extending to posterior cingulate 

cortex (PCC) (Acikalin et al., 2017; Bartra et al., 2013; Clithero and Rangel, 2014; Laird 

et al., 2009). This apparent overlap of task-related effects with DN regions has important 

implications, as it has motivated theoretical proposals about ways in which these 

superficially dissimilar domains might involve a shared set of core cognitive processes 

(Acikalin et al., 2017; Clithero and Rangel, 2014; Northoff and Hayes, 2011).  

However, the interpretation of overlap in group-level data depends on the degree 

to which functional organization is heterogeneous across individuals. Recent studies have 

shown that heteromodal brain regions have considerable variability in functional 

connectivity across individuals (Mueller et al., 2013), individual-specific functional 

topography can be occluded in aggregative estimations (Braga and Buckner, 2017; 

Gordon et al., 2017; Michalka et al., 2015; Tobyne et al., 2018), and overlap in functional 

activation can vanish with increases in spatial precision (Woo et al., 2014). These 

findings suggest that group-level and meta-analysis-level overlap does not necessarily 

imply overlap in individual brains. To date, our understanding of the individual-level 

heterogeneity in the functional topography of mPFC has been mostly descriptive (Braga 

and Buckner, 2017; Braga et al., 2019; Gordon et al., 2017). A strong test of the overlap 

between task-related effects and DN regions would require a method to reliably and 

precisely capture the functional topography of mPFC in isolated individuals, as well as a 

quantitative estimate of the degree of topographic heterogeneity across a large group of 

individuals.  
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Here we address these challenges by using spectral partitioning (SP), a graph-

theoretic community detection algorithm that efficiently separates a network into two 

(Fiedler, 1975; Higham et al., 2007; Toker and Sommer, 2019). For each of 100 

individuals, we subdivided canonical DN regions into DN and non-DN communities. 

Restricting our analyses to a general mPFC/PCC search space made it appropriate to use 

a technique that identified a vertex-wise, binary partitioning that was sensitive to the 

complex topography of the brain. This contrasts with whole-brain network analyses, 

which need to allow for multiple sub-networks and which often use parcels that are 

several orders of magnitude larger than vertices as the units of analysis. Partitioning an 

individual’s brain network through SP has a number of advantages, including identifying 

communities deterministically, constraining communities to contain a similar number of 

vertices (i.e. preventing the allocation of most vertices to a single community), providing 

continuous values that relate to the strength of a node’s community affiliation, and the 

ability to diagnose the connectedness of a network through examination of its resulting 

eigenvalues (Chung, 1997; Higham et al., 2007). Comparisons with partitionings formed 

by modularity maximization, which heuristically determines the ideal number of 

communities (Garcia et al., 2018), as well as a silhouette analysis, suggested the binary 

partitioning was appropriate.  

We found a generalizable pattern across individual partitionings, in which the DN 

community covered ventral and anterior/superior mPFC and posterior PCC, with the non-

DN community concentrated in pregenual ACC and anterior PCC. The precise spatial 

positioning of this general community structure was highly heterogeneous across 
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individuals, yet stable across test/re-test evaluations within-individual. The idiosyncrasy 

in functional topography was particularly pronounced in mPFC, and was identified in 

both run-based and day-based analyses. Individual-specificity could theoretically arise 

from a variety of sources. For example, individual variability could be due to shifts in 

functional organization that are independent of structural features (Conroy et al., 2013; K. 

H. Nenning et al., 2017), or could relate to the pattern of functional connections with the 

rest of the brain (Mars, Passingham, & Jbabdi, 2018; Passingham, Stephan, & Kötter, 

2002; Tobyne, Sean M. et al., 2018). Alternatively, the functional topography of mPFC 

could be governed by its underlying sulcal and gyral organization, which has been shown 

to vary systematically across individuals (Mackey and Petrides, 2014). Our results offer 

some support for this idea, echoing previous findings that DN is contained within sulci 

(in particular the superior rostral sulcus) in vmPFC (Lopez-Persem et al., 2019). 

Structure/function associations were heterogeneous in other regions; DN tended to be 

located in gyri in more superior mPFC regions, whereas the association differed across 

hemispheres in PCC. Future studies should further characterize this heterogeneous 

relationship. Another important goal for future work will be to assess whether the 

network layout in these regions can also be predicted on the basis of other aspects of 

brain structure, such as myeloarchitecture (Glasser et al., 2016) or structural connectivity 

(Osher et al., 2016; Saygin et al., 2011, 2016).  

 Network-partitioning methods such as SP are data-driven, and therefore provide 

no labeling information about the resulting communities. We circumvented this issue by 

independently identifying the DN community based on its coverage of area 7m, a region 
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in PCC that was preferentially associated with the DN relative to subjective valuation in 

our meta-analysis. We were able to apply labels derived from this group-level approach 

on the basis of the topography in PCC, where functional organization was more 

consistent across individuals. Because each community spanned both mPFC and PCC, 

the labels extended to mPFC where topography was more heterogeneous.  

 Our results extend previous work that described individual-specific brain 

organization. Several recent investigations have identified topographic heterogeneity 

using a different data aspect ratio than we used here (a small number of individuals and a 

large number of scanning sessions per individual; Braga and Buckner, 2017; Braga et al., 

2019; Gordon et al., 2017). Previous work has also shown that functional correlations 

among pre-defined cortical parcels are highly stable within an individual (Gratton et al., 

2018; Kong et al., 2018). Here we were able to quantify the variability and stability of 

functional topography in a large sample at a fine, vertex-level spatial granularity, using 

moderately low amounts of data (down to a single 14 min scan, although estimates based 

on more data were more reliable). The motivation to subdivide DN also stems from 

recent work by Kernbach et al. (2018), who identified specialized communication of 

parcels within DN with the rest of the brain in a large pool of individuals.  

In addition to the technical advantages noted above, the SP algorithm offers 

analytical advantages specific to neuroscience. We found that SP outperformed a 

traditional seed-based correlation approach in capturing idiosyncratic functional 

topography. Community detection methods such as SP are stabilized by relying on all 

pairwise correlations among cortical vertices (rather than correlations with an individual 
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seed). In addition, we found we could threshold the underlying Fiedler vector on the basis 

of the temporal stability of SP results. The magnitude of Fiedler vector values has been 

recently used to characterize the continuous connectivity profile of the insula with the rest 

of the brain, challenging the notion of discrete parcellations in that region (Tian and 

Zalesky, 2018). The combination of discrete classification and graded information 

yielded by SP provides additional flexibility and richness relative to some other 

clustering algorithms.  

The community organization of PCC and mPFC was congruent with DN sub-

networks A and B proposed by Braga and Buckner (2017; Braga et al., 2019). The 

topography of our thresholded DN community closely matched network A, whereas our 

non-DN community included cortical territory that was not part of either DN network. 

Subthreshold vertices from the SP communities in turn overlapped with DN-B vertices. 

Our findings therefore complement the initial identification of DN sub-networks by 

quantifying the systematic variability of their underlying topography in a larger group of 

people. Understanding the interaction of networks DN-A, DN-B, and non-DN is an 

important goal for future research. SP is related to methods that have gained traction 

recently for distinguishing functional cortical gradients (Huntenburg, Bazin, & 

Margulies, 2018; Margulies et al., 2016; Tian & Zalesky, 2018). A valuable goal for 

future work would be to assess whether DN-A and DN-B form part of a gradual 

information processing sequence, or if their functions can be discretized. Regardless, this 

set of results collectively suggests that canonical DN regions can be topographically 



	

	

48 

partitioned into DN and non-DN communities, and that the DN community can in turn be 

further divided into sub-networks A and B.  

Conclusion  

Our findings show that the functional topography of mPFC is variable across a 

large pool of individuals, and that the SP algorithm is a useful tool for identifying 

individualized topography in a data-driven way. The ability to capture an individual’s 

functional topography without the need for group priors is clinically relevant, as it could 

help target the assessment of mPFC activity changes in disorders such as depression and 

schizophrenia (Hiser and Koenigs, 2018). It will be beneficial for future task-based fMRI 

experiments to be able to characterize where task-evoked activity is situated relative to an 

individual’s overall mPFC organization. Our work is relevant to interpreting the overlap 

of DN regions with task-related brain activity in numerous cognitive domains, including 

valuation (Acikalin et al., 2017; Shenhav & Karmarkar, 2019), memory (Euston et al., 

2012), and self-referential thought (Mitchell et al., 2005). An individualized frame of 

reference will enhance the ability of future studies to gauge similarities and differences 

among brain activity patterns associated with diverse psychological domains.  
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CHAPTER TWO FIGURES 

 
 

 
Figure 2.1: Meta-analysis results. A: Proportion of times each ROI was reported in the valuation 
and DN literatures. B: Regions identified in permutation-based chi- squared tests contrasting the 
two literatures. Area 25 (in red) initially appeared to be as associated with valuation, but was not 
interpreted because the effect was found to reflect carryover from subcortical foci centered in 
ventral striatum (see text for details). Areas in blue represent the remainder of the search space. 
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Figure 2.2: Brain partition for an example subject (100307). Fiedler vector values (top) are 
mapped onto the brain surface, dividing it into positive and negative communities. The bottom 
brain shows the binarized Fiedler vector, with red areas denoting the DN community (as indicated 
by coverage of area 7 m, bordered). 
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Figure 2.3: Additional examples of individualized partitionings. The first two columns show 
both Fiedler vector values and binarized communities, respectively. A common organizational 
principle is visible, even though it shifts topographically across individuals. The organization is 
also evident when using Modularity (third column), even though some isolated vertices were 
sometimes placed in a small third community (see subject 100408). The fourth column shows 
Fiedler vector maps after adding retrosplenial cortex (a common component of canonical DN 
affected by task-deactivation). The addition of this area to the search space does not alter the 
original results, and the retrosplenial region tends to be included in the DN community. 
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Figure 2.4: Understanding similarities. A: Example of an across-day comparison using ARI 
for two subjects (100307 and 100408). This reflects how qualitatively similar, within-subject 
partitionings can have relatively small ARI values (here 0.24-0.25), and how partitionings 
across individuals are much closer to the chance level of zero. B: Simulated comparison 
between two binary partitionings. The allegiance of each node is progressively switched, and 
the agreement between the new vector and the original one is computed on each change. The 
x-axis shows the number of nodes switched. Comparing the increasingly dissimilar maps by 
computing the proportion of equal cluster labelings (EQ) shows the expected linear decrease 
in similarity. The unadjusted form of the ARI (RI) displays a nonlinearly decaying similarity, 
and increases after reaching 50% as a result of node pairs once again being grouped in the 
same/different clusters (making the index label-agnostic). The ARI decays more steeply as a 
function of increasing dissimilarity, reaching 0 at chance levels. Low ARI values can 
therefore still occur when there is systematic agreement between partitionings. 
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Figure 2.5: Similarity matrix showing ARI values among all subjects for PCC (lower triangle) 
and mPFC (upper triangle) separately. Functional topographic patterns were better aligned across 
individuals in PCC than mPFC.  
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Figure 2.6: A: For each individual, we produced partitions for each 20 min sliding window (84 
TRs). B: Proportion of times each vertex was affiliated with the DN community across windows 
in one example subject (upper), and the continuous Fiedler vector map for the same subject using 
their full time series (lower). C: Relationship between the magnitude of Fiedler vector values and 
the proportion of DN affiliations. Grey lines display data for each subject, and the black line 
shows the fit from a mixed-effects logistic regression. Dashed red lines indicate the mean FV 
value at which maps were thresholded. The histogram displays the mean frequency distribution of 
y-axis values.  
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Figure 2.7: A: Thresholded Fiedler vector map for subject 100307 (top), and its binarized form 
(bottom). Subthreshold values effectively formed a third com- munity of high-variability vertices. 
B: Mean of the binarized maps across all participants, indicating the proportion of DN affiliations 
per vertex in our sample. Colors represent PCC-based labels (‘DN’	versus ‘non-DN’), which were 
applied in a subsequent step following the data-driven community-detection analysis and which 
were necessarily well-aligned in PCC. This aggregate map shows the common organizational 
principle of the DN and non-DN communities, while also showing the high level of variability in 
mPFC. 
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Figure 2.8: BOLD signal quality in the mPFC and PCC search space. Left: Surface map 
displaying the vertex-wise mean tSNR across individuals. Right: Mean tSNR for mPFC and 
PCC across individuals. 
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Figure 2.9: Left: Similarity matrix for 10 example participants (2 scanning days each), showing 
pattern agreement across days and subjects for PCC and mPFC separately. Color scale represents 
the ARI, which quantifies topographic similarity irrespective of how the communities are labeled. 
The block-diagonal structure is indicative of test-retest reliability across days within an 
individual. Middle: ratio of within-subject ARI to between-subject mean ARI for all individuals 
across days suggests idiosyncratic community arrangement for both PCC and mPFC (ratios>1, 
solid line), with greater subject-specificity in mPFC. Right: within-to-between subject mean ARI 
ratios for run-specific partitionings again show greater subject-specific organization for mPFC.  
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Figure 2.10: Visual examples of idiosyncratic organization across days and runs. Left: 
Thresholded partitionings captured with SP were highly similar across days within individuals, 
but were topographically distinct across individuals. The organization estimated for each day 
was generally similar to that captured using the full time series. Right: Thresholded 
partitionings estimated using the first scanning run from day 1, and the last scanning run from 
day 2. As expected, the considerable reduction in the amount of data used decreased the 
reliability of the community localization across single scanning runs, which were in some 
cases irrecoverable (e.g. subjects 100408 and 687163). Even so, the general location of DN 
and non-DN was still observable in many cases, and is comparable to the organization seen 
using larger amounts of data. This shows that even with notably noisier estimates and lower 
within-individual ARI values from working with less data, it was possible to gain information 
about the general location of DN and non-DN in individuals. 
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Figure 2.11: A: Correlation matrix comparing the across-day spatial stability of mPFC maps 
derived from seed-based functional connectivity (using a PCC seed) and the Fiedler vector for 10 
example subjects. The top-left quadrant represents seed-based FC maps, and the bottom-right the 
Fiedler vector, with two single- day-based maps per individual. The upper-right and lower-left 
quadrants show across-method agreement. B: Day 1 vs Day 2 within-subject correlation 
coefficients for each method, as well as between methods. Community detection through spectral 
partitioning provided more stable estimates, even though both methods showed good levels of 
agreement.  
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Figure 2.12: A: Correspondence between SP communities and sulcal morphology in two 
example individuals. Zoomed-in boxes show areas in PCC and ventral mPFC where the DN 
community appears to follow sulci. The superior rostral sulcus aligned with the DN community, 
in agreement with findings by Lopez-Persem et al. (2019). B: Correlations between cortical 
curvature and the unthresholded Fiedler values. We divided the search space into three areas 
(left): vmPFC (yellow), superior mPFC (sup-mPFC, red), and PCC (blue). Boxplots on the right 
show the distribution of correlation values across individuals for each combination of region and 
hemisphere, indicating that the DN (defined by positive FV values) was associated with sulci in 
vmPFC, but with gyri within sup-dmPFC. PCC showed evidence of an opposite association 
across hemispheres.  
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Figure 2.13: Qualitative comparison between DN sub-networks A and B (estimated based on 
descriptions from Braga et al. (2019)) and SP communities for two individuals. A: Whole-brain 
networks A and B produced by selecting seeds in TPJ, with our community detection search 
space delineated by black borders. Correlation values are thresholded at 0.2. B: thresholded 
communities (indicated by borders) show strong resemblance between the DN community and 
network A. The non-DN community covers sections of cortex not associated with either DN sub-
network.  
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Figure 2.14: Additional checks to confirm the match between our findings and Braga et al. 
(2019). A: DN sub-networks A and B identified through whole-brain k-means clustering were 
congruent with the existence of a third sub-network, which matched the non-DN SP 
community (top rows). Limiting k-means to two clusters within the search space aligned with 
results from modularity (bottom two rows). B: K-means based silhouette scores were 
computed per individual to determine the appropriate number of clusters within the search 
space (the higher the score, the better). This showed that two networks produced the preferred 
solution. 
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CHAPTER TWO TABLES 

 
Hemisphere mPFC PCC 

Left 10d, 10r, 10v, 25, 9m, a24, 

d32, OFC, p24, p32, s32 

23d, 31a, 31pd, 31pv, 7m, 

d23ab, PCV, RSC, v23ab 

Right 10d, 10r, 10v, 25, 9a, 9m, 

a24, d32, OFC, p24, p32, 

s32 

23d, 31a, 31pd, 31pv, 7m, 

d23ab, RSC, v23ab 

 
Table 2.1: Regions that composed the search space. Parcels were visually selected from the 
Glasser atlas (Glasser et al., 2013), and encompassed zones of cortex that show overlap between 
DN and valuation (based on Yeo et al., 2011). Note that the number of parcels is asymmetric 
across hemispheres. 
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CHAPTER THREE: APPARENT PREFERENCES FOR COGNITIVE EFFORT 

FADE WHEN MULTIPLE FORMS OF EFFORT AND DELAY ARE 

INTERLEAVED IN A FORAGING ENVIRONMENT 

Introduction 

 Evaluating whether to pursue a desirable outcome often entails assessing the 

demands required for obtaining it. In psychology and economics, demands for both time 

and effort have traditionally been identified as costs that detract from the net subjective 

value of rewards (Frederick, Loewenstein, & O’Donoghue, 2002; Shenhav et al., 2017; 

Walton, Kennerley, Bannerman, Phillips, & Rushworth, 2006; Westbrook & Braver, 

2015). Indeed, decision makers tend to prefer low-effort and immediate rewards over 

larger rewards that demand longer delays and higher effort (Ainslie, 1975; Hull, 1943; 

Kool & Botvinick, 2018; Kool et al., 2010; Treadway et al., 2009; Westbrook et al., 

2013). However, people still needlessly pursue effortful courses of action in everyday 

decisions. Emerging experimental and theoretical work has chiefly explained this 

phenomenon by suggesting a reciprocal relationship between effort and outcomes, 

whereby exerting effort boosts the perceived value of its outcomes (Hernandez Lallement 

et al., 2014; Kacelnik & Marsh, 2002; Mochon, Norton, & Ariely, 2012), and positive 

outcomes imbue value into their preceding effortful behavior (i.e. learned 

industriousness; Eisenberger, 1992). Though intuitively valid and empirically supported, 

this explanation leaves open questions about what features of an effortful task can make it 

attractive in its own right, and how contextual factors mold its perceived costs (Inzlicht, 

Shenhav, & Olivola, 2018). Understanding what governs the intrinsic costs and rewards 
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of effort could improve our ability to motivate completion of effortful daily activities, 

such as schoolwork or physical exercise.  

 Recent work has proposed that the subjective costs produced by delays and 

cognitive effort are modulated by the possibility of missing out on better concurrent 

alternatives, implying that decision makers track the opportunity cost of time (OC; 

Fawcett, McNamara, & Houston, 2012; Kurzban, Duckworth, Kable, & Myers, 2013; 

Otto & Daw, 2019). Preferences for effortful courses of action could therefore arise from 

the presence of other types of demands and opportunities in the same choice environment 

(Kool & Botvinick, 2018). For example, exerting high effort for a reward might be 

aversive, but the same level of work might be appealing in comparison to the boredom of 

an equivalent period of passive waiting (e.g. taking the cumbersome way home rather 

than waiting for a delayed train, even if the resulting time of arrival is the same). This 

effect of context on effort preferences has been illustrated by experiments on charitable 

giving, in a which high-effort donation method (such as a run) attracted larger donations 

than a low-effort method (such as a picnic) when either was available alone (the 

“martyrdom effect”), but the high-effort event was disfavored when both options were 

offered as alternatives (Olivola & Shafir, 2013).  

 Standard models in neuroeconomics and behavioral economics cannot readily 

address this possibility. The effects on valuation of different types of effort or delay have 

traditionally been formalized with discounting functions that capture how much less 

appealing a reward becomes as a function of the associated amount of effort or delay 

(Ainslie, 1975; Frederick et al., 2002; Green, Fristoe, & Myerson, 1994; Kable & 
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Glimcher, 2007; Klein-Flügge, Kennerley, Saraiva, Penny, & Bestmann, 2015; Kool et 

al., 2010; Westbrook et al., 2013). An advantage of relying on these standardized 

functions is that they can circumvent a key confound when comparing effort and delay, 

namely that increasingly effortful tasks also tend to take longer to perform. However, 

although this line of work suggests that discounting functions are similar for delay and 

effort (Massar, Libedinsky, Weiyan, Huettel, & Chee, 2015; Prevost, Pessiglione, 

Metereau, Clery-Melin, & Dreher, 2010; Seaman et al., 2018), there is ongoing debate 

about the shape of the discounting function across types of demands (Arulpragasam, 

Cooper, Nuutinen, & Treadway, 2018; Białaszek, Marcowski, & Ostaszewski, 2017; 

Chong et al., 2017; Hartmann, Hager, Tobler, & Kaiser, 2013; Klein-Flugge, Kennerley, 

Friston, & Bestmann, 2016; Kool & Botvinick, 2018; Prevost et al., 2010), and the degree 

to which discount rates correlate across cost domains (Seaman et al., 2018; Westbrook et 

al., 2013). Further, this approach does not directly probe which type of demand people 

would prefer if given the option, and constrains the understanding of behavioral demands 

to one in which such demands are bound to reduce the value of prospects. 

 This evidence sets the stage for examining what people would actually select in 

environments that intermixed multiple types of demands, including cognitive, physical 

effort, and delay. Single choice foraging paradigms provide a natural way to interrogate 

preferences among demands, by asking individuals whether the current offer outweighs 

what could be obtained and experienced during the same time period instead 

(Constantino & Daw, 2015; Garrett & Daw, 2020; Krebs, Erichsen, & Webber, 1977; 

Mobbs et al., 2018; Stephens & Krebs, 1986). Such paradigms probe the perceived 
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opportunity cost of time, which has been hypothesized to underlie the evaluation of 

behavioral costs (Kurzban et al., 2013). Specifically, foragers must decide whether to 

spend their limited time by harvesting their currently available resource or by seeking out 

more profitable (or less costly) alternatives. This could involve, for example, deciding 

when to leave a patch of depleting richness (e.g. when to quit a job that provides 

diminishing opportunities for growth), or choosing whether to pursue or forgo offers 

presented serially (e.g. whether to accept your first job offer or wait for new potential 

ones). Here we focus on this latter type of foraging, traditionally called prey foraging 

(Krebs et al., 1977), as it provides a means to examine how choices to accept or reject 

individual prospects are influenced by contextual knowledge about other potentially 

obtainable alternatives in the same environment. 

 Foraging has recently attracted high scientific interest due to its ecological 

validity, which is rooted in evolutionarily conserved choice behaviors (Hayden, 2018; 

Mobbs et al., 2018), and offers a number of desirable qualities to address our question. 

First, it allows for the estimation of optimal, reward maximizing choice patterns on the 

basis of the opportunity cost of time (Charnov, 1976; Krebs et al., 1977). The opportunity 

cost depends on the richness of the environment, which can be experimentally 

manipulated by balancing the amount of time it takes to harvest an offer (handling time) 

versus to search for new ones (travel time). We can then interpret observed deviations 

from such optimal behavior, and examine how foraging behavior changes when the 

handling time is filled with cognitive effort or physical effort in comparison with unfilled 

delay (thus disentangling effort from delay duration). Second, in contrast to multi-
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alternative economic choice paradigms that often treat choices as independent 

observations, the sequential nature of foraging encourages individuals to consider both 

focal and global elements of the decision context. For example, the cost (or value) of 

effort and delay could globally depend on the availability of alternative demands, 

impacting the perceived opportunity cost of time. Alternatively, it could be intrinsic and 

robust to such manipulation, and/or depend on task-specific factors that are adjusted once 

individuals experience different forms of behavioral costs. Foraging rests on an abundant 

modeling history that provides computational tools to formalize relevant decision 

variables (Stephens & Krebs, 1986). 

 Across two behavioral experiments, we tested the overarching hypothesis that 

preferences would vary depending on whether individuals faced a single type or multiple 

types of behavioral demands (i.e. cognitive effort, physical effort, and delay). Experiment 

1 used a between-subject design in which participants foraged for rewards of varying 

magnitudes that imposed varying durations of a single form of demand. Experiment 2 

used a within-subject design in which individuals foraged for varying forms of demand in 

addition to varying reward magnitudes. We leveraged the ecological and computational 

richness of foraging paradigms to provide new insights on a number of open questions 

(Inzlicht et al., 2018). First, we examined whether the discounting effects consistently 

observed in multi-alternative economic choice paradigms persisted when these options 

were presented serially, and whether the resulting foraging patterns depended on the 

demands imposed to obtain rewards. The existence of a well-defined optimal, reward-

maximizing choice strategy helped us identify when demands boosted or detracted from 
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the value of rewards (signified by tendencies to overharvest poor offers or underharvest 

advantageous offers, respectively). Second, we probed whether the perceived cost (or 

value) of demands was intrinsic or dependent on either task-specific or contextual 

characteristics. For instance, varying the level of exposure to multiple types of demands 

across experiments allowed us to assess whether cost evaluation was dependent on the 

availability of alternative avenues of action. Further, including cognitive demands and 

physical demands let us examine whether such effects might apply differently to distinct 

types of effort. 

 Our results provided mixed support for our pre-registered hypotheses, which are 

detailed in https://osf.io/2rsgm/. For Experiment 1, we hypothesized that 1) decision 

makers would integrate reward and timing information in order to approximate optimal 

foraging strategies, as reflected by acceptance rates; 2) acceptance rates would be higher 

for trials that demanded physical effort and cognitive effort than for unfilled delay or 

effortless engagement (based on the apparent value of effort displayed by charitable 

donors, as described above); and 3) choices would be consistent within trials, reflected by 

few choice reversals, and acceptance rates for each type of demand would remain stable 

over time. Confirming our predictions, we found that individuals could approximate 

optimality by preferring higher rewards and shorter delays, regardless of the richness of 

the environment. We also found that people in the cognitive effort group accepted more 

trials than optimal, whereas physical effort and wait groups under-accepted, partially 

matching our predictions and highlighting that cognitive effort can add value to 

outcomes. Finally, acceptances (and differences among demands) were both consistent 
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and stable within each cost condition, in line with expectations. For Experiment 2, we 

hypothesized that 1) acceptance rates would once again approximate optimality, and 

would show effects of reward magnitude similar to those seen in Experiment 1; 2) in 

contrast to Experiment 1, participants would gravitate towards unfilled delays to obtain 

rewards; and 3) that choices would be consistent and stable over time. As before, decision 

makers approached the optimal strategy for the foraging environment, resembling the 

pattern observed in Experiment 1. Contrary to our second and third hypotheses, we found 

that a preference for cognitive effort was present initially but disappeared over time as 

decision makers foraged for types of demands in addition to rewards.  

 Computational modeling results suggested that the normative predictions of 

traditional foraging models were insufficient to explain our data. Instead, the data 

supported a model in which demands imposed a bias on the estimated opportunity cost of 

time, which converged as individuals gained experienced with interleaved types of 

demands. We hypothesize that this bias arises from modulations of subjective time. For 

instance, cognitive effort could have become appealing by virtue of compressing the 

perceived trial time, a perception that could be recalibrated with exposure to alternative 

demands. The subjective shortening of experienced durations during cognitive effort 

could be due to the ongoing recruitment of working memory (e.g. preventing individuals 

from estimating the elapsed time), or because the discrete events within the cognitive task 

subdivided the time interval. These results expand our understanding of the attractiveness 

of effort, suggesting potential reward-independent factors that could be leveraged to 

motivate effort engagement in diverse, everyday scenarios. 
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Experiment 1: Between-subject Manipulation of Subjective Costs During Foraging 

Methods 

Participants 

 The study was preregistered with the Open Science Framework 

(https://osf.io/2rsgm/registrations). All experimental procedures were approved by the 

Boston University Institutional Review Board, and written consent was acquired for all 

participants. For the Experiment 1, we recruited individuals until a desired number of 84 

eligible participants was achieved (58 Female, median age = 21, range = 18 - 31; number 

excluded before reaching goal = 8). The sample size was determined by means of power 

analysis (ANOVA), using a significance level of 0.05, power of 0.8, an effect size of f = 

0.45 (estimated from a pilot study), and three groups (one for each cost type). The 

resulting per-group sample was 20, which we increased to 21 in order to match three 

possible block orders. We added an extra group of 21 participants who experienced a 

minimally effortful condition in order to determine whether effort or pure engagement 

were driving our results. 

 Participant data sets could be excluded based on any of the following 

preregistered criteria: 1) Consent: If they withdrew their participation; 2) Inattentiveness: 

a catch trial was placed at the end of each experimental block, asking participants to press 

a key within 3 seconds (time requirement based on pilot study response times). A 

participant who failed two or more of these checks was excluded and replaced. 3) 

Improbable choice behavior: The task was structured so that one reward amount must 

always be accepted. A participant who quit every trial in at least one block was assumed 
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not to have followed or understood task instructions, or to have disengaged from the task 

altogether. 4) Performance: Participants were forced to travel if they made 2 mistakes in a 

cognitive effort trial (see task procedures below), or if they gripped below threshold 

during physical trials. Any participant with more than 30% forced travels was excluded. 

Foraging Task 

 All experimental tasks were implemented using PsychoPy 2 (v1.85.1, Peirce et 

al., 2019) on a Macbook Pro laptop. In this task, participants foraged for monetary 

rewards in an environment in which each trial required either physical effort or cognitive 

effort for a set period of time (the “handling time”), or an equivalent unfilled delay (Fig. 

3.1A). Their goal was to maximize their gains within a fixed amount of time. On each 

trial a monetary offer was displayed for 2 s, and participants had the opportunity to 

expend time and/or effort during the handling time in order to earn it. Upon completion 

of a trial, participants saw a 2 s window displaying the reward obtained, which was 

followed by a travel time to the next offer. Alternatively, the participant could quit at any 

point during the handling time by pressing the spacebar on the computer, and 

immediately start traveling. 

 Each participant was assigned to one of three types of costs (cognitive effort, 

physical effort, or delay), and a fourth group of equal size faced an effortless physical 

task that involved minimal gripping. This latter condition was added to discard the 

possibility that any differences in acceptances between effort and delay were driven by 

engagement alone. Each group was unaware that other cost conditions existed. 

Participants exerted physical effort by gripping a handheld dynamometer (Biopac 
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Systems, United States) using their dominant hand. Gripping requirements were 

calibrated at 20% of maximum voluntary contraction (MVC, acquired at the beginning of 

the session). Cognitive effort entailed switching among Stroop, dot motion coherence, 

and flanker tasks. This type of task switching is demonstrably effortful (Kool et al., 

2010). In the Stroop task, one of three color names was displayed on the screen (red, blue 

or green), with a font color that was either congruent (e.g. the word red presented in red) 

or incongruent (e.g. the word red presented in blue). Participants had to select the color of 

the font (i.e., they had to suppress their tendency to read the word). For the motion 

coherence task, 100 solid white dots moved on the screen. A fraction of these dots moved 

coherently to the left or right, while the rest moved in random directions (coherence 

could be either 30% or 40%, uniformly sampled). Participants had to respond with the 

direction of the coherent movement. In the flanker task, rows of arrowheads pointed 

either to the left or the right (maximum of 3 rows, 3 to 13 arrowheads per row). 

Participants responded with the direction of the center arrowhead, which could point in 

the same or opposite direction from its neighbors. The tasks were configured so that 

responses always involved a left or right key press (e.g. for Stroop, two colored circles 

were presented at each side of the screen). During the handling time, cognitive tasks and 

their configurations were randomly sampled, and were presented for 1 s followed by a 1 s 

inter-stimulus interval. Participants were asked to respond within each task’s presentation 

time (e.g. there was a 1 s response deadline). Before the experiment, participants trained 

in each cognitive task until they correctly performed six consecutive tasks of each kind. 

While in the handling time, if participants failed to maintain above-threshold gripping or 
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made two mistakes during the cognitive task, they were forced to travel and missed the 

reward. 

There were three block types, in which handling times of 2, 10, or 14 seconds 

were paired with travel times of 14, 6, and 2 seconds, respectively. Note that all 

combinations add up to 16 seconds, meaning that accepted trials took the same amount of 

time in all conditions, but rejected ones were shorter in environments where the traveling 

time was shorter. Timing parameters were held constant within each 7-min block. Each 

block type was presented twice in pseudo-randomized order (total session length = 42 

minutes). Reward amounts varied uniformly per trial (4, 8, or 20 cents), with the 

constraint that every reward was presented twice every six trials. This prevented 

sequences from being dominated by a single amount during any window of time. Timing 

information was disclosed at the beginning of each block, and rewards displayed during a 

2 s offer window before each trial began. Participants received training prior to the 

experimental session and were told about all possible timing conditions and reward 

amounts in order to preclude biases due to experience-dependent learning (Dundon et al., 

2020; Garrett & Daw, 2020). 

Operationalization of Cost 

 Foraging theory posits that accepting a delayed reward should depend on the 

opportunity cost (OC) of time to be incurred in obtaining it, which depends on the 

richness of the environment (Charnov, 1976; Stephens & Krebs, 1986). In this study, the 

richness of the environment was manipulated by the length of the handling and travel 

times, where shorter travel times produced richer environments. Since time combinations 
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were fixed per block, we calculated each block’s optimal accept/reject strategy by 

computing the expected reward rate (g(*)) from all decision strategies according to the 

following equation: 

 

 where R and p are the reward, and acceptance probability of offer i, respectively, 

H is the handling time for the block, T its associated travel time, Timeoffer is the duration 

of the offer window, and Timereward is the duration of the window displaying the reward 

earned (only presented for completed trials). This gave us the total reward per second 

attainable in each block as a function of the acceptance threshold (i.e. the lowest amount 

accepted). Since an ideal forager should always either accept or reject different categories 

of prey (Krebs et al., 1977), probabilities other than 0 and 1 are not considered. The 

resulting possible strategies were to accept only 20 cents, accept 8 and 20 cents, or accept 

everything. Fig. 3.1B shows possible earnings per second for each choice strategy, as 

well as the lowest amount participants should accept in order to maximize their rewards 

(circled dots). For example, a participant in a 10 s handling block should accept 8-cent 

and 20-cent rewards (and reject 4-cent rewards) to maximize their reward rate. Note that 

accepting every offer was often detrimental to participant earnings.  

Analyses 

 All analyses were performed in R 3.5.2 (R Core Computing Team, 2017). First, 

we tested whether decision makers integrated delay and reward information. To address 

the prediction that participants would be more likely to accept higher reward and shorter 

g(∗) =

∑
piRi

3Timeoffer + (
∑

piH + Timereward) + 3T
, p ∈ {0, 1}
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handling time trials, we fit a mixed-effects logistic regression to predict trial-wise 

acceptances (using the lme4 package, Bates et al., 2015), giving a random intercept to 

each subject to account for biases in participant behavior. We included continuous 

regressors for handling time and reward, as well as two covariates that probed the 

influence of recent history on choices. The first was an autoregressive regressor 

containing the number of consecutive unobtained offers prior to a given trial (unobtained 

offers could be due to quits or forced travels). The second regressor tracked the sum of 

the previous n offers. We identified the n that minimized Akaike’s Information Criterion 

(AIC) among 6 versions of the model (tracing from 2 previous trials up to 7, beyond 

which the model failed to converge), and reported all coefficients from the winning 

model. 

 Our foraging task was configured such that over- and under-accepting were 

detrimental to total earnings. To confirm this, we fit a general linear model with constant, 

linear, and quadratic terms to estimate the correspondence between proportion of trials 

completed (independent variable) and total earnings (dependent variable). A significant 

quadratic coefficient thus would signal that the task statistics operated as expected. Next, 

to determine the optimality of the group’s decisions, we examined whether each cost type 

produced a bias to over or under-accept offers 4 and 8 cents (assuming that 20 cents were 

always be accepted, given our design). The reward-maximizing strategy was to always 

reject these offers for handling times of 14 s, reject 4 cents and accept 8 cents for 10 s 

handling times, and accept both for 2 s handling times, yielding a combined optimal 

proportion of acceptances of 50% (see Operationalization of Costs for details). We 
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performed a two-sided one-sample chi-squared test of proportions against the null 

probability of 0.5 for each type of cost. Therefore, a significant difference indicated that 

participants either over- or under-accepted rewards. This approach was adapted from the 

analysis preregistered for Experiment 2, as we found it better suited to the question than 

the original formulation. 

 Next, we compared acceptance rates across cost conditions. We first performed a 

one-way ANOVA on the proportion of trials accepted using group as a factor. We then 

compared the proportion completed among all 4 groups using non-parametric 

permutation contrasts (6 tests). For each test, on each of 5000 permutation iterations, the 

group assignment was randomly shuffled without replacement, and the difference in 

mean acceptance rates across iterations created a putative null distribution. The 

unpermuted group mean difference was then evaluated against this permuted distribution. 

The same approach was used for total earnings. 

 In order to further look at the effect of handling, offer, and cost type, we 

computed the probability of accepting a trial with a mixed-effects logistic regression. 

Based on the task structure and our main question, our a priori model of interest included 

cost condition, handling time, and reward amount as fixed main effects, and a random 

intercept per subject. Cost condition was modeled with three categorical terms, with the 

fourth condition as the reference condition. We ran three versions of the model with 

different reference conditions, in order to test all pairwise differences among the four cost 

conditions. We then examined whether this a priori model outperformed both simpler and 

more complex models. We used both AIC and Bayesian Information Criterion (BIC) to 
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determine the model that minimized the negative log-likelihood while penalizing the 

addition of parameters. The regressors included in each model were: 1) intercept only; 2) 

condition only; 3) handling time only; 4) offer amount only; 5) handling time and offer 

amount; 6) condition, handling time, and reward main effects (a priori model from 

above); 7) adding a handling-by-reward interaction; and 8) all possible two-way 

interactions. We predicted that model 6 (the a priori setup) would have the lowest AIC 

and BIC. Nested models with similar AIC were statistically compared using an analysis-

of-deviance. The significance test was computed as the probability of the reduction in 

deviance, based on a chi-square distribution with degrees of freedom equal to the 

difference in the number of parameters between models. 

 Reward-maximizing prey foragers should either accept or reject offers based on 

their profitability relative to their alternatives (Krebs et al., 1977; Stephens & Krebs, 

1986). However, decision makers often curtail persistence based on continuous 

reevaluation of delayed prospects or lapses in self control (Ainslie, 1975; McGuire & 

Kable, 2012; McGuire & Kable, 2015; Mischel & Ebbesen, 1970). Therefore, we 

examined whether participants were consistent (not quitting a trial after it was originally 

accepted) and stable (similar acceptance rates over time) in their choices. For 

consistency, we visually examined survival curves indicating at what point during the 

handling time participants quit a trial (censored points included trial completions and 

forced travels), in addition to quitting time distributions. We interrogated stability by 

computing each participant’s total proportion of acceptances in the first and second half 

of the experiment for every block type, comparing the mean proportion of acceptances 



	

	

79 

using paired permutations (5000 iterations). We then tested whether the observed 

differences in costs were still present on each half of the experiment by applying winning 

model from the mixed-effects logistic comparison to each half separately. In each case, 

the reference cost category was rotated in order to assess pairwise differences among all 

costs. We evaluated the consistency of the relative costs by visually comparing the 

patterns of significant differences between experimental halves. 

Results 

Between-subjects: Decision Makers Integrate Delay and Reward Information 

 In this experiment, groups faced with different behavioral costs (physical effort, 

cognitive effort, or delay) chose their preferred strategy to maximize rewards in foraging 

environments of varying richness. Environmental richness was dictated by the time it 

took to obtain a reward (the handling time) and the time between trials (the travel time). 

We hypothesized 1) that participants would approximate reward-maximizing behavior by 

preferring higher rewards and shorter delays, but that 2) participants confronted with 

effortful demands would be more likely to accept trials than those faced with passive 

delay, regardless of handling time and reward amount. The second hypothesis was based 

on the traditional idea that rewarded work should become appealing (Eisenberger, 1992; 

Inzlicht et al., 2018). 

 We performed a mixed effects logistic regression to address the first hypothesis, 

pooling across the four conditions. Since participants in the effort groups were forced to 

travel when they failed to perform above threshold (see Methods), we distinguish 

between acceptances (not explicitly quitting a trial during the handling period) and 
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completions (successfully obtaining a reward). Even so, the proportion of forced travels 

was low for cognitive effort (0.05 across participants) and 0 for the physical group. In 

line with our predictions, larger reward amounts significantly increased acceptance 

probabilities (𝛽 = 0.49, SE = 0.01, p < 0.001), whereas longer delays decreased them (𝛽 

= -0.34, SE = 0.01, p < 0.001). Two additional regressors showed that having missed out 

on consecutive rewards decreased the probability of acceptance (𝛽 = -0.06, SE = 0.03, p 

< 0.001), and that participants became more selective when recent offer history was 

richer (𝛽 = -0.01, SE = 0, p < 0.001). The counterintuitive reduction in acceptances 

following consecutive unobtained rewards was driven by the wait group (removing this 

group from the model yielded a p > 0.1), likely because this group accepted the fewest 

offers. Comparing likelihood fits among lengths of offer history (e.g. sum over 2 or 3 past 

trials) suggested that participants were influenced by the 6 most recent rewards (AIC = 

7682.49), which matched the offer presentation rotation (see Methods). 

 The next set of analyses examined the hypothesis that both cognitive effort and 

physical effort groups would uniformly accept more trials than passive delay and easy 

groups. Fig. 3.2 (left) shows that the cognitive effort group consistently accepted more 

offers, which resulted in lower earnings (middle). One-way ANOVAs showed that 

differences among groups were significant both for overall proportion accepted (F(3, 80) 

= 6.94, p < 0.001), and total earnings (F(3, 80) = 8.07, p < 0.001). Post-hoc permutations 

(5000 iterations) comparing mean acceptance rates between every pair of costs confirmed 

that acceptance rates of the cognitive effort group (mean = 0.74, SD = 0.13) were higher 

than those of the physical (mean = 0.6, SD = 0.15; p = 0.001, Cohen’s D = 1.02) and wait 
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groups (mean = 0.55, SD = 0.11; p < 0.001, Cohen’s D = 1.55). It also showed that those 

faced with the easy task accepted more than those in the wait group, although responses 

from the easy group were more variable (mean Easy = 0.68, SD = 0.19; p = 0.009, 

Cohen’s D = 0.85) (all other p > 0.05). The higher acceptance rates produced by the 

cognitive effort group resulted in significantly lower earnings (mean = 13.55, SD = 0.84) 

than both physical (mean = 14.03, SD = 0.53; p = 0.028, Cohen’s D = 0.69) and wait 

groups (mean = 14.5, SD = 0.58; p < 0.001, Cohen’s D = 1.32). In addition, we found 

that the wait group earned more than the physical (p = 0.01, Cohen’s D = 0.85) and easy 

groups (mean Easy = 13.94, SD = 0.52; p = 0.002, Cohen’s D = 1.02). Considering the 

low proportion of forced travels, performance was an unlikely explanation for the 

observed differences in choice. 

 We next examined the optimality of these decisions. The foraging task was 

configured so that there was a single reward-maximizing strategy per block type (see 

Operationalization of Cost in Methods), and participants were warned that accepting 

everything would not maximize their gains. Accordingly, participants who over- or 

under-accepted earned the least (Fig. 3.2, right; general linear model with quadratic term, 

F = 25.65, Β = -8.99, SE = 2.42, 𝑅( = 0.39, p < 0.001). We performed group-level chi-

squared tests of proportions to examine whether each cost biased decision makers to 

under- or over-accept 4 and 8 cent offers, which together should have been accepted 50% 

of the time. We found a significant over-acceptance of these trials by the cognitive effort 

group (proportion accepted = 0.59; χ2 = 73.89, p < 0.001), but under-acceptances by the 

physical (proportion accepted = 0.39; χ2 = 123.81, p < 0.001) and wait (proportion 
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accepted = 0.31; χ2 = 359.13, p < 0.001) groups (no significant difference for the Easy 

group). Together, these findings show that even though participants did not always 

perform optimally, they responded appropriately to the statistics of the environment in 

each timing condition. Further, they provide evidence that cognitive effort can boost the 

value of an offer, as reflected by higher acceptances at the expense of earnings. 

 We next probed whether these results held uniformly across all parameter 

combinations. Fig. 3.3A shows the mean proportion of acceptances (± SEM) per 

combination of handling time, reward, and cost, with optimal acceptance rates depicted 

by the gray circles. Qualitatively, the figure confirms two important predictions. First, 

participants adapted to the richness of each timing block, gravitating towards optimality 

regardless of the cost they faced. Second, differences in cost were consistent across 

blocks, and acceptances were uniformly highest for the cognitive effort group. We tested 

these observations with a mixed-effects logistic regression, computing the probability of 

accepting an offer as a function of handling time, reward amount, and demand type (see 

Methods for details). As before, the model showed significant main effects of handling 

time (global intercept = -0.81, 𝛽 = -0.34, SE = 0.01, p < 0.001) and offer amount (𝛽 = 

0.49, SE = 0.01, p < 0.001). Comparisons among all conditions are shown on Fig. 3.3B. 

The matrix of coefficients conveys that the cognitive effort group was significantly more 

likely to accept any offer than the physical (𝛽 = 1.5, p = 0.005) and wait groups (𝛽 = 

2.11, p < 0.001), but not the easy group. 

 These observations could not be more easily explained by simpler or more 

complex regression models. Fig. 3.3C shows AIC and BIC values for models of 
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increasing complexity, starting with an intercept-only configuration (see Methods for 

details). Here we focus on AIC, as both metrics yielded comparable results. As predicted, 

the a priori model with all main effects performed better than those relying on a single 

parameter (a priori model pseudo 𝑅( = 0.82), as well as the model with only main effects 

for handling time and reward amount (AICa-priori = 3416, AIChandling/reward = 3427, 𝜒((3) = 

16.87, p < 0.001).   

 However, against our expectations, the a priori model was outperformed by 

models that added an interaction between handling and reward (AICHR_interaction = 3394, 

𝜒((1) = 24.16, p < 0.001) as well as one that considered all possible interactions 

(AICall_interactions = 3300, 𝜒((7) = 129.58, p < 0.001). Even so, neither of these models 

offered further interpretable insights on the observed differences across costs, so we 

restrict our focus to the a priori model containing all main effects. These results further 

support the hypotheses that handling and reward amounts were similarly integrated 

across groups, and that the absolute rate of acceptances was affected by the demand 

faced. However, they offer partial support for the hypothesis that effort would induce 

higher acceptance rates, which was only true for those confronted with cognitive effort. 

Between-subjects: Consistency and Stability 

 Next, we tested the hypothesis that foragers would exhibit within-trial consistency 

and across-trial stability in their choices. Participants were deemed consistent if they did 

not quit after engaging in a trial. To examine this, we plotted survival curves of trial quits 

across all participants (Fig. 3.4, top-left), with black crosses signaling either completed 

trials (at 2 s, 10 s, and 14 s) or forced travels. These curves show that most decisions to 



	

	

84 

quit happened within the first second into the handling time, and participants rarely quit 

afterwards (proportion of quits after 1 s = 0.04). Physical and easy groups showed 

slightly lagged responses because the experiment allowed a one-second grace period for 

participants to begin gripping (marked by the dashed line). This resulted in some 

individuals opting to wait for that second to indicate an offer rejection (the censor at 4s in 

the physical group was a completion during a 2 s handling trial that was incorrectly 

recorded as 4 s by the experimental code). Plotting the quitting time distributions across 

blocks for the first second of the handling time (ECDFs on Fig. 3.4, top-right) showed 

that participants in the wait and cognitive groups responded faster as the experiment 

progressed. These response time observations suggested clarity in participant choices. 

 Stability was defined as a persistence in acceptance patterns throughout the 

experimental session. The scatter plot on Fig. 3.4 (bottom-left) shows the overall 

proportion accepted by each participant before and after the midpoint of the session. 

Paired permutations showed no differences in acceptances for wait and easy groups (p > 

0.05), but we found significantly lower acceptances for physical (p = 0.017, Cohen’s D = 

0.27) and cognitive (p < 0.001, Cohen’s D = 0.56) groups. Fig. 3.5 (left) shows that the 

reduction in acceptances in effort groups over time was steeper for longer handling times, 

a hallmark of effortful demands (Treadway et al., 2009). We then replicated the mixed-

effects logistic regression from the previous section separately on each experimental half, 

which confirmed that differences among demands were stable (Fig. 3.5, right). Together, 

the consistency and stability displayed by participants suggest that decision makers had a 

clear representation of the environment. 
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Experiment 2: Within-subjects Comparison of Costs 

Methods 

 Experiment 1 was a between-subjects examination of how cognitive effort, 

physical effort, and delay would impact prey foraging behavior, and whether canonical 

discounting effects could be observed under this paradigm. Based on this behavioral 

baseline, Experiment 2 interrogated which type of demand decision makers would 

gravitate to when they were allowed to forage for types of demands in addition to 

rewards. This within-subjects version sought to answer how the presence of alternative 

avenues would impact the subjective costs of effort and delay, our overarching question. 

Participants 

 We collected data from a new sample of 48 eligible participants (39 Female, 

median age = 21, range = 18 - 36; number excluded before reaching goal = 6). Sample 

size was once again determined by means of a power analysis (repeated measures 

ANOVA), using a significance level of 0.05, power of 0.8, a desired effect size of f = 0.5, 

and four factors (one for each type of demand, see below for details). The resulting 

sample size was 45, which we increased to 48 in order to balance the potential order of 

blocks. We excluded participants using the same criteria as in Experiment 1. 

Foraging Task Adaptation 

 The original between-subjects task from Experiment 1 was modified so that 

participants foraged for cost types in addition to rewards. Every participant experienced 

all forms of cost (delay, physical effort, and cognitive effort). There were two block 
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types, in which delay trials were interspersed with either physical-effort or cognitive-

effort trials. This setup prevented participants from having to rapidly switch between 

response modalities across trials (i.e. keyboard press and handgrip). Each block 

combination (i.e. physical/wait and cognitive/wait) was experienced three times by each 

participant in 7-minute-long, interleaved blocks, for a total task duration of 42 minutes. 

Half of the participants experienced a block sequence that started with the physical block. 

Timing parameters were matched to the middle condition from Experiment 1 (10 s 

handling time and 6 s travel time). Participants were informed that this timing 

combination would be constant prior to beginning the experiment. The upcoming effort 

type was disclosed at the beginning of each block, and reward/cost offers were displayed 

at the start of each trial (e.g. “8 cents for physical effort”). Unlike the previous 

experiment, participants could express their decision to quit during the offer window 

(instead of during the handling time). Participants were trained in each type of demand 

until they reached the same criteria as in Experiment 1. 

Analyses 

 The analytical pipeline was mostly preserved from Experiment 1. We first ran 

tests to determine whether decision makers integrated reward information. We performed 

a mixed-effects logistic regression with regressors for offer amount, number of 

consecutive offer misses, and the sum of the n previously observed offers (we identified n 

by comparing the AIC of different history lengths). We then confirmed that the under- 

and over-acceptance were detrimental to total earnings by performing the same quadratic 

linear model explained above. We tested the group’s optimality as before. The optimal 
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strategy was to reject 4 cent offers and accept 8 cent offers, yielding an ideal acceptance 

of 50% (not counting 20 cent offers, which should have always been accepted per our 

design). For these trials, we performed a two-sided one-sample chi-squared test of 

proportions against the null probability of 0.5 for each type of cost. 

 To compare acceptances among cost conditions, we first estimated acceptance 

probabilities using a mixed-effects logistic regression. The model included cost condition 

and reward amount as fixed main effects, and participant as a random intercept (handling 

time was not modeled, as participants experienced a single time combination). Cost 

condition was modeled with three categorical terms, with the fourth condition as the 

reference condition (two effort conditions, and two delay conditions corresponding to 

each effort type). We ran three versions of the model with different reference conditions, 

in order to test all relevant pairwise differences among the four cost conditions. We 

compared the a priori model to alternative parameterizations using AIC and BIC, varying 

model complexity as follows: 1) intercept only; 2) cost only; 3) reward only; 4) cost and 

reward main effects (a priori model); and 5) adding a two-way interaction. We predicted 

that model 4 would have the last considerable decrease in the negative log-likelihood. 

Models with similar AIC were formally compared using the analysis-of-deviance 

approach from Experiment 1. 

 Next, we probed within-trial consistency and across-trial stability in people’s 

choices. First, we visualized the number of quit responses during the handling time with a 

survival curve, and plotted the quit response time distribution as a function of block to 

examine choice consistency over time. Next, we computed the proportion of quits that 
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occurred during the choice window versus during the handling time. Earlier quits were 

seen as signifying greater consistency. We then computed each participant’s total 

proportion of acceptances on the first two and last two blocks, and compared them using 

a paired permutation analysis (5000 iterations). This analysis did not include the third and 

fourth block because their effort designation was counterbalanced across participants. 

Results 

Within-subjects: Decision Makers Integrate Reward Information 

 In Experiment 2, we directly tested an individual’s preferences for cognitive 

effort, physical effort, and delay. We did by modifying the foraging task, such that every 

participant experienced every type of demand in blocks that interleaved wait trials with 

either physical or cognitive effort (fixed at 10 s handling and 6 s travel times, to allow for 

comparisons between experiments). We separately analyzed wait trials from the two 

block types, labeling the two sets of wait trials according to the type of effort with which 

they were paired (“Wait-C” for cognitive, and “Wait-P” for physical). We hypothesized 

that 1) reward decision patterns would match those of the previous experiment; and 2) 

interleaving effort and delay would produce persistent preferences for wait trials. The 

second hypothesis was based on the idea that people will gravitate to the easiest way to 

achieve their goals (Hull, 1943; Olivola & Shafir, 2013). 

 We first tested the hypothesis that participants would successfully integrate the 

statistics of the environment. A mixed-effects logistic regression once again showed that 

larger reward amounts significantly increased acceptance probabilities (𝛽 = 0.762, SE = 

0.024, p < 0.001), and that participants became more selective if they had recently 
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observed large offers (𝛽 = -0.015, SE = 0.002, p < 0.001). Model comparisons suggested 

that participants were influenced by the 7 most recent rewards (AIC = 4127.63). Unlike 

Experiment 1, participants were unaffected by the preceding number of consecutive 

unobtained rewards (p = 0.43). As before, a linear model predicting earnings showed that 

participants who completed too few or too many trials earned the least, in line with the 

experimental design (Fig. 3.6A; general linear model with quadratic term, F = 11.21, 𝛽 = 

-5.53, SE = 2.71, 𝑅( = 0.33, p = 0.047). When assessing the optimality of acceptances for 

4 and 8 cents (99% of 20 cent offers were correctly accepted), chi-squared tests against 

the optimal rate of 50% showed that participants under-accepted physical effort trials 

(proportion accepted = 0.46, 𝜒( = 6.53, p = 0.01; all other p > 0.05). Despite this 

deviation, participants earned a similar total amount per cost on average (mean Cognitive 

= 3.13, SD = 0.52; mean Wait-C = 3.56, SD = 0.27; mean Physical = 3.44, SD = 0.25; 

mean Wait-P = 3.59, SD = 0.24). These results convey that participants in both 

experiments were similarly influenced by the characteristics of the environment, although 

participants in the present experiment gravitated more towards optimality. 

 Next, we addressed the hypothesis that passive waiting trials would be less costly 

than effortful ones. Even though the reward acceptance pattern at 10 s handling was 

similar to Experiment 1 (Fig. 3.6B), differences among cost conditions were less evident. 

Moreover, these differences contradicted our predictions, as cognitive effort remained the 

least costly among demands. A mixed effects logistic regression confirmed once again 

that increases in offer amount made acceptances significantly more likely (global 

intercept = -3.92, 𝛽 = 0.76, SE = 0.02, p < 0.001), but that the only significant difference 
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across cost conditions was a higher likelihood to accept cognitive-effort offers than 

physical-effort offers (Fig. 3.6C; 𝛽 = 0.38, p < 0.001). Model comparisons suggested that 

even though a model with all main effects explained a large portion of the variance (𝑅( = 

0.82), there were similar AIC and BIC values for any model including reward amount 

(Fig. 3.6D). An analysis of deviance among the three models showed that adding cost 

condition to reward amount significantly improved fit (AICreward = 1859, AICa-priori = 

1852, 𝜒((3) = 13.24, p = 0.004). However, probing the interaction between these features 

significantly improved fits from the main effects model (AICInteraction = 1830, 𝜒((3) = 

28.34, p < 0.001), albeit at the cost of interpretability due to choice fluctuations over time 

(see Consistency and Stability). These initial results contradicted our predictions, 

suggesting that the availability of alternative demands diminishes preferences among 

them (rather than promoting wait trials as a way to earn the same reward amounts without 

the need to exert effort). 

Within-subjects: Consistency and Stability 

Similar to the between-subject results, a survival analysis displayed that 

participants made most of their choices quickly within the offer window (Fig. 3.7A). The 

median percentage of quits during the handling time was 2.61% (SD = 7.67), with only 2 

participants quitting over 20% of trials during the handling time. Moreover, the 

cumulative quitting time distributions show that participant responses during the offer 

window became faster over time (Fig. 3.7B). Once in the handling time, the overall 

percentage of forced travels in the effortful trials was low for both cognitive (median = 

5.99%, SD = 9.59) and physical (median = 0%, SD = 3.62) conditions. Similar to that of 
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Experiment 1, these results suggest that decision makers were consistent in their adopted 

strategies, and were able to perform the tasks well. 

 However, against our predictions, participants accepted significantly fewer trials 

on the second half of the experiment, regardless of cost (paired permutations; Cognitive: 

meanpre = 0.76, SDpre = 0.17, meanpost = 0.65, SDpost = 0.21, p < 0.001, Cohen’s D = 0.6; 

Physical: meanpre = 0.71, SDpre = 0.2, meanpost = 0.65, SDpost = 0.21, p = 0.008, Cohen’s 

D = 0.27; Wait-C: meanpre = 0.73, SDpre = 0.2, meanpost = 0.66, SDpost = 0.22, p = 0.004, 

Cohen’s D = 0.31; Wait-P: meanpre = 0.72, SDpre = 0.2, meanpost = 0.66, SDpost = 0.22, p = 

0.005, Cohen’s D = 0.3; Fig. 3.8). The reduction in acceptances was not driven by a 

performance decline, as the proportion of forced travels was not significantly different 

between the first and second half of the experiment (paired permutation with 5000 

iterations, p = 0.16). Notably, the pattern of choices from the first half of the experiment 

resembled that from the matching handling/travel block from Experiment 1 (Fig. 3.3A). 

Mixed effects logistic regressions performed on each half separately confirmed that the 

relative preference for cognitive effort seen previously was preserved at the beginning of 

the experiment (Fig. 3.8, top-right, lower triangle), but that it disappeared over time amid 

an overall decline in acceptance rates as participants gained experience with cognitive 

effort, physical effort, and both wait conditions (upper triangle). This fading preference 

for cognitive effort was observed regardless of which block participants experienced first, 

even though its magnitude appeared to be reduced for those who experienced the physical 

block first (Fig. 3.8, bottom) 
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 All together, our findings show that the stable preferences for cognitive effort 

observed during single-demand foraging slowly fade if alternative demands are 

introduced. This points towards task-specific and outcome-independent features from 

cognitive tasks that can be recalibrated by new experiences. 

 
Computational Modeling of Foraging Behavior 

 We developed a computational model to identify cognitive operations that could 

explain the complex patterns observed in both experiments (e.g. learning, time 

estimation, etc.). We isolated four key aspects of the behavioral results that an adequate 

computational model should be able to capture: 1) show deviations in acceptance rates 

that involved both under- and over-harvesting of offers (e.g. Fig 3.3A); 2) keep track of 

recent offer history in order to evaluate the relative value of each offer; 3) persistently 

display higher acceptances for cognitive effort when faced with single behavioral costs 

(Experiment 1); and 4) initially match this preference for cognitive effort trials when 

foraging for demands and rewards (Experiment 2), which should decrease to a common 

rate across costs over time. These conditions excluded a number of popular explanatory 

candidates that were not modeled, such as learned industriousness, boredom, fatigue, 

sunk cost effects, or asymmetric learning of environmental richness (see Discussion). 

Model Fitting and Model Comparison Procedures 

 For each model, both population level and individual subject level parameters 

were fit simultaneously using an Expectation-Maximization algorithm (Huys et al., 2011, 

2012). Briefly, it was assumed that, at the population level, each parameter was 
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distributed according to a Gaussian distribution, defined by a mean and standard 

deviation; the individual subject parameters were drawn from this distribution. 

Accordingly, a point estimate for the individual subject parameters were found via 

maximum a posteriori (MAP) estimation using the population distribution for each 

parameter as the priors, and the variance in the individual subject parameter estimates 

were calculated by taking the inverse of the Hessian matrix at the MAP estimate. Next, 

the mean of the prior was updated by taking the weighted mean of individual subject 

estimates, and the variance of the prior was updated by taking the weighted variance 

across the parameter estimates of individual subjects. This process was repeated until the 

mean and variance of the prior for all parameters converged (a change of less than .1% 

across successive iterations). Full mathematical details of the algorithm can be found in 

Huys et al. (2011, 2012), and the algorithm was implemented using a custom written R 

package, GaussExMax, available on github (github.com/gkane26/GaussExMax). 

 Model comparison was performed by calculating Bayes Information Criterion at 

the group level (integrated BIC or iBIC; Huys et al., 2011, 2012; Kane et al., 2019). iBIC 

penalizes the likelihood of the data given model parameters 𝑝(𝑑|𝑚𝑜𝑑𝑒𝑙) for model 

flexibility (the number of parameters, 𝑘), and the size of the penalty depends on the 

number of observations 𝑜: 

 

 Laplace approximation was used to find the log marginal likelihood, the 

likelihood of the data for each subject given the population level distribution over each 

parameter (Huys et al., 2011; Huys et al., 2012; Kane et al., 2019). 

<latexit sha1_base64="3Z3JHzmV88JpP3bTttxBVk9HGkA=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0VoUUpSFN0Ipd3oroJ9QBvKZDJph04yYWYilJifcOOvuHGhiFvBnX/jtM1CqwcuHM65l3vvcSNGpbKsLyO3tLyyupZfL2xsbm3vmLt7bcljgUkLc8ZF10WSMBqSlqKKkW4kCApcRjruuDH1O3dESMrDWzWJiBOgYUh9ipHS0sA8gZDWrxvwEjI+jEoevIcB9wgrw2PY9wXCyThNqqk2S7w8MItWxZoB/iV2RoogQ3NgfvY9juOAhAozJGXPtiLlJEgoihlJC/1YkgjhMRqSnqYhCoh0ktlXKTzSigd9LnSFCs7UnxMJCqScBK7uDJAayUVvKv7n9WLlXzgJDaNYkRDPF/kxg4rDaUTQo4JgxSaaICyovhXiEdJZKB1kQYdgL778l7SrFfusYt2cFmv1LI48OACHoARscA5q4Ao0QQtg8ACewAt4NR6NZ+PNeJ+35oxsZh/8gvHxDWBNnIE=</latexit>
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Model Definitions 

 We began by fitting a base model derived from the normative predictions of the 

Marginal Value Theorem (MVT; Charnov, 1976), which states that a delayed reward 

should be accepted if its earning rate surpasses the opportunity cost (OC) of time incurred 

in obtaining it (see Operationalization of Cost for details). This decision rule can be 

expressed as 

         (1) 

such that the reward R of trial i should be accepted if it is larger than the average amount 

one could earn per second in the environment 𝛾 (gamma; the OC) during the handling 

time 𝐻>, with high gammas promoting selectivity. We fit this and all subsequent models 

using a softmax function to predict the probability of accepting a given trial 

      (2) 

gamma in this base model was computed as an individual’s empirical earning rate by the 

time of each offer, with the free temperature parameter 𝛽 indexing decision noise. 

Differences among costs in Experiment 1 could then be due to the impact of each cost on 

decision noise, which could have also driven the gradual convergence of acceptance rates 

in Experiment 2. However, it is also possible that individuals updated the estimate of 

gamma at different rates when faced with different demands. Previous accounts have 

demonstrated the biases that can impact the learning of the opportunity cost (Dundon et 

al., 2020; Garrett & Daw, 2020). We therefore tested a second model that allowed 𝛾 to 

evolve over time, adapting a learning rule from Constantino & Daw (2015) 

Modelbase = Ri − γHi

P (accept)i =
1

1 + e−(1/β)(Modelbase)
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              (3) 

where 𝐴> is an acceptance indicator (0 or 1), and 𝜏> is the duration of the trial. The 

duration was given by 

          (4) 

such that the handling time was counted only for accepted trials. Higher values of the 

learning rate 𝛼 (ranging from 0 to 1) resulted in a larger update toward the current trial’s 

earning rate weighted by is duration (first term in the equation). For this adaptive model, 

we fit the learning rate 𝛼 and the initial value of 𝛾 in addition to the temperature. These 

modifications allowed for the tracking of recent reward history, while maintaining the 

same decision rule 

         (5) 

where values of 𝛾 were now updated on each trial i according to Eq 3, rather than by the 

empirical earning rate.  

 Another possibility was that rather than impacting the learning rate, covert 

features specific to each type of demand uniformly affected the way people perceived the 

opportunity cost of time. If so, biases could remain stable if only one type of demand was 

experienced (Experiment 1), but adjust over time as biases from other tasks were 

experienced (Experiment 2). For example, such biases could reflect an individual’s global 

estimation of the richness of the environment, or a focal estimation of the passage of time 

experienced during performance of each task (e.g. how long 10 seconds actually feel). 

Altered time durations have occasionally been associated with levels of cognitive 

<latexit sha1_base64="e9qo3RfC/Z+JHMs9XNWO8Ia4v+E="></latexit>
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engagement (Csikszentmihalyi, 2014; Wearden, 2016), and have a direct effect on a 

trial’s reward rate. Intuitively, the perceived passage of time could be recalibrated with 

experience. We modeled these biases by adding a demand-specific term to 𝛾 that was 

gradually integrated across tasks for those participants who foraged among demands. The 

overall model took the following form 

             (6) 

where 𝛾 was the mean total earning rate per subject (mean = 0.55 cents per second, SD = 

0.02). Negative values of 𝐶> would therefore suggest a boost in offer value produced by a 

demand. At each decision point, 𝐶 was the cost bias produced by each demand cdemand 

weighted against a global bias estimate cglobal 

       (7) 

with 𝑤> controlling how early participants started integrating the converging cost cglobal 

into their decisions. The value of this weight was given by 

         (8) 

where the section in parentheses was the proportion of the experiment completed so far 

(note that the organization of the experimental session was fully disclosed), with high 

values of the free parameter 𝛼D denoting a late integration of the global converging bias. 

Since participants in Experiment 1 experienced a single type of demand, the values of 

cdemand and cglobal where the same and 𝛼D did not play a role. This resulted in just fitting 

parameters cdemand and 𝛽 for that dataset. For the within-subjects group, we assumed that 

the resulting 𝑐EFGHIE  values from the first experiment reflected the actual bias induced 

Modelbiased = Ri − (γ + Ci)Hi

Ci = cglobalwi + cdemand(1− wi)

<latexit sha1_base64="l9d5rJg/SHxL9AxKh/trZIlr5ng=">AAACG3icbVDLSgNBEJz1GeNr1aOXwSDES9gVRS9CwIvHCCYRsnHpncwmg7MPZnqNYdn/8OKvePGgiCfBg3/jJObgq6ChqOqmuytIpdDoOB/WzOzc/MJiaam8vLK6tm5vbLZ0kinGmyyRiboMQHMpYt5EgZJfpopDFEjeDq5Px377histkvgCRynvRtCPRSgYoJF8e3/oC3pCPclDpFUvVMByUeQR3FbFXkE9JfoDpHv0KvdApgPwh4VvV5yaMwH9S9wpqZApGr795vUSlkU8RiZB647rpNjNQaFgkhdlL9M8BXYNfd4xNIaI624++a2gu0bp0TBRpmKkE/X7RA6R1qMoMJ0R4ED/9sbif14nw/C4m4s4zZDH7GtRmEmKCR0HRXtCcYZyZAgwJcytlA3A5IMmzrIJwf398l/S2q+5hzXn/KBSr07jKJFtskOqxCVHpE7OSIM0CSN35IE8kWfr3nq0XqzXr9YZazqzRX7Aev8El1Sgdg==</latexit>
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by each demand. We therefore fixed each value of cdemand (i.e. ccognitive, cwait, and cphysical) to 

the mean of the fitted parameters from each demand group from Experiment 1, and fit the 

global bias cglobal, the convergence rate 𝛼D, and temperature 𝛽. This dynamic allowed for 

the observed merging of acceptances across demands in Experiment 2, while respecting 

the stability in the between-subjects study. 

 Finally, we asked if the biases imposed by each demand could be isolated from a 

flexible computation of the opportunity cost of time.  This fourth model combined the 

main features from Modeladaptive and Modelbiased, such that 𝛾 was estimated on each trial 

per Eq. 3, with demands imposing distinct and potentially converging biases as described 

in model 3. The form of this fourth model was 

      (9) 

The resulting parameters were compared across cost groups (Experiment 1) and 

across experiments using ANOVAs, and the cdemand biases computed in Experiment 1 

were compared against 0 using one-sample t-tests. 

Results 

 The fourth model produced the lowest BIC in both experiments (Fig. 3.9A. 

Between-subjects = 3552.2; Within-subjects = 1818.57), indicating that the tenets of the 

Marginal Value Theorem were necessary but not sufficient to explain the observed 

adaptive behavior. Fig. 3.9B-C show parameter fits from the winning model for both 

experiments. The learning rate 𝛼 and the bias 𝑐EFGHIE  were of particular interest, as these 

parameters distinguished whether different demands globally affected the integration of 

the environmental richness or focally modulated an offer’s perceived cost, respectively. 

Modeladaptive + biased = Ri − (γi + Ci)Hi
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Analyses of variance showed significant differences among Experiment 1 groups only for 

cdemand (F(2, 60) = 7.01, p = 0.002), with 𝛼 being uniformly low for all groups. Pairwise 

post-hoc permutations confirmed that the cognitive group (mean = -0.08, SD = 0.14) had 

lower biases than either wait (mean = 0.11, SD = 0.18; p = 0.001; Cohen’s D = 1.16) or 

physical (mean = 0.09, SD = 0.21; p = 0.005; Cohen’s D = 0.95) groups. These biases 

were significantly higher than zero for the wait group (t(20) = 2.79, p = 0.011), and lower 

than zero for the cognitive group (t(20) = -2.51, p = 0.021). This suggests that rather than 

reducing costs, cognitive tasks boosted the value of their concomitant offers. 

 The mean values of cdemand from each group were carried over to the within-

subjects fitting, and were aggregated over time according to a weighted decay into a final 

𝐶 value. As can be seen on Fig. 3.9C, parameter values were comparable across 

experiments, pointing to consistency in the way decision makers approached our foraging 

scenarios. In addition, values of 𝛼D suggested that 𝑐EFGHIE  estimates converged towards 

the second half of the experiment (mean = 1.75, SD = 2.07), gradually reducing bias by 

the end of the experimental session (mean = -0.02, SD = 0.06). Model fits provided good 

qualitative resemblance to the observed dynamics in each experiment. This is illustrated 

in Fig. 3.9, in which 95% confidence intervals from within-subject fits are overlaid to 

empirical choices (between-subject fits matched the left side of this figure, as expected). 

Discussion 

 Understanding the sporadic attractiveness of effort remains elusive. In this study, 

we sought to identify factors underlying this phenomenon, and tested the hypothesis that 

the perceived cost or value of a demand could depend on the ability to achieve the same 
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outcome through different means. Using two foraging experiments that exposed 

individuals to a single or intermixed types of demands, we found ta tendency toward 

engaging with cognitively effortful prospects when individuals faced a single form of 

demand, which faded over time when other costs were also experienced. 

 Our findings provided partial support for our pre-registered hypotheses 

(https://osf.io/2rsgm/registrations). In accord with our predictions, decision makers in 

both experiments successfully approximated reward-maximizing strategies, as evidenced 

by acceptance rates near optimal points. This is in line with previous foraging 

experiments, where the main deviation from optimality has been a tendency to 

overharvest (Constantino & Daw, 2015; Wikenheiser et al., 2013). In contrast, our 

prediction that effort requirements would produce more acceptances only held for the 

cognitive group, and this tendency for higher acceptances did not switch to passive 

waiting as predicted for Experiment 2. These hypotheses originally stemmed from 

prevalent proposals that incentivized work should become more appealing (Eisenberger, 

1992; Inzlicht et al., 2018), but that people would opt for the easiest available way to 

achieve desired outcomes (Hull, 1943; Olivola & Shafir, 2013). Instead, our novel use of 

foraging paradigms, in addition to our inclusion of types of effort that are often studied 

separately, highlighted that reward-independent task features can promote the pursuit of 

effortful prospects. The fact that predicted stable preferences for cognitive effort carried 

over onto the beginning of Experiment 2 further supported a task-specific modulation. 

However, the unexpected gradual convergence in acceptances in the second experiment 

emphasized that these features could be contextually molded. 
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 These choice dynamics ruled out a number of common explanatory candidates. 

For instance, if the subjective costs of effort or delay were intrinsic, we would not have 

observed the gradual convergence in acceptances when they were all intermixed in the 

same environment. This also speaks against a direct role of boredom in our results. The 

aversiveness of boredom can lead people to attempt any available activity in order to 

avoid it (Westgate, 2020). This would have likely led to a persistent preference for either 

effortful condition. Lastly, this gradual convergence in choices rules out the possibility 

that our sample was mostly composed of demand seekers. Some individuals express a 

strong need for cognition, which can bias studies of mental labor (Cacioppo et al., 1996; 

Sayali & Badre, 2019). Even though the prevalence of this trait in our college-level 

population could have driven the preferences for cognitive effort observed in both 

experiments, we would have expected such individuals to maintain this preference in the 

face of alternatives. Another unlikely candidate is fatigue. Even though participants 

decreased their acceptance rates for effort in both experiments, we would have expected 

them to increase engagement with wait trials over time in order to preserve earning rates. 

Further, we do not expect any of our observations to be due to the risk of failing to 

successfully complete effortful trials, as participants remained accurate throughout both 

experiments. Finally, we cannot conclude that cognitive effort gained value from its 

rewarding outcomes, as has been proposed in the past (Eisenberger & Cameron, 1996). 

This phenomenon could not have benefitted a single type of demand, as cognitive effort, 

physical effort, and unfilled delay were rewarded at the same rate. 
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 Traditional foraging models, in which a reward is weighed against the earnings 

foregone by pursuing it (Charnov, 1976; Constantino & Daw, 2015), were also not 

enough to explain our results. Instead, our results were consistent with a computational 

model in which each type of demand distinctly biased the estimation of the opportunity 

cost, and such biases could be gradually recalibrated over time as decision makers gained 

experience with additional demands. In this formulation, passive delay and physical 

effort added to the opportunity cost, whereas cognitive effort reduced it. This raises the 

question of how these biases arise. We hypothesize that demands altered the perceived 

duration of time. Immersive activities can subjectively speed up the passage of time 

(Csikszentmihalyi, 2014), and this effect appears to scale with the amount of cognitive 

processing required by a task (Wearden, 2016). Moreover, adjusting for time sensitivity 

has been shown to improve fits for delay discounting models (Mckerchar et al., 2009). 

Therefore, even though participants knew the nominal handling times, cognitive effort 

might have become valuable by subjectively compressing the perceived durations. In our 

experiments, shorter subjective handling times would result in higher perceived earning 

rates, but it is also possible that individuals benefitted from a sense of fast completion. 

We speculate that this construal of elapsed time could then be adjusted with the 

experience of alternative demands, as participants learned how long the 10 seconds 

handling time felt. This could help explain why preferences for cognitive effort were 

smaller for within-subject participants who started with the physical block, as they had 

already formed an estimate of the handling time by the time they experienced a 

subjectively faster cognitive trial. The shorter time sensitivity produced by cognitive 
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effort could be due to participants counting the number of sub-tasks during pursual 

(which was always less than the number of seconds in the handling time), or because 

taxing cognitive resources distracted individuals from estimating the passage of time 

(Zakay & Tsal, 1989). These hypotheses will have to be experimentally probed in the 

future. 

 Relying on foraging paradigms helped us control for common shortfalls in the 

existing literature. For example, even though engaging with a demanding offer 

encompasses evaluating, pursuing, and receiving its outcome, investigations of the 

pursuit and receipt stages have been limited. Many studies have sought to isolate the 

evaluation stage by presenting individuals with offers that do not come into effect until 

the end of the experimental session, deliberately setting aside the question of how the 

ongoing experience of cost and outcome affects subsequent choices (Apps et al., 2015; 

Chong et al., 2016; Kable & Glimcher, 2007; Massar et al., 2015). However, 

discrepancies between expected and experienced value are well known (Kahneman & 

Thaler, 2006), and choosing immediate outcomes could be due to factors other than time 

preference, such as the risk of being unable to redeem the future rewards, or hoping to 

find better offers in the near future (Fawcett et al., 2012; Frederick et al., 2002; Sozou, 

1998). We circumvented these pitfalls by providing participants with an opportunity to 

actively experience the demands they accepted, and giving them full knowledge of the 

available options. Another challenge in comparing effort and delay is that increments in 

the required effort are often paired with a longer execution time. This issue is often 

avoided by comparing discounting functions, which yield points at which individuals 
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faced with increasing costs become indifferent to large rewards (Massar et al., 2015; 

Prevost et al., 2010). We eliminated this possibility by fixing the handling time for all 

demands, allowing us to probe people’s preferences directly. Moreover, Experiment 1, 

which more closely resembled the traditional way costs are compared, provided a 

baseline of foraging behavior that contextualized the findings of the second experiment (a 

direct test of our hypothesis). Finally, the existence of optimal strategies helped us 

identify when demands could be attractive, a central motivation for this study. The 

apparent attractiveness of cognitive effort was reflected both by a higher proportion of 

acceptances at the expense of earnings, and by the fitted opportunity costs biases 

discussed above. Of note is that the optimality of the strategies induced by each demand 

depended on the richness of the block. This can help explain why the wait group earned 

the most despite having similar acceptance rates to the physical group, as the former was 

closer to optimality in the richest environment. 

 A potential limitation of this work is whether our task manipulations were 

actually costly. For instance, it is possible that participants gravitated towards cognitive 

demands because the task configuration was not effortful. This could be due to 

differences in how we calibrated cognitive and physical tasks. For physical demands, we 

adjusted the gripping threshold to people’s maximum strength, whereas we trained 

participants in the cognitive tasks until they reached criterion. Training might have 

improved response automaticity and reduced error-related risk. In addition, attributes 

such as the efficacy to complete a task, or the diversity of its components, have been 

reported to promote engagement (Bandura, 2010; Eisenberger & Cameron, 1996). 
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However, hand grips are regularly used to probe physical effort (Chong et al., 2017; 

Hogan et al., 2018; Prevost et al., 2010), and task switching has been shown to feel 

cognitively effortful by recruiting cognitive control (Kool et al., 2010; Shenhav et al., 

2017). Furthermore, we observed a steeper decrease in acceptances over time at longer 

handling times for both effort domains, a hallmark of effortful exertion (Treadway et al., 

2009). 

 The present findings have important implications for daily and clinical scenarios. 

Excessive aversion to delay and effort can manifest as impulsivity and apathy, 

respectively (Ainslie, 1975; Bonnelle et al., 2016; Chong et al., 2016; Jeffrey L. 

Cummings, 1993), fluctuations in which are hallmark symptoms of various mental 

illnesses and substance use disorders (Paulus, 2007). Lack of motivation to exert effort or 

wait for prospects is a distinguishing factor among mental afflictions like depression and 

schizophrenia (Barch et al., 2019). Within the former, medicated patients in remission are 

more sensitive to effort than controls, and this sensitivity is predictive of relapse 

(Berwian et al., 2020). Encouraging patients to engage in activities has been found to be a 

helpful treatment for depression (Dimidjian et al., 2006). Tailored reward schedules can 

successfully achieve this (Eisenberger & Cameron, 1996). However, since depressed 

patients also show insensitivity to rewards (Huys et al., 2013), identifying what makes 

effort appealing in its own right can help breach treatment-resistant cases. Our work 

suggests that subdividing a task can promote its pursuit, although further testing is 

required. More importantly, it highlights that decision scenarios should be configured to 

promote pursuit of desired activities, perhaps by removing alternative uses of time. These 
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same principles can potentially be applied to increasing productivity at work or adherence 

to physical exercise routines. 

Conclusion 

 In this study, we have examined the factors that motivate engagement with 

different demands, emphasizing how these can be molded by the decision maker’s 

environment. Unlike existing theories that have focused on the role of incentives and 

retrospective justifications (Eisenberger & Cameron, 1996; Inzlicht et al., 2018), our 

work highlights outcome-independent and task-specific features that can motivate the 

pursuit of effortful avenues, which can be potentially manipulated in order to promote 

engagement in clinical and daily activities.
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CHAPTER 3 FIGURES 

 

 
Figure 3.1: Task design and optimal behavior. A: General foraging trial structure. On each trial, 
participants were offered to earn money by sustaining effort or waiting during the handling time 
(2, 10, or 14 s). The end of a trial was followed by a travel time (handling and travel times always 
added up to 16 s). Participants could skip unfavorable trials and immediately start traveling to a 
potentially better offer. In Experiment 1, cost was fixed per participant and handling time varied 
per block. In the within-subject version, handling time was fixed at 10 s, but a combination of 
effort and delay trials changed per block. B: Possible earnings per second for each acceptance 
threshold (i.e. the smallest amount accepted) for each handling time. Circles denote the reward-
maximizing threshold for each block, which is described in the table. Experiments shared the 10 s 
handling block, in which it was optimal to skip all 4 cent offers. 
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Figure 3.2: Overall choice behavior in Experiment 1. Left: Proportion accepted per cost. 
Middle: Total number of dollars earned by each group by the end of the experiment. Right: 
The relationship between proportion accepted and total earned. Consistent with the foraging 
design, participants who over and under accepted earned the least. These figures suggest that 
people are willing to pursue cognitively effortful actions at the expense of earnings. 
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Figure 3.3. Comparing acceptance rates among costs for each reward and handling combination. 
A: Proportion accepted by each group for every combination of handling time and reward. Grey 
dots indicate the reward-maximizing acceptance for each combination. B: Matrix portraying the 
coefficients (color scale) and significance that resulted from switching the reference cost 
condition (crosses mark non-significant comparisons). Each entry shows how much more likely a 
group was to accept compared to the reference condition (row). C: AIC and BIC values for a 
mixed-effects model comparison, ranging from a base intercept-only to a full-interaction model. 
Both metrics yielded the same values across models. 
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Figure 3.4: Choice consistency and stability in Experiment 1. Top: Survival curve (left), and 
distribution of times when participants quit a trial over time (right). Bottom: Proportion 
accepted in the second half as a function of first half acceptances (left). Dashed lines indicate 
the mean for each group. On the right, the proportion accepted over time per group. The order 
of blocks was repeated in the second half (indicated by the black dashed line). 
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Figure 3.5: Acceptance behavior over time in Experiment 1. A: Proportion of acceptances per 
handling, reward, and half, showing that effortful demands were less frequently accepted over 
time. B: Mixed-effects coefficients denoting the comparison among costs acceptances for each 
half separately (mirrored along the diagonal). Even though acceptances steadily decreased in the 
effort groups, the relative preferences were preserved. 
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Figure 3.6: Within-subjects acceptance behavior. A: Quadratic relationship between trial 
completions and total earnings. B: proportion of acceptances of each reward per cost condition. 
C: Matrix of mixed-effects coefficients showing comparisons among costs (while controlling for 
reward amount). Comparisons between effort and wait trials from different blocks are omitted, as 
these are not considered in our original predictions. Crosses mark non-significant comparisons. 
D: AIC and BIC values for models of increasing complexity (a priori = AllMain). 
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Figure 3.7: Choice consistency and stability in Experiment 2. Top: Survival curve (left), and 
distribution of quitting times over time (right). Bottom: Proportion accepted in the second half as 
a function of first half acceptances (left). Dashed lines indicate the mean for each cost. On the 
right, the proportion accepted every time participants experienced a given block type. 

 

 
  



	

	

113 

 
Figure 3.8: Acceptance rates over time in Experiment 2. Top-Left: Proportion accepted in the 
first two and last two blocks of the experiment. An initial preference for cognitive effort trials 
fades amid a global decrease in acceptance rates. Top-Right: Mixed effects coefficient matrix for 
each half separately. The pattern from the first half resembles what was observed in Experiment 1 
(Figure 3). Bottom: Block order effects show attenuated differences for those who started with 
the physical configuration. 
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Figure 3.9: Computational modeling. A: BIC values for four plausible models of 
choice behavior for both experiments. Lower values indicate better fit. B: Differences 
in cost biases produced by each demand. Negative values suggest the cognitive group 
acted as if it perceived its demand as valuable. C: Parameter comparison portrays 
consistent foraging behavior across experiments. D: Behavior recovery of the within-
subjects adaptive behavior based on the winning model. The model predictions match 
the initial preference for cognitive effort, and the eventual convergence of acceptances 
by the end of the session. 
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CHAPTER FOUR: INDIVIDUALIZED FUNCTIONAL MAPPING SITUATES 

THE DEFAULT NETWORK AS A FACILITATOR OF ECONOMIC CHOICE 

Introduction 

Studies of value-based decision making have consistently found valuation effects 

in regions belonging to the default network (DN; Bartra et al., 2013; Clithero & Rangel, 

2014; Laird et al., 2009). Recent meta-analytic work has provided general quantitative 

support for overlap between valuation effects and DN regions in posterior cingulate 

cortex (PCC) and medial prefrontal cortex (mPFC) (Acikalin et al., 2017). One possible 

interpretation of this juxtaposition might be that choice evaluation and the introspective 

functions of the DN engage a unified set of underlying cognitive and neural operations 

(Northoff & Hayes, 2011). However, recent studies of individualized functional 

topography have emphasized that group-level cortical topographic overlap does not 

necessarily equate to overlap in individual brains. Results reveal high variability in 

network patterns of association cortex across individuals (Braga & Buckner, 2017; 

Gordon, Laumann, Gilmore, et al., 2017; Kong et al., 2018; Laumann et al., 2015), and 

show that this spatial variability is informative about trait-like behavioral characteristics 

(Bijsterbosch et al., 2018; Kong et al., 2018).  

Individual variation in fine-grained network topography poses challenges for the 

mapping of cognitive phenomena, with group-level aggregations obscuring otherwise 

dissociable effects at the individual level (Fedorenko et al., 2012; Michalka et al., 2015). 

It is therefore possible that our understanding of macroscale network functions has been 

misguided by omitting individual variability. Our results in Chapter 2 showed that the 
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mPFC and PCC regions of canonical DN could be divided into at least two sub-networks 

(e.g. DN and non-DN) that were heterogeneously organized across individuals (Toro-

Serey, Tobyne, & McGuire, 2020), further highlighting the need to explore any potential 

functional overlap within this this network at the individual-level. Indeed, a comparable 

fractionation of canonical DN recently positioned two of these sub-networks as seats of 

distinct introspective functions, namely theory of mind and episodic projection, that were 

traditionally grouped together (DiNicola et al., 2020). Based on this idiosyncratic 

partitioning and the methodology established in our previous work (Toro-Serey et al., 

2020), here we ask whether valuation effects are facilitated by the DN or by adjacent sub-

networks within mPFC and PCC.  

There are two steps to addressing this question. First, we must reconsider whether 

the spatial configuration of the DN generalizes from rest to tasks at the individual level. 

The DN was originally described as a distributed set of regions that cohesively 

deactivated as attention was externally oriented (Laird et al., 2009; Shulman et al., 1997). 

Early results indicated that this network could be identified either by allowing individuals 

to introspect during wakeful rest, or by identifying regions that decreased their activity as 

subjects were confronted with increasingly demanding tasks (Buckner & DiNicola, 2019; 

Greicius et al., 2003; Raichle et al., 2001). Parallel sets of studies have shown that 

resting-state networks generally align with task-evoked activity patterns (Fox et al., 2005; 

Smith et al., 2009; Yeo et al., 2015; Yeo et al., 2011). This has led to proposals that 

intrinsic functional networks provide a baseline configuration that is partially recruited by 

task demands (Cole, Bassett, Power, Braver, & Petersen, 2014; Uddin et al., 2019). 
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However, most studies that have probed the alignment of task-dependent and task-

independent networks have employed analyses on aggregated data (Cole et al., 2014; Di, 

Gohel, Kim, & Biswal, 2013; Smith et al., 2009; Yeo et al., 2015), and topographic 

comparisons within individuals have either not examined the fine-grained spatial 

composition of functional networks computed with diverse tasks, or omitted discussion of 

these within mPFC (Gratton et al., 2018; Kraus, 2020; Tavor et al., 2016). Here we 

address this gap by assessing whether, and to what extent, the fractionated functional 

topography of the DN is preserved when measured using rest, task-deactivation, and 

valuation tasks.  

The second step is to interrogate which of the resulting sub-networks displays 

valuation-sensitive activity profiles. The multifaceted nature of decision making can 

potentially complicate this endeavor. Even though ventral mPFC (vmPFC) has been 

proposed to compute the subjective value of prospects in a category-independent manner 

(Chib, Rangel, Shimojo, & O’Doherty, 2009; McNamee, Rangel, & O’Doherty, 2013), 

vmPFC valuation activity occurs in the context of a different broader pattern of brain 

activity depending on the decision stage or context. For example, both the prospective 

evaluation stage of a choice and the later outcome receipt stage recruit swaths of vmPFC 

and ventral striatum (VS), but evidence for the engagement of PCC during the outcome 

receipt stage equivocal across studies (Bartra et al., 2013; Clithero & Rangel, 2014). 

Even within the prospective evaluation stage, different zones within mPFC seem to 

consider an item’s desirability versus its congruency with the current task goals (Hare et 

al., 2008; Shenhav & Karmarkar, 2019). This could mean that, depending on which 
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factors people emphasize, different sub-networks (or different subregions of a network) 

might drive behavioral choices. Study 2 showed that decision makers can change their 

attitudes towards well-known decision environments over time, raising the possibility 

that an individual’s underlying network could similarly shift. Therefore, it is worth 

examining if the same brain networks show value-related activity modulation during the 

appraisal and outcome of a decision.  

In this study, we tested whether valuation and default networks overlap within 

mPFC and PCC when identified and compared in individuals. Using multi-session task-

based and resting resting-state fMRI data, we investigated 1) if data-driven estimates of 

brain network community structure during a value-based decision-making task were 

heterogeneous across individuals; 2) if this network’s topographic subdivisions estimated 

from the decision-making task were was at least partially distinguishable from those 

estimated from resting-state and task-deactivation runs; 3) whether valuation effects 

could be found in the default or non-default sub-networks; and 4) whether sub-networks 

displayed unique connectivity profiles with the striatum. In addition, we explored if the 

functional topography of valuation was reconfigured across sessions depending on how 

people construed the value-based decision-making task. We hypothesized that resting-

state and task deactivation would recover similar individual-specific DN layouts, 

consistent with previous work (Toro-Serey et al., 2020), and that these would differ 

from valuation networks as long as individuals focused on value estimation rather than 

rule-based strategy to guide decisions. Our findings indicated that spatial network 

configurations in rest and task deactivation indeed followed the same separation of DN 
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and non-DN seen previously, displaying high topographic idiosyncrasy in mPFC. 

However, contrary to expectations, we found that the same organization was present 

during valuation, and that the DN sub-network participated in the evaluation of prospects 

and outcomes. These results introduce individual-level evidence that functional network 

layouts are conserved across tasks and the resting-state. The findings offer guidance for 

future empirical and theoretical investigations of a shared cognitive architecture that 

could subserve both introspective and evaluative operations. 

Experimental Design and Methods 

Participants 

We recruited 19 healthy volunteers from the Boston University community and 

the greater Boston area (10 female, average age = 21, age range = 18 - 33) to complete a 

two-session, multi-task fMRI protocol. Individuals provided written informed consent 

prior to each experimental session and were compensated for their time, as approved by 

the Boston University Institutional Review Board (IRB). We screened participants for a 

history of neurological illness/injury and MRI contraindications, and all were right-

handed. One participant was removed due to high motion during scanning (see 

Functional Data Preprocessing for details). 

Experimental and Task Design  

In each session, participants performed 6-minute runs of an n-back working 

memory task (3 runs per session), a value-based decision-making task (6 runs per 

session), and resting fixation (3 runs per session), all coded in PsychoPy 2.0 (Peirce et al., 
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2019) running on a Macbook Pro (Fig. 4.1). All tasks were compatible with a single-

handed, two-button, MRI compatible response device that was introduced to participants 

prior to scanning (with the index finger assigned to the left button, and the middle finger 

assigned to the right button). In the n-back task, a stream of capital letters was presented 

one at a time in the middle of the screen. For every block of 10 letters, participants had to 

follow one of three pre-trained rules (with the applicable rule cued at the start of each 

block). The first, a 0-back rule, asked individuals to press the left button whenever the 

letter was an X, and the right button otherwise. The second rule was a 1-back, in which 

participants pressed the left button whenever the current letter was a repeat of the 

previous one, and the right button otherwise. The final rule was a 2-back, in which 

participants pressed the left button if the current letter matched the one two letters prior, 

and the right button otherwise. Within each 10-item block, 5 unique letters were sorted so 

that 1 to 3 targets of each type appeared, with only one type being relevant in each block. 

Target rules were presented in a pseudorandomized order during each run in order to 

avoid immediate repeats (with the order changing per run). 

The decision-making task was a card wagering game (Fig. 4.1B; cf. Delgado, 

Nystrom, Fissell, Noll, & Fiez, 2000; Preuschoff, Quartz, & Bossaerts, 2008), in which 

participants guessed on each trial the direction of the difference between cards drawn 

from two independent decks (cards ranging from 2 to 9, "shuffled" on each trial to 

remove history-dependence). After viewing the card from Deck 1, participants wagered 

whether the card from Deck 2 would be higher or lower. When the second card was 

revealed, participants gained or lost points according to the size and direction of the 
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difference between cards. Inter-trial-intervals were jittered to facilitate deconvolution of 

trial-related BOLD activity. Extreme face values for Card 1 (2 or 9) presented the 

opportunity for highest gains on average, with an expected value (EV) of 3.5 points (i.e. 

mean of possible differences), whereas cards with face values in the middle of the range 

(5 or 6) had a low EV of 0.5. The task separately manipulated offer value and reward 

prediction error (RPE, the difference between the reward outcome and the EV), which 

could range from -3.5 to 3.5 points per trial regardless of the value of Card 1. 

Importantly, participants were explicitly informed that the reward-maximizing strategy 

was to bet higher if Card 1 was 5 or below, and bet lower if it was 6 or above.  

In the fixation task, participants had to lie awake while maintaining their gaze on 

a cross in the middle of the screen. Participants were told they could let their mind 

wander, but that they should remain awake with their eyes open and avoid mental 

activities such as counting. All participants practiced these tasks during a behavioral 

training session that occurred one or two days before the first scan. 

Functional MRI Acquisition 

 All scans were acquired at Boston University’s Cognitive Neuroimaging Center 

on a 3T Siemens Prisma (Siemens, Erlangen, Germany) fitted with a 64-channel head 

coil. In each session, anatomical images were acquired using both a T1-weighted multi-

echo magnetization-prepared rapid gradient-echo (MPRAGE) sequence (Sagittal; TR = 

2530 ms; TE = 1.32 ms, 3.19 ms, 5.11 ms, 7.03 ms; FA = 7°; 0.8 mm isotropic voxels; 

224 slices; FOV = 256 x 256 x 180 mm; GRAPPA acceleration 2) and a T2-weighted 

sequence (Sagittal; TR = 3200 ms; TE = 564 ms; 0.8 mm isotropic voxels; 224 slices; 
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FOV = 256 x 256 x 180 mm; GRAPPA acceleration 2). Functional T2*-weighted BOLD 

acquisition parameters were configured to minimize signal dropout and distortion in 

vmPFC, including oblique axial slices (1.75 mm thickness), TR = 1440 ms, TE = 25 ms, 

simultaneous multislice (SMS) acquisition = 3, GRAPPA acceleration = 2, and larger in-

plane voxels (2.25x2.25x1.75 mm). For precise distortion correction of functional scans, 

we acquired a matched pair of reference images every 4 runs using spin-echo echoplanar 

imaging (EPI) with opposite phase-encoding directions.  

MRI Data Preprocessing 

Each individual’s MRI dataset was separately preprocessed using fMRIPrep 1.4.1 

(Esteban, Blair, et al., 2018; Esteban, Markiewicz, et al., 2018; RRID:SCR_016216), 

which is based on Nipype 1.2.0 (Gorgolewski et al., 2011; Gorgolewski et al., 2018; 

RRID:SCR_002502). Much of the description of the preprocessing steps in the following 

3 paragraphs was slightly modified from a boilerplate, copyright-free output 

automatically generated by the fMRIPrep software. 

Anatomical data preprocessing: Each session’s T1-weighted (T1w) images was corrected 

for intensity non-uniformity (INU) with N4 Bias Field Correction (Tustison et al., 2010), 

distributed with ANTs 2.3.1 (Avants, Epstein, Grossman, & Gee, 2008; 

RRID:SCR_004757). The T1w-reference was then skull-stripped with a 

Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 

T1w using fast (FSL 6.0.1, RRID:SCR_002823, Zhang, Brady, & Smith, 2001). A T1w-
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reference map was computed after registration of both T1w images (after INU-

correction) using mri_robust_template ( FreeSurfer 6.0.0, Reuter, Rosas, & Fischl, 2010). 

Brain surfaces were reconstructed using recon-all ( FreeSurfer 6.0.0, 

RRID:SCR_001847, Dale, Fischl, & Sereno, 1999b), and the brain mask estimated 

previously was refined with a custom variation of the method to reconcile ANTs-derived 

and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 

(RRID:SCR_002438, Klein et al., 2017). Volume-based spatial normalization to standard 

space was performed through nonlinear registration with antsRegistration (ANTs 2.3.1), 

using brain-extracted versions of both T1w reference and the T1w template. The 

following template was selected for spatial normalization: ICBM 152 Nonlinear 

Asymmetrical template version 2009c (MNI152NLin2009cAsym) (Fonov, Evans, 

McKinstry, Almli, & Collins, 2009, RRID:SCR_008796). 

Functional data preprocessing: For each of the 24 BOLD runs per subject (across all 

tasks and both sessions), the following preprocessing was performed. First, a reference 

volume and its skull-stripped version were generated using a custom methodology 

of fMRIPrep. A deformation field to correct for susceptibility distortions was estimated 

based on two EPI references with opposing phase-encoding directions, using 3dQwarp 

(AFNI 20190100; Cox & Hyde, 1997). Based on the estimated susceptibility distortion, 

an unwarped BOLD reference was calculated for a more accurate co-registration with the 

anatomical reference. The BOLD reference was then co-registered to the T1w reference 

using bbregister (FreeSurfer) which implements boundary-based registration (Greve & 

Fischl, 2009). Co-registration was configured with nine degrees of freedom to account for 
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distortions remaining in the BOLD reference. Head-motion parameters with respect to the 

BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) were estimated before any spatiotemporal filtering using mcflirt ( FSL 6.0.1; 

Jenkinson, Bannister, Brady, & Smith, 2002). BOLD runs were slice-time corrected using 

3dTshift from AFNI 20190100 (Cox & Hyde, 1997; RRID:SCR_005927). The BOLD 

time-series were resampled to surfaces on the fsnative space. The BOLD time-series 

(after slice-timing correction) were resampled onto their original, native space by 

applying a single, composite transform to correct for head-motion and susceptibility 

distortions. These resampled BOLD time-series are referred to as preprocessed BOLD in 

original space, or just preprocessed BOLD. The BOLD time-series were resampled into 

standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. 

 Four confounding time-series were calculated based on the preprocessed BOLD: 

framewise displacement (FD) and three region-wise global signals. FD was calculated for 

each functional run, both using their implementations in Nipype (following the 

definitions by Power et al., 2014). The three global signals were extracted within the 

CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors 

were extracted to allow for component-based noise correction (aCompCor; Behzadi, 

Restom, Liau, & Liu, 2007). Principal components were estimated after high-pass 

filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-

off). Components were calculated within the intersection of the aforementioned mask and 

the union of CSF and WM masks calculated in T1w space, after their projection to the 

native space of each functional run (using the inverse BOLD to-T1w transformation). 
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Components were also calculated separately within the WM and CSF masks. For each 

aCompCor decomposition, the k components with the largest singular values were 

retained, such that the retained components' time series were sufficient to explain 50 

percent of variance across the nuisance mask (CSF, WM, or combined). Frames that 

exceeded a threshold of 0.5 mm FD were annotated as motion outliers. All resamplings 

can be performed with a single interpolation step by composing all the pertinent 

transformations (i.e. head-motion transform matrices, susceptibility distortion correction 

when available, and co-registrations to anatomical and output spaces). Gridded 

(volumetric) resamplings were performed using antsApplyTransforms (ANTs), 

configured with Lanczos interpolation to minimize the smoothing effects of other kernels 

(Lanczos, 1964). Non-gridded (surface) resamplings were performed using mri_vol2surf 

(FreeSurfer). Many internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham et al., 

2014; RRID:SCR_001362), mostly within the functional processing workflow. For more 

details of the pipeline, see the section corresponding to workflows in fMRIPrep's 

documentation. 

Next, we applied additional steps to each scanning run similar to those described 

in previous work (Toro-Serey et al., 2020). First, both native surface and volumetric 

BOLD time series were converted into the Human Connectome Project’s fs_LR_32k 

grayordinate space. Then we computed transformation matrices from the standard 

MNI152Nlin2009cAsymm T1w to MNI152Nlin6thGen using flirt (Jenkinson & Smith, 

2001), and applied the transformation to all preprocessed BOLD time series. We then 

combined the surface and subcortical volume using the HCP’s workbench command 
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tools (Marcus et al., 2011). Second, we performed censoring of high motion volumes (FD 

> 0.5 mm) by using single-time-point indicator variables to regress out each outlier 

volume in addition to the two time points adjacent to each outlier. This regression also 

included the mean gray matter signal, motion parameters (6 dof), and the 5 highest 

aCompCor components. The residual time series signals were then bandpass filtered for 

rest scans (allowed range between 0.009 and 0.08 Hz) and high-pass filtered (> 0.01 Hz) 

for task data. Finally, the BOLD time series were demeaned and concatenated to produce 

session-specific datasets per subject.  

Functional Network Analyses 

In order to assess the individual-specificity of task-based functional brain 

topography, we employed a streamlined version of our previous analytical pipeline, 

which is detailed in Chapter 2 and in Toro-Serey et al. (2020). 

Functional network definition and partitioning. We used the search space from Toro-

Serey et al. (2020), including mPFC, PCC, with the addition of striatal regions (Caudate, 

Putamen, and Accumbens, as indexed in the HCP 32k standard space). Striatal regions 

were added on the basis of their well-known role in value-based decision making and 

learning (Haber & Knutson, 2010; Schultz, 2016), but our analyses were mostly 

concentrated on the ventral striatum (i.e. the Accumbens region from the grayordinate 

space) due to its established functional relationship to both EV and RPE (Bartra et al., 

2013). This addition allowed us to interrogate the degree of functional connectivity of 

these subcortical regions with the resulting cortical networks. This resulted in a total of 
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8629 grayordinates selected for analysis. All network analyses were performed in R 3.5.2 

(R Core Computing Team, 2017). 

Using all grayordinates in the search space, we produced individual-specific 

functional networks separately for each task and session (2 sessions x 3 tasks per 

individual), and analyzed each network’s community structure using spectral partitioning. 

The use of spectral partitioning permitted results for all three tasks to be compared in a 

common format (Fiedler Vector values) even though the inputs differed. Resting-state 

functional networks were produced by calculating the Pearson correlations of BOLD time 

series from every pair of grayordinates, resulting in an 8629 by 8629 correlation matrix. 

The same procedure was used to estimate networks from n-back runs. We estimated 

networks from decision-making runs by first converting each run’s BOLD time series 

into a “beta series” of per-trial BOLD response amplitudes. The single-trial BOLD 

amplitudes were estimated using a “least-squares-separate” approach (Mumford, Turner, 

Ashby, & Poldrack, 2012). For each grayordinate, we performed a series of linear 

regressions, which each modeled the time series as a function of two variables: one 

regressor modeling the single event of interest (e.g., presentation of Card 1 on one 

individual trial), and another modeling the event in all other trials. Prior to fitting, the 

regressors were convolved with a double-gamma hemodynamic response function (HRF) 

using the neurosim package (Welvaert, Durnez, Moerkerke, Verdoolaege, & Rosseel, 

2011). This produced beta coefficients for each separate trial, which were then 

concatenated to generate a beta series. In short, this method transformed each 

grayordinate’s raw BOLD time series into a series of coefficients that captured trial-wise 
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variability. Functional networks were then produced by correlating these beta series 

between every pair of grayordinates. Separate versions of the analysis used beta-series 

regressors timed to correspond to either the Card 1 or Card 2 onset event. In that way, the 

beta-series approach enabled the analysis to focus on variance associated with particular 

trial events. 

As in previous work, we transformed the correlation values from the functional 

networks to facilitate the construction of the normalized graph Laplacian (i.e. 

exponentiated Fisher’s z), followed by eigen decomposition of the similarity matrix. We 

focused on the eigenvector associated with the second-to-lowest eigenvalue of each 

network (the Fiedler Vector, FV). Because of the data-driven nature of the clustering, we 

oriented the FV values so the sub-network with most coverage of area 7m (i.e. the default 

sub-network) was positive for all subjects. We confirmed this alignment visually, and 

flipped the signs of the maps whose DN-network insufficiently covered 7m, but had 

otherwise DN-like topographic features (e.g. alignment in ventral mPFC with the 

superior rostral sulcus). We performed this manual alignment on 42 out of the 108 total 

partitions (18 participants x 2 sessions x 3 tasks). This procedure resolved instances in 

which opposite labels would have been given to largely overlappig networks from the 

same individual. Finally, we refined the layout of each network by thresholding the FV, 

with values above 0.01 assigned to the DN, and those lower than -0.01 to non-DN (all 

other values were set to 0 to facilitate visual comparisons). The FV was then binarized by 

sign, with values of 1 denoting a DN affiliation, 0 for non-DN, and 0.5 for everything 

else (so that calculation of averages were not biased). 
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Partition validation and comparison. Before comparing networks, we visually validated 

the individual-specific fixation-based DN layouts by visually comparing them to those 

produced by resting-state data from Toro-Serey et al. (2020). Next, we compared the 

networks produced with n-back data to multilevel GLM contrasts of task-deactivation. 

For each subject and session, BOLD time series in native surface space (fsnative) were 

smoothed at 5mm full width at half maximum (FWHM), intensity normalized, and high 

motion volumes (FD > 0.5 mm) were discarded (along with the time point directly before 

and after). A linear model contrasting 2-back blocks to 0-back blocks was then fit at each 

vertex using Freesurfer (Fischl, 2012), controlling for head translation and rotation (6 

dof) as confounds. The resulting individual maps of two-sided t-values were remapped to 

HCP’s fs_LR_32k to permit the overlay of connectivity- and task-based n-back maps 

(using the procedure outlined above), and thresholded by an absolute value of 3.  

Next, we examined the idiosyncrasy of each network’s functional topography, as 

well as the degree of topographic alignment among networks estimated from different run 

types. We assembled a similarity matrix that displayed the ARI between partitionings 

among every combination of individual, session, and run type, sorted by run type and 

then by individual (the ARI provided a chance-corrected comparison of how many 

grayordinates were paired together across partitionings). Values directly adjacent to the 

main diagonal of this matrix yielded session-to-session reliability estimates, and ARI 

ratios of within-participant (between-session) over between-participant elements served 

to quantify the degree of idiosyncrasy of these networks in mPFC, PCC, and striatum. 

The diagonals of the surrounding blocks of the matrix were used to estimate the similarity 
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across run types for each individual and session (3 comparisons), and paired permutations 

(5000 iterations) were used to test (1) which network comparison had the highest 

similarity; and (2) whether such similarity persisted across sessions.  

Valuation effects in the individualized DN: We determined the sensitivity of each 

network to valuation effects in two separate steps. First, using each individual’s spatially 

averaged time course for each network and brain area (mPFC, PCC, and striatum), we 

plotted the distribution of coefficients from the beta series as a function of the value of 

each explanatory variable of interest (e.g. RPE values from -3.5 to 3.5) across 

individuals. Second, we fit mixed-effects linear models to examine whether the mean 

activity from each fixation-based network was modulated by the specific offers and 

outcomes presented during the decision-making task. For each individual and session, we 

used DN and non-DN networks estimated from fixation runs to select grayordinates. We 

then spatially averaged the network time series from decision-making runs, and 

concatenated them across sessions. A first model included a constant term, parametric 

regressors for expected value (EV) and response time (to control for trial difficulty as a 

confound). A second model included a constant term and a parametric regressor for 

reward prediction error (RPE). Non-response trials were removed (proportion of skipped 

trials = 0.07). Regressors contained values at the onset time of the corresponding event 

(e.g. Card 1 presentation for EV, and Card 2 presentation for RPE), and were convolved 

with a double-gamma canonical HRF using the neuRosim package (Welvaert et al., 

2011). We then concatenated the time series and associated regressors across participants 

for modeling. In both cases, the mixed effects models were configured with fixed and 
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random effects for intercept and slopes per subject. This single modeling step emulated 

the traditional multi-level approach often performed in a two-stage analysis in 

neuroimaging toolboxes (i.e. estimating coefficient maps per subject and comparing them 

against the null in group-level tests).  

 Topography and Behavioral Performance 

We performed exploratory analyses to examine whether the degree of covert 

engagement with the cards task affected the similarity of the valuation and fixation 

partitionings. For example, a participant who evaluated the expected value given by Card 

1 might have responded slower to values in the middle of the range (that is, when there 

was a high chance of losing points). Conversely, for a decision maker who trusted the 

provided reward-maximizing strategy, response times (RT) might have become uniform 

across all values as they gained experience implementing the rule.  

We started by examining variability in choice behavior across individuals. First, 

we determined the accuracy with which participants followed the disclosed reward 

maximizing strategy (guess that Card 2 will be higher if the value of Card 1 is 5 or 

below). We performed mixed-effects logistic regressions that predicted the probability of 

guessing a higher Card 2 value based on Card 1 value. The model had random intercepts 

per subject, as well as fixed and random effects for card value and session. We then fit a 

linear mixed-effects model to test the relationship between expected value and response 

times (log-transformed), with random intercepts for each subject, as well as fixed and 

random slopes for expected value and session. 
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Using the results from the behavioral analyses, we evaluated 1) for models whose 

fixed session coefficients achieved statistical significance, if the absolute value of each 

subject’s random session coefficients correlated with their respective ARI between 

session 1 and session 2 decision-making runs (i.e. if a person’s change in behavior across 

sessions resulted in session-to-session dissimilarities for decision-making networks); and 

2) whether slopes for RT on a given session were correlated with the ARI between 

networks estimated from fixation runs and from decision-making runs. 

Results 

 In this study, we tested the hypothesis that the valuation network could be 

distinguished from the default network when accounting for neural and behavioral 

sources of individual variability. We addressed this question in three levels. First, we 

evaluated whether the spatial configuration of functional networks underlying valuation 

differed from the configuration estimated from resting state data and task-deactivation. 

Second, we probed the existence of valuation effects in the default network. Finally, we 

explored the connection between behavioral variability and topographic similarities.  

Qualitative Validation of Partitionings 

 Prior to quantification of topographic similarities, we qualitatively evaluated 

networks in three ways: 1) by comparing group-averaged patterns across tasks; 2) by 

examining their overlap in individuals; and 3) by assessing whether connectivity and 

task-deactivation produced similar individualized layouts, as is often assumed in the 

literature. Steps 1 and 2 were also validated against the topographic patterns observed in 

previous work (Braga & Buckner, 2017; Toro-Serey et al., 2020). 
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 Fig. 4.2 shows that cortical zones affiliated with the DN across individuals tended 

to be the same across tasks, although some variability in mPFC was evident (especially 

for fixation networks). In all cases there was broad coverage of the DN in PCC, although 

it was concentrated posteriorly near 7m as dictated by our labeling scheme. The DN was 

consistently present anteriorly in ventral and dorsal mPFC, with pockets of non-DN near 

pregenual area a24 and towards dorsal anterior cingulate cortex. These group-level 

patterns resemble the subdivision of canonical DN proposed recently, and match the 

cortical span of what is usually considered DN (e.g. Yeo et al., 2011). Striatal voxels 

generally lacked a consistent association with either network across individuals, with the 

exception of a small zone in ventral striatum that was preferentially affiliated with the 

DN (median number of DN grayordinates in ventral striatum = 7, IQR = 4 – 17; median 

for non-DN = 25, IQR = 14 - 46). Visual inspection of this area suggested that this cluster 

was present in approximately the same coronal slice (y = 66) in all subjects, although 

there were no voxels that affiliated with the DN more than 50% of the time across 

individuals. On the other hand, grayordinates in caudate and putamen consistently 

showed FV values near 0 (median FV values across tasks = -0.003, IQR = -0.004 - -

0.002), suggestive of highly variable clustering (see Fig. 2.4). Because of the unreliable 

clustering both within and across individuals in dorsal striatum, in addition to the 

consistent (though unbalanced) affiliation in ventral striatum across individuals, we 

focused subsequent visual evaluations of individual differences on cortical structures.  

 Examples of individual-level partitionings of the left hemisphere can be found in 

Fig. 4.3, with the first three columns representing networks computed from different run 
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types. Partitionings derived from fixation runs shared the general topographic attributes 

described in group averages above, but with idiosyncratic arrangements that replicated 

those from Toro-Serey et al. (2020). Thresholded fixation-based DNs (i.e. FV > 0.01, 

according to the median threshold of our previous work) are overlaid as black outlines on 

networks estimated from decision-making runs and n-back runs (columns 2 and 3). This 

juxtaposition showed a considerable degree of similarity between resting and task 

networks that respected individual heterogeneity, although task-based networks 

sometimes extended outside fixation outlines in mPFC. For example, the putative DN 

covered the anterior vmPFC area 10v in both decision-making and n-back runs for 

subject 770 (blue circle in Fig. 4.3).  

Finally, we compared GLM-based and connectivity-based DN estimations. The 

DN is often described as a set of distributed regions that cohesively reduce their activity 

during elevated demands for working memory or externally directed attention (Buckner 

& DiNicola, 2019; Laird et al., 2009). Therefore, we sought to validate the connectivity-

based DN with patterns of working-memory-load-related deactivation in individuals. The 

rightmost column of Fig 4.4 shows individual maps of t-statistics from whole-brain, 

vertex-wise, two-sided linear regressions comparing 2-back versus 0-back activity 

patterns during n-back runs, overlaid with the network outline of the DN estimated using 

the same n-back data (i.e. column 3). As expected, areas that deactivated for higher 

demands (in blue) were well aligned with the connectivity-based DN in PCC and dorsal 

mPFC. However, high t-values were at least partially interdigitated with network 

boundaries in vmPFC. This pattern was clearest for subjects 731 and 770, for whom the 
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DN outline failed to include some strongly deactivated areas along the suprarostral 

sulcus. This discrepancy was not due to reliability issues in either GLM (mean within-

subject correlation of vmPFC t-maps across sessions = 0.65, SD = 0.23; vmPFC mask 

defined as in Fig. 2.12B) or connectivity maps (discussed below).  

These results visually replicate the idiosyncratic subdivision of canonical DN 

proposed in Study 1 (which is missed in group-averages), and suggest that this 

organization is common across tasks. However, they also point at the possibility that 

topographic patterns of task-deactivation and resting-state functional correlations might 

not be uniformly coupled across the brain (as is commonly assumed).  

Quantitative Network Comparisons 

 As a first step in quantifying the observed similarities among networks, we 

computed pairwise ARI values across 108 network parcellations that were estimated 

independently for each subject, session, and run type. This similarity index gives the 

chance-corrected proportion of network nodes that were jointly clustered in both 

partitionings, heavily penalizing discrepancies (see Fig. 2.4 for empirical and simulated 

examples). All comparisons were performed on binarized networks thresholded at an 

absolute FV value of 0.01 (see Experimental Design and Methods for details), and all 

results from decision-making runs were based on beta series aligned with Card 1 onset. 

The latter condition was implemented because the resulting functional topographies were 

consistent regardless of the cards event used to compute them (Fig. 4.4B, bottom left). 

Fig. 4.4A shows a comprehensive view of these similarities for all possible pairings in 

each cortical region. The visible diagonal structure in every tile of these matrices 
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indicates that similar subject-specific network patterns were recovered for all run types, 

as observed qualitatively above. 

 Next, we used the values from these matrices (in addition to the ventral striatum, 

not pictured) to quantify the reliability, idiosyncrasy, and cross-task similarity of these 

networks. The top row of Fig. 4.4B shows session-to-session ARIs per region and task 

(i.e. the within-subject cells directly adjacent to the main diagonal of the matrix). In spite 

of the consistent (albeit small) recruitment of ventral striatum by the DN, patterns in this 

area lacked reliability across tasks (Fixation: median ARI = 0.02, IQR = -0.01 - 0.07; 

Cards: median ARI = 0.04, IQR = 0.01 - 0.07; N-back: median ARI = 0.02, IQR = -0.01 - 

0.08). This could be due to the unstable clustering mentioned above. In cortex, networks 

estimated with fixation data had the lowest reliability (mPFC: median ARI = 0.16, IQR = 

0.04 - 0.23; PCC: median ARI = 0.24, IQR = 0.1 - 0.31), whereas n-back (mPFC: median 

ARI = 0.3, IQR = 0.19 - 0.45; PCC: median ARI = 0.3, IQR = 0.15 - 0.45) and cards 

(mPFC: median ARI = 0.35, IQR = 0.31 - 0.4; PCC: median ARI = 0.39, IQR = 0.33 - 

0.43) tasks produced very reliable spatial configurations. The reliability of fixation 

networks was lower than those in previous work (Toro-Serey et al., 2020), although this 

did not preclude the identification of idiosyncratic patterns discussed next. 

 We measured each subject’s degree of topographic idiosyncrasy by computing the 

ratio of their within-subject (across-session) similarity over their mean similarity with 

every other individual for the same run type. These ARI ratios are displayed on the 

middle row of Fig 4.4B, with values greater than one denoting individual specificity. As 

expected, the low reliability of VS translated into low ratios (median across tasks = 
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1.001, IQR = 0.67 - 1.8). However, trends for the fixation networks replicated those from 

Toro-Serey et al. (2020), such that both mPFC (median = 7.12, IQR = 3.88 - 8.27) and 

PCC (median = 3.4, IQR = 2.76 – 4.57) yielded ratios significantly greater than one 

(signed rank tests; VmPFC = 163; VPCC = 167; both p < 0.001), with mPFC being 

significantly more idiosyncratic than PCC (paired permutation with 5000 iterations,  p  < 

0.01; Cohen’s D = 0.94). The same idiosyncrasy was observed for networks estimated 

from decision-making runs (mPFC: median = 6.80, IQR = 6.02 – 8.55; PCC: median = 

4.33; IQR = 3.91 – 5.24) and n-back runs (mPFC: median = 6.55, IQR = 4.97 – 7.68; 

PCC: median = 6.54; IQR = 3.32 – 8.02), although mPFC ratios were significantly higher 

than PCC only for decision-making runs (paired permutation, p < 0.001; Cohen’s D = 

1.65).  

 Finally, we assessed the degree of topographic alignment across tasks (i.e. 

diagonals of the upper-right and lower-left tiles of the similarity matrices), but this time 

using networks that spanned the whole search space. The boxplot on the bottom right of 

Fig. 4.4B shows the similarity between every pair of task networks within individuals 

(per session). The dashed line is the median inter-session ARI from the cards network 

(0.35), which provides a reference ceiling point to evaluate the comparisons. This plot 

mirrors previous qualitative observations, suggesting that task-based networks were 

better aligned. Paired permutations indicated that each comparison was not significantly 

different between sessions (all p > 0.1), so we grouped partitionings across sessions to 

compare similarities among task networks. This new set of paired permutations 

confirmed that the ARI between task networks (median = 0.29, IQR = 0.23 – 0.33) was 
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significantly greater than the ARI between fixation and either cards (median = 0.2, IQR = 

0.1 – 0.28; p < 0.01; Cohen’s D = 0.97) or n-back (median = 0.13, IQR = 0.08 – 0.16; p < 

0.001; Cohen’s D = 1.69). 

 Collectively, these results provide evidence that 1) functional network 

topographies underlying wakeful rest, working memory, and decision-making are reliable 

and idiosyncratic, replicating the relative region specific levels of inter-individual 

variation observed previously; 2) a common spatial configuration subserves these distinct 

operations; and 3) tasks yield more stable partitionings than resting-state fixation runs, 

which could be due to the structure they impose on brain activity or the different network 

estimation method used for the decision-making runs. 

Valuation Effects in the Default Network  

The results discussed above indicated that the same sub-division of canonical DN 

could be identified in data from distinct tasks. This section evaluated which of the 

resulting sub-networks (DN or non-DN) has a potential functional role in decision 

making. We did this through two analyses. First, we qualitatively examined each 

network’s distribution of beta-series coefficients as a function of task-related variables at 

both the of decision and outcome stages of the decision-making task. Second, we 

formally tested the observed relationships by fitting mixed effects linear models for the 

mean activity of each sub-network. 

Fig. 4.5 shows, for each thresholded network within each cortical region, mean 

trialwise betas per subject as a function of trial value for four decision-related variables. 

Ventral striatum is examined separately below. There was an overall tendency for DN 
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coefficients to be negative, which could reflect task-related deactivation superimposed on 

valuation effects (and is controlled for in linear models). Plots in the top row present 

effects expected to occur during the presentation of Card 1. There was a clear decrease of 

activity in DN as the face value of Card 1 neared the decision boundary (e.g. 5 and 6), 

with non-DN displaying the opposite pattern. The top-right plot displays this effect as a 

function of expected value, corroborating that the DN increased its activity as possible 

earnings grew. The DN’s sensitivity to value was somewhat mirrored at the outcome 

phase (bottom row). The bottom-left plot shows that this network’s activity scaled with 

the magnitude of the resulting earning or loss (losses were rare because participants 

mostly followed the reward-maximizing strategy). However, net rewards do not take into 

account that outcomes are sometimes not as good as they could have been, and such 

violations of expectation are a key influence on activity in the valuation system (Knutson, 

Fong, Bennett, Adams, & Hommer, 2003). The plot on the bottom right shows that there 

was a small effect of RPE on overall network activity. 

 Linear mixed-effects models performed on each subject’s averaged sub-network 

activity time series partially supported these observations (see Experimental Methods and 

Design for details on the composition of fixed and random effects per model). In order to 

avoid circularity (Vul, Harris, Winkielman, & Pashler, 2009), we constrained these 

analyses to grayordinates selected using each subject’s whole-brain fixation sub-networks 

(results were replicated when using n-back networks instead). The first model, which 

focused on effects at Card 1 onset, showed a significant positive effect of expected value 

on DN activity (intercept = 4.25, β = 1.20, SE = 0.48, p < 0.05). We also found 
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significant negative effects for trial onset (β = -5.23, SE = 2.27, p < 0.05) and response 

time (β = -9.11, SE = 2.86, p < 0.01) in this network, which are often used to control for 

general task demands and choice difficulty, respectively. None of these effects were 

significant for the non-DN network (all p > 0.1). A second model showed a decrease in 

DN activity when Card 2 was presented (intercept = 5.42, β = -13.66, SE = 2.04, p < 

0.001), but this activity was significantly raised as the total reward earned increased (β = 

0.74, SE = 0.24, p < 0.01). As before, none of these effects were present in non-DN (all p 

> 0.05). A similar outcome-focused model showed no significant effects for reward 

prediction error in either network (both p > 0.1). Inspections of the random slopes 

suggested that the effect of RPE on the DN were positive for 13 out of 18 participants. 

Coefficients for session number were not significant for any model (all p > 0.05), 

indicating that these results were consistent over time.  

We also assessed the possibility that valuation effects could be present in the 

spatial gaps between networks. In our previous work (Toro-Serey et al., 2020), we found 

that subthreshold areas adjacent to the DN corresponded to Braga and Buckner’s (2017) 

proposed default network B (whereas network A matched what we called the DN). This 

network has been shown to subserve DN-related cognitive functions separate from those 

found in network A (DiNicola et al., 2020), raising the possibility that a similar 

distinction might exist for decision processes. The linear mixed effects models were 

reproduced on a putative default network B composed of grayordinates with FV values 

between 0.002 and 0.008 (i.e., positive and under the 0.01 threshold, but above values 

associated with extreme cluster uncertainty). These exploratory analyses found 
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significant main effects of expected value (β = 0.33, SE = 0.14, p < 0.05), Card 2 

presentation (β = -3.06, SE = 0.48, p < 0.001), and reward amount (β = 0.13, SE = 0.06, p 

< 0.05), but no effect of RPE (p > 0.1). Unlike the decision effects observed in the DN, 

network B appeared to focus on expected value without being influenced by task 

demands (β = -1.3, SE = 0.92, p > 0.1) or RT-indexed choice difficulty (β = -1.38, SE = 

0.82, p > 0.1). 

The addition of this network helped us understand effects in ventral striatum, 

which were otherwise difficult to evaluate due to the low number of grayordinates 

affiliated to the DN in this area (see the qualitative section above). Fig. 4.6 shows the 

beta distributions for ventral striatal voxels associated with each of the three sub-

networks. We fitted mixed-effects linear models directly to these distributions in order to 

test the observed relationships, with fixed and random effects for intercept and slopes per 

subject. At the outcome phase, activity in both putative default network B and DN-related 

striatum voxels appeared to be positively modulated by increments in reward and RPE, 

although these relationships were only statistically significant for network B (Reward: β 

= 1.18, SE = 0.36, p < 0.01; RPE: β = 0.78, SE = 0.37, p = 0.05). Network B was the only 

one to present a relationship with expected value, which only trended towards 

significance (β = 1.6, SE = 0.87, p = 0.08). The cleaner relationships are probably due to 

the greater number of grayordinates in this sub-network compared to the DN (median = 

30, IQR = 12 - 24), but could also point towards a dissociation of network function 

between cortex and striatum. 
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These findings extend the view that the default network participates in valuation--

at least at the cortical level--with adjacent brain zones showing mixed involvement in 

choice evaluation and outcome. 

Topography and Behavior Interactions 

 A main aspect of our guiding hypothesis was that accounting for behavioral 

variability would help us understand functional organization. Specifically, we proposed 

that people with more stable behavioral patterns over time would also display higher 

similarity in brain network configurations across sessions, and that disengagement with 

decision-related values (as indexed by RTs) would result in higher similarity between 

networks estimated with decision-making runs and those estimated with fixation runs. 

However, behavioral analyses showed that participants were, for the most part, consistent 

in their behavior over time. 

 The disclosed reward-maximizing rule was to bet that Card 2 would be higher if 

the face value of Card 1 was 5 or lower. Fig. 4.7 (top row) shows the proportion of rule-

congruent choices per subject as a function of Card 1 value, indicating that participants 

mostly adhered to this strategy (mean accuracy = 98%, SD = 0.06). Similarly, the second 

row of this figure shows that the probability to guess higher adequately switched at 

values higher than 5, with few deviations (one individual forgot when the switch should 

happen, but was consistent in their deviated strategy).  Indeed, a mixed effects logistic 

regression showed a significant effect of Card 1 value on the probability of betting high 

(β = 9.29, SE = 0.97, p < 0.001), but no significant differences across sessions (β = -0.1, 

SE = 0.85, p = 0.9).  
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 In terms of response times, we predicted that people who actively considered the 

potential earnings in each trial would spend more time evaluating trials with low 

expected values (e.g. Card 1 values of 5, 6, etc.). Fig. 4.7 (bottom row) shows this 

relationship for most subjects, and a mixed-effects linear model confirmed it (β = -0.09, 

SE = 0.006, p < 0.001). The same model also suggested that people were faster during the 

second session, even though the relationship was maintained (β = -0.05, SE = 0.02, p < 

0.05). However, two participants displayed consistently fast responses regardless of 

expected value (flat lines in the plot; 639: β = -0.04; 731: β = -0.004). These results 

suggest that even though people consistently followed the optimal rule, their readiness to 

implement it was somewhat variable across subjects and sessions.   

Even though the mixed effects model suggested that people were faster on the 

second session, the absolute value of the random slopes from this change were not 

correlated with inter-session (within-subject) similarities of the decision-making 

networks (Pearson’s r = 0.2, t(16) = 0.84, p > 0.1). Another possibility was that response 

times that did not change as a function of Card 1 values would reflect disengagement 

with the expected value of a trial, resulting in network patterns during decision-making 

runs that more closely resembled those during fixation runs. Akin to the reliability test, 

the random slopes describing the effect of expected value on log-transformed response 

times (per session) were not correlated with the similarity between card and fixation 

networks (Pearson r = 0.19, t(34) = 1.16, p > 0.1). 

However, these slopes might have been affected by the fact that the main change 

in response times was non-linear, and mainly visible between the two lowest expected 
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values. Another way of testing this relationship is by taking the difference in response 

times between the lowest and highest expected value. This exploratory assessment 

showed that this delta was significantly correlated with the similarity between fixation 

and decision-making networks (Pearson r = -0.41, t(34) = -2.65, p < 0.05), such that 

seemingly disengaged choice behavior was associated with greater similarity between 

fixation networks and decision-making networks. This exploratory assessment points at a 

possible (though subtle) interaction between functional network topography and 

behavior, but a larger sample would be needed to confirm such a relationship. 

Discussion 

Meta-analytic work has suggested that the same brain that comprise the default 

network also support value-based decision making, promoting theories of a common 

cognitive architecture that can subserve these two (and additional) phenomena (Acikalin 

et al., 2017; Euston et al., 2012; Northoff & Hayes, 2011). In this final study, we built 

upon the individual variability in functional topography and behavior uncovered by the 

previous chapters to more precisely determine whether the DN facilitates economic 

choice. In line with previous results, we found that canonical default network regions 

could be fractionated into at least two networks (DN and non-DN) whose spatial 

configurations were heterogeneous across individuals, but reliable across sessions within 

individual. However, contrary to our hypothesis, we found that the same individual-

specific functional topography was present across tasks, and that the DN sub-network 

indeed participated in valuation processes. 
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Comparing Rest and Task-based Networks 

Much work dedicated to understanding the topographic organization of the brain 

has proposed that, on average, distributed brain areas that participate in the same 

cognitive operations show correlated spontaneous activity fluctuations in the absence of 

external stimulation (Fox et al., 2005; Laird et al., 2011; Smith et al., 2009; Yeo et al., 

2015). Here we add partial support to this claim, showing that cortical network layouts 

derived using functional connectivity from different tasks were generally aligned within 

canonical DN in mPFC and PCC.  

Recent work has suggested that this overlap is due to resting-state networks acting 

as a coarse, default spatial configuration that is partially recruited during engagement 

with tasks (Cole et al., 2014; Uddin et al., 2019). Our second line of evidence speaks 

against this idea, both qualitatively and quantitatively. Even when focusing on 

individuals, we found that the same idiosyncratic sub-division of canonical DN (which 

was estimated using resting state) was present for all tasks, regardless of the method used 

to generate them. Further, any discrepancies in topography between domains were due to 

task networks covering a greater (and similar) extent of cortex than fixation, opposite to 

the pattern suggested above. Instead, our results converge with recent proposals that 

functional area boundaries can be reliably (albeit slightly) shifted based on task-induced 

cognitive states (Salehi et al., 2019). Unlike that work, however, we found that cards and 

n-back networks were highly similar with each other, though less so with fixation. This 

could be due to their high inter-session reliability compared to fixation networks, which 

could stem from the structure imposed by the tasks (Jiang et al., 2020). On the other 
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hand, the decrease in fixation network reliability compared to Toro-Serey et al. (2020) 

could be due to our use of a single thresholding value to identify DN and non-DN (versus 

the customized ones used previously). Regardless, the degree of idiosyncrasy displayed 

by all networks replicated the pattern observed in the past, with mPFC displaying 

particularly unique spatial configurations across individuals. 

Even though our findings support the idea of a common functional connectivity 

network organization across tasks, they also provide points of divergence with the 

existing literature. Many group-level comparisons of task and resting state networks have 

worked under the assumption that functional connectivity and task-based general linear 

model analyses are equally capable of retrieving the same networks (Fox et al., 2005; 

Greicius et al., 2003; Laird et al., 2011; Smith et al., 2009). We made such assumption 

ourselves when selecting a corpus for the meta-analysis in our own work (e.g. based on 

Laird et al. 2009; Toro-Serey et al., 2020), and when choosing to validate connectivity 

layouts with traditional task contrasts. However, our results suggest that this equivalence 

should be reconsidered. Even though individual partitionings computed using SP were 

well aligned with task-deactivation GLM contrasts in PCC and dorsal mPFC, we found 

that the DN sub-network often excluded a region of strong deactivation located along the 

suprarostral sulcus (i.e. the sulcus parallel and dorsal to the superior rostral sulcus, which 

was mapped to the DN sub-network in the past; Lopez-Persem et al., 2019). This 

discrepancy is unlikely to be due to either differences in smoothing (the remainder of the 

search space was closely aligned across modalities) or lack of reliability (both methods 

produced high inter-session reliability). Even though this partial apparent decoupling 
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between methods is beyond the scope of the present work, it warrants further 

interrogation in future studies.  

Valuation Processes in the DN 

 Against our expectations, we found evidence that the subdivision corresponding 

to each individual’s default network participated in the valuation of both prospects and 

outcomes, even when controlling for choice difficulty via response times. This 

relationship appeared to be weaker in PCC than mPFC according to the distribution of 

single-trial amplitudes, which is supported by the limited effects of expected value often 

found in this area (Bartra et al., 2013; Clithero & Rangel, 2014). An exception to this 

trend was the absence of reward prediction error effects in any cortical sub-network. 

Compared to the ubiquitous presence of prediction errors in ventral striatum (Haber & 

Knutson, 2010; Hare et al., 2008; Schultz, 2015), the role of the mPFC in encoding 

reward prediction errors has been inconsistent across studies. Some studies have observed 

RPE signals in mPFC (Ramnani, Elliott, Athwal, & Passingham, 2004; Ribas-Fernandes, 

Shahnazian, Holroyd, & Botvinick, 2019), whereas in other cases, the role of mPFC has 

been relegated to decision values during the appraisal stage (Hare et al., 2008). Other 

accounts suggest that mPFC provides RPE-related information to the dopamine system 

only when reward contingencies are uncertain (Starkweather, Gershman, & Uchida, 

2018). Since participants in our experiment knew the success probabilities paired with 

each value of Card 1 (given the disclosed optimal rule), it is possible that mPFC was not 

always necessary for processing prediction errors (Starkweather et al., 2018), thereby 

limiting the effects of RPE in the rest of the network.  
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Even so, considering the effect of expected value observed in the DN, we would 

have expected more pronounced changes in ventral striatum activity when expectations 

were violated. It is possible that ventral striatum was active during periods of outcome 

anticipation that were missed by the beta series deconvolution (Knutson et al., 2003), 

similar to the ramping up of tonic dopamine observed as a function of reward uncertainty 

(Fiorillo, Tobler, & Schultz, 2003) and goal approach (Howe, Tierney, Sandberg, 

Phillips, & Graybiel, 2013). An alternative explanation is that participants focused on the 

probability of winning or losing points during decision points rather than expected value 

(i.e. on the positive or negative valence of the outcome; Venkatraman, Payne, Bettman, 

Luce, & Huettel, 2009). Such probabilities could be computed without making strong 

predictions about the actual amount they would ultimately earn, but would still represent 

a modulation of trial value as a the probability of a successful outcome changed (Tom, 

Fox, Trepel, & Poldrack, 2007). Notably, the focus on expected valence would not 

preclude the positive effects of reward, which were clear throughout the DN. Future 

iterations of this work could more directly assess the distribution of value and valence 

processes across relevant subcortical regions, in particular the amygdala (Berridge, 2019; 

Joyce & Barbas, 2018).  

Part of the difficulty in interpreting the remaining valuation effects in ventral 

striatum was the inconsistency with which SP assigned voxels to any network, an 

ambiguity that extended to caudate and putamen. Both group and individual maps 

showed that the DN (e.g. the cortical network that processed subjective values) recruited 

a very small ventral portion of the striatum, which is in contrast with the broad and 
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consistent effects of reward value on striatal activity found in diverse neuroeconomic 

studies (Bartra et al., 2013; Gregorios-Pippas, Tobler, & Schultz, 2009; Gruber & 

McDonald, 2012; Haber & Knutson, 2010; Kable & Glimcher, 2007; Levy et al., 2011). 

Instead, we found that sections of striatum that missed our clustering threshold mirrored 

the valuation dynamics displayed by the DN in cortex. Toro-Serey et al., (2020) 

suggested that these grayordinates corresponded to default network B from Braga & 

Buckner (2017). More recent work suggested that networks A (what we call DN) and B 

separately process previously-grouped effects of theory of mind and episodic projection 

(DiNicola et al., 2020), raising the possibility that these networks also process different 

aspects or stages of decision making. However, under this framework, our results would 

suggest that the same valuation effects are transferred from cortical DN to subcortical 

network B instead.  

An alternative explanation is that the topography of the striatum is better 

understood as continuous rather than discrete. Anatomical tracing work in non-human 

primates has proposed that cortico-striatal projections from prefrontal cortex are 

gradually organized along a dorsal-ventral axis (Haber & Knutson, 2010). This results in 

a continuous and diffuse arrangement in this subcortical area, whereby pathways from 

vmPFC and dmPFC project mostly to ventral and dorsal striatum, respectively. In the 

present work, every interdigitated sub-network consistently recruited zones of mPFC 

along this axis, suggesting that signals across cortical sub-networks converged 

throughout the striatum. We therefore propose that, rather than indexing a specific sub-

network affiliation, relatively low FV values in ventral striatum reflect this continuous 
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organizational scheme, comparable to recent functional mappings of this area that 

employed similar gradient-based algorithms (Marquand, Haak, & Beckmann, 2017; Tian, 

Margulies, Breakspear, & Zalesky, 2020a), and in line with the hypothesized role of the 

striatum in integrating value with additional action signals (Haber & Knutson, 2010). We 

note that the distinction between an organization of the striatum that is based on 

functional networks versus anatomical connectivity would be missed in traditional voxel-

wise modeling approaches, as they normally just highlight which units present valuation 

signals, and not their relationship within and across networks.  

Behavioral Influences on Functional Topography 

 Recent studies have uncovered a relationship between both structural and 

functional brain topography and unique behavioral phenotypes (Bijsterbosch et al., 2018; 

Kong et al., 2018; Mansour L, Tian, Yeo, Cropley, & Zalesky, 2020). More nuanced 

individualized work has further shown that the boundaries of functionally coherent 

subregions shift from task to task (Michalka et al., 2015; Salehi et al., 2019). Study 2 

offered evidence that the same decision environment can produce time-varying choice 

behavior based on features that individuals covertly integrate (i.e., the subjective passage 

of time). Based on this evidence, we explored whether network layouts could be 

reconfigured depending on the degree of behaviorally indexed engagement with a simple 

and transparent decision-making task. However, the majority of our participants 

displayed consistent rule-consistent choice behavior across sessions, precluding this 

possibility. None of the results from our planned behavioral analyses were correlated 

with changes in network alignment, either across sessions or across run types. Instead, the 
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only piece of evidence came from an exploratory analysis across individuals, which 

suggested that individuals whose response times were similar for lowest and highest 

expected values (i.e., less strongly modulated by proximity to the decision boundary) 

displayed network topography during the decision-making task that more closely 

resembled configurations from resting fixation runs. However, response times can follow 

distributions like those observed here for non-economic judgments (Moyer & Landauer, 

1967), limiting our ability to relate this phenomenon to valuation. Further, visual 

inspection failed to identify systematic topographic features underlying the variation in 

similarities. While we cannot make strong inferences based on current findings, we hope 

that future studies will continue to explore this possible interaction with more tailored 

experimental designs. 

Limitations 

 The present study faces a few limitations and outstanding questions. First, it is 

unclear why DN and valuation networks overlapped in individuals, but were segregable 

in PCC at the meta-analytic level (Toro-Serey et al., 2020). We saw that expected value 

patterns were weaker in PCC than mPFC, resembling the pattern observed across studies 

(Bartra et al., 2013; Clithero & Rangel, 2014). This could be related to the mismatch in 

individuals between task-derived and connectivity-derived network topography. A 

second potential limitation is that we did not discriminate between modes of decision 

values. Even though regions like vmPFC have been known to process value in a 

category-independent manner (Chib et al., 2009), previous work has highlighted that 

different sections of mPFC are recruited for the evaluation of goal-congruency, offer 
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value, and relative value among options (Frömer, Dean Wolf, & Shenhav, 2019; Hare et 

al., 2008; Shenhav & Karmarkar, 2019). Whether these are facilitated by distinct sub-

networks, or by different sections of the same network, should be assessed in the future. 

Finally, we are presently limited to fully endorse the hypothesis that the functional 

connectivity between prefrontal cortex and striatum is organized along a dorsal-ventral 

gradient rather than discrete functional networks in individuals, a hypothesis that has 

been proposed on the basis of cortico-striatal anatomical projections (Haber & Knutson, 

2010). This limitation is mostly due to our scanning protocols, which were optimized for 

cortical signal acquisition. Even so, future work could test this hypothesis by expanding 

the search space towards dorsal anterior cingulate and orbitofrontal cortex, areas where 

the anatomical projection gradient appears to shift the most (Haber & Knutson, 2010). 

Another possibility would be to slice each individual’s sub-networks along this dorsal-

ventral axis in mPFC, and correlate the mean activity of each sub-network within each 

slice with activity of striatal voxels. A gradual organization would result in changes to the 

correlation patterns in striatum across slices, whereas a discrete organization would 

exhibit differences in correlation patterns between DN and non-DN in each slice. 

Regardless, the structural basis of this organizational scheme, and its recent functional 

support at the group-level utilizing a similar family of algorithms as the one employed 

here (Marquand et al., 2017; Tian, Margulies, Breakspear, & Zalesky, 2020b), add 

confidence to this hypothesis. 
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Conclusion 

The work presented here advances our understanding of the functional 

organization of the brain in two ways. First, to our knowledge, it demonstrates for the 

first time that the same individual-specific network configuration observed during rest 

underlies task engagement (in contrast to previous comparisons performed at the group or 

meta-analytic level). Second, it situates the DN as a cortical network that facilitates the 

implementation of economic choice, particularly within mPFC, and presents supporting 

evidence for the role of the striatum as a hub that can combine diverse sources of cortical 

information with value in order to produce actionable behavior. The topographic 

heterogeneity of functional networks in mPFC might help explain why a recent multi-site 

replication attempt of well-known valuation effects failed to survive diverse statistical 

correction pipelines (Botvinik-Nezer et al., 2020), bringing attention to the possibility of 

false negatives in previous group-level results. The present findings strengthen the 

rationale for theorizing about a common architecture that subserves distinct types of 

cognitive functions (Euston et al., 2012; Northoff & Hayes, 2011). 
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CHAPTER 4 FIGURES 

 

 
Figure 4.1: Task structure. A: Each of 18 participants was scanned in three paradigms across two 
sessions separated by a week. The order of functional scans was preserved across sessions. 
Participants practiced each task a day or two before Session 1. B: Card wagering task. On each 
trial, a card from Deck 1 was revealed, and participants had to guess whether the top card from 
Deck 2 would be higher or lower in value. Participants gained or lost points according to the 
difference in cards. This task manipulated expected value and reward prediction error separately, 
and participants were told about the reward-maximizing strategy (bet higher for Card 1 face 
values of 5 or lower).  
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Figure 4.2: Proportion of DN affiliations across individuals in each task. Each subject’s Fiedler 
vectors from the graph Laplacian are binarized according to the sign of their values, and oriented 
so that the DN label is given to the network with most grayordinates covering area 7m. The dot in 
the green circle shows the point corresponding to the coronal volumetric slice (MNI coordinate y 
= 66). Cards networks were computed on the basis of activity at Card 1 onset (similar results 
were obtained using Card 2 onset; see Fig. 4.4B). All tasks yielded similar spatial network 
configurations in cortex, although fixation-based maps tended to be more variable. A small region 
in ventral striatum appeared to be consistently affiliated with the DN, although no voxel was 
affiliated with either network more than 50% of the time across individuals. 
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Figure 4.3: Examples of individual network arrangements per task (same session). 
Column 1 shows a replication of the networks from Toro-Serey et al. (2020) using the 
present resting dataset. Columns 2 and 3 display task-related networks, with a black 
outline depicting the DN from the respective fixation partitionings. There was good overall 
alignment among networks. Column 4 shows the overlap between connectivity-based and 
whole brain GLM-based patterns of n-back activity (two-sided t-maps thresholded at an 
absolute value of 3, with blue denoting task-based deactivation). There was good 
alignment in PCC and dorsal mPFC, but not in vmPFC. 
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Figure 4.4: Quantitative similarities among networks. A: Similarity matrices of ARIs 
between every pair of run type, individual, and session. Each of the 9 tiles represents a 
within- or across-task comparisons. Visible diagonal structures within each tile suggest a 
subject-unique layout underlying all tasks. B: Inter-session reliability for each network and 
region (top row), ratios that represent the degree of subject-specificity of each layout (middle 
row), similarity between networks estimated from decision-making runs using using either 
Card 1 or Card 2 onset-related activity (bottom left), and similarities among task networks 
within individuals for each session (bottom right; CvN = Cards versus N-back; FvC = 
Fixation versus Cards; FvN = Fixation versus N-back; dashed line is the median inter-session 
ARI for the decision-making networks). It appeared that an idiosyncratic network topography 
subserved all cognitive operations (especially in mPFC), and that runs with task structure (in 
contrast to resting fixation) yielded more reliable network estimates.  
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Figure 4.5: Valuation effects per network and region. Plots show the distribution of single-trial 
coefficients from each individual’s beta series, separated by region and thresholded network. 
Top row shows effects pertaining to the presentation of Card 1, whereas the bottom shows 
outcome-related effects. These distributions suggest a general role of the DN in valuation. 
Linear mixed effects models on mean network activity of both mPFC and PCC corroborated 
effects of EV and reward magnitude in the DN. 
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Figure 4.6: Valuation effects in ventral striatum. Beta distributions similar to those in Fig. 4.5 are 
plotted for striatal voxels associated with the DN and non-DN as well as the putative default 
network B (computed based on findings from Toro-Serey et al., 2020). Unlike in cortex, the DN-
related striatal voxels appeared to participate mainly during the reward phase of each trial, 
whereas network B-related voxels presented canonical value-sensitive patterns during both 
decision and outcome stages. Linear mixed-effects models fitted to these distributions only 
corroborated the effects of reward and RPE on putative network B. The noisy patterns in DN are 
likely due to the small number of grayordinates affiliated with this network within this region 
across individuals (median = 7). 
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Figure 4.7: Choice behavior in the cards task per session. Top: proportion of trials in which 
participants followed the optimal rule. Middle: Probability of guessing that the card from the 
second deck would be lower. Participants readily followed the optimal rule in both sessions, with 
the exception of one person. Bottom: Response time as a function of the expected value given by 
Card 1. Participants were consistently faster in responding to trials with greater expected 
earnings.  
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CHAPTER FIVE: SUMMARY AND DISCUSSION 

Restatement of Original Goals 

The overarching goal of this dissertation was to advance our understanding of the 

neural basis of human decision making by examining within-person and between-person 

variation in functional brain network topography and choice behavior. I pursued this 

objective through three behavioral and neuroimaging studies. The first study sought to 

establish a procedure to robustly estimate an individual’s functional brain networks, and 

to quantify their degree of topographic idiosyncrasy within medial cortical regions of the 

default network that consistently overlap with subjective value effects (PCC and mPFC). 

A second study examined potential sources of choice fluctuations by examining task-

context-related variation in attitudes towards different types of behavioral demands. The 

final study explored the potential interaction of these types of variability to determine 

whether value-sensitive regions could be disentangled from the default network across 

multiple task contexts at the individual level. 

Summary of Findings 

  The first study, described in Chapter 2, sought to advance our understanding of 

the individual heterogeneity of the DN within mPFC and PCC, quantifying that 

heterogeneity for the first time. First, we employed a cortical surface-based meta-analysis 

to identify a parcel in human PCC that was more strongly associated with the DN than 

with valuation effects. We then used resting-state fMRI data and a data-driven network 

clustering algorithm, spectral partitioning, to fractionate mPFC and PCC into "DN" and 

"non-DN" subdivisions in individual participants (n = 100 from the Human Connectome 
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Project). The spectral partitioning algorithm identified individual-level cortical 

subdivisions that varied markedly across individuals, especially in mPFC, and were 

reliable across test/retest datasets. Further, we found that the resulting eigenmaps from 

this algorithm contained information about the stability of the sub-network label at each 

cortical location, giving rise to a third interdigitated sub-network. Within these 

partitionings, an individual’s DN showed a region-dependent alignment with sulci and 

gyri throughout the search space. Finally, we validated these spatial layouts against 

recently proposed subdivisions of canonical DN identified in a small sample, and 

demonstrated the advantage of spectral partitioning in robustly capturing these layouts 

compared to seed-based functional connectivity. These results highlighted the need to 

ascertain whether distinct cognitive functions engage common or distinct mPFC 

subregions at the individual level, and established an analytical pipeline to do so. 

 Chapter 3 explored the factors that can underlie changes in people’s choices over 

time, even when decision environments are well known. To do this, we embedded mental 

and physical effort in a "prey selection" foraging task, which required decision makers 

not only to evaluate the magnitude and delay of a focal prospective reward, but also to 

estimate the general opportunity cost of time. In two experiments, independent sets of 

participants collected rewards that required equivalent periods of cognitive effort, 

physical effort, or unfilled delay. Decision makers were able to approximate reward-

maximizing strategies unique to each foraging environment, regardless of the 

combination of time, reward, and cost. Even so, when individuals faced only one type of 

cost (Experiment 1; between-subjects design), cognitive effort uniformly produced the 
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highest acceptance rate compared to trials with an equivalent period of either physical 

effort or unfilled delay. Conversely, a similar higher acceptance rate for cognitive effort 

trials disappeared over time amid an overall decline in acceptance rates when individuals 

could choose which demand to pursue (Experiment 2; within-subject design). A 

combination of foraging and reinforcement learning models could account for the results 

by positing that each type of demand imposed a bias on the estimation of the opportunity 

cost incurred in pursuing offers. These biases, which are potentially attributable to a 

distortion in the perceived passage of time, were gradually averaged away when multiple 

forms of demand were interleaved. 

In Chapter 4, we built upon the individual and context-related variability 

identified in Chapters 2 and 3 to ascertain the degree of overlap between valuation and 

default networks within mPFC, PCC, and striatum across multiple task contexts. 

Individuals were scanned in two sessions while performing an n-back task, wakeful 

resting, and a decision-making task that orthogonalized expected value with reward 

prediction error. Using the methodology established in Chapter 2, we first found that the 

same idiosyncratic organization discovered in Chapter 2 was recoverable from all three 

tasks, as well as from both the evaluation and reward stages of the decision-making task. 

Furthermore, within each partitioning, the default network persistently displayed 

canonical valuation effects in mPFC and PCC (except for reward prediction error), 

whereas non-DN showed an opposite activity pattern. Regions within striatum were not 

directly linked to any singular sub-network. Participants consistently adhered to a reward-
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maximizing strategy, resulting in negligible evidence that behavioral variability could 

affect the topographic alignment across tasks.  

Discussion 

A diverse set of higher order psychological phenomena, including economic 

judgments, engage overlapping swaths of mPFC (De La Vega et al., 2016; Hiser & 

Koenigs, 2018; Kragel et al., 2018), prompting the question of whether these are truly 

distinguishable functions. The neuroscientific literature has addressed such issues by 

organizing juxtaposed functions into macroscale functional networks with nodes 

distributed throughout the brain, with individual networks implicated in broad domains of 

cognition and behavior (Power et al., 2011; Yeo et al., 2011). The network that 

encompasses a majority of anterior mPFC, the default network, has been suggested to 

serve self-referential thought, prospective thinking, theory of mind, and general 

mnemonic functions (Buckner et al., 2008; Buckner & DiNicola, 2019; Gusnard et al., 

2001; Schacter et al., 2007; Yeshurun, Nguyen, & Hasson, 2021). In neuroimaging 

studies, the default network typically shows an increase in activity when attention is 

internally oriented, and a decrease during increasingly demanding externally oriented 

tasks (Laird et al., 2009). Even though the introspective role assigned to the default 

network is conceptually cohesive with many of its associated cognitive operations, it is 

less obviously compatible with the increases in activity observed in mPFC as a function 

of increasingly valuable prospects and outcomes during decision making (Bartra et al., 

2013; Clithero & Rangel, 2014). Yet, the apparent overlap of valuation effects with the 

DN within mPFC has been confirmed at the meta-analytic level (Acikalin et al., 2017), 
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and has led to theories that attempt to unite these seemingly disparate functions under a 

common cognitive architecture (Euston et al., 2012; Northoff & Hayes, 2011).  

 Examination of anatomical projections suggests that broad functional networks 

are composed of closely intertwined circuits that perform similar, but nonetheless 

distinguishable, parallel operations (Goldman-Rakic, 1988). This view of cortical 

organization has found renewed support with the advent of improved noninvasive 

imaging techniques and a recent focus on individualized mapping. For instance, 

functional connectivity analyses customized to each individual have shown that canonical 

frontoparietal, dorsal attention, and default networks can be subdivided into interdigitated 

sub-networks that spatially vary across people (Braga & Buckner, 2017; Braga et al., 

2019), with each sub-network participating in distinct functions (DiNicola et al., 2020). 

Similar refinements have been identified for sensory-biased working memory processes 

within dorsolateral prefrontal cortex (Michalka et al., 2015; Tobyne et al., 2017), and for 

distinguishing language-specific effects from general cognitive-load-related modulation 

in Broca’s area (Fedorenko et al., 2012). This idiosyncratic, fine-scaled organization of 

cerebral cortex had previously been obscured by the statistical need to average functional 

data with low signal-to-noise ratio across individuals, and its identification has called for 

a reconsideration of the degree to which cognitive functions truly overlap throughout 

cortex. The work presented here advances our knowledge on this matter by 

demonstrating that an individual’s spatially refined default network is indeed modulated 

by a number of valuation-related factors. 
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 A key goal of this dissertation was to explore the sources of individual variability 

that could make the brain’s functional network structure difficult to identify. Until 

recently, the comparison of individual-specific functional network arrangements had been 

qualitatively performed using a few highly sampled participants (Braga & Buckner, 2017; 

DiNicola et al., 2020; Gordon, Laumann, Gilmore, et al., 2017; Laumann et al., 2015), 

and some studies purposefully omitted discussion of personalized functional topography 

in ventral mPFC due to BOLD signal artifacts commonly found in this area (Kraus, 2020; 

Tavor et al., 2016). Chapter 2 bridged these gaps by first validating a data-driven method 

to quantify the idiosyncrasy of an individual’s functional brain networks, and then 

demonstrating in a large pool of individuals that the spatial partitioning of canonical DN 

is particularly idiosyncratic in mPFC. Our approach provided evidence that these 

partitionings could be captured without the need to extensively scan each individual (an 

extended sampling procedure proposed by Gordon et al., 2017), making it amenable to 

the data ratio that is more characteristic of task-based neuroimaging studies (i.e., more 

subjects with up to a few hours of scanning). This was fundamental in order to achieve 

the results presented in Chapter 4, which replicated these initial findings using resting-

state scans and extended them to task-based networks.  

 A second potential challenge to high-precision functional mapping stems from 

behavioral variability. Recent work has suggested that the functional boundaries of brain 

regions are flexible and vary with the cognitive states induced by diverse task demands 

(Michalka et al., 2015; Salehi et al., 2019). Within the realm of valuation and decision 

making, people are prone to change their attitude towards repeated decisions in everyday 
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life, depending on aspects of the context. This ecological consideration raised the 

possibility that even for well-practiced tasks, the extent of recruitment of a given region 

of cortex could vary depending on how individuals construe their decision environment. 

These dynamics have often been investigated in the context of learning, and have tended 

to focus on the evolving connectivity within a network rather than its topographic 

organization (e.g. Bassett, Yang, Wymbs, & Grafton, 2014). Capitalizing on the 

fluctuating tolerance for effortful tasks experienced in everyday choices, Chapter 3 

demonstrated that preferences could evolve over time even when the decision 

environment was fully known. Even though foraging scenarios like the one employed in 

this work do usually require decision makers to learn the richness of adaptive 

environments (Constantino & Daw, 2015; Dundon et al., 2020; Garrett & Daw, 2020; 

Stephens & Krebs, 1986), our participants were able to quickly and consistently estimate 

reward-maximizing strategies based on the information we gave them. Within-subject 

choice variability appeared to arise from the way in which individuals construed task 

elements that were not experimentally manipulated (i.e. the hypothesized subjective 

passage of time). We found no strong evidence that similar choice fluctuations played a 

role in the individualized mappings from Chapter 4 (which also provided participants 

with comprehensive knowledge of their options), but it remains possible that alternative 

decision-making tasks would evoke stronger shifts in cognitive state that could impact 

individualized functional mapping.  

 Our findings contribute to ongoing discussions of rigor and reproducibility in 

cognitive neuroimaging. In one recent multi-site study, 70 analysis teams produced 
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inconsistent fMRI results that ultimately failed to replicate a well-known valuation effect 

in mPFC (Tom et al., 2007), even though they used the same large dataset (Botvinik-

Nezer et al., 2020). It is possible that the highly interdigitated DN and non-DN sub-

networks identified here, which showed either opposite or orthogonal functional patterns 

in Chapter 4, overlapped across individuals and reduced the statistical power needed to 

replicate the effects. This phenomenon could also imply the existence of considerable 

false-negatives in the field. These issues could be confronted by adopting inter-subject 

alignment procedures that rely on functional characteristics in addition to structural 

features (Conroy et al., 2013; Guntupalli et al., 2018), some of which utilize gradient-like 

algorithms like the one employed here (Nenning et al., 2020; Nenning et al., 2017).  

 The work presented here is also pertinent to a number of clinical applications. At 

the neural level, the idiosyncratic network layouts exhibited by both task and rest 

networks could pose a problem for treatments that rely on either intra- or trans-cranial 

brain stimulation. Recent work has suggested that personalizing targets for such 

stimulation, either by adjusting stimulation to the spectral composition of reward signals 

or by identifying connectivity-based topography, can improve therapeutic outcomes for 

depression and obsessive-compulsive disorders (Cash, Cocchi, Lv, Fitzgerald, & Zalesky, 

2020; Cash, Fitzgerald, Cocchi, & Zalesky, 2021; Grover, Nguyen, Viswanathan, & 

Reinhart, 2021; Riva-Posse et al., 2014; Scangos, Makhoul, Sugrue, Chang, & Krystal, 

2021). Understanding the extent to which cognitive functions can be isolated in regions 

of psychiatric relevance (such as the reward circuitry examined here) will continue to add 

precision to our treatments. From a behavioral perspective, motivating patients to engage 
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in activities has been suggested as a treatment for severe depression (Dimidjian et al., 

2006). However, the attenuated sensitivity to rewards experienced by this population 

presents a challenge for outcome-based approaches to incentivized behavior (Eisenberger 

& Cameron, 1996; Huys et al., 2013). Chapter 3 provided clues as to what outcome-

independent features of a decision’s environment can make certain types of effortful 

activities appealing. These characteristics, such as the availability of alternative activities 

or the segmentation of a task into discrete components, could benefit treatment-resistant 

patients as well as healthy individuals that fail to pursue otherwise desirable daily 

activities. 

Future Directions 

The neuroimaging findings in this dissertation were purposefully focused on a set 

of brain regions within the canonical default network that exhibit valuation effects 

(mPFC and PCC). Even though this circumscribed search space helped us confront the 

computational demands of fine-scaled connectivity mapping, it also constrained some of 

our interpretations. For instance, our claim that mPFC topography is particularly 

idiosyncratic could be strengthened in future work by comparing this region’s 

heterogeneity to additional heteromodal or sensory areas. Regions such as dorsolateral 

prefrontal, posterior parietal, and lateral temporal cortex also contain default network 

regions and have been targets for qualitative examination (Braga & Buckner, 2017; 

DiNicola et al., 2020; Tavor et al., 2016), but to our knowledge have yet to receive the 

type of quantitative assessment undertaken here. Analyzing those areas would let us 

probe whether the same sub-network that tracked valuation in mPFC and PCC (Chapter 
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4) also overlaps with subregions that encode the decision costs of effort and self-control 

in dlPFC (Chong et al., 2017; Kool, McGuire, Wang, & Botvinick, 2013; McGuire & 

Botvinick, 2010). Finally, expanding the search space would permit a more formal test of 

the graded striatal organization suggested in Chapter 4. Even though this connectional 

gradient has already been functionally observed at the group-level using resting state data 

(Marquand et al., 2017), it remains to be seen whether this scheme persists within 

individuals. More orbital, caudal, and dorsal regions of mPFC than those examined here 

would be needed to provide a complete picture of the circuitry suggested by anatomical 

data (Haber & Knutson, 2010). 

Additional considerations for our neuroimaging results pertain to the nature of 

decision processes. In Chapter 4, we failed to observe the hypothesized interaction 

between an individual’s behavior and functional network topography. This was perhaps 

due in part because behavior was highly stable and consistent across sessions and across 

individuals, and also because the small participant sample was not conducive to establish 

such associations. A potential future approach would be to scan individuals as they 

performed the within-subjects version of the foraging task from Chapter 3, which evoked 

a systematic pattern of behavioral change over time. Another lingering question relates to 

the potential different encoding of different sources of value during decision making. 

Even though the appraisal of diverse prospects appears to rely on a common neural 

currency computed by vmPFC (Chib et al., 2009), some studies have proposed that 

different subregions of mPFC process the value of concrete and abstract prospects (i.e. 

food versus money, respectively; Clithero et al., 2014), and their desirability or goal-
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congruency (Hare et al., 2008; Shenhav & Karmarkar, 2019). Future individualized work 

should examine whether these distinct valuation signals fall within the same or different 

interwoven networks. 

At the behavioral level, Chapter 3 investigated the characteristics underlying 

dynamic preferences for different behavioral costs. The potential interpretation of our 

results in terms of variation in the subjective passage of time remains a hypothesis in 

need of further investigation. Future iterations of the same foraging experiment could 

adapt the configuration of each effortful task in order to test this idea directly. For 

example, if participants estimated the elapsed duration of a trial by counting each sub-

task within cognitive effort trials rather than by tracking time continuously, it should be 

possible to influence acceptance rates by manipulating the number of discrete sub-tasks 

performed during a fixed handling time for either cognitive or physical effort trials. 

Alternatively, if the biases were produced by an inability to direct cognitive resources to 

the estimation of elapsed time (Zakay & Tsal, 1989), increasing working memory load 

during the handling time should reduce the OC biases from our computational model. 

This could be done, for example, by assigning a different level of n-back to each 

participant. These manipulations could identify specific features of the decision context 

that could motivate effortful behaviors in both healthy and clinical populations. 

Conclusion 

Recent neuroimaging work has highlighted the need to consider how different 

sources of individual variability can impact the localization of function in the brain, and 

whether distinct cognitive operations are indeed juxtaposed at the neural level. Building 
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upon this framework, this dissertation provided further evidence that, within individuals, 

the default network can be spatially refined along with at least one other interwoven 

network in mPFC and PCC, and that this arrangement is particularly idiosyncratic in 

mPFC. Further, it demonstrated that some canonical valuation effects are localized to 

each person’s default network, providing support for theories that unite choice evaluation 

and the introspection-related processes associated with the default network as a common 

cognitive domain. The heterogeneous nature of functional topography and decision 

behavior displayed here invites reevaluation of the neural localization of additional 

decision-related processes at the individual level. This understanding can, in turn, 

potentially help craft personalized medical interventions for psychiatric disorders, many 

of which involve the brain’s reward circuitry. 
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