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Abstract11

Underestimation of uncertainty in ecology runs the risk of producing precise, but inaccurate predic-12

tions. Most predictions from ecological models account for only a subset of the various components of13

uncertainty, making it difficult to determine which uncertainties drive inaccurate predictions. To address14

this issue, we leveraged the forecast-analysis cycle and created a new state data assimilation algorithm15

that accommodates non-normal datasets and incorporates a commonly left-out uncertainty, process er-16

ror covariance. We evaluated this novel algorithm with a case study where we assimilated 50 years of17

tree-ring-estimated aboveground biomass data into a forest gap model. To test assumptions about which18

uncertainties dominate forecasts of forest community and carbon dynamics, we partitioned hindcast19

variance into five uncertainty components. Contrary to the assumption that demographic stochasticity20

dominates forest gap dynamics, we found that demographic stochasticity alone massively underestimated21

forecast uncertainty (0.09% of the total uncertainty) and resulted in overconfident, biased model pre-22

dictions. Similarly, despite decades of reliance on unconstrained “spin-ups” to initialize models, initial23

condition uncertainty declined very little over the forecast period and constraining initial conditions with24

data led to large increases in prediction accuracy. Process uncertainty, which up until now had been25

difficult to estimate in mechanistic ecosystem model projections, dominated the prediction uncertainty26

over the forecast time period (49.1%), followed by meteorological uncertainty (32.5%). Parameter uncer-27

tainty, a recent focus of the modeling community, contributed 18.3%. These findings call into question28
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our conventional wisdom about how to improve forest community and carbon cycle projections. This29

foundation can be used to test long standing modeling assumptions across fields in global change biology30

and specifically challenges the conventional wisdom regarding which aspects dominate uncertainty in the31

forest gap models.32

Running Head: Drivers of multi-decadal biomass uncertainty33

Keywords: climate change, paleoecology, tree rings, data assimilation, ecological forecasting, forest commu-34

nity ecology, Tobit Wishart ensemble filter (TWEnF)35

1 Introduction36

Understanding predictability is an ecological grand challenge because ecological predictions provide both a37

road map for scientific learning and a practical tool for real-world decision making. One of the key ways38

to measure predictability is to estimate uncertainties in predictions and how they grow/decline (Dietze,39

2017b). The overall uncertainty can be partitioned into variance components allowing us insight into which40

aspects of the modeling process contribute to the accuracy and precision of an ecological prediction. In41

models of community and population ecology, the variance components of overall prediction uncertainty are:42

demographic stochasticity, internal state (i.e., initial conditions), external forcing (i.e., drivers/covariates),43

parameters, and modeled processes (Box 1).44

Quantification of uncertainty in global change ecology studies have traditionally focused on demographic45

stochasticity, parameter uncertainty, and meteorological forcing uncertainty. The inclusion of demographic46

stochasticity through variation in demographic rates among individuals adds realism to population predic-47

tions and has been theoretically proposed to be important for explaining species coexistence (Tilman, 2004).48

However, it has not been shown that this component of uncertainty is especially important in other aspects of49

model predictability, like prediction of abundance or mass. Second, uncertainty in external forcings, such as50

climate drivers, are often incorporated into forecasts because of large uncertainties about future environmen-51

tal states that are dependent on scenarios (anthropogenic emissions, land use, etc.) about human decisions52

and behaviors (Bonan, 2015). However, over shorter timescales that are less sensitive to human scenarios53

(e.g. daily through decadal) there can still be considerable uncertainty about environmental drivers. Even in54

retrospective “hindcasts”, acknowledging uncertainty in past external environmental drivers is important for55

accurately attributing causal relationships between drivers and resulting ecosystem states. Lastly, parameter56

uncertainty has become a dominant focus of calibration and uncertainty studies (Fischer et al., 2019; Fisher57

et al., 2019; Fer et al., 2018; Reichstein et al., 2019; Raczka et al., 2018). Process models in particular58

often have large numbers of parameters that historically have been under-constrained by data. Even when59
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constrained by data, model parameters have often been optimized to a single “best” estimate that ignores60

both the real uncertainty in parameter values and the common tendency for parameters to trade-off or co-61

vary with one another. Constraining both external drivers and parameters with data has greatly improved62

process-model performance and shown that as data volumes increase parameter uncertainty tends to decline63

asymptotically (Fer et al., 2018; Dietze, 2017b).64

In contrast with the attention given to demographic stochasticity, environmental driver scenarios, and pa-65

rameters, the uncertainty from initial conditions and process uncertainty are seldom considered in ecological66

forecasts. On the one hand, ecological systems are less sensitive to initial conditions than deterministically67

chaotic meteorological systems (Lorenz, 1963; Rabier et al., 1996), and some studies have found initial con-68

ditions uncertainties are often small and decay quickly with time (Bonan et al., 2019; Cox and Stephenson,69

2007). On the other hand, there is substantial historical dependence in ecology (Ricklefs, 1987), and many70

important ecological processes have slow dynamics and long memory (e.g., forest succession). It seems pru-71

dent to consider the impacts of initial condition uncertainty. Pragmatically, initial condition uncertainty was72

often omitted from ecological forecasts because appropriate data to constrain the variety of initial states in73

complex ecological models were rare. Fortunately, increasing amounts of coordinated, large-scale ecological74

data are being collected to constrain these uncertainties (remote sensing, inventory and monitoring data,75

coordinate research networks, etc., LaDeau et al. 2017) that allow us to test how much initial condition76

uncertainty affects prediction.77

Process uncertainty is even less frequently quantified but is also important to include because it represents78

the uncertainty in prediction caused by model simplifications and assumptions (Wikle, 2003; Clark and79

Bjørnstad, 2004; Cressie et al., 2009). In principle, process uncertainty can be estimated in retrospective80

studies by comparing the distribution of modeled state variables to observed state variables. However, this81

is not as simple as calculating a RMSE between modeled and observed time series. Estimating process82

uncertainty requires a robust approach for partitioning, at every point in time, the observation errors in83

the data; the uncertainties about the previous state of the system; and the contributions of parameter84

uncertainty, driver uncertainty, and demographic stochasticity to the growth in error over that time step.85

Such an approach has been possible for simple process models within a state-space modeling framework86

(Clark and Bjørnstad, 2004; Patterson et al., 2008), but has not been available for complex models because87

the estimation process is too computationally demanding.88

To address this issue, we develop a method for fully partitioning the five types of uncertainty (Box89

1) in complex process-based ecological models including a novel generalized state data assimilation (SDA)90

methodology for estimating process error covariance, which heretofore we refer to as process uncertainty. Our91

method uses sequential SDA, an iterative statistical approach that corrects process-model based predictions92
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with field collected data at each time step and restarts the process-model with an update of the ecological93

variables of interest given from the data. Traditional sequential SDA approaches assume that the amount94

of process uncertainty contributing to total forecast uncertainty is known (Kalman, 1960), or that process95

uncertainty is proportional to observation error (Anderson et al., 2009); neither assumption is realistic for96

ecological systems. To address this limitation, we extend existing approaches to incorporate an estimate of97

the process uncertainty (i.e., the difference between the true state of the system and the forecast).98

To make our approach more concrete, we consider the long history of forest gap modeling in ecology99

(Botkin et al., 1972; Solomon et al., 1980; Pacala et al., 1993; Post and Pastor, 1996), focusing on prediction100

of forest stand development at a single site and determining dominating uncertainty components. A forest101

gap model represents forest stand development arising from the birth, growth, and mortality of individual102

trees competing for light, water, and nutrients at the plot level, which is around 30 m2 (Bugmann, 2001). We103

first estimate model process uncertainty by assimilating 50 years of species-level aboveground biomass data104

using our novel SDA algorithm at Harvard Forest into LINKAGES, a well established forest gap model that105

was one of the first to “link” aboveground forest structure and composition to belowground biogeochemistry106

(Post and Pastor, 1996). As a result of our SDA process, we expect that we will improve prediction accuracy107

of aboveground biomass from LINKAGES. We also constrain an unobserved state variable, soil carbon, by108

leveraging the covariance between total soil carbon and aboveground biomass which the model provides. We109

expect that LINKAGES will accurately represent aboveground biomass processes, but that because it has110

been historically difficult to observe and understand the link between aboveground inputs and long-term soil111

carbon accumulation (Todd-Brown et al., 2013) that our aboveground-only constraint will not provide enough112

information to fully constrain belowground carbon pools. After applying the SDA algorithm to estimate113

process uncertainty, we then determine the most important sources of uncertainty by performing variance114

partitioning analysis across eight hindcasts of aboveground biomass from 1960 to 2010 (e.g., backtesting) each115

sequentially adding new components of overall uncertainty. While adding additional sources of uncertainty116

will lead to increased hindcast variance, we also expect that these hindcasts will be a much more accurate117

representation of our confidence in forecasting 50 years of aboveground biomass change than forecasts run118

in the typical spin-up initial conditions, static parameter, and known process uncertainty approaches.119
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This box provides background on each type of uncertainty in ecological process models.

• Internal demographic stochasticity - Demographic stochasticity refers to the variability in pop-
ulation growth arising from random sampling of birth and deaths.

• Internal State (Initial conditions) - Initial condition uncertainty is the uncertainty associated
with the initial state of a system. For example, the number, type, and size of trees in a plot at the
start of a model run.

• External Forcing (Drivers / covariates) - Driver and covariate uncertainty is typically the
uncertainty around external environmental forcings like temperature and precipitation.

• Parameter - Parameter uncertainty arises because of our imperfect knowledge about the parameters
in a model’s equations. Parameter uncertainties can be estimated by calibrating models to exper-
imental or observational data (LeBauer et al., 2013; Fer et al., 2018), but are often fixed to single
values in terrestrial ecosystem models.

• Process - Model process uncertainty is a measure of the ability of the model structure to predict
the latent “true” state of the system after accounting for observation errors in the data. Without
an estimate of process error covariance (multivariate) or process variance (univariate) it is difficult
to determine model completeness. This would be analogous to predicting with a regression model
without considering its RMSE.

120

2 Materials and Methods121

Our methods are divided into four main steps. First, we provide background on the process model LINK-122

AGES and on the data from New England that we use to parameterize, validate, and assimilate. Second, we123

develop a novel sequential state data assimilation algorithm, the Tobit Wishart Ensemble Filter (TWEnF),124

which allows us to avoid a problematic assumption in the commonly used ensemble Kalman filter (EnKF):125

that the process error is known. Third, we ran eight model scenarios that additively include demographic126

stochasticity, parameters, external drivers, and process error. We estimated the last of our model uncertainty127

components, initial conditions uncertainty, by initializing each of the above scenarios with either ‘spin-up’128

initial conditions or data-derived initial conditions. Spin-up initial conditions are created by running the129

model until an equilibrium state is reached; whereas, data derived initial conditions are created by running130

the model until an equilibrium state is reached than constraining the first time point with field collected131

data. Finally, we use the state variable outputs from these eight scenarios to calculate the contribution of132

each uncertainty component to total uncertainty through variance partitioning.133

All of the model analyses took place within the Predictive Ecosystem Analyzer (PEcAn, pecanproject.134

org), an online framework for assimilating data into ecosystem models (Dietze et al., 2013). The specific135

modules we used within PEcAn, besides the basic workflow, were: allometry, sensitivity analysis, and se-136

quential state data assimilation.137
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2.1 Ecosystem model138

LINKAGES (Post and Pastor, 1996) is a forest gap model that links the dynamics of aboveground demo-139

graphic processes with below ground biogeochemistry. At an annual time step, LINKAGES calculates the140

birth, growth, and mortality of individual stems as stochastic species-level functions of four environmental141

factors: soil moisture, growing degree days, available light, and available nitrogen. A decomposition subrou-142

tine governs the transitions of belowground carbon and nitrogen pools arriving as litter cohorts and driven143

by degree days, soil moisture, and soil nitrogen availability (Supplemental Figure 1). We chose LINKAGES144

as our process model because it efficiently captures the annual constraints on growth and mortality that145

match the tree-ring and census data we use to constrain the modeled stand dynamics of our study site, and146

because it has become an iconic depiction of forest gap processes (Bonan et al., 2019). While LINKAGES147

is our case study in this paper, our approach to data assimilation variance partitioning is generalizable to148

many process-based ecological models and data types.149

A full analysis of the ecological dynamics inferred by LINKAGES at our site is beyond the scope of this150

paper and the subject of a separate manuscript (Raiho in prep.). In what follows, we focus on partitioning the151

total uncertainty in our estimates of aboveground woody biomass and soil carbon into the five uncertainties152

in Box 1. Aboveground woody biomass is a species-specific allometric function of stem diameter, which153

grows each year as a stochastic function of the most limiting of four environmental factors for each stem154

at an annual time step. In this study, modeled biomass increment is constrained by the assimilation of155

empirical estimates of aboveground woody biomass increment (See section 2.2). Soil carbon in LINKAGES156

is a stochastic function of the annual decomposition of litterfall cohorts that depends on respiration, which157

is itself a function of the ratio of lignin to nitrogen and actual evapotranspiration (Post and Pastor, 1996).158

We did not empirically constrain belowground state variables directly. Constraints on soil carbon, in this159

study, are indirect through the incoming source to litter pools, aboveground biomass.160

2.2 Data sources and study site161

We modeled the stand dynamics of the Lyford Plot, a 2.9 ha repeat-survey study site at Harvard Forest162

in central New England, USA (Foster et al., 2013) (42.53�N, 72.18�W). The stand initiated around 1900163

following a prior history of grazing and logging. The stand lost chestnut in the 1910s due to the chestnut164

blight, was severely damaged by a hurricane in 1938, and experienced severe defoliation from a gypsy moth165

outbreak in 1981. The species that currently dominate the stand are mature red maple, which is typical of166

the region, and mature red oak, which is found in greater abundance in the stand than is regionally typical.167

The permanent plot was established by Walter Lyford in the 1960s and the diameter at breast height (DBH)168
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and location of all stems over 5 cm DBH have been recorded at approximately decadal intervals since then.169

Additional site information including census collection is available in (Eisen and Plotkin, 2015).170

Our model of stand development at the Lyforfd Plot includes the five species which currently make up171

98% of the stems in the plot: red oak (Quercus rubra), red maple (Acer rubrum), yellow birch (Betula172

alleghaniensis), American beech (Fagus Granifolia), and eastern hemlock (Tsuga canadensis). There are 21173

parameters per species in LINKAGES. To set Bayesian prior distributions for these parameters in our runs,174

we conducted a Bayesian meta-analysis to identify the parameters most needing constraint (LeBauer et al.,175

2013). We subsequently constrained the prior distributions of species-level specific leaf area (SLA) using trait176

data from the BETY database (LeBauer et al., 2018), and of allometric and recruitment parameters based on177

the literature (Catovsky and Bazzaz 2000; Dietze and Moorcroft 2011; Sullivan et al. 2017 in Supplemental178

part 2). These distributions can be found in the Supplemental Materials Section 2.179

We validated the aboveground woody biomass produced by free runs of the model (before data as-180

similation) using biomass estimates from the Harvard Forest Environmental Measurement Station (EMS)181

Eddy Flux Tower (Munger, 2018) that is located approximately 2.4 km to the west of the Lyford Plot.182

The validation data are from DBH measurements collected annually since 1994. Allometric models were183

applied at the species-level using the Predictive Ecosystem Analyzer (PEcAn) allometry module (https:184

//github.com/PecanProject/pecan/tree/master/modules/allometry).185

Starting in the year 1960, we used empirical estimates of annual biomass increment data from the Lyford186

plot to constrain model runs via state data assimilation (see below). Our empirical estimates of biomass187

increment estimates and associated uncertainty derived from a Bayesian hierarchical model informed by188

annual growth increments from tree ring data and DBH at time of coring from the Lyford Plot (Dye et al.,189

2016), as well as from DBH values and tree status the decadal plot resurveys (Dawson et. al In Prep). To190

scale from estimated tree size to total aboveground biomass, taxon-specific allometric equations derived from191

Chojnacky et al. 2014 were used.192

The meteorological drivers for our model runs were an ensemble (n=89) derived by probabilistically193

downscaling meteorological variables (temperature and precipitation) from global circulation models used194

in the Climate Model Intercomparison Project 5 (CMIP5) using a North American Land Data Assimilation195

System (NLDAS) training dataset (0.125 degree, hourly resolution), spanning from January 1979 to present196

(Xia et al., 2012). We used this met product instead of local meteorological data to generate a realistic197

representation of what driver uncertainty would be when making future predictions and to be consistent198

with other data assimilation runs being conducted by the Paleoecological Observatory Network (PalEON)199

(Rollinson et al., 2017). More information about these data sources and how they were processed can be200

found in the Supplemental Materials Section 1.1.201
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2.3 State data assimilation202

We used sequential state data assimilation (SDA) to update species aboveground woody biomass at the end203

of each year from 1960 to 2010. While our analysis was a hindcast, we refer to it as a forecast because we204

ran the model in forward mode, only using data to validate our forecast, post hoc. Our process of sequential205

SDA followed the three steps of the forecast-analysis cycle (Dietze 2017a), repeated annually: 1) Forecast -206

An ensemble of LINKAGES runs (n=89) was used to make a probabilistic forecast of all the model’s state207

variables; 2) Analysis - We performed an SDA analysis of LINKAGES state variable prediction (described208

below). The state variables we assimilated were the biomass of five tree species and soil carbon amount; and209

3) Update - We restarted LINKAGES with new state variable quantities leveraging the updated information210

(Supplemental Materials Section 5).211

2.3.1 Tobit Wishart Ensemble Filter (TWEnF)212

We created a new SDA algorithm called the Tobit Wishart ensemble filter (TWEnF) to account for a213

non-normal likelihood and to estimate process uncertainty associated with LINKAGES during the analysis214

step. Our method is based on the ensemble Kalman filter (EnKF, Evensen 2009). The EnKF assumes215

that the forecast and observations both follow multivariate normal distributions, which allows it to have216

an analytical solution and operate efficiently. The normal assumption of the EnKF is often violated with217

ecological contexts, for instance, where a species might be locally absent while regionally present, or where a218

species may go extinct in a particular model ensemble while abundant on average across ensembles (Martin219

et al., 2005; Hall, 2000). We addressed this common problem by incorporating a Tobit likelihood into our220

analysis step (Figure 1, blue). Furthermore, while the analytical solution is computationally practical, the221

EnKF must make the assumption that process error is known. To estimate process error with data, our222

TWEnF introduces a latent ‘true’ state (Berliner, 1996) in the usual framework of Bayesian hierarchical223

models (Figure 1, pink).224

To estimate process error covariance, we fit the following TWEnF annually to tree-ring derived multivari-225

ate species biomass (y) informed by prior information from the calculated mean (µf ) and covariance (P f )226

of the model ensemble (n=89). We modified the likelihood to account for zero-truncated (or left-censored)227
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data (eqn. 1) then we estimated process error covariance (Q), where228

y ⇠

8
>><

>>:

MVN(xa,R) > yL

yL  yL

(1)

xa ⇠ MVN(xf ,Q) (2)

xf ⇠ MVN(µf ,P f ) (3)

Q ⇠ Inv �Wishart(⌦q,�q). (4)

Let y be the posterior mean of multivariate species biomass from the aforementioned tree ring analysis; R229

be, similarly, the posterior covariance of species biomass from the tree ring analysis; yL be the left censored230

threshold which is equal to 0 in our case; xa be representative of the true multivariate species biomass state;231

(Q) be the covariance of the latent state (xa), with mean (xf ) arising from the forecast ensemble mean (µf )232

and covariance (P f ). We mapped µf and P f to Tobit space in a previous step that incorporates known233

meteorological weights (Papadakis et al., 2010) using a very similar model formulation to the TWEnF, which234

is described further in Supplemental Materials Section 4. Finally, we calculated the analysis mean (µa) and235

covariance (P a) used to restart the ecosystem model as a derived quantity from the estimated latent state236

(xa).237

We updated the estimate of the process covariance (Qt) every time step by updating the shape parameters238

of the Inverse Wishart distribution as follows239

⌦qt+1 = Q̄t�qt+1 (5)

�qt+1 = E


⌦2

rc +⌦rr⌦cc

var(⌦rc)

�

t

, (6)

where ⌦ is the process precision to the process covariance Qt and r and c represent the rows and columns240

of the process precision matrix. In this step of the analysis, Q̄t is the posterior mean estimate of Qt from241

the TWEnF. We assessed convergence at every time step using the Gelman-Rubin convergence diagnostic in242

the ‘coda’ package (Gelman et al. 1992; Plummer et al. 2006) over three MCMC chains of 100,000 iterations243

each. We restarted our workflow with different initial conditions if Gelman-Rubin diagnostics were greater244

than 1.01 for more than two monitored variables.245
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Figure 1: Conceptual diagram of the workflow involved in both the ensemble Kalman filter (EnKF, top)
and the Tobit Wishart ensemble filter (TWEnF, bottom). Each method works in an iterative forecast cycle
(Dietze 2017a) over time (t to t + 1), where the model forecast (blue) is updated by the data (green) into
an analysis (pink), which is used to restart the forecast for another time step. The difference between these
filters is that the TWEnF is generalized for non-normal forecasts and can also estimate the process covariance
matrix over time by updating prior parameters (↵q and �q) at each time step. Let y be data mean, R be data
covariance, µf be forecast mean, Pf be forecast covariance, µa be mean analysis, Pa be analysis covariance,
Qt be process covariance matrix at time t, and xlt be the left censored ecosystem model ensemble values.
In both cases, the analysis analysis mean (µa) and covariance (P a) are taken from the filter and used to
update the ecosystem model states which restart the next ecosystem model forecast.

2.4 Hindcasting uncertainty scenarios246

We used eight model scenarios with additively more types of uncertainty to partition total forecast variance247

between the five components we considered (Box 1). In order to partition uncertainty from initial conditions,248
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we divided the scenarios into two initial condition types: model spin-up (run without data constraints until249

equilibrium is reached, Scenarios A1-4) or informed by data (after spin-up the forecast is constrained with250

data from tree ring derived biomass in 1960 Scenarios B1-4). In each scenario batch (A versus B), initial251

condition uncertainty was the first type of uncertainty added to the default ecosystem model. LINKAGES252

includes demographic stochasticity by default, so the default version of LINKAGES plus initial condition253

uncertainty were scenarios A1 and B1 in this analysis. We then added the following uncertainties sequentially:254

parameter (A2 and B2), meteorological (A3 and B3), and process uncertainty (A4 and B4) (Table 1).255

Parameter and meteorological uncertainties were added by running each ensemble member with a different256

parameter and meteorological set, sampled from the calibration posteriors and meteorological ensemble. By257

contrast, in the default runs (A1 and B1), all ensemble members were run at the posterior means. Finally,258

to incorporate process uncertainty we used the final posterior mean of the process error covariance (Q) from259

the full data assimilation run described in Section 2.3. In this scenario, runs were conducted leveraging the260

forecast-analysis cycle, stopping the model each year to add process error then restarting the process-model,261

but no data constraints were added during the analysis step (except for year 1 in the B1, data constrained262

initial conditions scenario).263

Scenario Demographic Initial Conditions Parameter Meteorological Process
A1 X Spin Up
A2 X Spin Up X
A3 X Spin Up X X
A4 X Spin Up X X X
B1 X Data Derived
B2 X Data Derived X
B3 X Data Derived X X
B4 X Data Derived X X X

Table 1: The types of uncertainty included in each scenario are indicated with an ’X.’

2.5 Variance partitioning264

Variance partitioning allows us to quantify which aspects of uncertainty contribute the least to overall265

uncertainty and pinpoints where we should focus efforts to constrain uncertainty in future predictions.266

We estimated the effect of each source of variance by calculating the difference in variance between pairs267

of scenarios then calculating the cumulative proportion of variance in reference to the final scenario that268

includes all five aspects of uncertainty (Dietze, 2017b). This is similar to analytical approximation methods269

(Hawkins and Sutton, 2009) but our sequential approach accounts for nonlinear interactions that may affect270

prediction.271

Our scenarios did not allow a full variance partitioning because we did not introduce each source of272
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variance independently from the other sources of variance in all possible permutations. Specifically, it was273

not possible to partition initial condition variance because we could not separate initial condition uncertainty274

from demographic stochasticity. However, because we had two sets of scenarios: one with data derived initial275

conditions (scenarios A1-4) and one with spin-up based initial conditions (scenarios B1-4), we were able to276

calculate the covariance between data derived initial condition variance and the other components of variance277

(Cov[A,B], eqn. 7). This calculation shows the duration and magnitude of the impact of data derived initial278

conditions on the forecast variance. As an example, we calculated the magnitude of the interaction terms279

with the following equation for variance between two variables P (parameters) and IC (initial conditions):280

Var [P, IC] ⇡ Var [P ] + Var [IC] + 2Cov [P, IC] (7)

Var[A2] ⇡ Var[B2] + (Var[A1]�Var[B1]) + 2Cov [P, IC] , (8)

where we substitute Var[P, IC] with the variance from scenario A2 (Var[A2]). Scenario A2 includes un-281

certainty from spin-up and parameters. We then also substitute Var[P ] with variance from scenario B2282

(Var[A2]). Scenario B2 includes uncertainty from parameters and constrained initial conditons. Finally, we283

also substitute Var[IC] with the difference between variance in scenarios A1 (spin-up) and B1 (constrained284

IC) where neither include uncertainty from parameters. We used these values to solve for Cov[P, IC], which285

is the covariance between initial condition uncertainty and parameter uncertainty. Following similar logic,286

we can solve for Cov[M, IC] and Cov[Process, IC] using the difference between the subsequent scenario287

variances as the Var[IC].288

3 Results289

3.1 Model Parameterization290

We found that running LINKAGES using the default parameters resulted in inaccurate predictions of forest291

composition and biomass when compared with species-level biomass data from the nearby Harvard Forest292

EMS Tower (Munger, 2018). Free runs of LINKAGES using data constrained parameters improved the293

accuracy of predicted total biomass but not that of forest composition (Figure 2 and Table 2). Under294

default parameterization, LINKAGES predicted that hemlock would be the dominant species, and the stand295

was predicted to have low total stand biomass (⇡ 5 kgC/m2). As is the case at the Lyford plot, red296

oak was the dominant species at the EMS tower plot, and the site had higher total stand biomass (⇡297

15 kgC/m2). Parameters informed from our specific leaf area (SLA) meta-analysis (LeBauer et al., 2013)298
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and literature review for allometric and recruitment parameters (Catovsky and Bazzaz, 2000; Dietze et al.,299

2008; Sullivan et al., 2017) allowed LINKAGES to better represent total forest biomass (⇡ 10kgC/m2) but300

not species composition (Euclidean Distance = 11.52 versus 10.89 with default parameterization). After301

informing parameters with independent data, our parameter uncertainty analysis revealed that there were302

some parameters that could be constrained with model calibration, but that the majority were not causing303

sufficient model sensitivity to warrant a full parameter calibration effort (See supplemental section 3.1).304

R2 RMSE Euclidean Distance
Variable Total biomass Total biomass Species fractional composition

Default Parameterization 0.00076 4.66 10.89
Informed Parameterization 0.040 5.06 11.52

Table 2: Bias diagnostics for the output of LINKAGES free runs compared with Harvard Forest EMS
Tower data showing results from the default and calibrated parameterizations. R2 and root mean square
error (RMSE) are calculated for total stand aboveground woody biomass and Euclidean distances (e.g., root
square sums) are calculated between average species composition vectors over the time period 1998 to 2009.
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Figure 2: Cumulative time series of species-level biomass from LINKAGES run with default parameters
(panel 1) and parameters derived from informative priors (panel 2). We compare these results with tree
diameter at breast height (DBH) data collected from the trees surrounding the Harvard Forest EMS tower
(Munger 2018, panel 3).

3.2 State data assimilation305

Empirical estimates of aboveground biomass derived from tree ring and census observations at the Lyford306

plot showed that red oak, the dominant species in the stand, has accrued biomass over the last fifty years307

while understory species have experienced a few mortality events among individuals. The census was not308

conducted annually, therefore the biomass data has larger uncertainty during periods where an individual in309

the understory has died. For example, the green envelope spanning the data in Figure 3 had high uncertainty310

between 1980 and 1990, a census period that experienced both yellow birch and hemlock mortality. These311
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areas of larger uncertainty allowed us to illustrate an example of successful constraint by our methods, as312

the analysis step (Figure 3, pink) was able to match the variance associated with the data during those313

time periods. We assessed our state data assimilation algorithm by looking at several bias diagnostics:314

average model bias (difference between the observation and analysis over time), mean square error, R2,315

relative absolute error, and absolute mean error (Supplemental Section 6). We also reported the coefficient316

of variation for the average model bias to account for differences in species biomass magnitudes. The highest317

biomass species, red oak, was best represented by LINKAGES with a high R2 between the modeled red oak318

and the data (R2= 0.769) (Supplemental Figure 5). As the most abundant species, red oak unsurprisingly had319

the largest average model bias (-0.82 kgC/m2/yr, 10.86% coefficient of variation (CV), Table 3) and largest320

estimated process variance (diagonal element of process error covariance matrix) among the aboveground321

biomass of species (�2 = 0.25, 14.2% CV). This bias increased over time, indicating that the modeled process322

of red oak mortality and/or growth may need adjustment and agreeing with ecological analyses that red oak323

will continue growing at Harvard Forest in the future (Eisen and Plotkin, 2015).324

The second most abundant species, red maple, had a persistent negative bias (-0.14 kgC/m2/yr, Figure325

2). This negative bias was expected because red maple is the dominant species in the region but is suppressed326

at Harvard Forest by regionally anomalously large red oak (Lorimer, 1984; Abrams, 1998). Both red oak and327

red maple’s negative biases were consistent with the unconstrained (‘free’) run (where oak and maple went328

locally extinct) and suggested a need for red oak and red maple parameter calibration and/or evaluation329

of the ecological competitive process in LINKAGES (Figure 2). However, both species had low estimated330

process variances (�2 = 0.25, 0.13 and 14%, 7% of total process uncertainty respectively, Table 3) indicating331

that LINKAGES modeled representations of the two most abundant species were adequate for prediction so332

long as parameter uncertainty and process covariances are incorporated in the analysis.333
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Figure 3: Species biomass time series illustrating the difference between the model forecast ensembles (blue
points), the data 95% credible intervals (green lines), and the analysis ensembles (pink points) in LINKAGES
state data assimilation of tree ring derived aboveground biomass. The green confidence intervals in front of
the pink and blue points are credible intervals of the tree ring estimated species level biomass. The black
vertical lines indicate time points where data was assimilated: annually between 1961 and 2010. The blue
points are 89 LINKAGES forecasts of one year forward following an analysis (pink). The pink points are 89
species biomass values drawn from the estimates of average species biomass in the Tobit Wishart ensemble
filter (TWEnF). The analysis points are used to restart the 89 model ensemble members for the next cycle of
annual forecasting. The pink points generally align with the mean of the data while the forecasts sometimes
drift from the data. During the time span between some censuses, the data are bimodal and appear to show
wide uncertainty because the timing of mortality events within these census intervals is unknown.
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State Variable Average
Model Bias

(kgC/m2/yr)

Estimated
Process
Variance

Average Forecast Total Biomass (kgC/m2/yr)

Red Oak -0.82 0.25 7.55
Red Maple -0.14 0.13 1.86

Eastern Hemlock 0.06 0.13 0.62
American Beech -0.04 0.13 0.28

Yellow Birch -0.01 0.09 0.22
Total Soil Carbon – 1.03 9.83

Table 3: Model diagnostics ordered by species biomass. Average model bias is simply the modeled mean
minus observed annual means. Estimated process variance (diagonal elements of process error covariance
matrix) for each species is estimated over time using the Tobit Wishart ensemble filter (TWEnF). Average
forecast total biomass is the average modeled biomass for each state variable to give a reference point for
the magnitude of the estimated process variance. For example, red oak is the highest biomass species in the
stand and also has the highest estimated process variance.

We estimated the process covariance matrix, akin to RMSE in linear models (Box 1), associated with334

a process-based ecological model. Linearly increasing posterior estimates for the process covariance matrix335

degrees of freedom over time (Figure 4 left) provided evidence that the estimation of the process covariance336

matrix was increasingly constrained over time and could continue to be constrained by a longer time series337

of data. The values associated with the biomass of each species, along the diagonal of the process covariance338

matrix, were estimated to be small (Table 3 column 3), indicating that annual species biomass accumulation339

process was well represented by the forest gap model (Shugart et al., 2020), once we accounted for uncertainty340

in the data. Similarly, the species correlations in the process covariance matrix were estimated to be small341

with the most significant correlation between species being a small negative relationship between beech and342

red oak (correlation = -0.125, Figure 4). This suggested that, while LINKAGES typically represents beech343

and red oak as having a positive interaction (forecast correlation = 0.105, Supplemental Materials Figure344

9), they were actually more neutral with one another at Harvard Forest according to the tree ring data.345

In the absence of empirical data on changing soil carbon pools, we depended on the mechanistic linkages346

between aboveground and belowground carbon in LINKAGES to constrain soil carbon fluxes. In our runs,347

LINKAGES did not provide a constraint on soil carbon given the aboveground biomass constraint and soil348

carbon pools rose to highly unrealistic levels with a similarly high process variance estimate (�2 = 1.03,349

Table 3). Soil carbon was not estimated to be highly correlated with any species biomass in the process error350

covariance matrix (correlations between -0.009 and .0002), but was somewhat more correlated with species351

biomasses in the forecast ensemble covariance matrix (correlations between -0.238 and 0.168, Supplemental352

Figure 9). The lack of constraint on the flux of soil by aboveground dynamics in our results is puzzling, and353

may reflect undetected errors in our version of the process model.354

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.05.05.079871doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.079871
http://creativecommons.org/licenses/by/4.0/


● ●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ye
llo

w
 B

irc
h

Be
ec

h

R
ed

 O
ak

H
em

lo
ck

To
tS

oi
lC

ar
b

Red Maple

Yellow Birch

Beech

Red Oak

Hemlock

0.011 −0.04

−0.024

0.013

0.045

−0.125

−0.008

−0.002

−0.053

0.03

0.002

−0.002

−0.009

0.007

−0.009

Figure 4: A correlation diagram of the process covariance. The colors in the correlation diagram correspond
to the magnitude and direction of the correlation. The diagonal variances can be found in Table 3.

3.3 Hindcasting uncertainty scenarios355

Across all uncertainty scenarios, data constrained initial conditions reduced model bias and improved root356

mean square error agreeing with ecological hypotheses that forests and potentially many ecological processes357

have substantial historical dependence that should be accounted for by propagating initial condition uncer-358
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tainty. Across most uncertainty scenarios, excluding scenario A1 and B1, data constrained initial conditions359

lowered average forecast variance (Table 4). Scenarios A1 and B1, the default model run with only demo-360

graphic stochasticity and initial condition uncertainties alone (Figure 5, row 1), were precise (average forecast361

standard deviation = 0.32 kgC/m2 and 1.450 kgC/m2) compared to the actual residual error (average ob-362

servation standard deviation = 0.27 kgC/m2). However, the root mean square error between the hindcast363

and the data decreased when the initial conditions were constrained with data (RMSE = 9.81 spin-up initial364

conditions, 4.42 data derived initial conditions; Table 4). The correlation coefficient was closer to one in365

scenario A1 (0.934) versus scenario B1 (0.262) because without data constrained initial conditions biomass366

increases more linearly.367

To represent a full characterization of the state of knowledge of the system, we sequentially accounted for368

uncertainties (scenarios A2-4 and B2-4, Table 4), which illustrated that the true variance in our forecast is369

large. The variance in the spin-up scenarios (A1-4) was consistently larger than the data constrained initial370

conditions (B1-4, Table 4). Accounting for meteorological uncertainty increased variance in the spin-up initial371

conditions (variance increased ⇡ 170 kgC/m2/yr) much more than the data-derived initial condition scenario372

(variance increased ⇡ 10 kgC/m2/yr) (Figure 5, row 3, Table 4). Recognizing process uncertainty allowed373

us to see see the substantial uncertainty in the spin-up initial condition scenario (Figure 5, column 1, row 4)374

and even more so in the data constrained initial condition scenario (Figure 5, column 2, row 4). Accounting375

for process uncertainty reduced model bias (from -1.88 to 0.669) and increased the correlation coefficient376

slightly between the model and the data (from 0.929 to 0.954) in the data derived initial condition scenarios.377

This improvement occurred because the process covariance constrained species biomass by inducing species378

covariances that were not present in the model but were present in the data (Figure 6, Supplemental Figure379

6). In these scenarios, more model ensembles included sub-canopy red maple, yellow birch, and hemlock,380

which were less abundant in scenarios that do not include process covariance (scenarios A1-3 and B1-3).381
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Hindcast
Diagnostic

Scenario Demographic Stochasticity + Parameter + Meteorological + Process

Average
Model Bias

(kgC/m2/yr)

A1: Spin-up IC -9.72 -4.85 -2.89 4.090

Average
Model Bias

(kgC/m2/yr)

B1: Data IC -4.07 -2.23 -1.88 0.669

Correlation
Coefficient

A2: Spin-up IC 0.934 0.972 0.968 0.966

Correlation
Coefficient

B2: Data IC 0.262 0.912 0.929 0.954

Root Mean
Square Error

A3: Spin-up IC 9.81 4.86 3.29 5.39

Root Mean
Square Error

B3: Data IC 4.42 2.35 2.01 2.00

Average
Forecast
Variance

(kgC/m2/yr)

A4: Spin-up IC 0.103 141.0 310.0 326

Average
Forecast
Variance

(kgC/m2/yr)

B4: Data IC 1.450 20.3 30.1 71

Table 4: Model diagnostics for hindcasting scenarios. Data constrained initial conditions reduce model bias
across scenarios. For average model bias, a value closer to zero indicates less bias. For the correlation
coefficient, a value closer to 1 indicates stronger correlation between the predictions and the data. For
root mean square error, a lower value indicates a smaller difference between predictions and data. Average
forecast variance increases as we add more types of uncertainties as expected.
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Figure 5: Individual model ensemble members overlaid with shaded 95% quantiles (outlined in black) of
aboveground biomass results from each uncertainty scenario using spin-up as the initial conditions in the
model (left) and using data to constrain the initial conditions in the model (right). Default was run with
initial condition uncertainty and internal model demographic stochasticity, which vastly under-represents the
true forecast uncertainty (first row). Next, parameter uncertainty was accounted for (second row), followed
by meteorological uncertainty (third row). Finally process uncertainty estimated in the full data assimilation
was accounted for (fourth row). The dotted lines on all the plots are the 95% credible intervals of the data
estimated from tree rings.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.05.05.079871doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.079871
http://creativecommons.org/licenses/by/4.0/


●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0
5

10
15

20

Red Maple

Year

Bi
om

as
s 

(k
gC

/ m
2  )

1965 1975 1985 1995 2005

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

2
4

6
8

10

Yellow Birch

Year
Bi

om
as

s 
(k

gC
/ m

2  )
1965 1975 1985 1995 2005

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●

0
10

20
30

40
50

Beech

Year

Bi
om

as
s 

(k
gC

/ m
2  )

1965 1975 1985 1995 2005

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0
5

10
15

20
25

Red Oak

Year

Bi
om

as
s 

(k
gC

/ m
2  )

1965 1975 1985 1995 2005

●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●

0
5

10
15

20
25

30

Hemlock

Year

Bi
om

as
s 

(k
gC

/ m
2  )

1965 1975 1985 1995 2005

95% Quantiles
Process
Met
Params
Default (Demo. Sto.)
Data

Figure 6: 95% quantiles of species level biomass over time colored by the four data constrained initial
condition uncertainty scenarios (scenarios B1-4). Uncertainty from ecosystem model spin up can be seen up
to 1960 then data constraints greatly constrain the forecasts. Variance from the first scenario arises only from
demographic stochasticity (orange). Parameter, meteorological, and process uncertainty are sequentially
accounted for in the next three scenarios. The dotted lines on all the plots are species posterior means
of the data estimated from tree rings. Note that the y-axes are different between plots to provide better
visualization of the uncertainty components for lower biomass species.

3.4 Variance Partitioning382

Variance partitioning showed that the covariance between the initial condition uncertainty and the other383

types of uncertainties was the dominant variance contributor over time (hashed areas in Figure 7). All384

model scenarios that were run with model spin-up had much larger uncertainty than with data constrained385

initial conditions (Figure 5, column 1 versus column 2). In addition, initial conditions had long lasting386

effects on the magnitude of the total forecast variance (Figure 7). Notably, covariance between initial387

condition uncertainty and parameter, meteorological driver, and process uncertainty decreased significantly388
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over time while the interaction between initial conditions and demographic stochasticity slightly increased389

because inducing different stand types initially increased the variance in stand trajectory over time. Overall390

comparing scenarios A1-4 to scenarios B1-4 shows that a one time constraint on initial conditions was able to391

limit the total variance for 50+ years. The exponential decay constant of the effect of the initial conditions392

on total biomass variance was .08/year, meaning that the half life of the effects of initial condition constraint393

is 4.25 years. However, after 50 years the total forecast variance of the spin-up initial conditions was still394

12.24% higher than the total forecast variance of the data constrained initial conditions.395
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Figure 7: Top: The relative contribution of each type of variance to total aboveground biomass variance.
The hashed areas are the relative variances that can be attributed to the covariance with initial conditions.
For example, over time initial condition uncertainty covariance with meteorological uncertainty (purple)
accounted for a larger proportion of total variance. Bottom: The black increasing line indicates the total
amount of aboveground biomass (kgC/m2) variance partitioned by the relative variance plot. This shows
that while the proportion of variance that process variance is contributing to the total variance decreases
over time that the absolute magnitude of that variance is not necessarily decreasing.

Because we did not assimilate soil carbon data but updated soil carbon based mechanisms in the model396

(litterfall, mortality, decomposition, etc), we considered the soil carbon uncertainty separately from above-397

ground biomass uncertainty. The initial condition constraint was much less apparent in the soil carbon398
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variance partitioning results outside of major outliers (Figure 8, left). Process uncertainty dominated by an399

order of magnitude, reflecting the lack of constraint by our version of LINKAGES on this carbon pool (Figure400

9), which was out of the bounds of any soil carbon pool on Earth. Even though process uncertainty was the401

obvious contributor to total uncertainty, meteorological, and parameter uncertainty also caused total soil402

carbon to drift to extremely large values. The covariance between initial conditions and process uncertainty403

was an increasingly substantial component over time (Figure 8, right), but it was difficult to assess how much404

of a constraint initial conditions could provide given the magnitude of uncertainty for total soil carbon.405
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Figure 8: Individual model ensemble members overlaid with shaded 95% quantiles (outlined in black) of
total soil carbon results from each uncertainty scenario using spin-up as the model’s initial conditions (left)
and using data to constrain the model’s initial conditions (right). The default was run with initial condition
uncertainty and internal model demographic stochasticity (first row). Next, parameter uncertainty was
included (second row), followed by meteorological uncertainty (third row), and finally process error (fourth
row). The y-axis in the fourth row is colored differently to draw attention to the much larger scale in this
row. The instability in the soil carbon reconstruction arises from deterministic cohort dynamics present in
the version of LINKAGES we ran.
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Figure 9: Top: The relative contribution of each type of variance to total soil carbon variance. The hashed
areas are the amounts of variance that can be attributed to the covariance with initial conditions. Process
(pink) uncertainties contributed a large amount of proportional variance to covariance with initial condition
uncertainty. Bottom: The black increasing line indicates the total amount of variance in soil carbon (kgC/m2)
that is being partitioned by the relative variance plot above.

4 Discussion406

In our final modeling scenario (B4), we incorporated five data constrained uncertainties: demographic407

stochasticity, parameter, meteorological, initial condition, and process uncertainty (Figure 5 and 8, bot-408

tom right). This suite of uncertainties represents the current state of knowledge of a 50 year prediction of409

forest stand development at Harvard Forest provided by LINKAGES. While our quantification of the above-410

ground biomass trajectory of the Lyford Plot at Harvard forest is uncertain, this is an accurate depiction of411

the ability of LINKAGES to predict the biomass trajectory of a single stand. The five uncertainties discussed412

here are present, whether we estimate them or not.413

Most predictions of forest succession, however, fail to quantify most of the uncertainties associated with414

their forecasts. We identified 15 papers published between 2008 and 2018 that used forest gap models415
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explicitly for forecasting (Fischer et al. 2015, 2014, 2016; Gutiérrez et al. 2016; Morin et al. 2014; Sun et al.416

2018; Taylor et al. 2017; Boulanger et al. 2018; Foster et al. 2017; Chauvet et al. 2017; Rödig et al. 2017b,a,417

2018). Demographic stochasticity was included in all of them, but only Gutiérrez et al. (2016) accounted418

for any other type of uncertainty. Our study highlights the consequences of ignoring these uncertainties.419

As an illustrative example, in the top left panel of Figure 5, the default parameters of LINKAGES make420

precise predictions of the stand’s above ground woody biomass, which are well outside of the distribution of421

empirically observed AGWB. To address such a poor hindcast, modelers typically would ‘tune’ parameters422

until the model hindcast had improved and accept the tuned model as a reasonable estimate of the observed423

state variable (Bugmann et al., 2001). This approach misleadingly attributes model bias entirely to parameter424

uncertainty, distorts the prediction through post hoc analysis, and presents a forecast that is artificially425

precise and accurate (Wramneby et al., 2008). By systematically quantifying and partitioning total forecast426

uncertainty, we demonstrate that parameter uncertainty makes a relatively small contribution to the forecast427

of AGWB at Harvard Forest using LINKAGES. Instead, we found that the vast majority of uncertainty in the428

forecast is due to initial conditions and process uncertainty, two sources of variance that are rarely estimated429

or included in ecosystem modeling. A focus on the reduction of process and initial conditions uncertainty430

would represent a substantially different approach to improving the predictive power of gap models than the431

direction of the bulk of current research efforts and default modeling assumptions.432

4.1 Demographic stochasticity, parameter, and meteorological uncertainty433

Our results indicate that relying on demographic stochasticity alone to characterize the variability in eco-434

logical processes may result in overconfident and inaccurate model forecasts. Predictions using stochastic435

forecast gap models could be misleading scientists, managers, and policy makers because the model pro-436

jections appear precise, while also appearing to account for uncertainty, but are only accounting for a tiny437

fraction (0.09%) of uncertainty in the projection in our case study.438

Overemphasis on local parameter tuning may lead to overconfidence in predictions and will decrease439

the ability of a model to be generalizable across new sites (Wramneby et al., 2008). Model calibration and440

inclusion of parameter uncertainty via ensemble methods are rapidly becoming much more common practice441

in ecosystem modeling (Fischer et al., 2019; Fisher et al., 2019; Fer et al., 2018; Reichstein et al., 2019;442

Raczka et al., 2018). We informed our parameter distributions with an independent meta-analysis, but did443

not perform an additional calibration, and this decision may have increased our estimated process uncertainty.444

However, the overall contribution of parameter uncertainty was relatively modest (18%) suggesting parameter445

variance is not a dominant source of uncertainty in our analysis.446
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We found that meteorological uncertainty was increasingly important over decadal hindcasts (Figure447

7). While hindcasting in this circumstance is much easier than forecasting because we hindsight allows448

us to know what happened over the last 50 years at Harvard Forest, we deliberately chose meteorological449

drivers to mimic the uncertainty of driver uncertainty in a true forecast. Our work agrees with studies450

showing the importance of carefully constructing future climate scenarios, as climate uncertainty increasingly451

contributes to total forecast variance (Feddema et al., 2005). Our analysis adds to previous work suggesting452

that meteorological uncertainty increases over time in comparison to parameter uncertainty (Lovenduski453

and Bonan, 2017; Bonan et al., 2019) by showing that the covariance between initial condition uncertainty454

and meteorological uncertainty may be contributing to the long-term increase of total forecast uncertainty455

observed by more complex forest demographic models (Raczka et al., 2018). Constraining the starting456

conditions of a forest stand gave us much more predictive power on the effects of varying climate on future457

stand productivity.458

4.2 Initial conditions459

Initial conditions have long been shown to affect successional pathways in temperate forests (Myster and460

Pickett, 1990). We found that initial condition uncertainty was the dominant source of uncertainty over our461

60 year hindcast (Figure 7, hashed areas). Our findings on initial conditions agree with Alexander et al.462

(2017) and Ge et al. (2018) showing that model spin-up, and underlying equilibrium assumptions, could lead463

to very large, persistent uncertainties (Figure 5 left versus right). While it may be difficult to find field data464

to derive initial condition uncertainty estimates for longer term model simulations, it is always possible to465

construct informative priors about initial condition states from past ecological literature (Cressie et al., 2009;466

Hobbs and Hooten, 2015). Our analysis suggests that focusing efforts on data constrained initialization will467

be the most successful approach for improving forecast accuracy across forest gap models (68% reduction in468

total forecast variance from data constraints), even on multi-decadal timescales.469

Large scale data are becoming increasingly available for terrestrial ecosystem model initialization, with470

advances in airborne and remote sensing measurements being particularly transformative. Not only can471

optical measurements be used to map canopy properties like leaf area index (LAI), but recent technological472

advancements in lidar, radar, and microwave remote sensing have improved our ability to map structural473

plant characteristics, like volume and canopy height, that are more directly related to terrestrial carbon pools,474

like total aboveground biomass (Goetz et al. 2009; Le Toan et al. 2011; Chave et al. 2019; Schepaschenko475

et al. 2019; Smith et al. 2020) as well as abiotic initial conditions, such as soil moisture (Entekhabi et al.,476

2010). In addition, hyperspectral remote sensing can provide us with the ability to map Plant Functional477
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Type (PFTs) distribution globally (Shiklomanov et al., 2019). The Ecosystem Demography (ED) modeling478

team has demonstrated the effectiveness of remotely sensed Light Detection and Ranging (LiDAR) data for479

constraining initial conditions and decreasing near term forecast uncertainty (Hurtt et al. 2004; Antonarakis480

et al. 2014), a capacity that is now becoming applicable anywhere via the the Global Ecosystem Dynamics481

Investigation (GEDI) global LiDAR data product (Dubayah et al., 2020). These new measurements will482

provide terrestrial ecosystem models with significantly better data derived initial condition constraints than483

current spin up approaches (Schimel et al. 2015) and will greatly reduce uncertainty in both near-term and484

long-term forecasts of forested ecosystems.485

4.3 Process uncertainty486

Complex ecological systems often feature high dimensional interactions between state variables. This leads487

to process-based models that are highly and increasingly complex, which nonetheless remain imperfect488

representations of true ecosystem processes. In simpler ecological models, accounting for process uncertainty489

can result in more accurate predictions of modeled states as well as lead to ecological insights about which490

model processes need the most improvement (Cressie et al., 2009; Wikle, 2003). It is unclear if the trend491

towards increased model complexity in forest ecosystem models leads to increased predictive accuracy (Green492

et al., 2005; Hooten and Hobbs, 2015), as robust estimates of process uncertainty have, until now, been493

unavailable. The approach developed here moves beyond typical calculations of residual and validation errors494

and provides an estimate of process uncertainty that is dynamic (time-point to time-point) and quantifies the495

uncertainty remaining after accounting for all the other uncertainties discussed above, including observation496

error. Our approach allows us to propagate process uncertainty into ecological forecasts, which heretofore497

has generally been absent from process modeling approaches.498

We found that process uncertainty contributes substantially to total forecast variance (Figure 7 and 9,499

pink). The particular process model we used, LINKAGES version 1.0, is something of a classic (Bonan et al.,500

2002), but it is an older model that has since been replaced in most modeling applications. It may be that an501

alternative process model would be better at predicting 60 years of forest stand dynamics that still requires502

testing to prove. We do note that the process covariance estimation itself is quite small (Table 3), suggesting503

that LINKAGES does adequately capture annual forest development changes. However, a small annual error504

is magnified over time, resulting in large 50 year uncertainty. Our estimate of process error covariance in505

LINKAGES over the data assimilation time period (50 years) suggests there are errors in modeled species506

mortality and recruitment, especially in red maple, that led to notable process uncertainty over many years.507

This finding aligns with previous studies in New England showing that the competitive relationships between508
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red maple and red oak are difficult to understand and therefore predict (Lorimer, 1984; Abrams, 1998; Eisen509

and Plotkin, 2015).510

The large impact of process uncertainty on forecast certainty suggests that future efforts might benefit511

from parsing out specific components of process uncertainty. This could include comparing alternative error512

models or the spatial and temporal autocorrelation in the process uncertainty, looking for evidence for513

heteroskedasticity, and partitioning of process uncertainty into bias and variance components. Some of the514

variability currently attributed to process uncertainty might also represent random individual variability515

(Clark et al., 2007) not currently captured by the model. Hierarchical modeling approaches (Clark et al.,516

2005) provide a means of partitioning this variability (Dietze, 2017b). New emulator methods are emerging517

to apply hierarchical approaches to complex process models (Fer et al., 2018).518

4.4 Soil carbon519

Constraining belowground soil carbon with aboveground productivity inputs has been a hallmark of our520

understanding of the evolution of long-term soil carbon accumulation (Meentemeyer, 1978; Aber, 1982;521

Solomon, 1986). LINKAGES mechanistically links aboveground biomass production, which was well con-522

strained in our model thanks to SDA, to soil carbon through input from litter and tree mortality. But,523

the pools of soil carbon were not constrained by aboveground inputs in our model and grew to unrealistic524

levels. Variance partitioning reveals that this lack of constraint is caused by both process and initial con-525

dition uncertainty (Figure 9). But, parameter and meteorological uncertainty also yield hindcasts that are526

far from reality (Figure 8). While the link between aboveground and belowground pools has typically been527

assumed to be a quadratic cumulative relationship (Jenny, 1941), our work suggests that more evaluation528

is necessary to determine a better modeled representation. We also must add that, despite diligent model529

testing, it is possible that errors in our version of LINKAGES might have produced this result. Some forest530

gap models have alternative links between aboveground inputs and belowground pools (Friend et al., 1997),531

but it is unclear if more complex processes or different processes would reduce forecast uncertainty. In order532

to improve the link between aboveground inputs and belowground accumulation we agree with the sentiment533

in (Huber et al., 2020) that multiple model representations of unclear mechanistic processes should be used534

for predictions. We suggest that future directions focus on incorporating a variety processes known to affect535

the evolution of soil carbon beyond aboveground inputs using ensemble based methods. Furthermore, more536

variance partitioning exercises like those demonstrated here would efficiently point to which aspects of soil537

process modeling need the most attention in order to forecast long-term soil carbon.538
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4.5 Future Directions539

Beyond forest gap models, our results call into question the conventional wisdom in many areas of ecological540

modeling more broadly, such as the reliance on “spin-up” initial conditions and the exclusion of process541

uncertainty from predictions. Most ecological forecasts are made without the inclusion of key uncertainties,542

with many made purely deterministically, leaving out uncertainty quantification altogether (Cressie et al.,543

2009). This common practice creates projections that may be precise but are often inaccurate. Similarly,544

many ecological fields focus on specific aspects of uncertainty without considering the full suite of possible545

sources of uncertainty. In particular, a lesson we learned, that demographic stochasticity is not the dominant546

uncertainty on forest gap models, likely extends more broadly, suggesting that the current reliance on specific547

uncertainties or stochasticities in other ecosystem modeling fields may be misleading ecologists about the548

dominant drivers of uncertainty. Similarly, many ecological projections have focused on uncertainty in549

parameters and meteorological drivers (Kremer, 1983; Eberhardt, 1987; Regan et al., 2002; Grimm et al.,550

2005; Zwart et al., 2019). While it is clear that these uncertainties do contribute to ecological modeling551

in general, it remains unclear what the relative contributions of parameter and meteorological uncertainty552

are to total forecast uncertainty across different spatial and temporal scales. For example, conventional553

wisdom suggests that initial condition uncertainties are likely to decrease over time, and climate scenario554

uncertainty is likely to increase with time (Cox and Stephenson, 2007; Dietze, 2017b). This crossover could555

vary enormously across systems, as could the impacts of other uncertainties.556

Improving predictions of ecosystems properties not only leads to more efficient progress in advancing557

basic research and theory but also enhancements for decision makers and stakeholders. We demonstrated558

the power that uncertainty quantification has in ecology to reveal which long-standing modeling assumptions559

(spin-up initial conditions are sufficient; models with demographic stochasticity included are sufficient to560

capture uncertainties; process uncertainty is negligible) are not upheld by data and what steps can be taken561

to immediately increase forecast accuracy in forest gap modeling. These lessons are not unique to forest562

ecology. Moving forward, there is a critical need to extend analyses like these to more ecosystems, additional563

models, and larger spatial and temporal scales. This extension will allow ecologists to assess the generalities564

of our conclusions and to understand variation of the relative importance of different uncertainties across565

systems (Dietze, 2017b). Demographic stochasticity, parameter, meteorological, and process uncertainties566

are quantities that are measured across scales and systems. These types of methodologies can be used to567

quantitatively move toward better and more useful ecological predictions through systematic evaluation of568

the contribution of each uncertainty to total forecast uncertainty across different scales and systems.569
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