
c© Copyright by Prasad G. Naldurg, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


MODELING INSECURITY: ENABLING RECOVERY-ORIENTED SECURITY WITH
DYNAMIC POLICIES

BY

PRASAD G. NALDURG

B.E., University of Mysore, 1996
M.S, University of Illinois at Urbana-Champaign, 2000

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2004

Urbana, Illinois



To my mother and sister, in memory of my father.

iii



Our only security is our ability to change.

John Lilly

Abstract

Policy engineering for access-control security has traditionally focused on specification and verifi-

cation of safety properties (“nothing bad happens”). In most real systems however, resources and

access mechanisms are regularly compromised, either maliciously by attackers, or inadvertently

due to vulnerabilities caused by poor systems-engineering. I argue that the all-or-nothing nature of

assurance provided by safety-engineering cannot describe or reason about systems that are secure

and survivable—systems that can be engineered to proactively or reactively change their security

policies and policy enforcement mechanisms, and thereby continue to provide assurance for critical

resources, in spite of compromises and failures.

In this thesis, I present a framework that extends traditional state-transition models of access

control security, to describe timing guarantees and stochastic behavior, and show how we can

introduce notions of information compromise, subsequent recovery (whenever possible) and flexible-

response in a modular fashion. Our framework is also capable of describing insider attacks. I show

how we need to focus on liveness properties (“something good eventually happens”) to explicitly

capture the temporal and dynamic nature of enforceable guarantees required for survivability. I

develop a new class of properties expressed as branching-time temporal logic formulas that focus

on secure availability as a measure of survivability. For finite-state models, the validation of these

formulas is decidable in polynomial time using automated model-checking techniques.

To showcase the expressive power of our framework, I apply it to study network Denial of Service

(DoS) attacks, and model resilience to such attacks as a survivability property. I show how we can

systematically analyze the relative impact of different anti-DoS strategies by changing policies and

mechanisms during an attack. Using our automated verification methodology, we formally prove for

the first time whether strategies such as selective filtering, strong-authentication, and client-puzzles

reduce the vulnerability of an example network to DoS attacks.

iv



Acknowledgments

I take this opportunity to thank all the people who gave me the freedom to indulge in this thesis-

writing experience with their generous material and moral support. First and foremost, I thank

my advisor Prof. Roy Campbell for his faith in my abilities and for always finding the financial

resources to fund my research. Most of the ideas in this thesis have benefited from his insight, and

have sharpened over time through our discussions. His critical comments and questions, as well as

his boundless enthusiasm for new ideas, has improved the quality of this thesis greatly.

I also thank the members of my committee Prof Dennis Mickunas, Prof. Klara Nahrstedt, Prof.

Robin Kravets, and Prof. Jose Meseguer, for their constructive feedback and suggestions that have

added great value to my understanding of the subject. I would also like to express my gratitude

to my academic advisor Prof. Geneva Belford, who put me on track and encouraged me to pursue

my dreams, to Prof. Mike Faiman, for his useful advice during the first three years of my studies

at the University of Illinois, and to Prof. Harandi for his support.

To my friends and colleagues at SRG, this thesis has benefited greatly from your support

and feedback. I thank Apu Kapadia, Seung Yi, and Jalal Al-Muhtadi for always accommodating

requests to read my papers, and for attending my practice talks time and again without complaining.

I have also greatly enjoyed my interaction, at various points along the line with Manuel Roman,

Fabio Kon, Dulcineia Carvalho, Chris Hess, Chris Andrews, Cristina Abad, Chetan Shivashankar,

Cigdem Sengul, Suvda Myagmar, Geetanjali Sampemane, and Brian Ziebart.

To my friends in Champaign-Urbana, too numerous to name individually, I owe you my sanity,

and for making life really pleasant and enjoyable in the middle of the cornfields, even in sub-zero

temperatures.

I also express my gratitude to Anda Ohlsson, Andrea Whitesell, Bonnie Howard, Barb Cicone,

Chuck Thompson, Pat Patterson, Lori Rogers, Erna Amerman, Mary Beth Kelley and the rest of

v



administrative staff at the Department of Computer Science for all your help and support, and for

working behind the scenes and simplifying my life at the department.

To my mother Geetha, I cannot express in words how much I appreciate your unconditional love

and support all through the years, and for the sacrifices you made to give me the best opportunities

in life. To my sister Shubhashree, younger but infinitely wiser, for all the love and advice, and for

being there for me always. To my extended family of innumerable aunts, uncles, cousins, deceased

grandparents, my brother-in-law, and other friends and well-wishers, for all your good wishes and

for all the caring and sharing.

Finally, to my father who passed away last year, I only wish I could turn back the clock, and

share this milestone in my life with you.

vi



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Policy Models and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Need for Recovery-Oriented Security . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Modeling, Specifying and Verifying Survivability . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Modeling Insecurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Specifying Survivability Properties . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Verifying Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Access Matrix Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Protection State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Safety Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Safety Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Information Protection Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Modeling Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Modeling Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.5 Hybrid Models and Role Based Access Control . . . . . . . . . . . . . . . . . 33

2.3 Looking Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Semantic Model of Policy Enforcement . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Modeling Insecurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Specifying Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



3.3.2 Example Specification and Verification of Survivability Properties . . . . . . 50
3.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 4 Modeling Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Towards a More Expressive System Model . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Modeling Stochastic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Modeling Real-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.3 Temporal Logics for PNSes and TPNSes . . . . . . . . . . . . . . . . . . . . . 67

4.2 Recovery Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1 Adversaries and Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Defining Survivability Properties . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Validating Survivability Properties . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Analysis of Degradation of Access Control Survivability . . . . . . . . . . . . . . . . 77
4.4 Dynamic Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Implementing Access Controls . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Changing Access Control Rights . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Enforcing Safety and Preserving Trust . . . . . . . . . . . . . . . . . . . . . . 84
4.4.4 Applying Dynamic Access Control to Dynamic Environments . . . . . . . . . 90

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 5 Denial of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1 Modeling DoS Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.1 Background on Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Modeling A DDoS Victim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Modeling a Network Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 Specifying and Verifying Server DoS Properties . . . . . . . . . . . . . . . . . 106
5.2.3 Effectiveness of Different Server DoS Prevention Strategies . . . . . . . . . . 108

5.3 Modeling Client DDoS Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.1 Modeling End-to-End Delay for Clients . . . . . . . . . . . . . . . . . . . . . 112
5.3.2 Specification and Analysis of Client DDoS Survivability Properties . . . . . . 115
5.3.3 DDoS Prevention Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1 Modeling Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Access Control Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 Models of Access Control Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4 DOS Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.1 Formal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.2 DDoS Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.3 QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

viii



APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Appendix A Semantics of CTL∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Appendix B PRISM Code for PNS of DDoS Victim Server . . . . . . . . . . . . 140

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

ix



List of Tables

2.1 Primitive Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Transitions for Example System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Model Checking Branching-Time formulas . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Maximum Number of Lists Processed . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Authorizations for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Authorizations for MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

x



List of Figures

3.1 Event Graph for Ideal Access Control Decisions . . . . . . . . . . . . . . . . . . . . . 42
3.2 Fault graph for Access Control Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Behavioral Specification for Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Behavioral Specification with Compromise . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Behavioral Specification with Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 State-Transition Graph of Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 DDoS Victim Server as a PNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Server Computation Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4 Impact of Changing Attack rates for a Fixed Service Rate . . . . . . . . . . . . . . . 108
5.5 Impact of Changing Service rates for fixed Attack rates . . . . . . . . . . . . . . . . 111
5.6 Example Client Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.8 Strong Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.9 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xi



List of Abbreviations

AL Access List

BLP Bell and La Padula

BST Basic Security Theorem

CL Capability List

CSL Continuous Stochastic Logic

CTL Computation Tree Logic

CTMC Continuous Time Markov Chain

DAC Discretionary Access Control

DoS Denial of Service

DDoS Distributed Denial of Service

DTMC Discrete Time Markov Chain

HRU Harrison, Ruzzo, and Ullman

MAC Mandatory Access Control

MDP Markov Decision Process

ORCON Originator Controlled

PCTL Probabilistic Computation Tree Logic

PNS Probabilistic-Nondeterministic System

xii



RA Response Action

RBAC Role Based Access Control

SPM Schematic Protection Model

TAM Typed Access Matrix Model

TPNS Timed Probabilistic-Nondeterministic System

TSS Timed State Sequences

TTS Timed Transition Systems

xiii



In all affairs, it’s a healthy thing now and

then to hang a question mark on the

things you have long taken for granted.

Bertrand RussellChapter 1

Introduction

Security engineering for information protection begins with the specification of security policies.

An information protection system consists of a set of information resources that can be accessed

by different sets of users. Policies are specified within the framework of an abstract system model

that describes relevant system entities and their behavior. An information protection policy or a

security policy specifies what is and what is not allowed by different entities in the system, in

terms of their information access behavior and interaction [21, 42].

Policies are enforced by security mechanisms that form an integral part of the system imple-

mentation. Distinguishing between policy and mechanism allows one to model security requirements

at a higher level of abstraction, independent of how they are actually implemented across different

platforms.

A system is secure if the set of all possible actions allowed by the mechanisms is a subset of the

authorized actions described by the policies. The system is precise if the set of all actions enabled

by the mechanisms is exactly the same as the actions authorized by the policy specification.

The process of describing security requirements, such as confidentiality or integrity properties in

an information protection system using appropriate terminology, and analyzing whether the system

implements these requirements is called assurance.

In this thesis, I argue that existing models of information protection systems cannot model sur-

vivability—the ability of a system to continue to provide assurance under threat or actual attack.

In particular, I investigate how response actions(RAs) by trusted users to change security policies

and their corresponding enforcement mechanisms, can provide flexible-response against threats and

attacks in an information protection system. For example, in the case of a buffer overflow attack,

1



restricting the access rights of a compromised process can preserve the confidentiality and integrity

of sensitive information. I demonstrate how this ability to change policies and mechanisms in a

controlled manner can extend the nature and scope of security guarantees for critical information

resources.

Historically, security engineers have attempted to validate the design of information protection

systems using an abstract mathematical model of dynamic system behavior. These formal models

of information protection systems provide security engineers with a framework to analyze what

security properties a system can guarantee as it evolves over time. The process of proving that a

system model is secure with respect to a security policy (or property), also called policy engineering,

can be divided into three inter-related tasks: system modeling, policy specification, and policy

verification.

An important point to note here is that proving that an abstract system model can satisfy

a security policy specification does not imply that the system is secure. In order to prove that

the system is secure, it is necessary to show that the system correctly implements the model.

In general, it is difficult to establish this fact for any sufficiently large or complex system, and is

outside the scope of this thesis. I focus on the ability to specify security properties in the framework

of an abstract model, and verify that this model satisfies the security property of interest. This

methodology has exposed several critical design flaws and provided a terminology for describing

provably secure systems, and as such plays an important role in security engineering.

In the next few sections of this chapter, I briefly summarize existing models of access control

security (Section 1.1), explain what I think is a major limitation of modeling security as safety

(Section 1.2), justify why I think it is important to think beyond safety, present a short overview

of how I extend this formalism to model and describe survivability, and highlight the important

contributions of this thesis (Section 1.3).

1.1 Policy Models and Properties

A system model is an abstract description of the users and resources of an information protection

system, and actions that represent information access and modification behavior. Resource access

is specified by an access control model. Access control is the most commonly used mechanism

2



to enforce information protection policies in operating systems and networks. Formal models of

access control behavior are typically specified as state-transition graphs. A state, also known as

a protection state, is a snapshot of the sets of subjects, objects, and a data-structure called the

access matrix that represents relevant policy assertions in the system at a particular point in time.

A transition changes the values of some or all of these sets, in response to an action issued by a

subject, and captures the evolution of the system over time.

Security policies model desirable properties of this access behavior. The process of policy

verification involves validating that the access control mechanisms conform to the behavior de-

scribed by system policies. In terms of the state-transition graph, the goal is to ensure that all

states reachable from a known initial state that is consistent with the policies, through authorized

transitions that correspond to mechanisms, are also secure. This reachability condition is what is

called a safety property on the graph.

A property is a set of finite or infinite sequences of states [3]. Safety properties specify “nothing

bad happens”. If a “bad thing” happens in an infinite sequence, then it must do so after a finite

prefix and must be irremediable. Thus if a given model (or state-transition graph) does not satisfy

a safety property, then there must be some prefix of states and transitions for which no extension

to an infinite sequence will satisfy the property. Therefore a property is called a safety property [2]

if and only if each execution violating the property has some finite prefix violating that property.

Traditionally, the relationship between policy and mechanism is expressed as the access control

safety property. This property states that access should be allowed in a system if and only if

the corresponding right-to-access is authorized by system policy. Enforcing this property is usually

trivial if the protection state does not change over the lifetime of the system. In most system

configurations, these access rights can change in authorized and unauthorized ways over time. For

example, a user or administrator can choose to delegate or transfer the right to access an object

(typically objects that they own) to other users in the system.

Harrison, Ruzzo, and Ullman [67] were the first to formalize this relationship between autho-

rization and rights-transfer behavior for secure access control in their HRU access-matrix model.

They discuss this in the framework of a state-transition model where the state represents a snapshot

of entities, resources, and policies in the system, and the transitions are actions that can change

3



the protection state. They use this framework to describe how an access right can “leak”, whereby

a user can obtain permissions to access an object that he or she is not allowed to access according

to the policy. Using this abstraction, they reformulate the access control safety question as follows:

“Is there an algorithm that can decide if the transfer of a generic right violates the security policy

of an access control system?”

Their results show how verifying this reformulated safety question for access control for a general

access control model is undecidable. Denning et al. [40] further prove that the prospect of developing

a comprehensive theory of assurance based on this question, or even a finite number of theories is

unattainable. These results however do not rule out the existence of restricted models of access

control behavior whose assurance is decidable. Following these results, a paradigm shift occurred

in the formalism of access control security, and researchers [74, 98, 118] began to look at restricted

notions of rights-transfer to ensure that answering the reformulated safety question is efficiently

decidable.

In addition to this formalism of access control security, researchers have also looked at secu-

rity policy models from the view-point of users in the system. The three standard user-oriented

security properties are confidentiality, integrity, and availability. Confidentiality properties model

information disclosure, and are enforced on read-access by access control mechanisms. Integrity

policies model authorized modification of information and are enforced by controlling write-access

in a typical system implementation. An availability policy, as the name indicates, models the ability

to access information over time, and has not been as well-studied as the other two [42, 21].

The most popular model of user-oriented security policies is the Bell-LaPadula (BLP) model [14]

of confidentiality. In this model, each subject or object in the system is assigned a security level.

The set of levels forms a lattice-like hierarchy. The right to access an object depends on the security

level of both the subject and object. The BLP model specifies rules that have to be enforced by

access control mechanisms in order to guarantee security. If the mechanisms can prevent read-

access to a higher level, or and write access to a lower-level, then the system can never enter an

“unsafe” state. A system is said to be secure under the BLP model if all states reachable from a

known safe state are also safe. Biba [20] proposed a dual of the Bell-LaPadula model for integrity,

and other rule-based models that constrain access behavior by defining “authorized” transitions in

4



a similar fashion have been proposed [30, 62, 25].

The BLP model was further refined by McLean [87], who exposed a critical weakness of this

formalism by arguing that it can be trivially satisfied by a system that downgrades the security

levels of all users and objects, and subsequently allows all accesses. As a result, the “Principle of

Tranquility” was introduced to the modeling process, where a user’s level is allowed to change only

in authorized ways before or after an access request.

An important point to note in all the models summarized so far, is the emphasis on modeling

security as safety properties. This property is typically verified by performing a reachability analysis

on a state-transition graph created by starting with a safe initial state and expanding it to include all

states reachable by authorized transitions that apply at each state. In all these models, assurance is

provided by modeling “good behavior” in terms of authorized states and transitions, and asserting

“bad things” are not allowed to happen. In the next section, I argue that this is a major limitation

of existing information assurance models.

1.2 The Need for Recovery-Oriented Security

We motivate the need for a new model of access control security by questioning the assumptions

made by existing approaches. The HRU, BLP and other state-of-the-art formalisms model only

desirable behavior. In all these models, the relationship between policy and mechanism is implicit.

The access control decision is made based on whether the right-to-access can be found in the access

matrix. The assumption is that since only authorized users can change this matrix, in accordance to

the policy, the system is secure. No checks are made to ensure that the mechanisms are consistent

with the system policies at runtime. The policies themselves are not available in the system in any

other form.

In real systems, access control mechanisms are routinely compromised. I present two represen-

tative examples to illustrate this point: :

• The first example is the privilege escalation attack. In most standard operating systems,

users are classified into two authorization or privilege classes: superuser and regular. A

regular user can typically only change access rights to objects he or she owns. A super-user

5



on the other hand is allowed to change any entry in an access-rights matrix.

A privilege escalation attack is when the control of a process running as superuser is hijacked

by a regular user, e.g., through a buffer-overflow attack. The attacker subsequently launches

other processes, such as an interactive shell, which now run as processes with super-user

privileges. The attacker can now assign itself any access-right in the system, thereby compro-

mising the security of the system. However, the policy-enforcement mechanisms in the system

are unable to detect this attack, since they only check if these newly updated access-rights

are present in the access matrix, and allow the masquerading user to execute “unauthorized”

actions. As a result of this attack, all confidentiality and integrity policies in the system may

be compromised. The situation where an access matrix may contain insecure access rights

is not factored into the design of these enforcement mechanisms, even though this behavior

is clearly insecure. Privilege escalation is very common, especially in buffer-overflow attacks,

which constitute up to 80% of all reported attacks on computer systems [36].

• Another example where a system mechanism may not always enforce a policy correctly is

a resource-exhaustion or denial of service (DoS) attack, where a legitimate user is denied

access to an authorized resource by the resource-access mechanisms, either because of system

overload, or because of resource-hijacking by malicious users. This unavailability of a resource

to a legitimate user, because of actions by unauthorized users, cannot be expressed adequately

by existing models of access control.

In the first example presented above, the system enters an insecure state by executing an

unauthorized transition. However, the policy enforcement mechanisms are unable to recognize this

attack. If this behavior could be modeled, whenever an escalation of privilege is attempted, the

system may be able to intervene and restrict the operations the process, or any processes it spawns,

can execute in the future. If there is no attack, no restrictions are necessary.

Since runtime monitoring and intervention can be expensive, many Unix systems handle this

problem by designing what is called a chroot jail [29] that constrains the address space visible

to a process running with super-user privileges. The aim of these jails is to restrict the damage

caused by a privilege escalation attack. However, an attacker could still succeed in violating some

6



system policies. Achieving this balance between functionality and choosing appropriate restrictions

can become complicated.

In the second example, this behavior temporarily impacts the availability of an uncompromised

resource to legitimate users in the system. It may or may not impact the confidentiality or integrity

of the information 1. In recent years, network DoS attacks have become extremely popular with

attackers, who attempt to deny legitimate users access to networked information resources. These

transient aberrations in policy enforcement behavior are largely ignored by current models of access

control security, which lack the expressive power to include fine-grained representation of resource-

consumption behavior.

Another motivation for a more expressive model is our claim that the ability to perform an

RA and change access control policies to preserve the security of uncompromised entities, in re-

sponse to a vulnerability exposure is a powerful attack-prevention and damage-containment mech-

anism [85, 26]. Moreover, it is frequently used in practice (e.g., changing firewall rules) to increase

the survivability of the system.

Describing an attack, whether it is a violation of a safety property, or an availability requirement,

and modeling the effectiveness of countermeasures (such as RAs) against such attacks cannot be

expressed as simple safety properties. A safety property ceases to be true once an unauthorized

transition occurs. We cannot describe the effect of a recovery strategy that can restore this property

at a future state in the system as a safety property. In Section 1.3, we argue that we need to focus on

what are called liveness properties (“something good eventually happens”), to describe survivable

systems. A property is a liveness property if no partial execution (in terms of states and transitions)

is irremediable. That is, every finite execution prefix in a model contains at least one continuation

where the property can be satisfied eventually.

In the next section, I explain how to extend the traditional state transition access control model,

specify policies that can describe survivability properties, and explore methodologies to verify this

property within the framework of this model.
1If integrity encompasses the notion of freshness of information, this may be viewed as an integrity failure.

7



1.3 Modeling, Specifying and Verifying Survivability

In Section 1.2, we argue informally how the all-or-nothing nature of safety engineering cannot

describe or reason about the ability of a system to pro-actively or reactively change its policies or

mechanisms and survive a threat or an attack.

With this as our motivation, we develop a new policy engineering methodology, starting with

a more expressive model in Section 1.3.1, and define a new class of policies in Section 1.3.2. We

explore the use of automated verification and monitoring techniques for this class of survivability

properties in Section 1.3.3, summarize the major contributions of this thesis, and present a road-

map in Section 1.3.4.

1.3.1 Modeling Insecurity

In order to develop a theory of recovery-oriented security that focuses on the ability of a

system to change its mechanisms to survive threats and attacks, I argue that we need to extend the

standard state-transition model to include actions that model how an attacker or adversary can

influence behavior at a given state in the access control model and cause an insecure transition

to occur. In the context of the access control model, this undesirable behavior can take one of two

forms:

1. An access-request that is not authorized by system policy is executed by an attacker, or

2. An access-request that is authorized by system policy cannot be serviced.

The first type of insecure transition models malicious behavior of an adversary who deliberately

violates system policy. As a result, the system may evolve to a state where the integrity or confiden-

tiality of information is compromised. The second type of transition models resource-engineering

limitations that cause the policy enforcement mechanisms to fail (e.g., in a DoS attack). In both

cases, it may be possible to recover from this insecure behavior if e.g., a system administrator

intervenes and assumes control over future behavior. Note that it may not always be possible to

recover from compromise. The confidentiality or integrity of information may be lost permanently,

or the resource may become permanently unavailable. In this case, the system may operate under

8



weaker guarantees, or parts of the system that are unaffected by the compromise can continue to

operate securely.

We formulate our notion of a recovery strategy, in the context of a state-transition model of

access control augmented with policy assertions. These assertions capture the impact of executing

both secure and insecure transitions on a protection state in our model. We use a standard model

of state-transition graphs called Kripke structures [33], which are typically used to represent qual-

itative aspects of temporal system behavior. The need to model time is implicit in our notion of

recovery. A state in a Kripke structure is captured by the set of atomic propositions, including

policy assertions, that are true in that state. A state evolves when any of these atomic propositions

change their value as a result of an action issued by an entity in our system.

Within this framework, a recovery strategy is specified as a state-transition subgraph that starts

from an insecure state, evolves through a sequence of secure and insecure states through transitions

that model both the attacker’s and the system’s interactive behavior.

We identify two types of users in this context: adversaries and controllers. An adversary

issues a request that is capable of causing an insecure transition. A controller can change the

behavior of different entities in the system using a response action (RA), including adversaries

(possibly). A recovery strategy is effective if the controller can always force the execution of the

system to choose a path that ends in a secure state. A recovery strategy is property-preserving

if it is effective, and we can assert specific qualitative or quantitative properties along its paths.

In many cases, it may not be possible to model an adversary or a controller’s behavior in a

strategy deterministically. In the case of the buffer-overflow attack, the system cannot know a

priori if an attack is being attempted. In the case of a DoS attack, the attacker’s behavior can be

modeled in terms of inter-arrival times between attack packets. Such probabilistic behavior can

be studied by modeling different entities as stochastic processes. Motivated by these examples,

we show how to extend our state-transition graphs to represent probabilistic and nondeterministic

behavior using a Probabilistic Non-Deterministic System (PNS) [109, 110].

While qualitative and probabilistic statements about the effectiveness of a strategy are impor-

tant, it is sometimes also useful to model time explicitly to make quantitative statements about

the effectiveness of different recovery strategies. I show how we can extend our model carefully to

9



include timing guarantees using the abstraction of a timed-transition system (TTS) [5] to make the

quantitative analysis of such systems tractable. An extension of this representation using a Timed

PNS (TPNS) is useful for specifying real time in these models.

A PNS or TPNS can be reduced and analyzed as a purely stochastic discrete-time Markov chain

(DTMC), or include continuous time as a continuous-time Markov chain (CTMC). In addition, they

can also be analyzed as a Markov Decision Processes (MDPs) when nondeterminism is present.

Analysis of such state-transition systems is sufficiently mature and we show how we can adapt

these techniques for analysis of survivability properties.

1.3.2 Specifying Survivability Properties

A more expressive model is only the first step in this new theory of recovery-oriented security. In

order to express and evaluate the effectiveness of RAs in recovery strategies, we define a new class

of security properties called survivability properties that explicitly model the ability of a system

to recover from information compromise. This formulation is explored in the context of whether

the behavior of a critical system service can survive attacks and continue to provide useful service

from the viewpoint of legitimate users in the system.

When comparing two different models of resource access and consumption, availability lets us

contrast their ability to recover from policy failures or insecure behavior in quantitative terms.

The longer the system can operate securely without being subject to integrity or confidentiality

compromise or a DoS attack, the longer the resource is available, and therefore usable by legitimate

users in the system. However, once a compromise occurs, the shorter the time it takes to restore

the system to an authorized state using an RA, i.e., the shorter the recovery time or unavailability,

the better the strategy. We can therefore measure survivability by bounding how long the system

can remain secure, before “something bad happens,” as well as how fast it can recover (if it can),

when something bad happens in the system.

Our notion of survivability models the recovery behavior of a system under attack or threat

of attack. We are interested in the situation when something bad happens, and want to evaluate

if something good can eventually happen. This formulation of survivability is a special type of

liveness property. We are specifically interested in the state-transition behavior of strategies that

10



capture the interaction between adversaries and controllers. Survivability properties specify quali-

tative and quantitative bounds on recovery. To specify such constraints on recovery strategies, we

use well-known branching-time logics, especially CTL [33] (Computation Tree Logic), PCTL or

Probabilistic CTL for DTMCs and MDPs, and CSL (Continuous Stochastic Logic) for CTMCs.

Survivability properties are expressed as bounded-response properties in this context.

We showcase the applicability of our framework by modeling the network DoS problem using

our extended access control model, and show how we can define resilience to DoS as a survivability

property. We also show how we can evaluate the effectiveness of different anti-DoS strategies using

our model and its accompanying validation techniques.

1.3.3 Verifying Survivability

The next step in survivability engineering is the verification of these properties within these different

system models. Specification and verification of different types of temporal logic formulas in a PNS

is well-understood [19]. In particular, defining system behavior using the graph-based formalism

of Kripke models, specifying safety and liveness properties using temporal logic over traces of

computation in this model, and verifying if the model satisfies these properties are all sufficiently

mature areas of model-checking research [33]. Therefore, we can leverage these techniques directly

and automate the verification process of survivability assurance, relying on existing tools and

methodologies. Furthermore, we can integrate future developments in this area into our models

seamlessly.

Model checking is useful to evaluate the existence or non-existence of an effective recovery

strategy and quantify bounds on recovery times. Automated model-checking is only decidable for

finite-state models of concurrent behavior. For large finite-state models, it may become computa-

tionally expensive and suffer from what is called the state-space explosion problem. Our approach

to describe and evaluate strategies is inherently modular, and reduces the size of the system we

are modeling by design. Furthermore, standard techniques such as abstraction, symmetry and

composition can reduce this overhead further. In this thesis, I show how we can model the network

DoS problem using our formalism to showcase the expressive power of our framework and present

a proof-of-concept application of these techniques to show that it is feasible.

11



A complementary technique that can be used to evaluate the properties of different strategies

that may not be finite-state is run-time verification. Run-time verification techniques define mon-

itors that can observe finite traces of system behavior and evaluate what properties are satisfied

by these traces. Even if the behavior of a system cannot be described using finite-state semantics,

the observable behavior of a system can be modeled as a finite set of traces. Evaluating temporal

logic formulas over finite traces for safety properties is well studied, and is infeasible for generic

liveness properties. Recent results [79] show how a restricted version of liveness called “bounded

availability” can be monitored on execution traces.

An important point to note here is that given an abstract model of an existing system, we may

not always be able to guarantee recovery. Our analysis may expose the weaknesses in the model that

make it impossible to provide such assurances. In this case, a system-designer may be able to choose

which resources to isolate from the rest of the system, in order to keep a smaller, but more critical

subsystem immune to the threat of attack. Because of dependencies and trust relationships, large

parts of the system may need to be disabled to keep it survivable. Our survivability engineering

framework can help the designer make these choices.

1.3.4 Summary of Contributions

Exploring how access control mechanisms and resource-consumption behavior can be made surviv-

able, extending the traditional state-transition graph with explicit insecure states and transitions,

including time and stochastic behavior, modeling the notion of recovery from compromise, speci-

fying and analyzing survivability as safety and liveness properties of subgraphs of system behavior

using automated verification and run-time monitoring techniques, formalizing the network DoS

problem as a survivability property, and analyzing the relative costs and benefits of different DoS

prevention strategies, are all original contributions of this thesis.

The rest of the thesis is organized as follows: In Chapter 2 of this thesis I present a detailed

discussion of existing models of access control security, as well as different types of security prop-

erties. In Chapter 3, I define my thesis problem, situate it in the context of background research,

and describe my extended behavioral model of access control. With the help of this model, I de-

scribe how to specify survivability, recovery, and DoS-free behavior as availability properties and

12



study recovery using dynamic access control in Chapter 4. I explore the DoS problem and describe

formalisms to specify and verify DoS resistance and resilience properties in Chapter 5. Chapter 6

presents related research, including work on formal models of DoS prevention, fault-tolerance, sur-

vivability, availability, dynamic access control, and DoS attacks and prevention strategies. I present

my conclusions in Chapter 7, with a summary of contributions, lessons learned, and future work.

13



A theory has only the alternative of being

right or wrong. A model has a third

possibility: it may be right, but irrelevant.

Jagdish Mehra, The Physicist’s

Conception of Nature, 1973Chapter 2

Background

In this chapter, I present a summary of background research in the context of security policy

terminology, formal specification, and policy verification. This chapter is a description of the state-

of-the-art with respect to modeling of information protection policies, and motivates the problem

I describe in Chapter 3.

In the next few sections of this chapter, I describe how information protection systems are

specified formally as state-transition models, and how the notion of information security is expressed

as safety properties (“nothing bad happens”) that can be verified within the framework of these

models. I also highlight several fundamental results with respect to what types of properties can

be verified within the framework of these models.

I begin this chapter with a description of access matrix models in Section 2.1 that forms the

basis for the formalism of the policy engineering process.

2.1 Access Matrix Models

The principal mechanism for information protection in most systems is access control. If imple-

mented correctly, access control can ensure that all accesses to resources are authorized by the

system policy, thereby preventing inadvertent or malicious information exposure. An information

protection system is typically described using an access matrix model. An access matrix describes

the set of authorized access rights in the system. An access right is a relation between a subject,

object and a privilege. For example, an access right of the form 〈userU , f ileF , read〉 specifies that

subject userU has the right to read file object fileF .

14



The access matrix model was first formulated by Lampson [82] in the context of operating sys-

tems and refined by Graham and Denning [61, 43]. A similar abstraction, developed independently

and called a security matrix, was introduced by Conway et al. [34] in the context of databases.

The effectiveness of access control depends on two important pre-conditions [42]: proper user

identification using appropriate authentication mechanisms, and protection of access rights from

unauthorized modification. The first condition, the ability to prevent impersonation of subjects is

crucial to secure information access. In addition, the safety of any access control system rests on

the ability of the system to restrict who can access and modify, add, or delete access rights.

In 1976, Harrison, Ruzzo, and Ullman developed a formal version of the access matrix model [67]

as a state-transition graph that captures the dynamic behavior of protection systems. This model

is commonly referred to as the HRU model, and defines access control as a safety analysis [21]

problem. The states in an HRU model correspond to a snapshot of the active entities, information

resources, and authorizations in the system represented by the access matrix, and the transitions are

actions (such as add entity, delete right etc,) that can change the access matrix. Different security

policies are defined as safety properties that can be validated by expanding the state-transition

graph to model the dynamic behavior of the system. Using this model, Harrison et al. study the

feasibility of proving properties about a high-level abstract model of a protection system, as the

system evolves over time.

With the help of their model, they prove that in the most general abstract case, the security of

computer systems, defined as safety properties in the framework of their model, is undecidable.

They show that the prospect of developing a comprehensive theory of information protection that

is general enough to provide automatic proofs or disproofs of safety is unattainable [42].

To put this result in perspective, it states that there are fundamental limitations on our ability

to prove properties about a generic abstract model of a protection system. Systems without severe

restrictions in their operations will have security questions that are too expensive to answer. As

a consequence of this result, researchers have shifted their focus from looking for a general theory

of safe systems, to the construction of specific protection system models that can be shown to be

provably secure [74, 98, 118]. These models explore the nature and scope of practical restrictions

that need to be imposed on the models to make safety questions tractable.

15



I describe the HRU model in Sections 2.1.1 and 2.1.2, and highlight the important results

and their consequences with respect to the design of abstract models of secure systems in 2.1.3

and 2.1.4.

2.1.1 Protection State

In the HRU model, the protection state of a system is defined by a triple (S,O,A) where:

1. S is the set of subjects, or active entities in the model.

2. O is the set of objects or protected entities in the system. Each object has a unique name.

Subjects are also considered to be objects; thus S ⊆ O.

3. A is an access matrix, with rows corresponding to subjects and columns to objects. An entry

A[s, o] lists the access rights of subject s over object o.

In an operating system, subjects are typically processes, users, or domains. Objects can be

files, processes that represent services, or other resources. Access rights specify different kinds of

accesses that may be performed on different objects, including read, write, execute and append.

Special rights include the own right that represents ownership information, as well as the copy

right that allows its possessor to grant rights to another subject or set of subjects.

In the next subsection, I describe the set of transitions of the HRU model that capture the

evolution of the protection state over time.

2.1.2 State Transitions

As processes execute in the system, the protection state of the system may change over time, in

response to actions initiated by subjects. This change in state is captured by commands in the

HRU model. The HRU model assumes that there is a reference monitor associated with every

object that implements the policy enforcement mechanisms and controls access to the object. This

concept was introduced by Graham and Denning [61]. A monitor for object o prevents a subject s

from accessing o if A[s, o] does not contain the required right.

The HRU model identifies six primitive operations that can change the protection state of

a system. These correspond to the number of ways subjects, objects, and rights may be added or

16



op conditions new state
enter r into A[s, o] s ∈ S S′ = S

o ∈ O O′ = O
A′[s, o] = A[s, o] ∪ {r}
A′[s1, o1] = A[s1, o1] ∀(s1, o1) 6= (s, o)

delete r from A[s, o] s ∈ S S′ = S
o ∈ O O′ = O

A′[s, o] = A[s, o]− {r}
A′[s1, o1] = A[s1, o1] ∀(s1, o1) 6= (s, o)

create subject s′ s′ /∈ O S′ = S ∪ {s′}
O′ = O ∪ {s′}
A′[s, o] = A[s, o], s ∈ S, o ∈ O
A′[s′, o] = φ, o ∈ O′
A′[s, s′] = φ, s ∈ S′

create object o′ o′ /∈ O S′ = S
O′ = O ∪ {o′}
A′[s, o] = A[s, o], s ∈ S, o ∈ O
A′[s, o′] = φ, s ∈ S′

destroy subject s′ s′ ∈ S S′ = S − {s′}
O′ = O − {s′}
A′[s, o] = A[s, o], s ∈ S′, o ∈ O′

destroy object o′ o′ ∈ O S′ = S
o′ /∈ S O′ = O − {o′}

A′[s, o] = A[s, o], s ∈ S′, o ∈ O′

Table 2.1: Primitive Operations

deleted from the system. The conditions required to execute these commands and their effect on

the protection state are summarized in Table 2.1.

Executing the primitive operator op in system state Q = (S,O,A) causes a transition to state

Q′ = (S′, O′, A′), written as Q |=op Q
′ under the conditions shown in Table 2.1. A command in the

HRU model consists of a possible condition followed by one or more primitive operations written

as follows:

command c(x1, · · · , xk)

if r1 ∈ A[xs1 , xo1 ] and

17



r2 ∈ A[xs2 , xo2 ] and

· · ·

rm ∈ A[xsm , xom ]

then

op1;

op2;

· · ·

opn

end.

Here r1, · · · , rm are rights (m ≥ 0), s1, · · · , sm and o1, · · · , om are integers between 1 and k.

The effect of a command c(a1, · · · , ak) with actual parameters a1, · · · , ak, on a state Q, yields

state Q |=c(a1,··· ,ak) Q
′ as follows:

1. Q′ = Q if any one of the conditions of c is not satisfied, and

2. Q′ = Qn otherwise, and there exist states Q0, Q1, · · · , Qn such that:

(Q = Q0) |=op1 Q1 |=op2 · · · |=opn Qn,

which denotes the action of executing primitive operation opi after substituting the formal

parameters xi with the actual parameters ai.

The HRU model provides the basic abstractions, in terms of primitive operations, which can be

combined together using conditional commands to describe the access control behavior of a protec-

tion system. For example (adapted from Bishop [21]), a process p creating a file f with own, read

r, and write w permissions in a UNIX system can be specified as follows:

command create file(p, f)

create object f ;

enter own into A[p, f ];

enter r into A[p, f ];

enter w into A[p, f ];

end

18



The next example shows how one can specify preconditions on primitive operations. In this spec-

ification, a process p can give another process q the right r to a file f only if it owns f . This is

written as follows:

command allow transfer right(p, q, f, r)

if own in A[p, f ]

then

enter r into A[q, f ];

end.

The above examples demonstrate the expressive power of the HRU model.

In Section 2.1.3 next, I describe the safety question, i.e., under what conditions does the abstract

model presented above implement a generic algorithm to automatically determine if the system is

secure.

2.1.3 Safety Question

Given an abstract model of a particular access control system, the question that has interested

researchers is the following [21], “Is there a generic algorithm that will allow us determine or prove

if this model is secure?”. The quest for the answer to this question has driven policy engineering

research for the past two decades. In order to answer this question, one first needs to define what

is meant by the term “secure” precisely.

The configuration of an access matrix describes what subjects can do, not necessarily what they

are authorized to do. Within the framework of the operations in the HRU model, protection policies

or security policies divide the states and transitions of a model into two types: authorized and

unauthorized. Authorized states correspond to those states explicitly allowed by the specification.

By default, all other states are unauthorized. Transitions are only allowed between authorized

states.

Access control mechanisms can enforce the system’s security policies by ensuring that the phys-

ical states of the system correspond to the authorized states of the abstract model. This is achieved

by ensuring that a system is never allowed to initialize in an unauthorized state and unauthorized

19



actions from authorized states are restricted by resource access mechanisms (e.g., interceptors,

monitors, etc.) that also enforce the policy. These mechanisms typically intercept access requests

and apply a test of policy membership to decide if the action is allowed or not, according to the

policy specification.

A policy in the context of a protection system specifies whether a particular set of subjects can

access a specific set of objects, and what actions (rights) the entities are authorized to perform,

either individually or as a group, on this set of resources.

I now present an example of a protection policy using the notation from the previous section. A

simple Discretionary Access Control (DAC) Security Policy can be specified formally as follows [42]:

Definition 2.1.1 (DAC Policy). Let Q = (S,O,A) be an authorized state such that own ∈

A[p, f ] for subject p and file f , but r /∈ A[q, f ] for subject q and right r. Let Q′ = (S′, O′, A′) be a

state such that Q |=c Q
′ and r ∈ A′[q, f ]. Then Q′ is authorized under the DAC policy if and only

if c = allow transfer right(p, q, f, r).

This policy states that only owners of objects are allowed to transfer rights to other subjects.

For the access control model described in Sections 2.1.1 and 2.1.2, Harrison et al. studied

the feasibility of proving properties about the security of an abstract system model. They define

unauthorized behavior using the notion of a leaked right, and a safe state or authorized state as

follows:

Definition 2.1.2 (Leaked Right). A right r is leaked by a command c that when run in a state

Q, executes a sequence of primitive operations and enters right r into some cell of A not previously

containing r.

Definition 2.1.3 (Safe State). Given a system, an initial state Q0, and a right r, we say that

Q0 is safe for r if there is no sequence of system requests that, when executed starting in state Q0,

will write r into a cell of the access matrix that did not already contain it.

In many systems, leaking rights is allowed by the policies. For example, the DAC policy specified

above intentionally allows the owner of an object transfer rights to other subjects. This type of

transfer, specifically allowed by the policy is called authorized transfer. Therefore the system

20



may be implementing the policy correctly, but the initial state of a system may not be safe with

respect to all rights r. The security verification question therefore is whether the transfer of a right

r violates the protection policies of the system. This is typically expressed as follows:

Definition 2.1.4 (Safety Question). Is there any algorithm that can decide if the transfer of any

generic right r (or leaking) violates the security policies of a given protection system whose initial

state is Q0?

In Section 2.1.4, I summarize the results of the safety question for the HRU model and show

how it has impacted the design of safe systems.

2.1.4 Safety Analysis

Harrison et al. showed that access control safety, as defined in the previous subsection, is undecid-

able for an arbitrary protection system. They showed this by encoding the behavior of a Turing

machine, such that the leakage of a right corresponds to the Turing machine entering its final state.

If the safety question is decidable, then so is the halting problem. However, since the halting

problem is undecidable, the safety problem is also undecidable.

Denning, Denning, Garland, Harrison, and Ruzzo [40] further proved that the prospect of

developing a comprehensive theory of protection, or even a finite number of theories is unattainable,

since this set is not recursively enumerable. Since the set of all safe theories is not recursively

enumerable, it cannot be recursively axiomatizable, and therefore, systems for proving safety are

necessarily incomplete.

While these fundamental results appear discouraging, they do not exclude the possibility of

generating smaller classes of safe systems with more constrained behavior that are decidable.

In the same article, Harrison et al. show safety is decidable if no new subjects or objects can be

created, and that it is PSPACE complete. They also explore the decidability question for a special

class of systems called mono-operational systems. A mono-operational system is one where

each command performs a single primitive operation. For this class of systems, once again, they

show that safety is decidable. Mono-operational systems are too weak to express many policies of

interest [94]. They cannot express policies that give subjects special rights to objects they create (for

example creating a child process). Harrison et al. also proved that the safety problem is decidable

21



for systems that are both monotonic (no destroy and delete) and monoconditional (only one clause

in the condition). Such systems are still very limited as far as expressing useful properties.

As an important consequence of these results, much of the research into theory of safe systems

shifted from proving if arbitrary security systems are safe, to designing systems that were secure

from first principles. To keep the analysis of leaking rights simple and tractable, most practical

models (such as Unix) severely restrict a subject’s right to grant privileges to other subjects, and

forbid further delegation of these rights.

Examples of protection systems that have decidable theories for the safety question include

the graph-based formalism of the Take-Grant model [74] introduced by Jones, Lipton and Snyder.

Vertices in the graph correspond to subjects and objects. Edges are directed and encode whether

rights can be taken or granted between the entities. A set of graph-rewriting rules codifies how the

Take-Grant graph can evolve over time.

Jones et al. show that the safety question is decidable for the Take-Grant model, even if the

number of subjects and objects that can be created is unbounded. In addition, it is decidable in

time linear to the size of the initial state. An important point to note here is that the Take-Grant

model only describes the transfer of authority in the system, and does not describe the protection

state, thus abstracting only the information needed to answer the safety question. Lipton and

Snyder have also shown that the safety question for systems [83] with a finite set of subjects is

decidable, but computationally intractable.

The Schematic Protection Model (SPM) by Sandhu [118] is closer in spirit to the HRU model

and uses the abstraction of security types. A type acts as a generic class label for an entity. Rights

can be of two kinds: inert rights and control (such as take and grant) rights. Manipulation of rights

is controlled by two relationships: link predicates and filter functions. Link predicates capture the

relationships between subjects with regard to transfer of rights, and the filter functions impose

conditions on when transfers can occur. Sandhu shows that this model has a decidable subset

that is more expressive than the Take-Grant model. Amman and Sandhu [7] extend this work and

describe a model that is formally equivalent to a monotonic HRU, but with decidable safety.

More recently, Sandhu describes the Typed Access Matrix model (TAM) [117], which introduces

strong typing to the HRU model. The type of an entity is fixed when it is created and remains

22



fixed throughout the lifetime of the model. The TAM operations are the same as HRU operations,

except that the create operations are augmented with types. Sandhu shows that a monotonic

TAM model, like monotonic HRU, is undecidable. However if one avoids cyclic creates, safety is

decidable. If all monotonic TAM commands are limited to three parameters, the resulting model

becomes decidable in polynomial time. This model is the current state-of-the art for generalized

access control policies [21, 94].

The HRU analysis and the results of safety analysis of other models discussed in this section

show how it is hard to analyze propagation of access rights, even if we have complete knowledge of

the mechanisms of propagation. However, the notion of policy in these generalized access control

models does not directly capture the primary security concerns that are of interest to most users of

an information protection system, in terms of what resources are visible to what users and how they

can be modified. In the next section, I show how the three standard properties, viz., confidentiality,

integrity, and availability, directly address how information access rights and mechanisms affect

users in the system.

2.2 Information Protection Policies

Traditionally, information protection is defined in terms of confidentiality and integrity policies

within the framework of an abstract state-transition model of a protection system. Information

Flow security is another desirable property and is intrinsically related to confidentiality. Availability

is also often mentioned as a desirable information security property but is not as rigorously studied

as the other two and there are no formal definitions of availability policies in this framework.

A major part of this thesis is dedicated to the study of availability policies, as a measure of

survivability of confidentiality and integrity properties. Therefore, as background information, this

section presents a brief overview of existing models of integrity and confidentiality policies, and I

defer discussion of existing models of availability properties to Chapter 6.

In Section 2.2.1, I present standard definitions of confidentiality and integrity policies from the

viewpoint of a set of subjects and their ability to access and modify information resources. In

Section 2.2.2 and Section 2.2.4, I describe confidentiality and integrity policies, and follow it up

with a discussion on information flow in Section 2.2.3.

23



2.2.1 Basic Definitions

Confidentiality deals with concealing information, and preventing unauthorized access to a resource.

Integrity refers to preventing unauthorized modification. They are formally defined as follows

(adapted from [21]):

• Confidentiality: A confidentiality policy PC with respect to subset C ⊆ O of objects par-

titions the set of subjects S into two sets SC and SC . Subjects in SC have no knowledge of

the existence or contents of the information resources in C, nor can they access it using any

of the rights in A[s′, o], ∀s′ ∈ SC . PC explicitly specifies rights r that subjects s ∈ SC can use

to retrieve specific information from C.

• Integrity: An integrity policy PI with respect to subset I ⊆ O of objects partitions the set of

subjects S into two sets SI and SI . Subjects in SI are not allowed to modify the information

in I. PI explicitly specifies rights r that subjects s ∈ SI can use to use to modify specific

information in I. Changes made by any entity in SI are trusted by all entities in SI .

Information flow policies are an alternative way of looking at information protection. An in-

formation flow policy quantifies the effect of observing a set of information requests and responses

and inferring the protection state of the system from this process.

From the description of the access matrix state-transition model, and the definition of different

security policies, one observes that confidentiality and integrity policies can be enforced by inter-

cepting and validating actions against the policies, and denying the action if the corresponding

policy cannot be found in the system. For example, confidentiality applies to read-permissions, and

integrity to write-permissions in a filesystem. Therefore policies act as guards on the transitions

between protection-state configurations.

The access matrix A should at all times only contain rights that are specifically authorized by

these policies. Furthermore, access should be allowed if and only if the access right can be found

in the system. This property is called the access control safety property. Let R be the set of rights

in the system, and P = {〈s, o, r〉|s ∈ S, o ∈ O, r ∈ R} be the set of confidentiality and integrity

policies. The operator 2 is the standard “henceforth” operator from temporal logic and is useful to

24



describe invariants that have to be satisfied by states and transitions in the model. Access control

safety in the framework of the access matrix model is specified as follows:

Definition 2.2.1 (Access Control Safety).

2((r ∈ A[s, o] ↔ 〈s, o, r〉 ∈ P ) ∧ (allow access(s, o, r) ↔ r ∈ A[s, o]))

In the next subsection, I describe the Bell-La Padula model for confidentiality. This model

implements what is called the military-style classification based scheme for ensuring confidentiality

in information protection systems.

2.2.2 Modeling Confidentiality

One of the primary security concerns of users in an information protection system is that they

are often unaware of what a program acting on their behalf is doing [94]. Users have to trust

that programs written by other users, but executing on their behalf, do not transfer or distribute

their discretionary rights clandestinely, in addition to executing their legitimate functions. Such

seemingly innocuous but malicious programs are known as Trojan Horses.

In high-assurance environments, such as military applications, the DAC policy model that allows

users to pass rights to other users without constraints, is considered unsuitable. The Mandatory

Access Control model (or the MAC) model was therefore proposed to introduce constraints on how

access rights can be transferred. In a MAC system, transferring of rights is governed by system

policy, administered by a security officer, and is no longer under control of users. The best known

example of a MAC policy is the multi-level security model used in the military with its lattice

of security levels that range from top-secret to unclassified. Rights to read a top-secret file, for

example, cannot be transferred to any user in a lower level by any mechanism in the system.

In 1975, Bell and La Padula formalized the multilevel MAC security model using a notation

similar to the HRU model. This model is popularly referred to as the BLP model [14]. Like the HRU

model, it employs subjects, objects, rights, and an access matrix, but there are several important

differences between the two models. The sets S and O do not change from state to state, and the

set A contains only four rights: read, write, execute and append. For simplicity, we focus on only

read and write, since the other two rights do not affect the discussion that follows. In addition

to these abstractions, the BLP model also introduces a lattice of security levels defined by the

25



partial-order L of labels, and the set of categories C that add attributes to a security classification,

making it easy to implement the “need-to-know” principle [42]. The function F : S ∪ O → L× C

yields the security level of a given subject or object.

A state in v ∈ V in the BLP model is the tuple (F,A). A system in the BLP model consists of

an initial state v0, a set of requests R = {〈s, o, r〉|s ∈ S, o ∈ O, r ∈ R}, and a transition function

T : V × R → V . T transforms the system from one state to another when the request is executed

(i.e., A or F change). The necessary and sufficient criteria for a system to be secure in the BLP

are given next:

• Simple Security Property: A state v is secure with respect to the simple security property

if and only if for every s ∈ S and o ∈ O, read ∈ A[s, o] → F (s) dominatesF (o). This is also

called the “No-Read-Up” rule.

• *-Property: A state v is secure with respect the ∗-property if an only if for every s ∈ S

and o ∈ O, write ∈ A[s, o] → F (o) dominatesF (s). This is also called the “No-Write-Down”

rule.

The relation dominates is defined as follows: Security Level (L,C) dominates the security level

(L′, C ′) if and only if L′ ≤ L and C ′ ⊆ C.

The Simple Security property prevents a low-level user from gaining read access to higher level

objects (such as files). The *-property prevents a high-level user (or Trojan horse run by a high-

level user) from copying contents of high-level objects to low-level objects so that low-level users

can gain unauthorized access. Security in the BLP model is defined as follows:

Definition 2.2.2 (Bell-La Padula Security). A state in the BLP model is state-secure if and

only if it is secure with respect to the Simple Security Property and *-Property. A system (v0, R, T )

is secure if and only if (i) v0 is state-secure, and (ii) every state reachable from v0 by executing

a finite sequence of one or more requests from R is state-secure.

Bell and La Padula propose and prove the following theorem:

Theorem 1 (Basic Security Theorem(BST)). : A system (v0, R, T ) is BLP secure according

to Definition 2.2.2, for each s ∈ S and o ∈ O, for all transitions between v and v′, T (v, r) = v′ for

r ∈ R, where v = (F,A) and v′ = (F ′, A′), if the following rules about transitions can be enforced:

26



• if read ∈ A′[s, o] and read /∈ A[s, o] then F ′(s) dominatesF ′(o);

• if read ∈ A[s, o] and F ′(s) does not dominate F ′(o), then read /∈ A′[s, o];

• if write ∈ A′[s, o] and write /∈ A[s, o] then F ′(o) dominatesF ′(s);

• if write ∈ A[s, o] and F ′(o) does not dominate F ′(s), then write /∈ A′[s, o];

The proof follows from structural induction as these four rules capture what transitions are

allowed for a system that is BLP secure. The class of systems described by the BLP security

definition is the same as the class of systems that can be derived from expanding the states and

transitions according to the rules specified in BST. The BLP model was the first to capture this

notion of correspondence between policy and mechanism.

Subsequently, McLean [87] exposed a problem with proving a system secure using a BLP-like

formalism, stating that the interpretation of a valid transition is transparent to the definition of a

secure state. It is not enough to ensure that every state reachable from a secure state is secure.

One needs to show that the manner in which this state is reached is also “secure”. This is best

explained with the argument presented next.

Consider a system Z whose initial state is state-secure and has only one type of transition.

When a subject s requests any type of access to object o, all subjects and objects are downgraded

to the lowest security level and access is granted. Now System Z still obeys all transition rules

specified by BST. However, it is not “secure” in any meaningful sense [92].

The main problem with the BLP model is that does not have any restrictions on changing the

protection state, especially the security levels of users and objects, before or after a transition. To

rectify this problem, McLean defines a framework of security models, which places restrictions [92]

on the transactions that prevent anomalies like System Z from passing as secure models. This

restriction is called the “Principle of Tranquility”. McLean’s framework is a quadruple (S,O,A, L)

where the elements are the same as those defined in the BLP model. A model within this framework

is a set of state machines of the form (F,A), as in the case of the BLP model.

The framework however contains a new function K : S ∪O → 2S , which maps each subject or

object in the system with the set of subjects that are allowed to change its security level. As before,

the system consists of an initial state v0, a set of requests R and a modified transition function

27



T : (S × V × R) → V , which yields a new state for a subject executing a request in the current

state. The new definition of a secure system is given as follows:

Definition 2.2.3 (McLean’s BST). A transition function T between two states v = (F,A) and

v′ = (F ′, A′) and T (s, v, r) = v′ is transition secure if and only if ∀x ∈ S ∪O if F (x) 6= F ′(x) then

s ∈ K(x). A system (v0, R, T ) is secure only if (i) v0 and all states reachable from v0 by a finite

sequence of one or more requests from R are (BLP) state-secure and (ii) T is transition-secure.

This framework forms a boolean algebra of models whose most restrictive element is a BLP

model where no security levels can change, and whose top element is a BLP model with no restric-

tions on security level changes whatsoever. The two frameworks presented in this section are the

current state of the art for mandatory access control.

2.2.3 Information Flow

Access control policies and mechanisms (especially reference monitors) are convenient abstractions

to model information security and can provide a high degree of assurance. The access matrix and

the BLP models have played an important role in the design of secure systems. However, the models

presented so far are not rich enough to capture what is known as the covert channel problem of

access control.

This problem arises from the difficulty of mapping an access control model’s primitives to

individual objects, subjects, and mechanisms in a computer system implementation. For example,

consider the response of a reference monitor for a low-level subject that is trying to write to a

non-existent high-level file object. If the subject is notified about the mistake, a high-level Trojan

Horse can use this channel to communicate one bit of information by creating the file whenever the

bit it wants to transmit is one, and delete it when it wants to signal a zero. If however, the subject

is not informed of this mistake, or if a dummy file is created, legitimate typing errors on behalf of

the subject will be punished unnecessarily.

The problem exists because the BLP model or McLean’s model do not treat the existence of a

file as information that needs to be protected. Modeling and detecting covert channels is extremely

difficult and among other things, involves tracing the information-flow paths of programs [41, 42],

checking programs for shared resources [113], checking for clock asynchrony to prevent timing

28



channels [131], and using type-checking [128, 114] and other language based schemes to analyze

information flow. Many of these techniques are intractable for large systems (especially distributed

systems) and can only be applied after the systems are built, and making system changes at this

stage may be prohibitively expensive [12].

Rather than analyze access control models post-mortem for information flow problems, re-

searchers have explored the design of systems that are immune to this type of information exposure,

from first principles. Interface models of confidentiality explore what restrictions on a system’s in-

put/output relation are sufficient for preventing undesirable flow of information. The most popular

of these models is Noninterference, originally formulated by Goguen and Meseguer [59].

Goguen and Meseguer view the system as a state machine consisting of the set S of subjects, a

set Σ of states, a set O of outputs, and set Z of commands. C ⊆ S×Z is the set of state transition

commands, corresponding to the notion of a subject issuing a command. A state transition function

T : C ×Σ → Σ describes the effect of executing state-transition command z when the system is in

state σ, and an output function P : C × Σ → O describes the output of executing command z in

state σ. Initially the system is in state σ0. As the system evolves, the outputs provide a record of

the system’s functioning.

Next, Goguen and Meseguer define two functions projection proj and purge (π) as follows:

Definition 2.2.4 (Projection Function). Let T ∗(cs, σi) be a sequence of state transitions for a

system, and P ∗(cs, σi) be the corresponding outputs. Then proj(s, cs, σi) is the set of outputs in

P ∗(cs, σi) that subject s is authorized to see, in the same order as these outputs appear in P ∗(cs, σi).

Definition 2.2.5 (Purge Function π). Let G ⊆ S be a group of subjects and let A ⊆ Z be a set

of commands. Then πG(cs) is the subsequence of cs obtained by deleting all elements (s, z) in cs.

πG,A(cs) is the subsequence of cs obtained by deleting all elements (s, z) in cs such that both s ∈ G

and z ∈ A.

The purge function captures the effect of making certain command executions invisible to some

users. If the set of outputs any user can see in the system is the same as the set the user can see

when the command history is purged of inputs that another user generated, the system is secure

under noninterference. This is defined as follows:

29



Definition 2.2.6 (Noninterference). Let G,G′ ⊆ S be distinct groups of subjects and let A ⊆ Z

be a set of commands. Users in G executing commands in A are noninterfering with users in G′,

written as A,G : |G′ if and only if, for all sequences cs with elements in C∗, and for all s ∈ G′,

proj(s, cs, σi) = proj(s, πG,A(cs), σi).

In order to verify a system satisfies noninterference, Goguen and Meseguer develop a set of

conditions (output consistent, transition consistent and locally respects) and prove that they are

sufficient for establishing noninterference in state machines [60]. This result is called the Unwinding

Theorem.

The Goguen-Meseguer model is defined in the framework of a deterministic state-machine model

of the system. McLean [93] shows how one can relax this requirement and can prove noninterference

directly using trace-based semantics and functional correctness.

Comparing BLP and noninterference is difficult, as the primitives of BLP lack a precise seman-

tics [91]. However it is noted that in general BLP is weaker than noninterference as it allows covert

channels. Surprisingly, noninterference is weaker than BLP, as it can allow a low-level user copy

a high-level object to another high-level object, which would be disallowed as a read by the BLP

model.

The interface approach for confidentiality presented so far, is relatively straightforward with

respect to deterministic systems, but is difficult to analyze when it is extended to non-deterministic

systems.

In 1986, Sutherland introduced a new property called nondeducibility [126], which states that

a system is nondeducibility secure if users with low security levels cannot obtain information at

a higher security level as a result of any activity on the part of a higher-level user. Low level

users may still be able to observe high-level user behavior, but they cannot interpret the outputs.

This property is weaker than noninterference and is noncomposable, though it does not assume

determinism.

In order to overcome the limitations of nondeducibility, researchers have proposed various prop-

erties such as generalized noninterference [90]. In addition to nondeducibility, possibilistic and

probabilistic models for nondeterministic [91, 63] systems, along with a notion of probabilistic

noninterference (PNI) and a verification logic for this model have also been proposed [64].

30



Recently, researchers have explored notions of behavioral equivalence to model some of these

issues for non-deterministic systems [115]. A complete discussion of this topic is beyond the scope

of this thesis and not directly relevant to our work. There is a great debate in the community about

the relevance and cost of general interface models for security, and whether access control models

augmented with some covert channel analysis are sufficient for practical systems.

In the next subsection, I briefly describe different models for protecting integrity of information.

2.2.4 Modeling Integrity

Integrity policies are also called commercial security policies as they model accuracy of information,

as opposed to confidentiality policies that are commonly referred to as military security policies

and model disclosure. In 1977, Biba [20] proposed three policies to capture the notion of authorized

modification of information resources as defined by an integrity policy.

A system in Biba’s model consists of a set of subjects S, a set of objects O and a set of integrity

levels I. The levels are partially-ordered and the function min : I × I → I gives the lesser of the

two integrity levels, under ≤. The function i : S ∪O → I returns the integrity level of a subject or

object. Relations r, w ⊆ S × O and x ⊆ S × S defines the ability of a subject to read or write an

object, and the ability of a subject process to execute another process respectively.

Integrity labels are not the same as confidentiality labels and are usually assigned differently.

Biba’s policies are defined in the context of an information transfer path.

Definition 2.2.7 (Information Transfer Path). An information transfer path (or read-write

path) is a sequence of objects o1, · · · , on+1 and a corresponding sequence of subjects s1, · · · , sn, such

that si r oi and si w oi+1 for all i, 1 ≤ i ≤ n.

The three policies defined by Biba are as follows:

1. Low-Water-Mark Policy: Whenever a subject accesses an object the policy changes the

integrity level of the subject to the lower of the subject and the object. Specifically, a subject

can only write to an object or execute a subject at a lower level, and must change its level

to the lower level when it reads a low level object. Biba further showed that if there is an

information transfer path from object o1 ∈ O to object on+1 ∈ O , then enforcement of the

low-water-mark policy requires that i(on+1) ≤ i(o1) for all n > 1.

31



2. Ring Policy: Any subject may read any object, regardless of integrity levels. A subject can

write to an object if and only if i(o) ≤ i(s). A subject s1 can execute another subject s2 if

and only if i(s2) ≤ i(s1).

3. Biba’s Model (Strict Integrity Policy): Biba’s model is the dual of the BLP model and

its rules are as follows:

• s ∈ S can read o ∈ O iff i(s) ≤ i(o)

• s ∈ S can write to o ∈ O iff i(o) ≤ i(s)

• s1 ∈ S can execute s2 ∈ S iff i(s2) ≤ i(s1)

Within the framework of Biba’s model, we can show that its enforcement preserves the property

that if there is an information transfer path from object o1 ∈ O to object on+1 ∈ O, then i(on+1) ≤

i(o1) for all n > 1. This property prevents indirect as well as direct modification of entities without

authorization.

Lipner combined the BLP model and Biba’s model to obtain a combined system model capable

of specifying both confidentiality and integrity policies. Lipner’s model has both security levels and

integrity levels.

In 1987, David Clark and David Wilson developed an integrity model different from the level-

oriented BLP and Biba models. Their model is referred to as the Clark-Wilson [30](CW) model.

The CW model introduces the notion of trust explicitly in the model through the concepts of

certification and authentication. It is well suited to model “separation of duty” constraints, which

prevents a subject from having the sole ability to inflict damage on the integrity of protected

information. It is expressed in terms of a collection of nine rules designed to provide integrity

protection. The rules define well formed transactions as a series of operations that change the

system from one consistent state to another. A set of integrity constraints specifies the consistency

requirements. Integrity verification procedures test whether data items conform to the integrity

constraints. Transformation procedures implement well-formed transactions and change the state

of data in the system from one valid form to another.

In the next subsection, I briefly describe hybrid models that are capable of specifying both

integrity and confidentiality policies under one framework.

32



2.2.5 Hybrid Models and Role Based Access Control

While the models presented so far are capable of defining either integrity or confidentiality concerns

adequately, most information protection systems require a combination of both types of policies.

As a result, researchers have worked on hybrid policy models that are capable of addressing both

integrity and confidentiality concerns under one framework. The most famous of these hybrid

models is the Chinese-Wall Model [25]. This model develops the notion of conflict of interest

(COI) classes and partitions subjects and objects into different classes accordingly. It also defines a

framework to capture the notion of how past behavior (or history) should affect future information

access within this framework. The formal Chinese-Wall model is similar in flavor to the BLP model,

and specifies restrictions on read and write transitions between COI classes based on history of

access.

Other hybrid models include the Clinical Information System Model [9], the Originator Con-

trolled Access Control Model [62] (ORCON), and Role Based Access Control (RBAC).

The Clinical Information System Model was introduced by Anderson and focuses, not on COI,

but on patient confidentiality, authentication before access, and assurance that records are not

tampered (integrity) in the context of a hospital administrative system. The model is informal and

describes a set of principles for access, creation, deletion, confinement, aggregation, and enforcement

of policies for medical records. The ORCON model was developed by Gaubert [62], in which a

subject can give another subject the rights to an object, only with the approval of the creator of

the object.

The RBAC model[56, 119] is arguably the most popular hybrid model in the industry. The key

concept in RBAC is a role, which is a placeholder for a set of users. Each role is associated with a

set of permissions, which are its rights on objects. These roles may be organized into a hierarchy

to reflect the organizational hierarchy among different users in a system. RBAC maintains two

mappings: the User Role Assignment (URA) and the Role Permission Assignment (RPA). These

two mappings can be updated independently and this flexibility provides administrators an efficient

mechanism to manage and administer access control policies. In recent years, an RBAC NIST

standard [55], and a graph-based formalism have also been proposed.

In Section 2.3, I end this chapter with a brief synopsis of the different models and techniques

33



we presented so far, and provide a preview of Chapter 3, which deals with the problem-scope and

the solution-space of this thesis.

2.3 Looking Ahead

In order to keep the analysis of a system model tractable, many researchers focus on finite-state

state-transition models of subjects, objects, and privileges and permissions and restrict interactive

behavior. These models are mainly concerned about two important but slightly orthogonal con-

cepts. The first set of models, which include the HRU model and its extensions, are concerned with

the generalized notion of access control as a fundamental building block of a theory of safe systems.

The transitions in these models capture the notion of how access rights change over the lifetime of

a model. Security is defined in this framework as the ability of the model to prevent unauthorized

transfer of access rights.

The second set of models, which include the BLP, CW, Biba, RBAC etc., capture the notion

of security from the point of view of users of the system (or sets of users). They explicitly include

a notion of assurance levels and describe the evolution of the system between levels, using the

abstraction of valid transitions. We observe from these models that confidentiality, integrity and

some information flow policies are typically modeled as safety properties (“nothing bad happens”)

within this framework. The safety question is usually decidable for such models, which is answered

by exploring the state space for all possible reachable states through valid transitions to show that

unauthorized state-transitions cannot occur.

The modeling and validation process presented in this chapter is an attractive choice for security

engineers seeking to certify that a given model provides assurance guarantees. However, in this

thesis I argue that formal modeling and validation of safety properties using a state-transition

model as described above cannot describe the behavior of a system under attack. One major

drawback of the traditional policy engineering process is that once a policy enforcement mechanism

is compromised, the assurance provided by the model becomes worthless. Safety-property modeling

does not account for the fact that parts of the system may become insecure due to vulnerability

exposures or attacks, and the same resource may be in authorized and unauthorized states over

the lifetime of the system. In real systems that are constantly under threat of attack, discovering

34



new vulnerabilities may lead to compromise and invalidate the assurance. In addition, many of

these models cannot capture non-determinism and concurrency, or express quantitative guarantees

in terms of real-time values.

In the next chapter, I explore the need for a new policy specification formalism that can specify

how to recover from information compromise by explicitly modeling insecurity. Instead of designing

for safety, which cannot account for unauthorized behavior, we argue that traditional policies

need to be refined as liveness properties (”if something bad happens, something good eventually

happens”) to model survivability or recovery-oriented security.

35



Thus, the task is, not so much to see what

no one has yet seen; but to think what

nobody has yet thought, about that which

everybody sees.

Erwin SchrödingerChapter 3

Problem Statement

In this chapter I define my thesis problem, situate it in the broader context of existing formal models

of access control systems, and develop a requirements-specification for survivability analysis.

In Section 3.1, I motivate the need for survivability modeling by examining the set of assump-

tions made by existing models of assurance, and highlighting how they do not represent realistic

operating environments of access control systems. I explore how guarantees made by safety model-

ing are frequently compromised, and investigate how we can extend the scope of these guarantees

by defining survivability properties to accommodate for recovery-oriented security.

I formalize this notion in Section 3.2 using a semantic framework general enough to accommo-

date existing access control abstractions. With this new model, I show how we can write system

specifications and explicitly model how “bad” things can happen as the system evolves over time. I

also explore how to model the ability of a system to recover, if possible, when the system is attacked

maliciously, or compromised inadvertently.

I also show how we can redefine traditional security properties such as confidentiality and

integrity as a special class of dynamic properties we call survivability properties. These properties

describe how if bad things happen, whether we can guarantee that good things will eventually

happen. We also define a metric for survivability, as the bound on computational resources required

to restore the availability of such resources to legitimate users of the system over time. I show

how we can use this representation to specify and evaluate different strategies for recovery, both

qualitatively and quantitatively.

In Section 3.3, I present a high-level overview of my proposed framework, describe how to

represent survivability properties within this context, and present an appropriate formalism for

36



this purpose. I summarize all these ideas as my thesis statement in Section 3.4 and discuss success

criteria in Section 3.5.

In Chapter 4, I describe my model, and define the notion of strategies in greater detail. I show

how we can incorporate timing guarantees and stochastic behavior, in both the model and property

specifications, and discuss how to automate the verification of these properties. I also describe how

dynamic access control can be used as an effective RA and discuss how to preserve certain safety

properties and trust relationships in this context. In Chapter 5 of this thesis, I focus my attention

on the network DoS problem and show how survivability modeling and analysis can specify and

verify the effectiveness of DoS resilience strategies.

3.1 Context

Formal methods help a security engineer accomplish two important tasks [130]. Through the

process of specification, it focuses a system designer’s attention on the entities, their behavior, the

nature of their interaction, on the assumptions about a system’s environment, and on the nature

of properties that must be satisfied, e.g., as invariants, in order to claim the system is secure.

Through the process of verification, it provides additional assurance in terms of properties that

can be preserved within the framework of a semantic or syntactic description of system behavior.

The process of proving a system is secure can be broken into three inter-related tasks [130]. The

first task (not in any particular order) is to model the system, its entities, and their interaction

using appropriate syntactic or semantic abstractions. Second, we express the security property of

interest explicitly and formally. The third aspect of assurance is the proof, which may be automated

and rely on structural induction, state-space exploration, or deductive reasoning, or may need to

be produced manually, to show that the implication (System Model ⇒ Security Specification) can

be verified.

I develop my survivability properties in the context of an example model of access control

behavior that I present in Section 3.1.1. This model is influenced by both the HRU and BLP

models and appears in [101].

37



3.1.1 Semantic Model of Policy Enforcement

In this subsection, we present a formal description of a semantic state-transition model of access

control, that acts both as a motivating example, as well as an introduction to the formal notation

used in this thesis.

The basic formalism used in this thesis is a type of state-transition graph called a Kripke

structure. Kripke structures are traditionally used to describe reactive systems and their behavior

over time [33]. In addition to states and transitions, a Kripke structure also associates each state

with a set of propositions that can be evaluated to truth-values depending on the values of boolean

variables in that state. We show how we can use this feature to describe qualitative temporal

properties of states and paths in a transition graph as the system it describes evolves over time.

Formally, a Kripke structure M over a set of atomic propositions AP , is a four tuple M =

(Σ,Σ0, R, L), where Σ is a set of states, Σ0 ⊆ Σ the set of initial states, R ⊆ Σ × Σ is a total

transition relation between states, and L : Σ → 2AP is a function that labels each state with a set

of atomic propositions that are true in that state.

We now show how to model the access control problem as a Kripke structure. Each state in

Σ corresponds to the protection state of an information protection system, and consists of the set

S of subjects, the set O of objects, the set R of rights, and an access matrix A as described in

Section 2.1.1.

In traditional access control models, e.g., in the HRU and BLP models, a transition represents

a change in the protection state. The six primitive commands in the HRU model, presented in

Section 2.1.1, represent transitions that can change (add or remove elements from) each of the three

finite sets S, O, and A (assuming R is fixed). In the BLP model, transitions are represented by

read , write and execute actions. These actions usually change the values of the elements in O. For

example a write action modifies an element of O. Reading an object does not change the original

object, but can change the state of objects (e.g., a read buffer) belonging to the subject who has read

the object. Allowing an execute method on an object may change the state of other information

objects in the system. In the BLP model, the access permissions are defined by conditional rules,

and the access matrix A is only conceptual. We include both the primitive commands and the

standard filesystem commands from both models in the set R of our general access control model.

38



The states and transitions in the HRU and BLP models define a labeled-transition system

(LTS), where the transitions are labeled by commands or actions. A Kripke model however does

not include labels on transitions. A standard technique to convert an LTS to a Kripke structure is

to include the initiation and termination of an action or command as propositions that hold in the

start state and end state of a transition.

Let the set R be fixed. Let the set of requests Q = {〈s, o, r〉|s ∈ S, o ∈ O, r ∈ R} be the set of

all subject, object, and permission triples in our system. We represent requests in a state with the

variable REQ in our model. The domain of REQ is Q ∪ {⊥}. In a transition σi
q−→ σi+1, in state

σi, (REQ = q) and in state σi+1, (REQ = ⊥).

These transitions are assumed to be atomic, and the state does not change until the action

completes. A completed action or command results in a new state, where the values of one or more

state-variables have changed, i.e., we assume that only one or no request(s) can be issued in each

state.

The matrix A defines the current set of access rights in the system. These rights define the

set QA of rights that are allowed by A. For each request q ∈ Q we can now associate a boolean

variable PA whose value is true if q ∈ QA, and false otherwise. The state of our system now

includes this variable PA in addition to REQ and the sets S, O and A. This corresponds to the

access permissions in the current access matrix A.

Definition 3.1.1 (Access Control System). An access control system can be defined by the

Kripke structure M = (Σ,Σ0, R, L) over AP where:

1. Σ = 2S × 2O × 2A ×Q ∪ {⊥} × {0, 1}

2. Σ0 = {〈S0, O0, A0, (REQ = q), (PA = 0)V (PA = 1)〉} ⊆ Σ

3. R(〈S,O,A,REQ,PA〉, 〈S′, O′, A′, REQ′, PA
′〉) ⊆ Σ× Σ that is total.

4. L(〈S,O,A,REQ,PA〉) defines assertions corresponding to values of variables in S,O,A, REQ

and PA.

Next, we show how to describe a traditional secure access control system using the abstractions

presented so far, by restricting what transitions are allowed to occur between states. The syntax

of the transitions T1-T3 between states are specified by the following rules as:

39



Definition 3.1.2 (T1). A secure transition between two states is given by

〈S,O,A, (REQ = q), (PA = 1)〉 →T1 〈S′, O′, A′, (REQ = ⊥), (PA
′ = 0)〉

Definition 3.1.3 (T2). A null transition is given by

〈S,O,A, (REQ = q), (PA = 0)〉 →T2 〈S,O,A, (REQ = ⊥), (PA
′ = 0)〉

Definition 3.1.4 (T3). An unconditional transition is given by

〈S,O,A, (REQ = ⊥), (PA = 0)〉 →T3 〈S,O,A, (REQ = q), PA
′〉

Transition T1 specifies “good behavior”. A request should be allowed if the corresponding right

can be found in the access matrix. The precise meaning of the transition for different requests q

needs to be defined clearly for any specific model, by carefully defining the changes allowed to occur

in the new state 〈S,O,A, (REQ = ⊥), (PA
′ = 0)〉 as a result of the transition.

Each transition or action in our system changes the values of one or more elements of our system

state. The primitive commands change the protection state, i.e., the sets of subjects, objects and

the access matrix themselves. Other actions typically only change the values of information objects.

Each command and action is associated with a precise semantics. The semantics for the primitive

commands are given in Section 2.1.1.

If the resulting state of such a transition adheres to the semantics specified by the system

designer, we can assert that the change was valid. Though we do not include these in our model,

to keep the explanation simple, ideally we would augment each secure transition with a set of

assertions that hold as preconditions in the start state σi of a T1—type transition labeled by

action q, and a set of assertions that holds as postconditions in the end state σi+1 of a transition

σi
q−→ σi+1.

The sets of propositions Precondition(q) and Postcondition(q) are evaluated in the start state

σi and end state σi+1 of a transition for a request q ∈ Q. The transition is allowed to occur

if the set of assertions in the set Precondition(q) in state σi are consistent. After the transition

occurs, the transition adheres to the semantics of the action if the set Postcondition(q) in σi+1 is

consistent. Note these sets may be viewed as Horn-clauses, and that the asserted postconditions in

a given state can be used as preconditions when this state σi+1 becomes the start state for the next

transition. We can use standard program verification techniques to verify if a secure transition is

semantically consistent.

40



Transition T2 asserts if the request is not authorized by the access matrix, the sets S, O,

or A should not change in any way. Transitions T1 and T2 describe what is called the “policy

membership” test of safety for access control models. Transition T3 makes the Kripke structure

total, and states that our model can enter state where there is a request at any time, regardless of

whether PA is true or not.

This formulation gives us a methodology to validate that a system implements its policies by

comparing the observed transitions for each subject with the permissions in the access matrix. If

the transitions in the system are restricted to T1, T2 and T3, we observe that the system only

exhibits authorized behavior.

Note that this definition of a secure access control system is the same as Definition 2.2.1 of

access control safety in Chapter 2.

3.2 Problem

The semantic model of secure transitions with the policy membership test described in Section 3.1.1

is attractive because of its simplicity. To prove this model is secure, we can start with an initial

state that is assumed to contain only rights that are authorized by the system policy specification.

We can can rely on the definition of transitions T1–T3 to assert that any state reachable from this

state is also secure.

The relationship between policies that are enforced by the implementation mechanisms and the

policies actually authorized by some system policy needs to be explored in greater detail.

Let Qauth be the (conceptual) set of authorized requests in the system, corresponding to rights

that are allowed to particular users by the system policy. This set includes all the possible rights

that can be installed in A by authorized users, not just the rights in the current state. In existing

systems, the distinction between an access right and a policy-authorized right is not maintained. A

request is allowed if and only if the corresponding right-to-access can be found in the access matrix

A. We show how this is a weakness of existing access control models.

If the set of requests allowed in a system QA implementation is a subset of the set of policy-

authorized request Qauth then this system is secure. If these two sets are equal, this system is

precise. In Section 3.1.1, we define transitions that correspond to authorized behavior, explicitly

41



allowed by system policies. This formulation assumes that the policy membership test is always

done correctly. This behavior is depicted by the event-graph shown in Figure 3.1.

Denied by PolicyAllowed by Policy

Entity Issues Action

Allowed by Implementation Denied by Implementation

Figure 3.1: Event Graph for Ideal Access Control Decisions

This intermediate test for whether the action is allowed or denied by the policy, represented

by the dotted oval, is not performed in most existing systems. These systems assume that the

policy implementation mechanisms and the access-rights matrix cannot be compromised and

the situational policies in the access matrix are consistent with the policies authorized by the

system policies. In this thesis, we argue that this assumption is a major weakness of existing policy

modeling and analysis techniques. Furthermore, safety guarantees provided by the model become

worthless when a system enters a compromised state.

In order to describe the behavior of a system under attack, we argue that we need to explore

how things can “go wrong”. To make the model more expressive, I argue that we need to explicitly

include a notion of compromise and, whenever possible, define strategies (as a sequence of states

and transitions) that model recovery.

The set of policy-authorized requests Qauth is a good starting point for this exercise. The

challenge is to separate the policy from mechanism, and ensure that any violation or modification

of the policy by attackers can be detected in the system.

In 3.2.1 next, I describe how we can extend the semantic model of Section 3.1.1 to explicitly

accommodate for insecure behavior and subsequent recovery, to model survivability.

42



3.2.1 Modeling Insecurity

In real systems, the protection state of the system may be inconsistent with the behavior described

by the authorized policies in the system. For example, an attacker may be able to alter the per-

missions in the access matrix and compromise the confidentiality or integrity of the information,

as in the case of a privilege-escalation buffer overflow attack. Neither the model presented in Sec-

tion 3.1.1, nor any of state-of-the-art models presented in Chapter 2 can describe this inconsistency

as “undesirable” behavior.

Specifically, since the system does not make a distinction between what is authorized and what

is installed in the access matrix, this attack cannot be detected by analyzing existing models. In

order to differentiate between the actions authorized by actual policy and the actions enforced by

the system’s mechanisms, we argue that this distinction needs to be exposed at the model level.

Therefore we augment the state of our model with a new boolean variable called Pauth. This

variable is true when the current request q is in Qauth and false otherwise.

Another issue that frequently arises in existing systems is when a legitimate subject makes an

authorized request to access an object, and this action is denied. Note this unavailability may only

be temporary. It may be because of poor-resource engineering, in scenarios where many legitimate

users compete for the same resource. Another source of this type of insecurity is a denial of service

(DoS) attack, when a malicious user or attacker denies access to legitimate users by competing for

the same resource. Both these cases may be viewed as instances when the policies are not being

enforced correctly temporarily. This insecurity may or may not result in an inconsistent state.

We show both these types of policy enforcement failures pictorially by augmenting the event-

graph with faults to produce a fault-graph in Figure 3.2.

In particular, the dashed edges in Figure 3.2 correspond to the transitions that violate the

policy authorization test. The first type of compromise can be viewed as a high-level description

of denial of service (DoS), i.e., an authorized entity is prevented from completing a legitimate

request. However, the information itself may not compromised and its effect on the system is

usually benign. The second type of insecurity can lead to information compromise, i.e., irretrievable

transfer or modification of information by unauthorized entities. Note the distinction between policy

compromise and information compromise. Policy compromise may lead to information compromise.

43



Denied by PolicyAllowed by Policy

Entity Issues Action

Allowed by Implementation Denied by Implementation

Figure 3.2: Fault graph for Access Control Decisions

Definition 3.2.1 (Augmented AC system). The Augmented Access Control System which

explicitly separates policy and mechanism is represented by the following Kripke structureM ′ =

(Σ′,Σ′0, R′, L′) over AP as:

1. Σ′ = 2S × 2O × 2A ×Q ∪ {⊥} × {0, 1} × {0, 1}

2. Σ′0 = {〈S0, O0, A0, (REQ = q), (PA = 0) ∨ (PA = 1), (Pauth = 0) ∨ (Pauth = 1)〉} ⊆ Σ′

3. R′(〈S,O,A,REQ,PA, Pauth〉, 〈S′, O′, A′, REQ′, PA
′, Pauth

′〉) ⊆ Σ′ × Σ′ that is total.

4. L′(〈S,O,A,REQ,PA, Pauth〉) defines assertions corresponding to values of variables in S,O,A,

REQ, PA, and Pauth.

We introduce these two types of insecure behavior into our model using the following transitions:

Definition 3.2.2 (T4). A benign insecure transition is given by

〈S,O,A, (REQ = q), (PA = 1), (Pauth = 1)〉 →T4 〈S,O,A, (REQ = ⊥), (PA
′ = 0), (Pauth

′ = 0)〉

Definition 3.2.3 (T5). A malicious insecure transition is given by

〈S,O,A, (REQ = q), (PA = 1)(Pauth = 0)〉 →T5 〈S′, O′, A′, (REQ = ⊥), (PA
′ = 0)(Pauth

′ = 0)〉

An insecure but benign transition leaves the system unchanged, even if the action was au-

thorized by the policy. Note an access right corresponding to this action is explicitly present in

44



the access matrix, as well in the set of authorized actions. This transition has no effect on the

state variables (S,O,A). The malicious insecure policy changes the variables in 〈S,O,A, q〉, even

though q it is not in Qauth. The exact nature of this unauthorized change is model-specific.

The original transitions T1–T3 are presented next in their modified form. They are essentially

the same as the transitions in Section 3.2, except for the addition of the variable Pauth in every

state. In T1’, (Pauth = 1) indicates that the secure transition is also authorized by the policy.

Similarly, null transition is specifically not authorized by the policy, and therefore (Pauth = 0) in

T2′ as next.

Definition 3.2.4 (T1’). A secure transition between two states is given by

〈S,O,A, (REQ = q), (PA = 1)(Pauth = 1)〉 →T1 〈S′, O′, A′, (REQ = ⊥), (PA
′ = 0)(Pauth

′ = 0)〉.

Definition 3.2.5 (T2’). A null transition is given by

〈S,O,A, (REQ = q), (PA = 0)(Pauth = 0)〉 →T2 〈S,O,A, (REQ = ⊥), (PA
′ = 0), (Pauth

′ = 0)〉

Definition 3.2.6 (T3’). An unconditional transition is given by

〈S,O,A, (REQ = ⊥), (PA = 0), (Pauth = 0)〉 →T3 〈S,O,A, (REQ = q), PA
′, Pauth

′〉.

For completeness, the state where (PA = 0) ∧ (Pauth = 1) indicates that the user is allowed

to execute the action according to the system policy, but the right to execute this action is not

available in A at this point. This may be because the user has not explicitly assigned themselves

this permission. The system may prompt the user at this point with appropriate feedback, or the

user may realize this behavior and assign themselves the appropriate right. Therefore this behavior

imprecise but not insecure.

Once policy compromise occurs, it is useful to explore the nature of damage caused by an inse-

cure transition. In the case of failure to a confidentiality policy, the consequences of the compromise

can be malicious or benign as described. To elaborate, a confidentiality compromise could be one

of the following:

1. A subject s ∈ SC that was allowed to read object o according to the system policy PC , is

denied this action by policy enforcement mechanisms. Information that could be exchanged

freely has now become unavailable. However this compromise does not propagate confidential

information.

45



2. A subject s ∈ SC that was not allowed to read object o now suddenly has access to infor-

mation in o and can further propagate this confidential information, possibly allowing other

unauthorized entities in SC access to this information.

An integrity compromise can also be one of two types:

1. A subject s ∈ SI that was allowed to write and modify an object o according to the system

policy PI , is denied this action by policy enforcement mechanisms. As a result, the information

may be stale and not useful to other entities in SI .

2. A subject s ∈ SI that was not allowed to modify o now suddenly has the ability to change

it. Entities in SI now have to trust an entity in SI . Compromised information may further

propagate through the system.

In the next subsection, I explore what we mean by recovery from information compromise,

specifically in the case of confidentiality and integrity policies. A complete analysis of compromise

and recovery in the case of information-flow policies is beyond the scope of this thesis.

3.2.2 Recovery

Recovering from policy compromise may involve exercising administrative control and changing

access control permissions dynamically, in response to an attack or vulnerability exposure, thereby

preventing future spread of compromised information. For confidentiality compromise, if we can

reliably constrain future interactive behavior of the entity that obtained the compromised infor-

mation, we can argue that confidentiality from the viewpoint of the rest of the system is still

preserved.

When a resource’s integrity has been compromised by an unauthorized user, and is detected at

a later point in time, the system may be able to rollback actions and restore values to a previously

consistent state of the system, thereby enabling a weaker notion of integrity. Sometimes it may

be necessary to restart the system in order to accomplish this. Other strategies such as storing

multiple redundant copies, using error correcting codes, etc., can help restore integrity even under

attack.

46



Modeling assurance requirements as safety properties cannot describe or quantify the impact

of such strategies that explicitly recognize insecure states and transitions and adapt their behavior

in response, by restricting future behavior of the system, and eventually bringing the system to

an authorized state again. However, it is also important to realize that using these RAs in an ad

hoc manner can create more vulnerabilities and opportunities for attack. The challenge therefore

is to provide a framework that can represent different types of dynamic strategies such as the ones

described above, and reason about the impact of these strategies on the security and survivability

of a system model.

In Section 3.3, I explore how to specify survivability properties that can represent the effective-

ness of different RAs, using our extended semantic model of access control.

3.3 Solution Space

In this section, I give a high-level overview of how to specify, quantify, and verify the ability of

an access control model to survive policy compromise. I introduce a new class of survivability

properties, modeled as branching-time properties on subgraphs of state-transition models. These

properties describe the ability of (a part of) the system, comprising of specific subjects and objects,

to continue to provide specific security guarantees even when other parts of system are compromised.

These properties specify the notion that even when certain entities in the system are compro-

mised (i.e., bad things happen), the system is able to guarantee, for a specific set of users with

respect to a particular property, that good things will eventually happen. We call these proper-

ties “dynamic policies” since they represent the ability of a model to survive different types of

compromise, in both qualitative and quantitative terms

In Section 3.3.1, I define survivability as a property of execution traces of system behavior. I

show example specifications that explicitly model compromise and recovery, and analyze them with

respect to their ability to satisfy survivability properties. At the end of this section, I explore how

we can use standard model-checking and other analysis techniques to validate these survivability

properties in a given model.

47



3.3.1 Specifying Survivability

We define survivability as a special type of liveness property that captures the ability of an in-

formation protection system to continue providing certain security guarantees, even in the face of

policy compromise. Policy compromise or information compromise may cause the unavailability

of a resource to its authorized users. Recovery involves restoring this availability after compro-

mise. Therefore, measuring this availability of the resource to legitimate users is an integral part

of survivability modeling.

In traditional safety property validation, the analysis begins with a “secure” initial state that

satisfies the property of interest, and the satisfaction of this property is tracked across all reachable

authorized transitions from this state. For survivability, we are more interested in tracking the evo-

lution of a system whenever we observe something “bad” occurs. Furthermore, like confidentiality

and integrity properties, we are interested in the survivability from the viewpoint of an authorized

user in the system. With this in mind, we relate survivability to traditional confidentiality and

integrity properties as follows:

• Survivability: Given that subjects s′ ∈ S′ ⊆ S can access a subset of objects A ⊆ O

using rights r ∈ R according to either a confidentiality or integrity policy p ∈ PC ∪ PI , a

survivability policy pv ∈ PV with respect to subject s′ ∈ S′, partitions the set of subjects

in S′ into two disjoint sets S′V and S′V . Subjects in S′V are guaranteed that when a policy

compromise occurs and the resources become unavailable, the system will restore their ability

to access it securely, eventually, and infinitely often. Furthermore, this recovery behavior can

be quantified in terms of timing or probabilistic guarantees. Subjects in S′A are not provided

any such guarantees.

We define the notion of a survivability strategy as follows. A survivability strategy can be

viewed as the interactive behavior between two types of entities in our system: an adversary and

a controller. An adversary corresponds to an attacker and the controller is a system administrator

who is authorized to make changes to the protection state. A strategy is modeled as a special state-

transition subgraph that starts with a secure state in our model and an insecure transition, initiated

by an adversary, to indicate the behavior of the system under attack.

48



The system evolves through different states according to transitions specified by the strategy,

representing the interactive behavior of both the adversary and controller, and ends in a secure

state, indicating the system has recovered from the attack. Note that the strategy can be evaluated

only in the context of the overall model of the system. The start state and end state of a strategy

may be indistinguishable in which case the effect of the attack is neutralized, impacting only the

availability of the resource when the recovery actions were in progress. On the other hand, the end

state of a strategy may be only partially consistent with the policies, indicating that the attack

was partially recoverable. We define strategies and the notion of an adversary and a controller in

greater detail in Chapter 4.

We define survivability properties as temporal logic formulas that can be satisfied by traces of

system behavior augmented with these survivability strategies.

We use CTL [33] and its probabilistic and real-time extensions to formulate these properties.

CTL is the most widely used logic to specify properties of branching-time models, and we believe

is an appropriate formalism in this context. Since CTL is widely used, we do not define its syntax

and semantics in this chapter, but refer the reader to Appendix A.

Temporal logic formulas in CTL are interpreted in the context of Kripke structures. A compu-

tation in a Kripke structure is an infinite sequence of states where each state is obtained from the

previous state by some valid transition in R. A path is a model of a specific computation of the

system. A computation tree is formed by designating a state in the Kripke structure as an initial

state and then unwinding the structure into an infinite tree with the designated state as root. This

tree shows all possible executions starting from that state.

CTL formulas are interpreted over such computation trees of entity behavior. A model satisfies

a CTL state formula Af , if we can prove f is true “in all computation paths” from that state,

it satisfies formula Ef if it is true “in some computation path” from that state. Similarly the

temporal operator Gf is defined over paths and asserts that the formula f is true in all states

along the current path in the future, and the formula Ff over paths asserts that some state along

the current path that can satisfy the property will be reached eventually. In CTL, G and F must be

immediately preceded by the path quantifiers A or E. Therefore CTL formulas describe properties

of states along paths of computation in a model.

49



3.3.2 Example Specification and Verification of Survivability Properties

In this subsection, we illustrate how defining survivability as a special type of liveness property, and

explicitly modeling insecurity can describe specify as well as validate models that are survivable and

have the ability to recover from compromise. We explain this with the help of a simple example.

Consider the following system configuration in the context of the state-transition model described

in Sections 3.2.1:

S = {John}

O = {foo, bar, temp}

R = {r, w}

A[John, foo] = r, A[John, temp] = r

Qauth = {〈John, foo, r〉, 〈John, temp, r〉〈John, temp,w〉}

We describe transitions T1 through T5 for this system in Table 3.1 next. Note we do not

explicitly show the state variables that do not change in each state for space constraints:

Start state End State
T1 〈(REQ = 〈John, foo, r〉), (PA = 1)(Pauth = 1)〉 〈temp := foo, (REQ = ⊥), (PA

′ = 0),
(Pauth

′ = 0)〉
T2 〈(REQ = 〈John, bar, r, 〉), (PA = 0)(Pauth = 0)〉 〈(REQ = ⊥), (PA

′ = 0)(Pauth
′ = 0)〉

T3 〈(REQ = ⊥), (PA = 0), (Pauth = 0)〉 〈(REQ = q), PA
′, Pauth

′〉
T4 〈(REQ = 〈John, foo, r〉), (PA = 1)(Pauth = 1)〉 〈(REQ = ⊥), (PA

′ = 0), (Pauth
′ = 0)〉

T5 〈(REQ = 〈John, bar, r〉)(PA = 1)(Pauth = 0)〉 〈{temp := bar}, (REQ = ⊥), (PA
′ = 0),

(Pauth
′ = 0)〉

Table 3.1: Transitions for Example System

John’s behavior can be specified using the behavior graph shown in Figure 3.3(i). The initial

state of John’s behavior can be the start state of any transition. Whenever John issues an action

to read file foo, a transition of type T1 (secure) is enabled because the tuple 〈John, foo, r〉 is an

authorized policy, and is present in the access matrix. The variable temp is assigned the value of

foo as a result of this action. If John attempts to read file bar, since it is not explicitly allowed,

a null transition (type T2) occurs as shown in Figure 3.3(ii). Note we represent it as two separate

graphs for convenience, and the starting state of a computation tree of this model can be the start

state of Figure 3.3(i) or (ii).

50



 

(i) (ii)

T3

T3

T3

T3

  

   P_A = 1, P_auth = 1 >
< REQ = < John, foo, r >  ,

< P_A = 0, P_auth = 0 >

< REQ =   , P_A = 0, P_auth = 0 > < REQ =   , P_A = 0, P_auth = 0 > 

<{temp = foo}, P_A =0, P_auth = 0 >

< REQ = < John, bar, r > 
P_A = 0, P_auth = 0 > 

T2T1

Figure 3.3: Behavioral Specification for Safety

The traditional definition of access control safety to specify John’s desirable behavior, in a

computation tree starting in state 〈(S,O,A), (REQ = q), PA, Pauth〉 is given next. Let σTk
i be the

start state of a Tk transition and σTk
i+1 the end state. Traditional access control safety is given as

(→ is boolean implication):

Property 1 (Access Control Safety). AG((σT1
i → σT1

i+1) ∨ (σT2
i → σT2

i+1) ∨ (σT3
i → σT3

i+1))

This property asserts that John is allowed to read file foo if the policy allows it (T1), and

obtain an appropriate response. It also asserts that John cannot read file bar for which he does

not have access according to the policy (T2). The only other transitions allowed in this system, if

they are not T1 or T2, are of type T3. This property specification can be trivially verified against

the example specification.

Modeling Compromise

Now suppose that the policy enforcement mechanisms are compromised, either explicitly by an

attacker, or inadvertently by poor software engineering. The behavioral model that defines only

authorized states and transitions, presented in Figure 3.3, is not capable of describing this behav-

51



ior. The system may enable transitions of type T4 (benign insecurity) or of type T5 (malicious

insecurity). The state-transition graph of Figure 3.3 is augmented with insecure states as shown in

Figure 3.4.

 

(i) (ii)

T3

< REQ = | , P_A = 0, P_auth = 0 > < REQ = | , P_A = 0, P_auth = 0 > −−

< REQ = < John, bar, r > 
P_A = 1, P_auth = 0

< REQ = < John, foo, r > 
P_A = 1, P_auth = 1

<{temp := foo}, P_A = 0,
P_auth = 0 >

< P_A = 0, P_auth = 0 >

P_auth = 0 >
P_auth = 0 >

< P_A = 0, 

T1 T4

T3

T3

T3

T5T2

T3T3

<{temp := bar}, P_A = 0,

Figure 3.4: Behavioral Specification with Compromise

In Figure 3.4(i), in addition to T1, a compromised enforcement mechanism can arbitrarily

deny John access to foo by executing type T4 transitions repeatedly. In addition, as shown in

Figure 3.4(ii), John may be able to access file bar, executing a type T5 transition, even though it is

explicitly forbidden by the policy. Expanding the model into a computation tree, we observe that

the safety properties described earlier are violated by transitions T4 and T5.

Now we define a survivable version of access control safety as an availability property. For the

given system, we claim that the specification is survivable if it can satisfy the following property

for benign insecurity:

Property 2 (Access Control Survivability). AG((σT4
i → σT4

i+1) → EF(σT1
i → σT1

i+1))

This property asserts that whenever John issues an authorized request to read file foo, and this

is denied, at some point in the future, the system is capable of recovering from this action and able

to satisfy another legitimate request for the same object at some time in the future. Verifying this

52



property by inspection in this model asserts that this model is indeed capable of compromise-free

behavior. However, John’s requests to read the file may be denied repeatedly by transitions of

type T4. Furthermore, we show that the model is capable of malicious behavior (transitions T5).

The model in Figure 3.4(ii) also satisfies:

Property 3 (Access Control Vulnerability). AG((σT5
i → σT5

i+1) → EF(σT5
i → σT5

i+1))

Recovery

Next, we examine if we can augment Specification 3.4(ii) to include an explicit notion of recovery.

If the information bar is compromised, i.e., John manages to read bar when he is not supposed to,

we explore how we can change the specification and recover from this exposure, without impacting

the rest of the system.

For this we define the nil as an empty file. We augment the specification of Figure 3.4(ii) with

a new transition that resets the value of temp to nil after it is assigned to bar, before John can

read temp. This hypothetical situation is shown in Figure 3.5.

T3

T3

<{ temp = bar }, P_A = 0, P_auth = 0 > < P_A = 0, P_auth = 0 >

< REQ = < John, bar, r >, P_A =1, P_auth = 0 > 

< { temp = nil }, P_A = 0. P_auth = 0 >

Recover

T3

T5T2

< REQ = | , P_A = 0, P_auth = 0>  

Figure 3.5: Behavioral Specification with Recovery

We define a new recovery action qr that can be initiated by an administrator of the system.

The transition Tr corresponding to this RA is given as follows:

53



Definition 3.3.1 (Tr). A recovery action for the example model can be specified as follows:

〈{temp := bar}(REQ = qr), (PA = 1), (Pauth = 1)〉 → 〈{temp := nil}, (REQ′ = ⊥), (PA
′ =

0), (Pauth
′ = 0)〉.

This action resets the value of the file temp to nil. If this action can be executed by the system

before any other action that attempts to read the value of temp is successful, then we can safely

recover from this insecurity.

Property 4 (Access Control Recovery I). The access control recovery property is specified as

follows: AG(σTr
i → A(〈(REQ 6= 〈John, temp, r/w〉))UσTr

i+1)

This asserts that if a transition of type T5 occurs, the model should recover from this by setting

John’s file temp to nil, before John reads or writes to temp. If we can guarantee this modified

behavior, then the system can recover from a confidentiality compromise.In a real system, an

intruder detection system (IDS) may alert an administrator that the information is compromised.

The administrator may observe the system at some later point in time, and analyze the trace of

requests after the attack occurred and can decide whether the recover action is useful or not at this

stage. In order to show the model is compromise-free, we have to also show how it can also prevent

transitions of type T4 in Figure 3.4(i) as:

Property 5 (Access Control Recovery II). AG(¬(σT4
i → σT4

i+1))

While all the properties shown so far can be verified by hand, we show how we can rely on

model-checking techniques for CTL formulas to automate this process, if we can restrict our focus

to finite-state or finite-state abstractions of access control models, in Chapter 4.

So far we have only modeled a system with one entity. When we have multiple entities and

resources, the specification process can get complicated. To address this issue, in Chapter 4, we

introduce the abstraction of a request-response trace that captures the progress of an access request

across different entities in our system, and show how we can describe behavior across these different

entities. In addition, we show how we can extend the model to incorporate timing guarantees and

stochastic behavior to develop useful measures of survivability.

When an resource is compromised, recovery may involve temporarily suspending read and

write access by other entities, making it unavailable in the process. In Chapter 4, we explore

54



how to change policies dynamically, without sacrificing consistency and preserving existing trust

relationships. The mechanisms we describe there can be adapted to this specification process easily.

In addition to malicious behavior, uncompromised resources may become temporarily unavail-

able to authorized users, because of poor resource engineering or poor design of resource access

mechanisms. In addition, malicious users may take advantage of this to overload resource-access

mechanisms with unwanted requests, thereby denying service to authorized users of the resource. In

order to capture this aspect of policy compromise, in Chapter 5, I showcase the expressive power of

our framework by extending our simple semantic model to include resource consumption behavior

on different entities in the system, and define useful properties to explore and analyze different

strategies for recovery from DoS attacks.

3.4 Thesis Statement

From the description of the context, problem and solution space, I state my thesis as follows:

• Abstract models of information protection systems can be made more relevant by incorpo-

rating insecure states and transitions explicitly, and by refining traditional safety properties

such as confidentiality and integrity as liveness properties in terms of their ability to survive

attacks and be available to legitimate users over time. This new abstraction allows one to

integrate notions of compromise, recovery, and denial of service into policy specification and

verification methodologies, enables recovery-oriented security, and provides a framework to

study different attack-recovery strategies and analyze their impact on improving survivability

of critical information resources.

3.5 Success Criteria

I propose the following criteria to evaluate my thesis:

• Does the proposed thesis advance the state-of-the-art with respect to security property mod-

eling and verification?

• Is the formulation of survivability properties in terms of their availability appropriate for the

55



context? Can it describe useful measures of recovery and resilience to attacks, and capture

the cost-benefit issues of interest to security designers?

• Are the proposed extensions to access control models expressive enough to capture tempo-

ral and stochastic notions of compromise, recovery, and denial of service adequately, both

quantitatively and qualitatively?

• Does the proposed framework for analysis of recovery strategies, based on the abstract model,

address trust and consistency concerns adequately?

• Are these properties verifiable in the framework of the model? Is the verification methodology

automatable? Can it leverage existing and incorporate proposed state-of-the-art with respect

to automated verification of properties? Is the verification scalable? How can it be extended

to models of large systems?

• Is the framework capable of describing a sufficiently complex model to be useful in practice,

as highlighted by the modeling and analysis of quantitative and qualitative aspects of network

DoS attacks and attack resilience?

56



Things alter for the worse spontaneously,

if they be not altered for the better

designedly.

Francis BaconChapter 4

Modeling Recovery

In this chapter I show how we can extend the model and the qualitative semantic framework

presented in Chapter 3 to include stochastic guarantees and timing behavior. In Section 4.1 we

motivate the need for these extensions, and show how we can model an access control system as a

PNS (a probabilistic non-deterministic system) that integrates both stochastic and nondeterministic

behavior into state-transition semantic descriptions of reactive systems.

The Kripke model we present in Chapter 3 is equivalent to a non-deterministic finite-state

machine. Modeling the access control problem with nondeterminism captures the behavior that

any user can issue any request at any time. Extending this to describe stochastic behavior allows

us to describe dynamic resource access scenarios, where requests issued by users, say accessing

file-servers or web-servers, can be modeled as random variables. We also present an extension

of PNSes, called the Timed PNS (TPNS) that can be used to model realtime timing guarantees.

With these extensions, we can define quantitative and probabilistic survivability guarantees in the

context of recovery-oriented security.

A PNS can be represented as a DTMC (Discrete Time Markov Chain), or as a CTMC (Con-

tinuous Time Markov Chain), its real-time variant, if we have a purely probabilistic finite-state

system model. It is equivalent to an MDP (Markov Decision Processes) if we include nondeter-

minism. DTMCs, MDPs and CTMCs have been widely used in the past to describe dependability

and reliability properties of networked systems. The correspondence between a PNS and these

abstractions allow us to transplant related concepts and analysis techniques from these models to

our recovery-oriented model of security. Survivability of a system under attack can be viewed as an

application of these concepts to security models, with the added capability of describing qualitative

57



properties using temporal logics and their associated semantics.

In Section 4.2, in order to specify the recovery behavior of a system under attack, we develop

the notion of a recovery strategy, in terms of the behavior of two types of users in our model:

adversaries and controllers. We show how we can model the behavior of these types of users within

the context of a PNS or TPNS, and describe attacks, countermeasures and recovery with the help

of representative examples.

We also show how we can take advantage of state-of-the-art model checking techniques to verify

if a particular system model can provide survivability guarantees of interest. We summarize how

we can specify, analyze, and validate survivability properties against these models using PCTL

(Probabilistic Computation Tree Logic) for DTMCs and MDPs and CSL (Continuous Stochastic

Logic) for CTMCs, and comment on the applicability of runtime verification techniques.

In Section 4.3 of this chapter, I examine how the survivability of a system degrades when a

user’s account in the system is compromised. Specifically, I examine the impact of this compromise

with regard to confidentiality and integrity policies . I discuss how we can characterize the set of

users who may be affected because of this compromise by analyzing explicit information flows. We

show how to quantify the damage and discuss what properties a policy configuration should satisfy

to minimize or control the impact of such attacks.

Finally, in Section 4.4, we examine the performance characteristics of dynamically changing

access control policies and mechanisms as RAs within this framework, and investigate the nature

of trust relationships and safety guarantees that need to be preserved in order to use them as RAs

effectively.

4.1 Towards a More Expressive System Model

Our model presented in Chapter 3 can describe the behavior of a generic access control system,

in terms of both actions that can change the protection state itself, as well as actions that can

change the values of information objects in the system. It also provides a richer semantics that can

differentiate between an action that is authorized by a policy, versus and action that is enabled by a

mechanism. This distinction is important to recognize attacks and devise survivability mechanisms

that can respond to these attacks.

58



From the point of view of a security engineer, our framework can be used to model access control

mechanisms of a particular system implementation. Using the accompanying analysis framework,

one can evaluate this model-instance by exploring how the system can be compromised. For each

compromise, one can further specify and investigate different recovery strategies, and gauge their

overall impact on the preservation of properties of interest in the system under attack.

Existing models of access control behavior are purely qualitative. By this we mean that the

security properties in the model depend only on the semantics of the actions, in terms of changes

in the system state that occur as a result of the actions. While such models of security systems are

useful in their own right, they do not provide the ability to express quantitative properties that are

integral to modeling survivability.

We identify two types of policy compromise that can lead to attacks in Chapter 3: information

compromise attacks and DoS attacks. We argue that in order study the impact of different recovery

strategies under these attacks, the model we have presented so far does not give us the necessary

power of expression. In terms of response strategies for information compromise attacks, we are

interested in measuring the relative benefits of using one strategy over another. One of the metrics

to perform this comparison is how fast we can recover when a compromise occurs. Ideally, we

would like to restrict our study of strategies to those that are able to provide an acceptable bound

on when the model reaches a consistent state or when a resource becomes available again. This is

called a “bounded availability” property.

In the case of DoS attacks, we need to model the usage patterns of the resource by both

legitimate users as well as attackers over time. By changing the request behavior of different users

(including attackers) over time, we can study the impact of their actions on the availability of the

resource to legitimate users of the system. Furthermore, a strategy that is effective against a DoS

attack should be able to demonstrate that the availability guarantees of a resource to its legitimate

users improves over time, as a result of the strategy.

In order to represent both the behavior of a system under attack and the impact of a recovery

strategy on the survivability of a system, we argue that we need to augment the state-transition

graphs with explicit quantitative models of resource-request behavior, including such parameters

as request sending rates, arrival rates and service rates. If we view the information objects in our

59



system as network resources, we can leverage the rich theory of stochastic processes and queuing

theory to describe and model this behavior in terms of the request-response behavior of different

users in our system. In Section 4.1.1, I discuss how we can extend the simple state-transition

graphs to include descriptions of stochastic behavior. I also show how we can incorporate real-time

into state-transition graph models and describe quantitative survivability properties within this

framework.

4.1.1 Modeling Stochastic Behavior

We present the following abstractions defined in the theory of Probabilistic-Nondeterministic Sys-

tems (PNS) from [109, 110, 19], which can represent a system that displays both probabilistic and

nondeterministic behavior. A PNS augments the state-transition function of a Kripke model with

what is called the next-state probability distribution which is defined as follows:

Definition 4.1.1 (Next-state probability distribution). The next-state probability distribution

for a state space Σ is a function p : Σ → [0, 1] such that
∑

σ∈Σ p(σ) = 1. For each σ ∈ Σ, p(σ)

represents the probability of making a one-step transition from the current state to state σ.

Using this function, we can now define a PNS over a set of atomic propositions AP as follows:

Definition 4.1.2 (PNS). A PNS is a 4-tuple Π = (Σ,Σ0, τ, L) where:

1. Σ is the denumerable or finite state space of the system

2. σin ∈ Σ is an initial state

3. τ is a function that associates each σ ∈ Σ with the set τ(σ) = {pσ
1 , · · · , pσ

kσ
} of the next-state

probability distributions from σ. Cardinality of |τ(σ)| is kσ.

4. L is the labeling function that associates each σ ∈ Σ with the set L(σ) ∈ 2AP of propositions

that are true in σ.

Note the close correspondence between the definition of a PNS and a standard Kripke structure.

The relation R is now replaced by the function V between two states. Finding the successor state

of a given state s ∈ S is a two-step process:

60



1. A next-state probability distribution pσ
i may be selected nondeterministically among set τ(σ)

2. A successor state σ′ ∈ Σ is chosen according to the distribution pσ
i on S.

The reachability relation ρ ⊆ Σ× Σ is defined as follows:

Definition 4.1.3 (Reachability). ρ = {(σ, σ′) | ∃pσ ∈ τ(σ) ∧ pσ(σ′) > 0}

With each state σ ∈ Σ, we represent the set of legal infinite sequences Ωσ of states starting at

s = σ0 as the set:

Ωs = {σ0σ1σ2 · · · |σ = σ0 ∧ ∀n ∈ N.ρ(σn, σn+1)}

The set of computations of this system Π is Ωσin . For ω ∈ Ωs, ω |n is the n-th state of ω, with

ω |0= s.

The model described here can be viewed as a simple encoding of the parallel composition of m

Markov chains A1, · · · , Am [127]. In a PNS Π representing A1‖A2‖ · · · ‖Am, with each state σ ∈ Σ,

we can associate the next state distributions (τ(σ) = {pσ
1 , · · · , pσ

m}, where the distribution pσ
i arises

from a move taken by a chain Ai. The probabilistic behavior of each chain is preserved in Π, and

the choice of the Markov chain that takes the transition is nondeterministic.

In order to analyze the properties of such a system, we need to define a probability measure on

the set Ωs of legal infinite sequences of states beginning at some state s. The standard technique

is to define Bσ ⊆ 2Ωs as the smallest algebra of the subsets of Ωs that contain all the basic cylinder

sets {ω ∈ Ωs|ω |0= σ0 ∧ · · ·ω |n= σn} for all n ≥ 0 and σ0, · · · , σn ∈ Σ that is closed under

complement, and countable unions and intersections. This algebra is called the Borel σ-algebra of

basic cylinder sets and its elements are measurable sets of sequences.

Due to the presence of nondeterminism, we cannot define a probability measure on Bσ. However,

for each set of sequences ∆ ∈ Bσ, we can define its maximal probability µ+
σ (∆) and its minimal

probability µ−σ (∆).

Informally µ+
σ (∆) represents the probability that the system follows a sequence in ∆ given that

the nondeterministic choices are as favorable as possible. Similarly µ+
σ (∆) is when these choices

are as unfavorable as possible.

Formally, these maximal and minimal probabilities are explained with the help of strategies or

schedules that determine which next state probability distribution is chosen for each state. In order

61



to prevent confusion with the notion of a recovery strategy, we will qualify each use of the word in

the other sections.

We are interested in strategies that maximize or minimize the probability that a system starting

in state s, follows a sequence in ∆. We assume that a strategy does not depend on past history. A

strategy is formally defined as follows:

Definition 4.1.4 (Strategy). A strategy η is a set of conditional probabilitiesQη(i | σ0, σ1, · · · , σn)

such that
∑kσn

i=1 Qη(i | σ0, σ1, · · · , σn) = 1, for all n ∈ N , σ0, σ1, · · · , σn ∈ Σ and 1 ≤ kσn.

A strategy η basically resolves the nondeterministic choices of a system that starts at σ0 and

reaches σn following the sequence σ0, σ1, · · · , σn, by choosing the next-state distribution pσn
i with

probability Qη(i | σ0, σ1, · · · , σn). The probability Prη(t | σ0, · · · , σn) that a direct transition is

taken to state t from state σn next is thus equal to
∑kσn

i=1 Qη(i | σ0, σ1, · · · , σn).pσn
i (t)

Therefore with each finite sequence σ0, σ1, · · · , σn starting at the root of Ωs, we can associate

the probability
∏n−1

i=0 Prη(σn+1 | σ0, · · · , σn). These probabilities for finite sequences give a unique

measure µs,η on Bσ that associates with each ∆ ∈ Bσ its probability µs,η(∆) . The minimal and

maximal probabilities can now be defined as follows:

Definition 4.1.5 (Minimal and Maximal Probability). The minimal and maximal probabili-

ties µ−σ (∆) and µ+
σ (∆) of a set of sequences ∆ ∈ Bσ are defined by:

µ−s (∆) = infη(µs,η(∆)) µ+
s (∆) = supη(µs,η(∆))

Thus µ−s (∆) and µ+
s (∆) are the minimal and maximal probabilities with which the system

follows an evolution s = σ0σ1, σ2 · · · when the nondeterministic choices are as unfavorable or

favorable as possible.

The formalism presented here allows us to map a state-transition graph to a stochastic system

model such as a DTMC, CTMC or MDP, allowing us to leverage analysis techniques for these

representations. We also show how with the help of an appropriate temporal logic, we can specify

qualitative as well as quantitative properties that represent survivability concerns adequately.

62



4.1.2 Modeling Real-Time

In order to describe quantitative performance properties of real-time systems, we present a standard

augmentation of a PNS called a Timed PNS (TPNS), first introduced by de Alfaro [39]. This model

introduces a special operator that expresses bounds on the average time between two events, and

defines a framework for modeling and expressing performance, reliability, and correctness properties

of discrete time probabilistic systems.

This probabilistic realtime system corresponds to an MDP with finite state space. In addition to

the non-determinism and probabilistic behavior already described in a PNS, this formalism assigns

each action from the set of actions associated with a particular state in the model to a cost which

is interpreted as the amount of time elapsed during the action. The cost of an action in the model

presented by de Alfaro can be either 0 , corresponding to immediate actions, or 1, corresponding

to unitary time steps. We present the formal definition of a TPNS next:

Definition 4.1.6 (TPNS). A TPNS over set Λ = (Σ, σin,Act , κ, p, c) over AP where

1. Σ is a finite state space. Every state σinΣ assigns truth value σ[[x]] to every symbol x ∈ AP .

2. σin is an initial state in Σ

3. A is a finite set of actions

4. κ is a function that associates each σ ∈ Σ with a nonempty set κ(σ) ⊆ Act that can be taken

at σ.

5. p is a probability distribution function such that for all σ, σ′ ∈ Σ, and a ∈ κ(σ) p(σ′|σ, a) is

the probability of a transition from σ to σ′ under action a. We require Σσ′∈Σ p(σ′|σ, a) = 1

for all σ ∈ Σ and a ∈ κ(σ).

6. c is a cost function such that c(σ, a) ∈ {0, 1} for all σ ∈ Σ and a ∈ κ(σ). This is the cost of

performing a at σ, equal to the elapsed time.

Given a state σ ∈ Σ, the successor state of σ is chosen in a two step process, similar to the

behavior of a PNS:

1. An action a ∈ Act is selected nondeterministically

63



2. A successor state σ′ is chosen according to probability p(σ′|σ, a).

Iterating this process gives the set of behaviors of a TPNS, defined as follows:

Definition 4.1.7 (Behavior of a TPNS). A behavior of a TPNS Π is an infinite sequence

of states and actions ω : σ0a0σ1a1 · · · such that ai ∈ κ(σi) and p(σi+1|σi, ai) > 0 for all i ≥ 0.

Given a behavior ω : σ0a0σ1a1 · · · , ωi denotes state σi and ωa
i the action ai, and ω≥i the behavior

σiaiσi+1ai+1 · · ·

Let Ωs be the set of of behaviors starting from any state s ∈ Σ. Let Bσ be the σ-algebra of

measurable subsets of Ωs. With each ∆ in Ωs, we would like to associate its probability measure

µ(∆). This measure is not well defined, as the probability that a behavior ω ∈ Bσ belongs to ∆

depends on the criterion by which actions are chosen in each state.

Similar to the notion of strategies in PNSes, the concept of a policy is used to specify the

criteria by which actions are chosen in a TPNS. A policy η is a set of conditional probabilities

Qη(a|σ0a0σ1 · · ·σn) where a ∈ κ(σn). Starting from s = σ0 of Ωs, after a finite prefix σ0a0σ1 · · ·σn,

action a ∈ κ(σn) is chosen with probability Qη(a|σ0a0σ1 · · ·σn) according to policy η.

The probability of a direct transition to σ′ after σ0 · · ·σn is given by:

Prη
σ(σ′|σ0a0σ1 · · ·σn) =

∑
a∈κ(σn) p(σ

′|σn, a).Qη(a|σ0a0σ1 · · ·σn) .

These transition probabilities now give rise to a unique probability measure µη
s on Bσ. Prη

s (A) is

the probability of event A in Ωs under policy eta and probability measure µη
s .

In this simple model, time is modeled by the values of a fictitious global clock by integers in

Z. In order to understand the operational semantics of this system, we introduce the reader to the

abstractions of a timed transition system (TTS) [5]. At any point in the execution sequence ω of

a TTS, either the system state changes or the clock value changes, usually by a unitary time-step

or “tick”, or neither. A timed state sequence ρ = (σ, T ) consists of an infinite sequence of states

σi ∈ Σ, i ≥ 0, and an infinite sequence T of corresponding time values Ti ∈ Z, that satisfies the

following conditions:

• Bounded monotonicity: For all i ≥ 0, either Ti+1 = Ti or Ti+1 = Ti + 1 and σi+1 = σi.

This property ensures that time never decreases.

64



• Progress: For all i ≥ 0, there is some j > i such that Ti < Tj . This is to ensure that time

never stagnates. Thus there are infinitely many clock ticks in every timed sequence.

This progress property defines what is called a Non-Zeno system. Formally, a TPNS Π is non-

zeno if a behavior from σin follows infinitely many time-steps under any policy, i.e., Prη
σin(A) =

(
∑∞

i=0 c(ω, ω
a
i ) = ∞) = 1. A system designer must take care to ensure that their TPNS model is

Non-Zeno.

To generate an execution sequence of a TPNS, at each step we have to either choose a transition

with a certain probability without incrementing time, or increment time by 1 while taking an idle

transition. The bounded monotonicity and progress properties are necessary, but not sufficient to

show that the stepwise execution of a TTS cannot lead to a situation where time cannot advance

ever. Henzinger et al [68] present additional conditions on the operationality of timed systems

and prove how these conditions are sufficient to prevent descriptions of systems where time cannot

advance ever.

The authors describe these operationality requirements using the concept of a partial computa-

tion. A finite prefix ρ = (σ, T ) of a timed state sequence is a partial computation if it satisfies what

are called the initiality, consecution, lower bound, and finite upper bound conditions. The initiality

condition asserts that the initial state of this sequence is an initial state of the system model. The

consecution requirement asserts that the system can always take some transition from a given state

σi to a new state σi+1. The lower bound and finite upper bound requirements on the transition

specify how if we are at a given state and many transitions apply, then there is a lower bound on

when at least one transition will be enabled. Once a transition is enabled, it will taken by the

model within a finite time. If each partial computation of a timed transition system is a prefix of

an initialized computation of the system, then we can guarantee that the a system that generates

partial computations incrementally cannot arrive in a situation in which the progress condition on

time cannot be satisfied.

The choice of Z as the time domain allows us to discretize time and implement scalable analysis

techniques. However, Alur and Henzinger show how we can include non-negative real numbers,

denoted by < by using the notion of intervals to discretize time. These intervals define the duration

of system states similar to the function of c presented in the TPNS abstraction. Each interval is

65



a convex subset of <. Every interval is of the form [a, b], [a, b), [a,∞), (a, b] or (a,∞), where a ≤ b

and a, b ∈ < for the left endpoint a and the right endpoint b. An interval I is singular iff it is of the

form [a, a], that is the interval is closed and its right endpoint is the same as its left endpoint. Two

intervals I and I ′ are adjacent iff (1) either I is right-open and I ′ is left-closed, or I is right-closed

and I ′ is left-open, and (2) the right endpoint of I is the same as the left endpoint of I ′. An interval

sequence I = I0I1 · · · is a finite or infinite sequence of intervals that partitions the real line such

that:

1. Any two neighboring intervals are adjacent, and

2. For all t ∈ <, there is some interval Ii with t ∈ I.

3. I0 is left closed and the left end point of I0 is 0. The last interval of any finite interval sequence

is unbounded.

Using this notion of intervals, we now define the operational semantics of such a system. The

behavior of the system is defined by a set of timed state sequences that satisfies the finite variability

property and are fusion-closed. We define these properties next. Each timed state sequence τ ∈ T

represents a system behavior by identifying a unique system state τ(t) ∈ Σ with every time instant

t ∈ <. Formally a timed state sequence τ is a function from < to Σ that satisfies the finite variability

condition.

Definition 4.1.8 (Finite Variability). There exists an interval sequence I = I0I1 · · · such that

throughout each interval Ii, the values of the propositional variables in a state do not change.

Thus the finite variability condition asserts that in any bounded interval of time, there can only

be finitely many observable events or state changes.

The set T of timed state sequences is fusion-closed if each system state contains all the infor-

mation necessary to determine the future evolution of the system.

Definition 4.1.9 (Fusion-closed). For all timed state sequences τ1, τ2 ∈ T and time instants

t1, t2 ∈ <, if τ1(t1) = τ2(t2), then τ ∈ T for the timed state sequence τ with τ(t) = τ1(t) for t ≤ t1

and τ(t) = τ2(t+ t2 − t1) for t > t1.

66



Using the notion of intervals allows us to discretize continuous time and incorporate it into

models of state-transition systems.

In the next subsection, we describe how we can use these models to extend the language of

temporal logic to represent both probabilistic and real time properties of survivable systems.

4.1.3 Temporal Logics for PNSes and TPNSes

In this subsection, we present the syntax and semantics of different temporal logics that can be

used to specify quantitative temporal and probabilistic survivability properties. These logics are all

extensions of existing formalisms for specifying qualitative branching time properties using CTL

or CTL∗. The syntax and semantics of CTL and CTL∗ are presented in Appendix A. These

logics include a special probability operator that can be used to specify the maximal or minimal

probability that an event happens. In terms of semantics, the truth value of a formula φ at some

state σ is a value pσ(φ) in the interval [0, 1]. This can be interpreted as the probability that the

formula φ holds when the system starts in state σ.

The logics pCTL and pCTL∗ [19] or probabilistic CTL and CTL∗ can describe branching

time properties of concurrent Markov chains. Concurrent Markov chains allow a choice between

probability distributions on successor states, modeling nondeterminism. This choice is understood

to arise the context of a distributed computation and is made by a scheduler or an adversary. The

logics PCTL and PCTL∗ [65] or Probabilistic CTL and CTL∗ describe branching time properties

of sequential Markov chains, which are basically discrete time deterministic Markov chains. The

logic CSL or Continuous Stochastic Logic describes properties of CTMCs. TPCTL or Timed

Probabilistic CTL [4], PBTL [13] or Probabilistic Branching Time Logic, and pTL∗ or probabilistic

temporal logic [39], introduce a special operator D to express bounds on the average time between

events and allow us to specify quantitative as well as probabilistic branching time properties.

We now present the syntax and semantics of pCTL∗, pCTL and PCTL and PCTL∗. Similar

to CTL and CTL∗, we can specify either path formulas or state formulas. Path formulas can

describe properties of execution paths in the computation tree of a model. State formulas are useful

to specify branching time properties as well as various possibilities in a state. The probability

operator P is only defined on state formulas and is used to express the quantity of paths that

67



satisfy a given formula from a given state. The P operator may be viewed as a quantitative version

of A and E which express the universality or existence of (a) path(s) that satisfy a given formula.

When the probability value is 1 is equivalent to A, and when it is nonzero it is equivalent to E.

Syntax: The syntax of PCTL∗ formulas is specified as shown next. In the following production

rules, φ denotes a state formula and ψ denotes a path formula:

φ = true | a | ¬φ | φ ∧ φ | P./p(ψ)

ψ = φ | Xψ | ψ1 Uψ2 | ψ1 U≤kψ2 | ψ ∧ ψ | ¬ψ

(4.1)

The operators X,U stand for the usual next and until temporal operators, and a ∈ AP . The

probabilistic operator P./p(ψ) expresses the quantity of paths that satisfy formula ψ, where ./

stands for <,≤,≥, >, and p ∈ [0, 1]. The bounded Until formula quantifies the number of states k

that ψ1 has to hold until ψ2 holds.

The syntax of the pCTL∗ formulas is specified as:

φ = true | a | ¬φ | φ ∧ φ | Aψ | Eψ | P./p(ψ)

ψ = ψUψ | Gψ | Fψ

(4.2)

The operators A,E,G, and F stand for all paths, there exists a path, globally and finally

respectively. The logic PBTL∗ is shown to be essentially equal to pCTL∗. Logics pCTL and

PCTL are restricted subsets of their starred version, with a limitation that the temporal operators

G, U, and X have to be applied to every subformula.

Semantics: The formulas presented above defines a satisfaction relation Π, σ |= φ, indicating

that the state formula φ holds in state σ of PNS Π. This definition uses a probability space as

described previously by (Ωs,Bσ). For a sequential Markov chain, in the case of PCTL∗, the formula

P./p(ψ) means that the unique measure of the set of paths satisfying the formula ψ ./ p. For a

68



concurrent PNS and pCTL∗, we have minimal and maximal probabilities depending on the strategy

of the adversary.

The syntax and semantics of CSL [11] is very similar to that of PCTL with the addition of

one new state formula operator S./p(φ) called the steady-state operator. Steady state probabilities

refer to the system behavior in the long run, after the transients have died down. Also, the bounded

until formula U≤I is now modified to specify a restriction on the bound using an interval I over

reals instead of an integer.

Timed probabilistic logics include the operator D./d in addition to P in the generation rules for

state formulas. The intuitive meaning of σ,Λ |= D./d in a TPNS Λ is that D./d holds at σ ∈ Σ,

regardless of the policy, if the TPNS reaches a φ state in average time ./ d. This definition relies on

the fact that the TPNS is non-Zeno. For exact semantics of TPCTL∗ and TPCTL for sequential

Markov chains we refer the reader to [4], and to [39] for semantics of pTL and pTL∗ for concurrent

Markov chains.

In the next section, we describe how to specify a recovery strategy and present examples of

survivability formulas using the logic presented here.

4.2 Recovery Strategies

We define recovery strategies formally and describe how we can include them in state-transition

graphs of access control behavior. In Section 4.2.1, I show how to model an attack as the behavior

of an adversary and describe how to differentiate this from authorized system behavior. Next, I

describe how we can specify controllers who can counteract adversarial behavior. I also present how

we can encode this interaction between a controller and an adversary with respect to a property

that needs to be preserved, as a controller-synthesis problem in the context of an open reactive

environments [80].

In Section 4.2.2 I show with the help of examples how we can use the formalism presented

so far to describe useful survivability properties. I discuss how to compare and contrast different

strategies in terms of their impact on the satisfaction of confidentiality and integrity policies. Using

these metrics, I describe how to analyze different recovery strategies for information compromise.

I focus on specification and analysis of recovery strategies for DoS attacks in Chapter 5.

69



I follow this with a discussion of how to validate or verify these properties within the frame-

work of the models presented in this Chapter in Section 4.2.3. I show how there exist decidable

algorithms to model-check different temporal logic-formalisms for finite-state models and briefly

discuss whether run-time monitoring verification techniques can also be applied to analyze finite

traces of an infinite-state system, providing weaker satisfaction semantics.

4.2.1 Adversaries and Controllers

We identify two types of users in the context of recovery strategies: adversaries and controllers. An

adversary is a user who can cause an insecure transition to occur as a result of their actions. The

impact of their action(s) on the security of the system may not be instantaneous. A controller is

a user who can initiate response actions and attempt to counteract the behavior of an adversary.

In the case of information compromise attacks, adversaries are users that deliberately insert access

rights that contradict system policy. A controller, e.g., a superuser with the appropriate authoriza-

tions, can delete these rights from the access rights matrix if they are detected, before information

can be compromised.

In the case of DoS attacks, adversaries can send (bogus) requests to networked servers and

compete with legitimate users for the resource. A controller can install filter rules to drop these

requests before they interfere with request-response behavior of legitimate users of the system.

However the act of filtering itself may increase the response times for legitimate users in the system.

We study this behavior in Chapter 5.

A recovery strategy is a state transition subgraph that augments an existing state-transition

graph of system behavior. Typically, a recovery strategy refines the behavior of a particular edge

in a state-transition graph that corresponds to insecure behavior.

Definition 4.2.1. A recovery strategy T = (GT , ET ) augments a Kripke structureM = (Σ, σ0, R, L),

a PNS Π = (Σ, σ0, τ, L), or a TPNS Λ = (Σ, σin,Act , κ, p, c) with a subgraph GT = (V,EV ) and

v0, Vf and a set of edges ET where:

1. V is the finite set of states in the strategy.

2. EV is the transition relation between these states.

70



3. v0 is the first state in the strategy and corresponds to the state reachable from a state in Σ

where the strategy is grafted. This edge to v0 typically encodes the behavior of an adversary

that executes an insecure transition to a potentially inconsistent state ∈ V .

4. Vf ⊆ V is the set of final states in the strategy that connect the strategy back to the original

state-transition graph. Edges from states in Vf lead back to states in Σ.

5. ET includes the transitions between states in Σ to v0 as well as transitions that connect back

states in Vf to Σ.

The new system model now has Σ′ = Σ ∪ V and R′ = R ∪ ET ∪ EV . From all states in

the strategy, it must always be possible to reach a state in Vf with one or more transitions. We

introduce two boolean variables to indicate whether the state corresponds to an adversary or a

controller. If boolean variable ADV is true in a state, then the request issued from that state is by

an adversary. If the variable CON is true in a state, then the action corresponds to a controller’s

behavior. Therefore states in the augmented graph that correspond to the strategy are now labeled

with these variables to indicate whether the action is initiated by and adversary or a controller.

Given this model of an augmented state-transition graph, it is now useful to explore what types

of properties can be preserved by strategies. Since a strategy models the behavior of the system

under attack, it is useful to ask if it is always possible to reach a state where some security or

consistency property can be asserted, by describing appropriate atomic propositions that need to

hold in that state as a result of using the strategy over an unaugmented graph. Furthermore, this

property can be refined by quantifying probability and realtime measures on paths that need to be

satisfied.

We now present an example of how to specify survivability and recovery. During the process of

analyzing a specification and identifying potential attacks, it is useful to validate that the model is

capable of good behavior. An example of a formula in the context of the extended access control

model in Chapter 3 is presented next. Consider the following survivability property that asserts

that it is always possible for some legitimate access request to receive an appropriate response.

This can be encoded for some model M using CTL as follows:

M,σ0 |= AG(EF(σT1
i → σT1

i+1))

71



This property asserts that it is always possible for some requests in the system to execute

correctly. Note this measure of survivability is extremely weak, and only guarantees the existence

of a path in the model where this semantically consistent request-response transition can occur.

With the introduction of a recovery strategy, we want to strengthen this guarantee as follows:

M,σ0 |= AG(AF(σT1
i ; σT1

i+k))

This specification asserts that it is always possible that if we issue a legitimate request in the

system, it will produce an appropriate (semantically consistent) response through one or more

intermediate transitions, modeled here by ;. Note that this assertion is stronger than the AGEF

assertion presented previously because of the universal quantification on the paths. It also allows

branching behavior between the two endpoints of the transition. All paths through these states

must lead to the desired state.

The existence of a path, or the fact that all paths now can reach a specified desirable state is a

qualitative property of the survivability of an augmented state-transition graph. In Section 4.2.2, I

show how we can specify quantitative properties to bound the amount of time before this desirable

state is reached, and evaluate different strategies based on probabilistic and real-time behavioral

characteristics described by the underlying transition graph.

So far, we have presented how to specify recovery strategies, assuming we know how to recover

from a given security attack. However, we believe that it more useful to automate this process and

investigate whether it is possible to synthesize a recovery strategy given an attack description. For

this we need the description of a “recovered” state or a formula that encodes a property that needs

to be preserved by the system augmented by the strategy. Using the set of all possible actions

of adversaries and controllers, if we have a finite state system, for CTL (and CTL∗) Kupferman

et al [80] show how if a property-preserving strategy exists we can always find it, or show that

it cannot exist, and this is 2EXPTIME-complete (resp. 3EXPTIME-complete) in the size of the

model. We propose to explore the automated generation of recovery strategies for specific problems

as future work.

72



4.2.2 Defining Survivability Properties

In this section we present examples of quantitative survivability properties including DoS-free

behavior.

The two survivability properties presented in Section 4.2.1 i.e., AGEF and AGAF represent

two ends of the spectrum with respect to survivable models of system behavior. As shown in

Chapter 3, the Until operator U is also useful to specify the propositions that should hold in a

computation subtree or along a path before a recovery action restores the system to a desirable state,

without compromising the security of the information. When we incorporate stochastic behavior

and real-time into these models, the corresponding probability and timing guarantees replace the

A and E path quantifiers wherever appropriate. These properties are summarized next:

• Probabilistic Survivability Properties: The operator P./p where ./=<,≤, >,≥ repre-

sents a quantity of paths in the model that satisfy the corresponding formula. Examples

of probabilistic survivability properties include AGP./pF(φ) that asserts that along every

computation path, with probability ./ p it is possible to get to a state where ψ holds, and

P./p1GP./p2F(φ) which asserts that on a probability ./ p1 number of paths, it is possible to

get to a state where ψ holds with probability ./ p2, etc.

• Real-Time Survivability Properties: The operator D./d represents a bound on real-time

that can elapse before the property is satisfied. For example, the formula AGD./pF(φ) asserts

that along every computation path in the model, it is possible to get to a state where ψ holds

within time ./ d. Similarly, the formula D./d1GD./d2F(φ) asserts that along all paths, in

time ./ d1 it is possible to get to a state where ψ holds in time ./ d1. P and D operators can

also be combined to specify probabilistic timing guarantees.

These examples illustrate how the extended temporal logics can be useful in increasing expressive

power of survivability properties. The examples presented so far are useful to describe information

compromise attacks and recovery. We now present two properties that we claim are useful to model

recovery from DoS attacks:

1. DoS Resilience: In order to specify the ability of a model to recover from DoS attacks, we

propose the following formula:

73



M,σ0 |= AG(σT1
i ; EF(σT1

i+1))

which asserts along some path in the future, a request from a legitimate client will eventually

get a response, after going through possibly many intermediate states and transitions (repre-

sented by ;). This property does not put a bound on the waiting time and is equivalent to

a Finite Waiting Time (FWT) property.

2. DoS Resistance: In order to resist DoS attacks all-together we need the following guarantee:

M,σs |= AG(σT1
i → AF(σT1

i+1))

which asserts that along all paths in the future we can guarantee that every request will

always receive a response in the next state. Therefore a model that can satisfy this property

is DoS-free.

Once again, the existence of a DoS-free path is too weak to be useful in practice. The DoS-

resistance property on the other hand suffers from being too strong. In Chapter 5 I show how we

can model more interesting quantitative properties of recovery from DoS attacks.

4.2.3 Validating Survivability Properties

In this subsection, we explore what techniques are available to validate survivability properties

within the framework of their corresponding system models. Formulas written in CTL for Kripke

structures and in PCTL, pCTL and TPCTL for special types of PNSes and TPNSes all have

efficient model checking algorithms.

Before we summarize known results with respect to the complexity of these techniques, we briefly

introduce the reader to the differences between model checking and traditional theorem proving for

property verification in system models. Traditionally, theorem provers were employed to facilitate

the process of verifying whether a system’s behavior can satisfy a property specification. A theorem

prover annotates different stages (not necessarily each state) in a system’s behavior with formulas

that can be asserted at that stage, and uses an underlying deduction system with appropriate

axioms to prove if the final property specification can be proved as a theorem in this system.

The limitations of traditional theorem-proving systems are well-known. According to Halpern and

Vardi [66], the first problem is finding an appropriate language to represent these assertions. The

74



need to use logic to model the behavior of the system necessitates the use of expressive logics.

Theorem proving is difficult to automate for arbitrary logics, and undecidable for even first-order

logic.

Model checking on the other hand works with a semantic model of the system directly. In

contrast to proof-theoretic approaches, the problem of property validation is reduced to checking

whether a given formula is true in the model. In this thesis we extend access control models with

more expressive semantics. We believe that using model checking can be an appropriate choice for

verification in this framework.

The paradigm of model checking was first explored in the context of finite-state program veri-

fication. The problem was to verify if a finite state program P satisfies a specification ψ in some

temporal logic. One way of doing this is to completely characterize the program [89] by a tempo-

ral logic formula φP , i.e., φP describes all possible transitions of P in each possible global state.

Checking whether P satisfies the property specification ψ can be accomplished by checking if the

implication φP ⇒ ψ is valid. However this validity problem for temporal logic is known to be

EXPTIME-complete [53].

Clarke, Emerson et al [32, 52, 112] proposed the following approach: Instead of representing P

by a formula, they explored the use of a semantic state-transition model of P called the Kripke

structure MP , where the states represent the possible global states of P and the transitions the

evolution of the model over time. The model-checking approach attempts to find the set of all

states Σ in the model that satisfy ψ, i.e., {σ ∈ Σ|MP , σ |= ψ}. The system satisfies the specification

provided (all) the initial state(s) are in this set. Note that the size of the model is essentially the

same as the length of φP , and a maximal model is exponential in size of the set of boolean variables

in the system. The model checking problem can however be solved in time linear or polynomial,

depending on the logic, in the size of MP and ψ. Another added advantage of model checking is

that it always produces a counter-example if a particular specification cannot be satisfied in the

model, as a path consisting of states and transitions to a state that cannot satisfy the specification.

Recent research has expanded the scope of model checking algorithms to probabilistic and real-time

state models.

One limitation however is the fact that model-checking techniques only apply to finite-state

75



systems and this may seem to be severe limitation as most reasonably complicated systems cannot

be described as finite-state models. However techniques such as abstraction, partial-order reduction,

composition, exploiting symmetry, and structural induction [33] can all reduce the complexity of

model-checking infinite-state systems by transforming them into finite-state models, with some loss

of expression in the semantics.

We now summarize known results for the complexity of model checking branching time formulas

ψ for specific temporal logics and models of reactive systems in Table 4.1:

Model Specification Logic Complexity
Kripke structure CTL O(|ψ|.(|Σ|+ |R|) [33]
Sequential PNS PCTL Linear in ψ, polynomial in Π [81]
Concurrent PNS pCTL or PBTL Linear in ψ, polynomial in Π [19]
Non-Zeno Concurrent TPNS pTL Linear in ψ, polynomial in Λ [39]

Table 4.1: Model Checking Branching-Time formulas

Model checking PNSes and TPNSes is an active area of research. Many of these algorithms

have efficient implementations based on symbolic manipulation of boolean formulas using what are

called Ordered Binary Decision Diagrams (OBDDs). Model checking has been shown to be feasible

for models with up to 1020 states.

An alternative to theorem proving or model checking for validating survivability properties

is runtime verification. Both theorem proving and model checking aim at proving a model is

correct or that satisfies a property specification before their execution. In order for these techniques

to be automatable, they need to be finite state systems. Runtime verification on the other hand

is the application of lightweight formal methods applied during the execution of a system. These

techniques rely on observation and monitoring of finite execution traces, of either finite state or

infinite state systems. Successful examples of the use of runtime verification include race-condition

detection and deadlock-detection. Runtime verification techniques extend the scope of models that

can be analyzed for different properties, but provide weaker guarantees.

However, there are various system properties that cannot be expressed as sets of runs, including

possibilistic and general branching-time properties. As such, the application of runtime verification

to liveness properties is infeasible. However, some recent results for Timed Linear Time Logics may

76



be useful for validating bounded liveness properties [79]. We propose to explore this in the future.

In the next section we discuss the impact of changing access control policies on confidentiality

and integrity policies in the system, and discuss how we can extend our survivability analysis to

address specific concerns in this context.

4.3 Analysis of Degradation of Access Control Survivability

In this section, we focus our attention to studying the impact of an attack that compromises an

user account in the system. When a user’s account is compromised, it is important to analyze

what effect this has on the security of other users and objects in the system. We are interested in

investigating how actions that can be initiated by a compromised user can affect existing integrity

and confidentiality guarantees as the system evolves, and in exploring how this compromise can

spread insecure or inconsistent information through the system.

We start with a snapshot of the consistent system state just before such an attack occurs. At

this point in time, the system contains a finite number of subjects and objects. Let these sets

be S = {s1, s2, · · · , sn} and O = {o1, o2, · · · , om}. The access control policies in the system are

represented by access matrix entries of the form A[si, oj ] = r that correspond to a confidentiality

policies and entries of the form A[si, oj ] = w that represent integrity policies.

For our analysis, these policies can be represented as a directed graph (digraph). A read

permission is modeled as an edge that is directed between the object and the subject, and the

write permission as an edge between the subject and the object. For example if s1 can read o1,

then the digraph GP = (VP , EP ) will contain edge (o1, s1). If s1 can also write to o1, then edge

(s1, o1) ∈ EP . We now define the notion of an information modification path, analogous the

definition of an information transfer path presented by Biba [20], in this graph.

Definition 4.3.1 (Information Modification Path). An information modification path is a

sequence of nodes si1oj1si2 · · · oik−1sik ∈ VP such that (sij , oij) ∈ EP ) and (oij , sij+1) ∈ EP for

1 ≤ j < k.

An information modification path or a write-read path encodes the explicit flow of modified

information in the system. When a subject si is compromised in the system, a masquerading user

77



s′ can:

• Read confidential information that si could read, or

• Write over information that si could write.

By reading information si was allowed to read, attacker s′ has violated the confidentiality of

all objects OC = {oj |(oj, si) ∈ EP , 1 ≤ j ≤ m}. Furthermore any subjects in S that can also read

objects in OC , i.e., SC = {sk|(oj, sk) ∈ EP , oj ∈ OC , 1 ≤ k ≤ n} also have their confidentiality

compromised. A user who was not allowed to read the files these subjects were allowed to read, is

now able to do so as a result of the attack. If an object op in the system cannot be read directly

by si or if subject sq in the system does not have any files that can also be read by si, then the

confidentiality of this object or subject is not compromised.

However, attacker s′ can cause further damage to the system by writing to objects that si has

write permissions for. Once the integrity of the information has been compromised, this information

can spread throughout the system by anybody who can read the tainted object. The initial set of

objects whose integrity can be compromised include all objects in OI = {oj |(si, oj) ∈ EP , 1 ≤ j ≤

m}. The initial set of subjects who can be compromised include all subjects in SI = {sk|(sk, oj) ∈

EP , oj ∈ OI , 1 ≤ k ≤ n}. This compromised information can affect the integrity of all write

commands issued by subjects in SI , and can further spread along the information modification

paths from SI .

Graph GP = (VP , EP ) can now be explored for all information modification paths starting in

set SI . Each object and subject encountered along this path can be added to sets OI and SI to form

the set of all subjects and objects whose integrity can be affected as a result of the compromise.

Finding these paths reduces to the digraph reachability problem and the transitive closure

problem for digraphs, which can be solved in size polynomial to the number of vertices (O(V 3))

in the graph and whose lower bound is given by the theorem that it is no easier than the matrix

multiplication problem.

Given a user account that is compromised, we can use this transitive closure analysis to come

up with the maximal sets SC , OC , SI , OI , and change the permissions of user si to reduce this

damage. Given a policy configuration, we can apply this analysis by simulating the effect of

78



an attack for each user in the system and come up with a ranking of which users are better

targets for attackers, depending on the cardinality of these maximal sets. Given a set of integrity

and confidentiality policies, we are interested in finding minimal directed cuts (or dicuts) that

increases the number of connected components in the graph. By removing these edges, explicit but

unauthorized modification of information can be efficiently curtailed.

In the case of buffer overflow attacks, we can apply this analysis to policy configurations that

attempt to minimize the impact of an attacker by restricting the address space and permissions

associated with user-level processes running as root (e.g., chroot jails). In this situation, automated

reachability analysis can help us identify the sets of users and resources that can be compromised

as a result of a successful buffer overflow attack and validate our designs.

One of the issues with creating these chroot jails is that processes cannot be isolated completely

from each other, especially because of the need to use many common system libraries. Administra-

tors usually decide on what is shared and what is duplicated in an ad hoc manner. Given a digraph

of read-write permissions, we can apply other graph-theoretic analysis techniques such as finding

cutsets and cutpoints that increase the number of components in a graph and reduce dependencies

among these user sets. We propose to investigate applications of the analysis framework presented

here in the future.

In the next section, we discuss how to model trust into the abstractions presented so far and

explore the implementation complexity of changing access control policies dynamically and main-

taining consistency.

4.4 Dynamic Access Control

When an object (file or program) in the system becomes vulnerable to compromise as a result of the

discovery of a new flaw, or when a subject cannot be trusted, changing the access control matrix

is often a suitable course of action for system administrators as a preventive measure. Often, the

required software updates may not be immediately available, and changing the authorizations for

subjects and objects can prevent malicious users or software applications from accessing vulnerable

(but not yet compromised) resources, and vice-versa, thereby reducing the threat of attack.

When an actual attack occurs (information exposure), the situation is less amenable to recovery

79



by dynamically changing the access control policies. If attacks can be detected, either by intrusion

detection or other mechanisms, these techniques can still be used to isolate compromised parts of

the system and contain damage.

In traditional access control models, restrictions are placed on the set of subjects that are allowed

to add, update, or delete access rights from the access matrix, to implement different types of access

control policies. Mandatory Access Control (MAC) policies restrict this privilege to trusted system

administrators. In Discretionary Access Control (DAC), this privilege is extended to the owner of

an object. Most systems support a combination of MAC (for public or system resources) and DAC

(for privately-owned resources) policies.

In Sections 4.4.1 and 4.4.2, I examine the issue of changing access rights dynamically, with spe-

cial attention to how they are implemented in practice, i.e., using access lists (ALs) and capability

lists (CLs). Once a threat is mitigated, e.g., by expelling the users, or by installing updates, it is

also useful to be able to restore the original access control policies, i.e., to rollback the system to

its original operating environment. We also explore the costs of changing ALs and CLs for rollback

and recovery. Most of the work presented here has appeared in [102].

Changing the access matrix in an ad hoc manner can have unexpected side effects in terms of

safety and trust assumptions. In Section 4.4.3 we show that in order to preserve access control

consistency during change, we need to implement an atomic broadcast and commitment protocol

in a distributed setting. It is well known that achieving this is difficult without synchronization

assumptions. However, partial consistency and recovery may be implementable with lesser effort in

many cases, to keep the system running, even under threat of attack. In the same section, I describe

how we can change trust assumptions safely during recovery, by augmenting policy specification

and enforcement mechanisms with appropriate guards.

4.4.1 Implementing Access Controls

In a distributed system, shared resources (i.e., objects) can be on different physical machines

connected over a network, and the access control enforcement mechanisms can also be distributed

across the network. Each machine may have a reference monitor that intercepts both local and

remote access requests to shared resources. A single centralized access control matrix to validate

80



accesses is rarely implemented in practice [21]. In order to reduce performance overheads, these

access rights-sets are also spread across the system.

Two different representations for storing the rights across the system are commonly used: access

lists (ALs) and capability lists (CLs). ALs are lists of 〈subject,method〉 pairs per object, and

correspond to the list of subjects that are allowed to access specific methods for a given object.

CLs are lists of 〈object,method〉 tuples, and correspond to the list of objects and methods that can

be accessed per subject.

Traditionally, in stand-alone systems where the sets of subjects (usually classified into groups

or alternatively as roles) or objects do not change very often, the relative benefits of choosing one

representation over the other are comparable [42, 28]. In an AL-based system, invoking a subject’s

right to access an object is simple and is usually accomplished by deleting specific rights from the

object’s AL. To locate an access right one may have to search through the entire AL. CLs are

usually generated by system administrators and stored in protected shared memory. Each access

request can either carry the capability itself (with sufficient cryptographic protection to prevent

modification) or a pointer to the location of the capability in the CL, which is only accessible by

the decision logic. CLs simplify the lookup of rights and speed up the process of access control

decisions. When capabilities are passed around or CLs replicated in different process address spaces,

revocation of access rights becomes difficult.

It is not immediately clear which implementation mechanism is ideal to change the access rights

in response to a perceived threat or vulnerability in a distributed setting, since there are no studies

that compare the relative benefits of the two approaches. In [75] the authors speculate that ALs are

more popular than CLs because they efficiently answer the question “who access a given object?”,

whereas CLs are useful to answer the question “what else can a subject access?” [21]. While the

first question is useful to protect the confidentiality of information accessed and directly relates to

access control, the second question is useful to evaluate the flow of information in the system.

In Section 4.4.2, our aim is to evaluate the performance overheads of changing access control

rights in a distributed setting for both options.

81



4.4.2 Changing Access Control Rights

When a system is attacked or when a new vulnerability is discovered, administrators may receive

notifications (either from other administrators, network monitoring software, software vendors, in-

trusion detection systems etc.) to disallow access to certain users, computers, software applications,

or specific methods for applications (e.g., disable execute for email attachments). I examine the

cost of changing these rights for both AL and CL-based distributed access control implementations

in terms of the sizes of sets of subjects, objects, and methods. We note that these actions can

guarantee that future compromise is prevented, as any future trace of behavior will be denied this

action by the policy-enforcement mechanisms.

We assume that each subject si has an AL and object oj has a CL associated with it for the

same of comparison. Let | S | and | O | be the cardinalities of the sets of subjects and objects,

equal to the number of CLs or ALs in the system respectively. Table 4.2 summarizes the maximum

number of lists that have to be processed (ALs or CLs), in order to remove a user, a resource, or a

specific access right tuple from a distributed access control system. The numbers also correspond

to the maximum number of network connections that have to be initiated by the administrator in

order to decide whether an AL or a CL needs to be updated. The actual amount of time required

to process the list depends on the data structures used to implement the lists, and the number of

access rights in the system.

Recovery Action AL model CL model
To remove user | O | 1
To remove object 1 | S |
To remove a specific
access right 1 1

Table 4.2: Maximum Number of Lists Processed

As shown in Table 4.2, to remove a user si in a distributed AL-based implementation, since the

〈si, rk〉 tuples are distributed across multiple access lists corresponding to different objects, each

list must be examined in turn and the tuples purged appropriately. In order to remove a user in

a CL-based implementation, only the capability list of a single user has to be deleted. In both

cases, the maximum number of entries that may need to removed is equal to the number of distinct

82



〈si, oj , rk〉 tuples in the system. This is also the number of entries that need to be stored for rollback

in order to restore the original access rights.

To remove an object oj and all its associated rights, only that object’s AL has to be removed

from the system. In the case of CLs, all CLs corresponding to all subjects have to be examined,

to find and delete the appropriate〈oj, rk〉 tuples. In both cases the number of entries that need to

be removed (or stored for rollback) is equal to the number of distinct access rights that have oj in

their tuples.

To remove an individual permission for a particular object (e.g., disable the auto-execute option

in a web browser etc.), in both AL and CL-based implementations, only one table has to be updated,

corresponding to either the si’s CL or the oi’s AL.

To summarize, in order to remove an object’s access rights from a distributed system, there is

a significant cost asymmetry in favor of ALs. Similarly to remove a user from the system, using

CLs is more efficient.

From this analysis, we observe that in terms of automating the process of changing access

controls dynamically by removing entries from the ALs or CLs, if the sizes of the sets of users

and objects are comparable, no implementation technique has a clear advantage. If we expect

recovery-actions as primarily removing access to certain objects or disabling specific object rights,

even temporarily, clearly ALs are better. However, in the case of buffer overflow attacks, curtailing

a subjects’ rights is more important and CLs are better.

Using RBAC

CLs are more efficient when system administrators discover that certain user accounts are compro-

mised and want to sandbox a user, isolating their actions from the rest of the system. In contrast,

in an AL based implementation, many lists may have to be located and updated. However, ALs can

overcome this limitation if we use an aggregation mechanism such as Role Based Access Control

(RBAC [56, 119]) to simplify administration of users and rights.

In RBAC, users can be associated with one or more roles. Each role is a placeholder for a set

of permissions. The permissions consist of objects and methods that are authorized for that role.

Users can be added and removed from roles, independent of the updates to the role-permission

83



assignments. This asynchrony simplifies the management of large sets of users and restricts their

behavior according to their “role” in an organization.

RBAC is very flexible and can be implemented naturally using ALs. In addition, it can also

be used to implement both MAC and DAC policies. Instead of specifying individual subjects and

permissions in each AL for each resource, we can aggregate entries according to roles. This has the

effect of reducing the size of the ALs, and reducing the search space for changing access controls.

CLs can also be organized according to object-roles [35]. This reduces the total number of CLs in

the system.

Instead of removing a user from a role-based AL, the user’s access control permissions can be

changed by revoking the user’s current role and assigning the user to a special pre-defined role

that has no access rights, or to a role that reduces the user’s permissions to a restricted set of

rights. This information can be relayed directly to the policy enforcement mechanisms (e.g., the

reference monitors), who must use the user’s new role and disallow any requests made by the user

using their old role. While this eliminates the cost of changing the ALs, the communication cost

of disseminating the user’s new role has to be taken into account.

Another advantage of using pre-defined roles during response actions is the ability to formally

analyze the access control behavior of the system a priori, even when the permissions of a user

change dynamically. By restricting the permissions during dynamic state-changes in the system, it

is possible to determine what guarantees can be made by the dynamic behavior of the system by

formal analysis.

In the next subsection, I examine the possible side-effects of changing ALs and CLs as recovery

actions. I also describe techniques to augment existing specifications to overcome these limitations.

4.4.3 Enforcing Safety and Preserving Trust

One of the problems with changing access controls dynamically is the need to synchronize oper-

ations. In distributed systems, an administrator may initiate a recovery-action to change access

controls over the network. Depending on the type of changes requested, the administrator may

have to update many ALs or CLs, distributed across different machines. As a result, some lists

may get updated faster than others and the access control safety property many not be consistently

84



enforced across the system. As we show in the next subsection, maintaining consistency in this

situation is not easy.

Changing access rights dynamically to alter the access control behavior of a system can have

unexpected side-effects. In a stand-alone operating system, or in a homogeneous distributed system

(e.g., Unix-based or Windows clusters), it may be possible to preserve existing trust assumptions

by relying on the underlying protection model. Implementing protection domains is simplified by

this support, and only network administrators can change access control lists or permissions. In a

heterogeneous distributed system, the trust assumptions and trust validation have to be modeled

explicitly into the system specifications, to prevent undesirable side-effects. We explore this in

Section 4.4.3.

Enforcing Access Control Safety

In order to remove users, objects or particular methods from the system, a system administrator

has to keep track of the different ALs or CLs stored in different parts of the system. Removing

objects in a distributed AL-based system, or subjects in a CL-based system while maintaining

safety is straightforward. The access rights in a particular object or user’s AL or CL are unique,

and are not replicated across the system. Therefore, no consistency issues arise.

However, the problem emerges when an administrator needs to modify multiple ALs to remove

subjects (or CLs to remove objects) in a distributed setting, and keep the lists consistent. A non

blocking atomic commitment protocol [100] (such as a modified two-phase commit) is required to

ensure that updates are consistent. To guarantee timeliness, when multiple update requests are

sent, maintaining safety is reduced to implementing an atomic broadcast protocol [100], which

needs to be both reliable, as well as deliver the update messages in total-order.

It is well known that there are no deterministic atomic broadcast algorithms for asynchronous

systems. This is because the distributed consensus problem can be reduced to atomic broadcasts.

However, there are many schemes [100] that account for clock drifts and periodically send out

synchronize messages that work under the assumption of bounded drifts. The two protocols viz.,

non-blocking atomic commitment and atomic broadcast, can guarantee that the access controls

are consistently enforced across the system even when the ALs and CLs change dynamically. The

85



protocols may introduce a non-negligible overhead to change policies and their effectiveness as

recovery actions must be evaluated in terms of these overheads.

In many cases, it may be desirable to implement a weaker notion of consistency. Partial con-

sistency can still satisfy availability guarantees for particular users and objects in the system.

As mentioned earlier, RBAC can overcome the need to change access lists, but revoking a

user’s role and assigning the user to a new role requires similar consistency and synchronization

guarantees.

Preserving Trust Assumptions

In addition to preserving consistency, trust assumptions related to changing ALs and CLs have

to be examined carefully. Trust assumptions are incorporated into the access control model by

including the concept of authorization as follows: allow access if and only if an authorized user

added the access right to the system.

Enforcing this modified safety property is straightforward in a stand-alone system, or in a ho-

mogeneous distributed system (multiple machines running the same OS). Most existing distributed

operating systems automatically provide support to enforce that the access control mechanisms

can only be updated by authorized users (administrators in MAC, and owners in DAC). However,

these mechanisms can be compromised by masquerading users, as in buffer-overflow attacks.

One way to circumvent an unauthorized user from changing these controls is by restricting the

address space visible to a process running as superuser, on behalf of a subject with user privileges.

Even if the process is compromised, the user should not have access to the authorizations required

to change the access controls. However, we have to provide a legitimate user enough authorizations

to execute this task normally. Balancing these requirements can be a significant challenge as

highlighted in Section 4.3.

Another way of ensuring this condition is met is by requiring strong authentication. Further-

more, every time entries in the ALs and CLs need to be changed, to ensure that trust assumptions

can be validated, users in the system can be challenged to produce a proof of authorization.

We describe a systematic technique to augment policy specifications with special clauses called

guards that force users to present a proof of authorization, in the form of credentials, attesting that

86



they have the right to change the access rights. This mechanism is independent of the underlying

protection model. If we can guarantee that these credentials cannot be obtained by masquerading

users, then the trust assumptions are always preserved by any proper implementation of the specifi-

cation. The problem now reduces to separating the authorizations from identity information in a

request. A superuser may store these credentials in a smart-card, for example, and thereby prevent

a masquerading user from changing the access rights. Ideally, we want to encode the “separation of

duty” principle with these checks to ensure that a single malicious user cannot change these rights

even if he or she were able to compromise the mechanisms.

We use the formalism of the HRU model, presented in Chapter 2, but augment the set of

conditions from Table 2.1 with authorization proofs. Our protection state is still defined by the

triple 〈S,O,A〉 where S is the set of subjects, O the set of objects and A is the access matrix. We

include the set R of object methods that correspond to privileges in the HRU model. The set A is

typically the union of different ALs or CLs in the system.

Note that the HRU model does not include any authorization checks in its definitions if primitive

operations. If this system was implemented according to the specification, anybody is allowed to

change the access rights matrix. As mentioned earlier, different sets of subjects are allowed (or

authorized) to create and delete users, objects and methods. In a DAC system, users are allowed

to create and own objects and add access rights to objects they own. For example, if user1 owns

fileuser1, then user1 can insert 〈user2, f ileuser1, read〉 into A. In an MAC system, users and

objects can be added only by administrators.

Next, we present a method to automatically add guards to the primitive operations or protection

state transitions and preserve trust during the modification of access control implementations.

To preserve the trust assumptions, we augment an access control specification with special

proofs of authorization. Henceforth, if a user wants to change an entry in A, the user is required to

produce a proof attesting that he or she is allowed, by some trusted authority, to actually execute

the primitive operation. The policy enforcer (e.g., a reference monitor) has to be suitably modified

to check this proof. The proof check can be verified non-interactively, and needs to be decidable.

This proof-checker is a guard, similar to Dijkstra’s guarded commands [45, 121], and these guards

can be applied to both ALs and CLs without loss of generality.

87



One way of generating a proof of authorization is by using an attestation from a trusted ad-

ministrator that gives the holder of the attestation the capability to change an AL or CL entry,

i.e., the permission to call a method to change the entry. This type of capability (also called a

license [129]) or credential is an attestation of trust. These attestations should be protected against

modification by unauthorized entities. They can be made unforgeable by the issuer by attaching

a cryptographic digital signature [96]. The signature should tie in the name of the issuer and the

intended recipient to prevent modification and also provide non-repudiation of ownership.

Generating these credentials näıvely can cause management problems. Consider the set S of

users who can issue signed capabilities, the set O of shared objects in the system and the set R of

methods corresponding to access rights. The set of all licenses that can be presented to the policy

manager in this system is exponential in size and is given by C ⊆ S × 2OXR.

A user can have many different credentials authorizing some or all methods with respect to a

particular object and may present any subset of these to the enforcer to change an access right. The

enforcer needs to decide whether the decision is consistent with the trust management implications

of these attestations and this may be non-trivial. For example, the monotonicity of the privileges

available after revocation may have to be maintained [129] to prevent undesirable behavior.

Instead, we argue that in the case of MAC or DAC policies, two simple types of credentials

are sufficient to attest the identity of the entities (primarily subjects) and the ownership of one

entity by another. These credentials should not be delegated and should not available to any entity

except the actual owner of these access rights. Satisfying these requirements may be a significant

challenge.

Let C be the set of typeof and owns credentials. An examples of an identity credential is

typeof (Alice, administrator) that asserts that the identifier Alice is an administrator. The creden-

tial owns(object,method) or owns(user, object) attests that the method is “owned” or exported by

the object or the object is owned by the user, respectively. We generate one credential per object

and method. Therefore, the size of this credential set is equal to the number of unique access rights

in the system. This simplifies the management of credentials and proof verification, though it may

increase the number of credentials a user has to present.

In Table 4.3, I present how we can augment the primitive operations of the HRU model with

88



proofs of authorization to enforce DAC policies, where only the owner of an object can enter or

delete access rights into the access matrix. The credential owns(s, o) checks for ownership and the

credential owns(o,m) is an integrity check. Note we need to explicitly identify the subject s who

issues the request to the specifications of the create subject, create object, destroy subject

and destroy object operations. The effect of the operation, on the protection state of the system

is the same as in Table 2.1.

op conditions
enter r into A[s, o] s ∈ S

o ∈ O
owns(s,o) ∈ C
owns(o, r) ∈ C

delete r from A[s, o] s ∈ S
o ∈ O
owns(s,o) ∈ C
owns(o, r) ∈ C

create subject s′ issued by s s′ /∈ O
typeof(s,admin) ∈ C

create object o′ issued by s o′ /∈ O
typeof(s,admin) ∈ C

destroy subject s′ issued by s s′ ∈ O
typeof(s,admin) ∈ C

destroy object o′ issued by s o′ ∈ O
o′ /∈ S
typeof(s,admin) ∈ C

Table 4.3: Authorizations for DAC

For MAC policies, only administrators are allowed to change the protection state. In Table 4.4

we show how these authorizations are specified for adding and deleting rights, which are restricted

to system administrators. The conditions for other primitive operations are the same as for DAC.

This specification mechanism can also be easily extended for RBAC.

From the augmentations to the specifications, we claim that if the credentials are generated

correctly and the administrators keys are not compromised, then the state transitions allowed

in our modified system have the required authorization proofs necessary to guarantee the trust

assumptions are preserved, even when the implementations are changed dynamically. Care must

be taken to ensure that the mechanisms do not allow delegation or theft of these credentials. If

all the guard conditions cannot be satisfied, the state of the system is unchanged. The protection

89



op conditions
enter r into A[s, o] s ∈ S

o ∈ O
typeof(s,admin) ∈ C
owns(o, r) ∈ C

delete r from A[s, o] s ∈ S
o ∈ O
typeof(s,admin) ∈ C
owns(o, r) ∈ C

Table 4.4: Authorizations for MAC

state is allowed to change only when the proof of authorization is verified correctly.

4.4.4 Applying Dynamic Access Control to Dynamic Environments

When the sets of subjects and objects do not change frequently, though the overheads of changing

access controls in AL-based and CL-based systems seem equivalent, we observe that ALs are better

when the changes involve updating rights for specific objects and object methods. In this section,

we explore the ideas further in the context of dynamic environments where the sets of users and

objects can change dynamically, and the access control matrix entries have short life times and may

be updated frequently. In this situation, we find dynamic access controls are an important feature

of the system design rather than just a mechanism to enable RAs. In such cases, the performance

overheads for changing the implementations can have a significant impact on the design decisions.

In this subsection, I describe briefly how we can use our analysis to justify the choices for contrasting

AL-based and CL-based implementations of dynamic access controls.

Examples of dynamically changing environments include ad hoc networks, active networks, and

smart spaces. In an ad hoc network, for example, where users bring in their own computers and

connect together, it is often useful to associate ALs with the mobile resources themselves. Since

different users enter and leave over a short period of time, it is not feasible for the participating

subjects to carry CLs for all possible objects. Instead, the participants themselves can build

dynamic trust relationships and assign permissions to each other by updating their own ALs.

In contrast, when the set of subjects can change over time, but the resources themselves remain

more or less fixed, it is more efficient to use CLs. We have explored such a solution in the context of

90



active networks in our previous work [26, 103] and developed a CL-based architecture to enable the

dynamic installation and update of policies in real-time, to accommodate different sets of subjects

using the same resources for different active network protocols over time. Our security architec-

ture for active networks also incorporated the access control safety and authorization techniques

discussed in this paper, in the framework of a CL based implementation. With this architecture,

we were able to demonstrate how we can change the access control policies on software routers

dynamically, and deploy a host of reactive security countermeasures, including dynamic firewalls

and vaccines, without sacrificing safety guarantees [85, 26].

Another area where we have explored the issues of changing access controls dynamically is in

the context of smart spaces or active spaces [116]. An active space is a physical environment that is

augmented with computing and communication resources and can be programmed and configured

automatically to support different tasks and activities. An example of an active space is a smart

room with many display and computation devices that can be configured as a meeting room, a

lecture room, or a recreation room etc., only by changing the software in the room. In this context,

we have developed an AL-based solution to address the access control issues in this room, where

we have dynamically changing sets of users and to a lesser extent, objects. We chose an RBAC

variation of ALs to scale to a large number of users.

4.5 Chapter Summary

We present our extended state-transition model of reactive system behavior that incorporates prob-

abilistic and timing behavior in this Chapter. This model enriches the expressive power of tradi-

tional access control models and allows us to extend the nature of scope of security properties to

model the survivability of a system under attack. We present examples of survivability properties

as temporal logic formulas within the framework of this model, and show how we can leverage

existing techniques such as model checking to validate these properties.

In the next chapter, we focus on the network DoS and related DDoS problem and show we

can apply the techniques presented here to describe and analyze different DoS attacks and DoS

prevention strategies.

91



“Can you do addition?” the White Queen

asked. “What’s one and one and one and

one and one and one and one and one and

one and one?” “I don’t know,” said Alice.

“I lost count.”

Lewis Carroll, Through the Looking Glass
Chapter 5

Denial of Service

In this chapter, I explore the Denial of Service (DoS) problem, and show how I can extend our

modeling framework to describe DoS attacks and attack mitigation strategies. I focus on scenarios

where resources become unavailable due to resource exhaustion by requests originating from both

legitimate and compromised users.

Network Denial of Service (DoS) attacks are a classic example of such a problem, and have

frustrated the efforts of network engineers in their quest to build resource-access and sharing mech-

anisms that are both efficient and adequate to enforce authorized usage. Many of the DoS vulner-

abilities of network service access stem from sacrifices made by designers to reduce performance

penalties, including coarse-grained accounting, which make the resources readily available to both

legitimate and malicious users alike. The DoS problem arises when a malicious user, or set of

users exploit these sharing mechanisms and monopolize access, or contend with legitimate users for

shared network resources, thereby denying service to legitimate users.

In the context of bandwidth exhaustion attacks, in order to flood a multi-hop network between

a single or a small set of DoS attackers and a network server, the attacker has to do almost as much

work as the victim server, pumping packets on to the network continuously to keep the victim busy.

It is usually easy to characterize such attacks by monitoring bandwidth utilization and attribute the

attacks to the originators. Once the origin of the attack is detected, it can be effectively neutralized

by installing filters and throttling these attackers at source or on intermediate routers. Since most

servers have fat incoming pipes and most clients have thinner outgoing pipes, and since attackers

could be identified easily, such attacks were not considered a major threat in the past.

In recent years, a new type of automated network DoS attack, called the Distributed DoS or

92



DDoS attack has surfaced. According to the 2002 CSI/FBI Computer Crime and Security survey,

respondents to their survey who could quantify their losses reported a loss increase of 350% due

to such attacks. DDoS attack scripts are widely available and can be downloaded and launched

against any type of Internet server with minimum effort on the part of the attacker. These tools

scan the Internet to identify vulnerabilities on network clients and install software attack daemons,

called zombies, on compromised hosts, thereby distributing DoS attackers over several hundreds or

thousands of hosts.

Each zombie sends a low-bandwidth flood, consisting of different packet types including ICMP,

UDP, TCP SYN, or HTTP packets towards the victim [49, 48, 47, 46]. These floods are coordinated

by a time-trigger to maximize their collective impact, and are typically issued by a mastermind

daemon, over an encrypted channel. Many tools add multiple levels of indirection to both control

and attack by creating layers of control daemons called masters. The cost of mounting these attacks

per attacker, amortized over the hundreds of attackers, is negligible in comparison to the victim’s

cost in processing these packets. These low-bandwidth floods are virtually undetectable at source

and in most intermediate networks. A DDoS victim is forced to process these packets at the expense

of requests from legitimate clients of the service.

In terms of modeling survivability to DDoS attacks, the stateless nature of the IP-based Internet

makes it difficult to characterize flows and reason about, or even prove the effectiveness of DDoS

attack countermeasures. In recent years, researchers have developed a variety of strategies to tackle

different aspects the network DDoS problem [99]. These include better authentication to prevent

unauthorized users, or better accounting to traceback and locate attackers, as well as bandwidth

regulation and filtering mechanisms to prevent malicious users from sending unauthorized requests

to access resources in the first place. The difficulty of obtaining quantitative models of DDoS

attacks and server behavior is seen as a significant challenge to understand better the impact of

these strategies. To the best of our knowledge, no tools are available to validate the effectiveness

of such strategies or even experiment with different strategies and compare their relative merits.

As mentioned in [69], one of the challenges with modeling or simulating DDoS attacks is the

amount of computing resources required to observe, store, and collect statistics about the behavior

of thousands of system components such as individual hosts, intermediate routers, and network

93



servers. While large-volume traces for DDoS attacks are available, the challenge is to analyze this

information and come up with meaningful insights. Without such studies however, the effectiveness

of anti-DoS strategies cannot be validated with confidence.

Formal methods, on the other hand, can prove to be a viable alternative and provide useful

insights, at the cost of some abstraction and information loss. We believe that one of the short-

comings of existing quantitative models of network traffic with respect to DDoS attacks is the lack

of a semantic framework to express and reason about temporal properties of attack behavior. We

show how we can apply the framework from Chapter 4 to model DDoS attack behavior, analyze

the impact of countermeasures, and provide useful insights. In Sections 5.2 and 5.3, I show with

the help of examples how we can use the formalism of a PNS model, and specify DDoS survivabil-

ity properties as temporal logic formulas and evaluate the impact of legitimate and attack traffic

behavior on both the DDoS victim and the legitimate clients of a service.

Using our formalism, we can prove estimate the effectiveness of different DDoS prevention

strategies. In Section 5.3, Our model exposes the cost-benefit issues of implementing strategies

such as stronger authentication and filtering in reducing DoS vulnerabilities.

The techniques we present in this chapter complement quantitative models network behavior,

which are often derived from measurement of dynamic performance characteristics. The data

from such quantitative models can be used to provide the operating assumptions of our formal

models and increase the confidence of the results obtained by our analysis. We show how we

can characterize this interaction between qualitative and quantitative properties, and focus our

attention on evaluating how attackers and legitimate users can influence each other’s behavior with

respect to their effect on a DDoS attack victim.

5.1 Modeling DoS Survivability

Shields [122] identifies network DoS attacks as attacks that use network services to disrupt network

behavior. These attacks have the effect of causing either consumption or corruption of network

resources, making them unusable by legitimate network users. As mentioned earlier, we only

focus on resource consumption attacks in this thesis. Other types of DoS attacks include DoS by

reservation (e.g., in QoS networks) and DoS by disruption (physical attacks). DoS by reservation

94



and physical attacks have proposed solutions (e.g., pricing models, physical security) that are not

directly within the scope of our study.

Traditionally, DoS is measured by the waiting time between a service invocation request and

its corresponding response. Unbounded waiting times correspond to absolute DoS. In order to

make quantitative comparisons between different strategies in terms of increasing or decreasing a

client’s vulnerability to DoS, we need to model the response time for a service request explicitly.

Previous research on formal specification and verification of DoS properties [8, 134, 97] focus

on showing how resource allocation models for operating system resources are resistant to DoS at-

tacks. These specifications are concerned with modeling constraints on resource access mechanisms

that are necessary (and whether they are sufficient) to prevent DoS. Yu and Gligor [134] specify

different constraints on resource access and sharing mechanisms in terms of fairness, simultaneity,

and resource allocation properties. Their work introduces a quantitative measure of DoS resilience

in terms of waiting time (WT) policies. Two propose two types of waiting time policies viz., finite

(FWT) and maximum WT (MWT). The FWT property is qualitative, whereas an MWT property

can be viewed as the bounded availability property. An important result from their work is that in

order to prevent DoS, users need to accept some additional restrictions on their request behavior

in addition the constraints imposed on the sharing mechanisms at the server.

Millen [97] expands on this work and argues for a DoS Protection Base (DPB) similar to a

Trusted Computing Base (TCB), with strong trust assumptions to guarantee that these constraints

can be reliably enforced. This work also introduces a state-transition model of resource allocation

and suggests as future work the use of probabilistic models of resource consumption to model

consumption behavior. In effect, both models demonstrate that in order to prevent DoS, resource

access mechanisms, as well as user behavior, have to be reliably constrained.

In the context of a DDoS attack, therefore, the property we are most interested in is the waiting

time, measured as the end-to-end delay observed by a legitimate user of a network server. When

this waiting time is unbounded, the server is potentially undergoing a DDoS attack. Traditionally,

the average end-to-end delay on a network is modeled using queuing theory. Quantitative stochas-

tic models of network behavior are commonly used, often requiring simplifying assumptions, and

provide the foundation for delay approximations in networks. These techniques have shown useful

95



insights, even though it is impossible to obtain accurate quantitative delay predictions on the basis

of these models alone.

Traditionally, the waiting time or the delay between a request and response within a communi-

cation network is typically modeled by four components [18]:

1. Processing Delay : This is the delay between the time a packet is received at a node in the

network, to the time it is assigned to an outgoing queue for transmission.

2. Queuing Delay : This is the delay between the time a packet is assigned to a queue for

transmission, to the time it starts being transmitted.

3. Transmission Delay : This is the delay between the time the first and last bits of a packet are

transmitted.

4. Propagation Delay : This is the delay between the time the last bit of a packet is sent out on

the link from the sending node, to the time this bit is received at the receiving node.

This accounting of the time spent by a packet on a network does not factor packet retransmis-

sions. The propagation delay depends on link-characteristics and does not change per packet. The

link itself is viewed as a bit-pipe over which a given number of bits per second, called the capacity

of the link, can be transmitted.

The most commonly used model for allocation of capacity among multiple competing streams of

traffic is statistical multiplexing. Under this scheme, packets of all streams are merged into a single

queue and transmitted in a first-come first-serve (FCFS) order. A slight variation of this scheme is

a system that maintains a separate queue for each traffic scheme and serves the queues in sequence

one packet at a time. Statistical multiplexing provides the best performance characteristics for

best-effort traffic.

The timing characteristics of the behavior of clients and servers are modeled as stochastic

processes with probability distributions describing:

• Inter-arrival time: This corresponds to the arrival of a client request at a server, and

is modeled as a random variable from a probability distribution of the time between two

successive arrivals.

96



• Service time: The corresponds to the time required by the server to process a client’s request

and is represented by a random variable from a probability distribution of service times.

The goal of analyzing such systems is to estimate the average number of requests in the system

that are either waiting in some queue or undergoing service, and use this to estimate the average

delay per request. These parameters allow resource engineers estimate analytically what the average

waiting time for a client in the system will be, and whether this is acceptable. The average number

of requests in system N and the average delay T per request are related by a simple formula known

as Little’s Theorem and has the form N = λ.T where λ is the average request arrival rate. This is

given by (assuming this limit exists) limt→∞ (Average number of arrivals in [0, t]/t).

Many different stochastic models of inter-arrival times and service rates are popular. The

simplest of these are based on what is called the “memoryless” property, where successive inter-

arrival times and service times are assumed to be statistically independent of each other. The

memoryless assumption is controversial. Many empirical studies in the 1990s [107] have shown that

Internet traffic is not memoryless, but in fact bursty in nature with long range dependencies in

packet inter-arrival and service times.

In recent years however, there is an increasing belief due to the changing characteristics of Inter-

net traffic (no longer dominated by dialup lines and large file transfers or “mice” and “elephants”)

that the inter-arrival rates are indeed tending towards memoryless distributions, most notably the

Poisson [27] distribution. This belief is validated by statistically analyzing large amounts of Inter-

net traffic on stub and core networks. Assuming that the inter-arrival rates can be indeed modeled

by the Poisson distribution, we already have a wealth of theoretical results to analyze such sys-

tems. We present this theory in Section 5.1.1 to show how Markov chains can be used to estimate

average-end-to-end delay.

5.1.1 Background on Delay Analysis

Consider a single-server queue where packets arrive according to a Poisson process with rate λ.

Traditionally, request service times are modeled as a memoryless exponential distribution with

mean 1/µ seconds. The standard technique to describe the dynamic behavior of such a system is

by modeling it as a CTMC.

97



Each state in a Markov chain model corresponds to the number of requests in the server’s queue

waiting to receive service. When a new packet arrives, the state of the system changes with the

queue size increasing by one. When a packet is serviced, the state changes again with the queue

decreasing by one. Given independent identically distributed (IID) inter-arrival times, over a small

time interval δ, the state of this chain changes with probability λ.δ that a new packet arrives, and

does not change with probability (1− λ).δ initially. Given a packet is being serviced by the server,

a packet leaves the server with probability µ.δ, a new packet may arrive with probability λ.δ and

no change occurs with probability 1− λ.δ− µ.δ. These transition probabilities are specified with a

small margin of error o(δ) [18].

In order to estimate the average delay for a request in this model, we are interested in calculating

what are called the steady-state probabilities of a given Markov chain, that will help us estimate

the average number of requests waiting to be serviced in the service queue when the system is in

equilibrium. This value can be used to estimate the average waiting times from Little’s Theorem.

In steady-state, the probability that the system is in some state n (i.e., n elements in its queue)

and makes a transition to n + 1 at the next transition instant is the same as the probability that

the system is in state n+ 1 and makes a transition to n, i.e.,

pn.λδ = pn+1.µδ

This equation is called a global balance equation for this Markov chain. Since pn is independent of

δ, taking the limit of the equation as δ → 0, we obtain:

pn+1 = ρ.pn, n = 0, 1, · · ·

where ρ = λ/µ.

Using this equation, we can now find the average number of requests in the system in steady

state as:

N = ρ
1−ρ

= λ
µ−λ

The average delay per request is given by the sum of waiting time in the queue and the service

time can be calculated using Little’s Theorem as: T = 1/µ− λ.

98



General Service Time Models

When the request service times have a general distribution, not necessarily exponential, but the

arrivals can be still modeled as a Poisson process with rate λ we can use what is called the Pollaczek-

Khinchin formula [18]. This formula gives the expected waiting time for a request in the queue of a

single server system. Suppose requests are served in the order they arrive and that Xi is the service

time of the ith arrival. We assume these random variables (X1, X2, · · · ) are identically distributed,

mutually independent and independent of inter-arrival times. Let

X = E{X} = 1/µ = average service time

X2 = E{X2} = second moment of service time

The expected request waiting time in the queue W is given by the Pollaczek-Khinchin formula

as:

W = λ.X2/2.(1− ρ)

T = X +W

When service times are exponentially distributed, we have X2 = 2/µ2 and reduces to the

formula presented earlier. When service times are identical for all requests, X2 = 2/µ2 and:

W = ρ/2.µ.(1− ρ)

The techniques presented in this section summarize the theory behind estimation of waiting

times for requests in a memoryless analytical model of network behavior. These formulas work well

for a single server with multiple requests. However, analysis becomes really difficult when many

transmission queues of this type interact in tandem, modeling the behavior of a request passing

through heterogeneous intermediate routers where many traffic flows intersect before the request

reaches a server. The description of arrival as a stochastic process in a downstream queue in such

a network can get very complicated. When packet lengths and inter-arrival lengths are correlated,

no analytical results are known for even a tandem queuing of two Poisson processes [18].

In the next section, we show how we can model the victim of a large-scale DDoS attack as a PNS

using some of the theory presented in this section, and analyze it as a Markov chain. Our analysis

is different from traditional models of queuing behavior in one important aspect. Specifically, our

model of the state includes qualitative as well as quantitative attributes, which lets us define the

notion of useful work, and use this as a measure of the survivability of the server. In section 5.3, I

99



extend this analysis to incorporate clients and intermediate routers, show how we can estimate the

bound on the average delay characteristics, and use this as measure of the survivability of different

DDoS prevention strategies.

5.2 Modeling A DDoS Victim

We focus on modeling a DDoS victim as a single server, which serves multiple clients, legitimate and

otherwise. These requests arrive at the server via multiple interconnected routers. The model we

present here only abstracts characteristics of server behavior that are relevant to resource consump-

tion in the context of a DDoS attack. In the following subsections, I define our model(Section 5.2.1),

specify survivability to DDoS attacks from the viewpoint of a server as temporal logic formulas that

are meaningful within the context of the model, and analyze an example server specification by

varying the parameters to correspond to different situational characteristics in Section 5.2.3.

5.2.1 Modeling a Network Server

We describe the behavior of the DDoS victim server as a sequential CTMC augmented with atomic

propositions, as described in 4. Including atomic propositions in the state of CTMC does not

impact its stochastic behavior. Subsequently, we show how can use CSL to analyze behavioral

characteristics of the model under different adversarial behaviors. To build our model, we observe

the following characteristics about a DDoS victim:

• There are two distinct aggregate classes of traffic: useful and unauthorized. We need some

semantics in the model to differentiate between requests belonging to these two classes in

order to describe the behavior of a server under attack.

• The service time for each packet in the queue depends on the class of the packet being

serviced. In a webserver for example, the service rate for processing an HTTP request will

be different from the service rate for an ICMP Echo request. This may vary further within a

given protocol itself, corresponding to different options in the headers of these requests.

The definition of a DoS attack on a server depends on what constitutes “useful” work in this

context. A typical web server serves HTTP requests to web clients. Requests arrive to the server

100



over the network and are stored in its input queue. In addition to HTTP requests, web servers

also respond to other packet types. In particular most servers accept and respond to legitimate

ICMP (including ping requests) as well as certain types of UDP datagrams [86]. Whenever the

server finds an ICMP or UDP datagram in its input queue, it devotes some amount of time to serve

it. In addition to these three types of packets, the server’s CPU can also spend time discarding

bad packets(incomplete headers, other unrecognizable packet types, unauthorized packets etc.). A

simple state-transition graph that captures this CPU utilization behavior of a web server is shown

in Figure 5.1.

 
         

 

Discarding
Bad Packets

HTTP Requests
Serving

Serving

ICMP Requests

Serving 

UDP Requests

Figure 5.1: State-Transition Graph of Server

We use the PNS framework of Chapter 4 to differentiate between states in the model where a

server is processing a useful packet or an attack packet, by modeling this knowledge as an atomic

proposition that is true in that state. We first present a simple model of server behavior based on

these characteristics with the assumption that the server is capable of classifying a packet as useful

or unauthorized upon inspection. Within these two aggregate classes, individual packet flows may

arrive at the server at different rates and may be processed at different service rates. Characterizing

these rates can be extremely difficult and depend on client behavior, operational parameters of the

101



server, and the bandwidth of its incoming link.

In the case of a DDoS attack, we observe from empirical data [104, 69] that multi-source DDoS

attacks typically saturate the pipe to a server or a subnetwork. A victim server is continuously

processing packets from its input queues, with almost zero idle time. The data in [104] illustrates

how low bandwidth requests from individual servers suffer from unbounded waiting times, typically

larger than their voluntary timeout periods.

We make some simplifying assumptions about the characteristics of request arrival rates and

service rates at a DDoS server, given that DDoS attacks are difficult to characterize and analytical

models of DDoS traffic are not available. One thing we would like to emphasize however is that our

modeling complements quantitative models of network traffic, and provides a framework to reason

about the behavior of the system under attack. A better model of a specific server’s network traffic

can be plugged into our framework in the future and the analysis can follow the general procedure

outlined here.

In our simplified model, the service rates at a DDoS server are defined by the memoryless

exponential distribution, and are only dependent on the class of the packet and not its origin or its

arrival rate, since a new request is always waiting for service. The probability that server moves to

a state with a new request in the model is therefore determined by the service rate of its current

request class.

The difference in the arrival rates of attack traffic and legitimate traffic determine the probability

distribution on the next state of the model. To study the interaction between these arrival rates,

we simulate the effect of how increasing amounts of attack traffic can affect the server’s ability

to do useful work. Later, in Section 5.3 I show how we can estimate some of these probabilities

and coarsely approximate the average waiting time for different types of clients in a system, with

respect to different DDoS prevention strategies. For now we focus on describing our server with

four memoryless parameters: the probability that the next request is legitimate, the probability

that it is an attack, and the probabilities that the server will finish processing its current request

for both attack and legitimate packet types.

We claim that the server is doing useful work if its computation consists of states where CPU

time is spent serving legitimate requests, HTTP or otherwise. For a given attack profile, described

102



by the relative arrival rates of attack packets and legitimate packets, we define this probabilistic

behavior as CTMC and show how we can estimate the proportion of time spent by a server doing

useful work. This value also depends on the service rates for each packet class. The steady-state

analysis of this CTMC will give us a measure of the survivability of the system against an attack

profile, as a proportion of total time spent by the process doing useful work versus processing all

packets, including any unauthorized packets that it receives

Modeling behavior in this fashion does not address attacks where a group of clients get to-

gether and send legitimate HTTP requests to the server with the intention of competing with

other legitimate HTTP requests from being served. If the attackers’ requests are behaviorally in-

distinguishable from legitimate requests, this cannot be differentiated in our model. However, a

server may be able to differentiate between packets generated by an automatic daemon vs. packets

generated by realtime user traffic using spectral analysis as shown in [69].

We now present the CTMC model of a DDoS victim server:

Definition 5.2.1 (DDoS Victim Server). The CTMC MServer is a tuple (Σ,R, L) where:

1. Σ is a finite set of states

2. R : Σ× Σ → <≥0, the rate matrix

3. L : Σ → 2AP , which labels each state with the set of atomic propositions that are valid in that

state

The rate matrix R characterizes the transitions between the states of the CTMC. If R(σ, σ′) > 0

then a transition from state σ to state σ′ can occur. If R(σ, σ′) > 0 for more than one state σ′,

and if we can assume that the service rates can be characterized as a memoryless distribution (e.g.,

the exponential distribution), then we can estimate the probability of moving from a state σ to the

state σ′ as the probability that the delay of going from σ to σ′ finishes before the delays of other

outgoing edges from σ . Let E(σ) =
∑

σ′∈Σ R(σ, σ′), the total rate at which any transition from

state σ is taken. P(σ, σ′) = R(σ, σ′)/E(σ), except if σ is an absorbing state when P(σ, σ′) = 0.

To return to our example, we group the traffic to our webserver into two aggregate classes of

packets, labeled as the HTTP class that corresponds to useful work, and a generic Attack class

that corresponds to attack packets of any type.

103



HTTP

(1,0) (2,0)

HTTP

(0,1)
AttackAttack

(0,2)

muh

1 − ph

ph

pa

1 − pa

mua 1− mua

1 − muh

Figure 5.2: DDoS Victim Server as a PNS

Our model consists of two status variables http and attack. Each variable can take on one of

three values {0, 1, 2}. Therefore the values of these variables define six atomic propositions of the

form (http = 0), (http = 1), (attack = 2) etc. The probability that the next packet is an HTTP

packet is given by ph, the probability that it is an attack is given by pa. The probability that the

model stays in its current state processing a HTTP packet is given by muh and the probability that

it stays in its current state processing an Attack packet is mua. These four parameters and the

status variables define the PNS presented in Figure 5.2.

Here, state labeled (1, 0) corresponds to the model executing an HTTP request (i.e., http=1

and attack=0). It stays in state (1, 0) with probability (1 - muh) and moves to state (2, 0) with

probability muh, indicating that it is finished processing the request. At this state it can again go to

state (1, 0) with probability ph, or to an attack state (0, 1) with probability pa = (1 - ph). From

this state similarly, the model can move to a state (0, 2) with probability mua = (1-muh) or stay

in the same state with probability (1 - mua). From state (0, 2), the model can move to (0, 1) with

pa or to (1, 0) with ph. No other transitions are allowed in the model.

A computation of the model starting at state sHTTP can be represented as an infinite tree as

shown in Figure 5.3. At each state, any of the two transitions can be enabled as shown, corre-

104



sponding to the probability of leaving a state in Figure 5.2. From this tree we observe that in

addition to paths containing only useful states, there exist valid paths in the model that do not

include any HTTP states. If the server only receives a large number of ICMP, UDP, or other badly

constructed packets to fill up its input queues, then it may end up not doing any useful work, since

HTTP requests do not reach the server’s input queue. In fact, automated DoS and DDoS attack

scripts generate exactly these types of packets in their attempt to flood [48, 47, 46] the input queue

and deny service to HTTP requests. For a given attack profile, we can annotate the transitions

with appropriate probabilities and estimate what states are more likely to occur in the model in

steady-state.

(1,0)

(2,0)

(1,0)

(1,0)

(1,0)

(2,0)

(1,0)

(2,0)

(0,1)

(2,0)

(0,1)

(0,2)

(0,1)

(0,1)

(0,2)

(0,1)

(1,0)

(1,0)

(1,0)

. . . .

.

.

.
.

.

.

.

.

muh

1 − muh

1 − ph

ph

mua

1 − mua
pa

1 − pa

.

.
.

.

.

.

Figure 5.3: Server Computation Tree

In Section 5.2.2, we formalize the notion of a server’s ability to always do useful work in terms

of CSL properties and show how we can measure this in the CTMC specified here. In Section 5.2.3

we show how we can use our model to study the impact of different DDoS prevention strategies on

the server.

105



5.2.2 Specifying and Verifying Server DoS Properties

The property we are most interested in, given a specific CTMC modeling a DDoS victim server is

how the attack traffic rate affects the ability of the server to do useful work. In terms of the model,

given an attack profile as (ph, pa), and the service rates (muh, mua) we want to estimate how

the probability mass flows through the CTMC as time passes.

If the system started in some state σ ∈ Σ, at time 0 (the probability of being in state σ at time

0 is 1), the vector πσ(t) = (πσ
σ′(t))σ′∈Σ denotes the probability distribution among the states σ′ at

time t where t is a non negative real number. The set {πσ0(t), πσ1(t), · · · , πσn(t)} for an n state

CTMC is called the transient distribution of the CTMC at time t.

The limiting probability distributions πσ as t→∞ is called the steady-state distribution of

σ and always exists for arbitrary finite CTMCs. Obtaining the steady state distribution for a given

attack profile gives us the probability that the model will be each of the four different states in

steady state. This can be used to measure the survivability of the model to a given attack strategy.

We show how to model and compute this steady state probability for useful work with the help of

an example.

We pick the probabilities in our example from the measurement data in [69]. This data corre-

sponds to measurements made on attacks captured at Los Nettos, a moderate sized ISP near Los

Angeles. The typical packet load on the Los Nettos network is 38K packets/s. During attack this

increased to 100K packets/s. A total of 80 large scale DDoS attacks were logged. Approximately

85% of the packets were TCP during normal load, dominated by DNS and web traffic. During

attacks, TCP reflection attacks against web servers and FTP servers were the most common packet

types.

Since most networking characteristics are tailored for normal load, we pick 38K packets/s as the

value for the service rate for useful packets. Most commercial servers come with benchmarks that

give average and peak services rates which can be used to estimate this parameter. The peak traffic

under attack was 100K packets/s, which we assign as the service rate for attack packets. Under

this load, this gives us us muh= 38/138 = 0.27 and mua= 100/138 = 0.73. From this measurement

data, we only have two types of information: the behavior of the system when no attacks are

occurring, i.e., the probability of attack pa= 0, or the behavior of the system under attack when

106



the probability of attack is close to 1.

We specify the example as a PNS using a probabilistic model checking tool called PRISM [111].

This tool allows us to analyze systems that exhibit probabilistic behavior. The tool requires two

inputs, a description of the system to be analyzed, and a set of properties to be checked against

the system. The system to be modeled is described in the PRISM language, which is a simple

state-based specification language. Appendix B presents the model we specified using the PRISM

language. This program represents the CTMC of Figure 5.2.

The fundamental components of a PRISM program are modules and variables. A system is

composed of a number of modules that can interact with each other. A module can contain a

number of local integer-valued variables. The values of these variables at any given time constitute

the state of the system. The global state of the system is given by the local state of all the modules.

Within a module, commands describe its transition behavior. A command of the form:

[] g -> p1:u1 + ... + pn:un;

describes a transition with guard g as a predicate over the variables of the system. Each update ui

describes a transition the module can make from its current state if the guard is true. Constants

pi assign probabilistic information to the transition.

In our model, states (1, 0) and (2, 0) correspond to our notion of useful work. Therefore sur-

vivability in this model for different attack profiles can be evaluated by measuring the steady state

probability, for a given attack profile, that the server will be in state (1, 0) or (2, 0). This is expressed

as the CSL formula:

Definition 5.2.2 (DDoS Server Survivability). DDoS Server Survivability is given by the

following CSL formula :Mserver, (1, 0) |= S./p((http = 1) ∨ (http = 2))

In PRISM syntax this is written as S>p [ http=1 | http=2 ]. From the measurement data

in this section, we have two scenarios, where either pa = 1.00 corresponding to the case where

no useful work is done by the model or to the case where pa = 0.00. Validating these formulas

for these two scenarios in the model is not very useful. However, in Section 5.2.3 I show how we

can use the modeling and analysis framework from this section to analyze the impact of other

attack profiles, and show how we can increase or decrease a server’s survivability by implementing

strategies that change the values of either pa or mua.

107



5.2.3 Effectiveness of Different Server DoS Prevention Strategies

In this section, we show how we can use the model from Section 5.2.1 to analyze the behavior of a

DDoS server by simulating different attack profiles, changing the values of attack rates and service

rates, and study the impact of different DDoS recovery strategies on a server’s DDoS survivability.

The analysis presented here can be used by the owner of a server to determine if any DDoS

prevention measures can be deployed and estimate the projected impact of deploying these mea-

sures. Some of the options for the owner in this case, as suggested in the past, include requiring

strong authentication, proofs of authorization, or devising better attack recognition and filtering

techniques to drop attack packets faster. Techniques such as strong authentication for DDoS pre-

vention are controversial, since attackers can form bad authentication tokens, and force the server

to spend more time discarding them, increasing the end-to-end delay for legitimate users of the

system.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

S
te

ad
y 

st
at

e 
pr

ob
ab

ili
ty

Arrival rate probability (ph)

Attack-muh=0.25
Useful Traffic-muh=0.25

Figure 5.4: Impact of Changing Attack rates for a Fixed Service Rate

We focus on how we can use the analysis framework to estimate the survivability of the example

server model presented in Section 5.2.2. In Figure 5.5, we plot the impact of changing the proportion

of attack traffic to legitimate traffic on the survivability of the model, given that we have a fixed

108



configuration for the service rates. We pick muh=0.25 and change ph from 0.00 to 1.00 in steps of

0.05 on the X-axis. On the Y-axis, we plot the computed steady-state probabilities of the server

under different attack profiles from the PRISM model. This study highlights the what we term the

vulnerability of the server to DDoS attacks.

As seen from the graph, the steady state probabilities that the model remains in state (1, 0)

or (2, 0) that correspond to useful work, increases as the ratio of the attack packets to legitimate

packets decreases. From measurement alone, we were able to obtain the steady-state distribution

corresponding to the two endpoints of this graph. With the model however, we can analyze different

aspects of the behavior without actually simulating different attack profiles. We observe that as

the server’s rate increases in proportion to the attack rate, the survivability of the system also

increases, because the system spends more time doing useful work per request than in discarding

attack packets.

While this result is expected, the graph also gives us the distribution of how this value changes

over time. As the proportion of attack traffic drops from 1.0 to 0.8, the steady-state probability

that the model spends its time in states corresponding to useful work increases sharply. Even with

80% attack packets, the server spends half its time in steady-state doing useful work. After this

point on the graph where the two curves intersect, the slope of the gain in survivability is smaller.

This implies that for the given configuration, an attacker has to send packets 80% faster than the

legitimate servers to cause a serious degradation (< 50%) in the server’s ability to do useful work.

Using the results from this analysis, the owners of the ISP network can estimate the threshold

of attack onset more accurately. Monitoring and filtering packets based on per-flow characteristics

can be very expensive. In [69], the authors suggest that the threshold rate used to detect attacks is

when the aggregate packet rate exceeds 40K packets/s. This measure was determined by observing

the characteristics of attack traffic. Whenever the rate exceeded 40K packets/s in the network, it

signaled the onset of an attack. Based on the measurement data, this is a reasonable assumption

to make.

We contend however that such measurements provide only a coarse-grained view of the attack

profile and its potential impact. With our analysis, we suggest that a better estimate on the onset

of a damaging attack can be obtained by doing the steady-state analysis. With our coarse-grained

109



model, we can show that even if the ratio of the attack packets to the regular HTTP, regardless of

its current traffic rate is 40%, we can still guarantee that the server will spend more than 80% of its

time doing useful work. However, this may come at a cost of decreased throughput for legitimate

clients in the system, which cannot be evaluated by modeling the server alone. Once the rate

exceeds this threshold, the ability of the server to do useful work degrades according to the graph

shown.

This analysis can also be used to focus on what flows to traceback in the case of an attack.

Rather than focus on all flows, the server network can concentrate on tracing back and filtering

packets on upstream on a small number of flows, depending on what their rate characteristics

are, based on how reducing these flows can impact the survivability of the system under attack,

according to the analysis from Figure 5.5.

Another option available to the owner of such a system to increase their survivability to DDoS

attacks is to decrease the processing time required to discard bad packets, and require that legit-

imate packets produce an appropriate proof of authorization (e.g., using authentication tokens).

This strategy has the impact of reducing the processing time for attackers, at the cost of increasing

it for the legitimate users. We show how we can use our methodology to understand these tradeoffs

better.

One important observation in order to use such techniques is that characterizing bad packets

can be challenging. Many automated DDoS tools randomize packet headers making this problem

even more difficult. However, assuming that we can characterize these packets, we can study the

impact of changing the service rates for different request classes given a fixed ratio of attack packets

to legitimate packets.

In Figure 5.5 we plot muh on the X-axis, changing it from 0 to 1 in steps of 0.05. The value of

muh in the graph represents the relative processing rate of HTTP packets with respect to attack

packets. For example when muh=0.5, these rates are equal and when muh=0.25, useful packets

are processed three times slower than attack packets. We plot these curves for different attack to

legitimate traffic ratios, viz., ph=0.85, 0.7, 0.3. The Y-axis plots the steady state probability

that the model is doing useful work, a direct measure of its survivability.

From all three plots that the slower we process attack packets respect to useful packets, the

110



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
te

ad
y 

st
at

e 
pr

ob
ab

ili
ty

Service rate probability (muh)

Attack-ph=0.85
Useful Traffic-ph=0.85

Attack-ph=0.70
Useful Traffic-ph=0.70

Attack-ph=0.30
Useful Traffic-ph=0.30

Figure 5.5: Impact of Changing Service rates for fixed Attack rates

survivability of the model decreases. In other words, if the server spends a comparable amount or

larger amount of time discarding bad packets, in proportion to the amount of time it spends to

process good packets, the overall survivability of the server degrades. However this degradation also

depends on the attack rate. From the graph we observe that this degrade faster as the attack rate

increases. For the three curves, the worst degradation occurs when ph = 0.30 and the attack rate

probability is 0.70. The crossover point for this curve occurs even when the proportional processing

time for attack packets is four times as fast as legitimate packets (represented by muh=0.2. This

suggests that packets need to be discarded much faster and techniques such as strong authentication

which increase this gap are not suitable.

In general, we observe from the plots that discarding attack packets faster than useful packets

always results in better survivability. However, for different attack rates, the crossover points

occur at different proportions for different attack profiles. The more number of attack packets in

proportion to useful packets, the earlier the crossover occurs, requiring that the packets be dropped

faster under attack. This implies that characterizing attack packets quickly and discarding them is

extremely important to ensure the survivability of the server.

In Section 5.3, we show how we can extend the server model presented to explicitly incorporate

111



clients and model their end-to-end delay characteristics under a DDoS attack. While we focused on

how to make server’s more survivable in this section, we extend our model to include the stochastic

behavior of clients, and analyze a client’s DDoS survivability properties.

5.3 Modeling Client DDoS Survivability

A DDoS or DoS attack is an attempt by unauthorized users in a network to deny access to legitimate

users of a service. As a result of the attackers’ behavior, authorized users’ requests are subject to

unbounded waiting times. The analysis of a server’s DDoS survivability presented in Section 5.2

gives us a methodology to evaluate what strategies a server can adapt to decrease the impact of

these attacks on its ability to do useful work. However, it does not provide us any insights into

how attackers can influence the end-to-end delay observed by legitimate users of a network server.

In this section, we explore how to extend the PNS modeling and analysis framework to include

clients and routers, and describe the delay characteristics of a client’s request, using a traditional

queuing theory model of network behavior. We formally specify client’s survivability to a DDoS

attack as a probabilistic delay guarantee expressed using a suitable temporal logic, and show how

we can study the impact of different DDoS prevention strategies on a client’s perceived waiting

time.

In Section 5.3.1 we show with the help of a simple example how to model and analyze the

delay characteristics of different classes of traffic. Using this example, we show how to specify

client DDoS survivability properties in Section 5.3.2. We use the model to simulate analytically the

behavioral characteristics of different DDoS prevention strategies including strong authentication

(Section 5.3.3), and filtering (Section 5.3.4), with respect to the impact a client’s waiting time. This

analysis is in contrast to the analysis in the previous section that focused on the server’s ability to

do useful work.

5.3.1 Modeling End-to-End Delay for Clients

In this section, we show how we can estimate end-to-end per-packet delay for legitimate clients

in our system when the server is undergoing a DDoS attack. Instead of focusing on individual

packet flows, once again we perform a coarse-grained analysis by focusing on aggregate attack and

112



authorized-packet flows during an attack.

In a DDoS attack, only the networks closest to a DDoS victim is usually experiencing moderate

to heavy load. Therefore we only model the aggregate traffic rates in these networks and use

our analysis to infer end-to-end delay characteristics for legitimate clients. To keep the analysis

tractable, we assume that the aggregate traffic rates on these networks are memoryless, especially if

these flows comes from a large number of attack sources. When individual requests from legitimate

servers intermingle with this traffic, using Kleinrock’s Independence assumption, any correlations

are eliminated.

Once again, we point out that we chose this model to illustrate our methodology and only

claim that this model is a rough approximation to the actual attack and client request rates. Our

contribution here is the methodology for analysis, which complements the underlying model of the

network, and better models of aggregate traffic can only improve the confidence of our analysis.

C1

C2

C3

R1

R2 Server

Figure 5.6: Example Client Network

We explain our modeling with the help of the example network shown in Figure 5.6. In this

model, we have three clients, two routers, and one server. The clients in this picture represent

aggregate traffic sources and may correspond traffic flows across ISP boundaries close to the victim

server. The routers in these networks correspond to border routers on upstream ISPs from the

client. Client streams 1 and 2 contain only legitimate requests, and Client stream 3 only attack

113



traffic. As more attack requests reach the server, as the server has finite computational resources,

legitimate clients will start experiencing packet losses. If the legitimate clients’ requests are sent

using self-regulating protocol such as TCP, these losses will cause the clients to reduce their sending

rates. The attackers however will not attempt to decrease their rates. We wish to study the impact

of such behavior on the mean end-to-end network delay for the legitimate clients in steady-state.

We illustrate our modeling of DDoS survivability properties of authorized clients using the

example from Section 5.2.2. Measurement data in the example network suggests that the average

throughput under normal load is 38K packets/s. Since networks are engineered to provide optimal

performance for normal load, and a small threshold to handle sudden bursts of traffic, we assume

that the processing rate for authorized packets at the DDoS victim server is 40K packets/s. However

under attack, a peak rate of 100K attack packets/s is observed at the server. This suggests that

attack packets can be processed at rates approaching this value.

Let µh be the rate at which legitimate packets can be processed by the server, and µa the rate

at which unauthorized packets are processed. We are now interested in the steady state behavior

of this network for different attack profiles. Let the rate of attack be λa. Given the peak attack

and authorized packet processing rates, under steady state, for a given value of λa, λ/µ < 1, and

no queues start to grow unboundedly we have:

λh

muh
= 1− λa

µa

Using this equation, given a sustained attack rate λa, and fixed values for muh and mua, we can

estimate the rate at which legitimate users can send packets as λh. The average end-to-end delay is

given by 1/λh for authorized requests. This value is the reciprocal of the rate at which a legitimate

user can send packets, for a given attack profile.

Note the formula above only models the expected rate at which legitimate clients can send

packets, given an attack profile, and the network is stable, meaning that the queues do not grow

unboundedly. This calculation does not include network transmission delays, or transient network

congestion delays. Therefore our model of delay is conservative and the actual delays may be much

higher. However, the trends we observe by modeling the steady state behavior of the network in

this fashion are still useful from the point of view of resource engineering for stability.

In Section 5.3.2, I show how to express the DoS vulnerability of legitimate clients and show how

114



we can use the delay model to analyze the survivability of different DDoS prevention strategies,

including strong authentication and packet filtering.

5.3.2 Specification and Analysis of Client DDoS Survivability Properties

We define a measure vulnerability of a client to DDoS attacks as follows:

Definition 5.3.1 (Client DDoS Vulnerability). The vulnerability of an authorized DDoS client

can be measured by the average end-to-end per-packet delay observed by the client for a given attack

profile under steady-state. This corresponds to a probabilistic measure of average waiting time

(PWT).

As mentioned earlier, the reciprocal of the PWT value for a given attack profile represents the

rate at which legitimate clients can send requests to the server and receive an appropriate response.

Sending these requests any faster will likely increase the end-to-end delay for the request.

In order to understand the sensitivity of a network configuration to different attack profiles, it is

useful to plot how the end-to-end delay per-packet changes as the attack rates increase in intensity.

The rate of change of PWT values can give us important insights into the behavior of a network

under attack.

Figure 5.7 plots the simulated attack rate vs. average end-to-end delay or PWT per-packet,

under steady-state, for legitimate clients. For each attack profile, we calculate the steady-state

packet rate that a legitimate client can send according to the formula presented in Section 5.3.1,

varying the attack rates from 0 packets/s to 100K packets/s in steps of 1K. We only plot values

of the delay observed by legitimate and unauthorized users attack rates from 6K to 88K packets/s

since the delays increase unboundedly outside this range and the details at these levels are lost on

the graph.

The curve labeled “No Attack” represents the average end-to-end delay given by the reciprocal

of the normal workload for the example network (38K packets/s). The curve labeled “Authorized”

represents the change in a legitimate user’s PWT and the curve labeled “Unauthorized” represents

how the attackers PWT changes. From the graph we observe that the PWT for legitimate clients

degrades rapidly when the attack rate exceeds 60K packets/s. This suggests an appropriate thresh-

old for detecting attack and deploying prevention strategies from the point of view of legitimate

115



0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

10000 20000 30000 40000 50000 60000 70000 80000

E
nd

 to
 E

nd
 D

el
ay

 (
s)

 p
er

 le
gi

tim
at

e 
or

 a
tta

ck
 r

eq
ue

st

Attack rate (packets/s)

No Attack
Authorized

Unauthorized

Figure 5.7: Baseline

client. Analysis results from Section 5.2.3 can be consulted to further refine this value and balance

both server and client survivability needs.

As expected, the attackers’ PWT decreases rapidly initially. At the crossover point of the two

curves, around 28K attack packets/s, the PWT values for both traffic classes are equal. Beyond

this point, it increases sharply for the legitimate clients, and falls less sharply for unauthorized

packets. This crossover point can be used as a direct measure of the vulnerability of the network.

If an attacker needs to send a greater amount of packets/s to cause this crossover, then the system

is more resilient to DDoS attacks.

In the next subsection, we model the impact of different DDoS survivability strategies, including

strong authentication and filtering on the PWT of legitimate clients.

5.3.3 DDoS Prevention Strategies

The first strategy we examine is strong authentication on the server. This is one strategy the

server can implement even when the other network entities (clients and routers) cannot be reliably

constrained (e.g.,, when they belong to different administrative domains). Each legitimate request

can carry an authentication credential that authorizes the client making the request. The server

116



processes all requests and looks for the credential. If the credential can be found and validated,

the appropriate response is sent. Otherwise, the request is dropped.

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

10000 20000 30000 40000 50000 60000 70000 80000 90000

E
nd

 to
 E

nd
 D

el
ay

 (
s)

 p
er

 le
gi

tim
at

e 
or

 a
tta

ck
 r

eq
ue

st

Attack rate (packets/s)

Baseline
mu = 35K packets/s

mu = 35K packets/s, unauthorized
mu = 35K packets/s, 2 * filter

Figure 5.8: Strong Authentication

Adding a credential check to each request increases the time required to process each request.

When the system reaches a steady state, this has the effect of decreasing the packet arrival rates.

In Figure 5.8, we plot the impact of näıevely changing the server to include strong authentication,

without changing the behavior of the server to attack packets. As shown by the curve marked

with “mu = 35k packets/s”, the PWT of legitimate clients increases with respect to the baseline.

Furthermore the crossover occurs earlier at 25K packets/s, making it more vulnerable to DDoS

attacks.

We also show how if we change the behavior of the server to filter unauthorized packets, the

PWT for legitimate clients changes less slowly as shown by the curve labeled “mu = 35K packets/s,

2 * filter”. This indicates that a combination of strong authentication and filtering can be useful

in increasing the survivability of a DDoS client.

117



5.3.4 Filtering

We now plot how filtering attack packets faster at the server can impact the DDoS survivability

from the viewpoint of a client in the system. Figure 5.9 shows how filtering attack packets faster

at the server (without changing any other parameters) can improve the DDoS survivability of the

clients in terms of their PWT policies. As the curves illustrate, dropping attack packets faster

directly impacts the observed waiting times for authorized users in the system.

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

10000 20000 30000 40000 50000 60000 70000 80000 90000

E
nd

 to
 E

nd
 D

el
ay

 (
s)

 p
er

 le
gi

tim
at

e 
re

qu
es

t

Attack rate (packets/s)

Attack baseline
1.1 * attack drop rate
1.5 * attack drop rate
2.0 * attack drop rate

Figure 5.9: Filtering

5.4 Chapter Summary

In this Chapter, I present a formal model of network resource consumption and define network

DDoS survivability as probabilistic temporal properties can be verified within this framework. Our

modeling and analysis complements existing stochastic network models, and allows us to specify

and measure both qualitative and quantitative aspects of DDoS survivability. To the best of our

knowledge, this the first systematic treatment and analysis of survivability to DDoS attacks.

While researchers have developed many different techniques to tackle DoS and DDoS attacks,

in the absence of a formal model it is difficult to reason about the relative impact of these different

118



techniques in terms of their survivability. Using our model, we can quantify the costs of deploying

different DoS prevention strategies such as strong authentication, and filtering on network servers

and observe their impact on qualitative and quantitative survivability properties. We evaluate the

impact of different DoS prevention strategies using both standard automated model checking and

stochastic analysis techniques.

In the next chapter I summarize related research, in the context of recovery-oriented security,

availability policies, dynamic access controls and denial of service policies to differentiate how the

work I present here in this thesis differs from the existing body of research.

119



Some have relied on what they knew;

Others on simply being true. What

worked for them might work for you.

Robert Frost, “Provide, Provide”Chapter 6

Related Work

In this chapter, I present a summary of existing research and show how my thesis complements

related topics. In Section 6.1 I show how concepts such as fault-tolerance, reliability and depend-

ability relate to the model of survivability presented in this thesis. In Section 6.2, I summarize

results in the context of analysis of access control models. In Section 6.3 I present a brief summary

of different modeling techniques for state-transition behavior, especially for networks, including

Petri-nets and Stochastic Activity networks (SAN) and show how our analysis extends to these

models. Finally, in Section 6.4, I summarize existing research with respect formal models of DoS

behavior, and strategies that tackle different aspects of DDoS attacks.

6.1 Modeling Dependability

The notion of specifying and analyzing the dependability of a system is not new. Research into the

fault-tolerance and reliability of both hardware and software components in a distributed system

is quite mature. For most part, this research has focused on developing robust techniques to

handle a specific class of failures. In terms modeling robust protocols for dependability, the most

common failure model for components is the independent and arbitrary (or Byzantine failure)

model. Techniques to handle such failures include replication of components, load-balancing and

sharing, checkpointing for recovery, probing, feedback, leader-election, and voting for consistency

etc. The robustness of such models is measured purely quantitatively in terms of [100] the mean-

time to failure (MTTF) and the mean-time to recover (MTTR) parameters.

Increasingly, researchers have started to include security as an attribute for dependability anal-

120



ysis. Avizienis et al. [10] have defined different attributes of dependability that include availability,

reliability, safety, confidentiality, integrity and maintainability. The term survivability is used in

this community to focus on two related problems : intrusion tolerance and database survivability.

Intrusion tolerance in distributed systems [44] is a well researched area. The area evolved from

the study of the relationship between fault-tolerance and security techniques. More recently, re-

searchers have focused on different abstractions and mechanisms for specifying intrusions, as an

analogy to the fault classification and analysis. Researchers have worked on design of intrusion tol-

erant applications [132], communication protocols [50] and software infrastructure. The ITUA [37]

project describes a middleware architecture along with a suite of intrusion tolerant communication

protocols and analysis techniques that exploit adaptation and unpredictability for tolerating the

impact of cyber attacks. These techniques do not directly address the integrity and confidentiality

concerns of specific users and information objects in an information protection system. The focus

is mainly on availability of resources and maintaining consistency in the face of arbitrary failures.

Database survivability is also a well researched topic. In [84, 6] the authors illustrate the prin-

ciples of trusted recovery in defensive information warfare [105] with respect to military databases.

This work defines the notion of malicious and benign transactions and their dependence. They

also present techniques for recovering databases from inconsistencies after an attack, by relying

on redundancy and fault-tolerance. However the treatment of the material is almost exclusively

geared towards maintaining transactional integrity. Their research does not address confidentiality

properties or DoS protection directly.

More recently, Jha and Wing [73] propose a systematic method for survivability analysis based

on injecting events into a system model and observing its effects in the form of a scenario graph.

This work also extends the scope of traditional dependability models. They propose a general

framework to specify different aspects of survivability as general safety and liveness properties, and

suggest techniques for reliability and cost-benefit analysis.

The notion of survivability of security models is defined as the ability of a system to continue

operation, especially in the presence of accidental failures or malicious attacks [51]. Our goal in

this thesis is more modest. We refine the scope of this definition and explore how survivability can

be specified and analyzed in the context of systems security. Instead of modeling for accidental or

121



arbitrary failures, or for general system models, we focus on specific attack descriptions within the

framework of a more expressive access control model. Furthermore, our analysis is restricted to

survivable notions of confidentiality, integrity, and availability properties from the point of view of

resource access behavior. We believe that this is our unique contribution.

6.2 Access Control Analysis

To the best of our knowledge, we are not aware of any systematic studies that evaluate differ-

ent access control policy implementations with regard to changing implementation mechanisms

in response to a perceived threat or vulnerability. However, our work on analysis of access con-

trol models, with respect to RAs that can change access permissions and preserve consistency, is

influenced by several recent research efforts.

The model for incorporating a proof of authorization as a guard that is evaluated before exe-

cuting an RA, directly follows from the formalism presented by Schneider in the context of policies

that can be enforced by execution monitoring [121] that can be enforced by execution monitoring.

Schneider proves that if we can rely on the guards for consistency, then any system that correctly

implements these mechanisms also correctly enforces the policy. This forms the basis for our proof

of trust validation.

While we rely on a simple state-based specification language in this thesis, many researchers

have focused on high-level languages and frameworks to describe access control policies and models.

These languages typically abstract the logical properties of interest to capture delegation and

interoperability between different access control specifications.

For example, Bertino et al. [17] describe a logical framework for reasoning about the expressive

power of different access control models. Specifically they address the task of evaluating different

flavors of extensions to database authorization models (e.g., negative authorizations, multi-policy

models, role based authorizations etc). Koch et al. [78], analyze the interaction between different

policy models using a theory of graph transformations. Jajodia et al. [72] propose a language

for expressing authorizations that enables the enforcement of multiple access control policies and

show how programs written in this language effectively capture the abstractions necessary to define

different types of authorizations encountered in access control models.

122



In our work, we have focused on low-level mechanisms that implement access control policies.

We recognize that our simplified semantics may not exploit the power of expression available by

using these higher-level languages to define access control models, especially in database systems.

A full treatment of the survivability of these models by describing their semantics is beyond the

scope of this thesis.

In order to evaluate the flow of trust in an access control , many different formal analysis

techniques are available. Weeks [129] provides a formal semantics for expressing trust management

systems via a fixpoint lattice model for monotonic assertions. This model is useful to understand

the trust management of capability-based assertions. Chander et al. [28] provide a state transition

approach to model the interaction of trust management and access control. The interaction of

access control and trust management presented in our thesis, including the use of unforgeable

credentials to provide authorization proofs, and the equivalence of ALs and CLs can be validated

in their framework.

The capability-based KeyNote system of Blaze et al. [23], provides a single language for both

policies and credentials, based on predicates that describe the trusted actions permitted by holders

of specific public keys (or other cryptographic identifiers). Our model integrates access control with

a simple trust management mechanism. The main purpose of KeyNote is to express and evaluate

policies and trust delegations that occur in PKI applications. KeyNote can be integrated into our

framework for trust management for other types of dynamic policies that require more require

credentials.

We believe that the model of access control behavior we used in this thesis abstracts the relevant

entities and their interactive behavior adequately to describe survivability properties of interest.

The analysis techniques summarized here enchance a designer’s understanding of the flow of trust

and the power of expression of more complicated or composite models of access control behavior.

These techniques can be used to complement our survivability modeling for integrity, confidentiality

and availability properties.

123



6.3 Models of Access Control Behavior

In Chapter 5 of this thesis, we used Markov chains to describe network access behavior. Markov

chains are finite-state models of probabilistic phenomena. Using DTMCs and CTMCs to model

queuing systems and estimate steady state probabilities is fairly standard [77]. In general, these

models are useful to specify and analyze quantitative aspects of probabilistic system behavior.

Formal verification techniques such as model checking on the other hand try to answer ques-

tions related to the functional correctness of reactive system behavior, in a qualitative manner.

Fortunately, the model of a PNS presented in this thesis allows us to integrate both quantitative

and qualitative analysis techniques in one framework. The state-transition based techniques used

to represent quantitative network behavior fits in well with qualitative state-transition formalisms

of finite-state systems that exhibit probabilistic phenomena. This integrated approach to system

specifications provides a best of both worlds framework for analysis of survivability properties.

In addition to augmented Markov chains as presented here, various other techniques are available

to specify and analyze qualitative and quantitative aspects of model or network behavior. These

include stochastic Petri nets, and process algebras. Eventually, for analysis purposes, these models

are converted into finite state non-deterministic automata and the underlying theory behind these

techniques is the same. However, some of these models provide richer abstract semantics, and are

easier to use.

Petri Nets [108] are a formal and graphical language appropriate for modeling systems with

concurrency. The language of Petri nets is a generalization of automata theory and allows one

to express concurrent, asynchronous, distributed, parallel, nondeterministic, and/or stochastically

occurring events (as Stochastic Petri Nets). A Petri net is described in terms of places, transitions,

and arcs. Some places are marked as input and others as output. Places can contain tokens; the

current state of the modeled system called a marking, is given by the number of tokens in each

place, and their type if the tokens are distinguishable Transitions are active components. The

tokens model activities which can occur, causing a transition to fire, thus changing the state of the

system. Transitions are enabled, or allowed to fire, when all the preconditions for the activity are

fulfilled, i.e., there are enough tokens available in an input place. Transitions fire at different times,

or concurrently, based on the system being modeled, and the tokens are moved to output places.

124



The number of tokens removed or added depends on the cardinality of each arc. The interactive

firing of transitions in subsequent markings is called token game. Timing characteristics can be

included by specifying firing delays.

A Process Algebras [16] is formal description technique used to specify reactive systems involving

communicating and concurrently executing components. The fundamental abstraction is a process

graph, which corresponds to a labeled transition system (LTS). A node corresponds to an agent in

the system, and the labels to atomic actions. Process graphs are represented algebraically in the

form of terms. Process algebra focuses on the specification and manipulation of process terms as

induced by a collection of operator symbols. Process algebra imposes an equational logic on process

terms, such that two terms can be equated only if they are behaviorally equivalent. Process Algebras

are attractive because they can describe composition naturally, and for their ability to compare

behaviors. Probabilistic process algebras are the closest equivalent to our Markov chain formalism

and adhere to Markov chain semantics.

Stochastic Petri nets (SPNs) and Stochastic Process Algebras (SPAs) can be viewed as high

level description languages for Markov processes. Many comparisions of SPNs and SPAs are avail-

able, concentrating on their different representations of causality, concurrency, compositionality,

and the ability to recognize equivalent behaviors. SPNs have a very clear notion of states, whereas

SPAs focus on actions. At the specification level, SPNs are graphical, whereas SPAs are a textual

language. Any Markov chain can be expressed, although as a degenerate form, using either formal-

ism. The choice of an appropriate specification language can impact the usability of our analysis

framework, but does not detract from the general techniques presented.

6.4 DOS Related Work

In this section, we present related research, both in the context of formal modeling and analysis of

DoS, as well as different DoS and DDoS prevention strategies. We also highlight how other service

models such as QoS networks and ATM networks address the DoS problem.

125



6.4.1 Formal Modeling

Shields [122] presents informal, but comprehensive definitions of network DoS. However, the DoS

problem itself has received some attention in the past. One of the first attempts to formalize

the notion of DoS resistance was by Gligor [58] who defined a quantitative metric called MWT

(Maximum Waiting Time). Amoroso [8] highlights the need for specifying a service model in terms

of policies as predicates involving subjects (users) and objects (resources) and resource consumption

operations. DoS policies are specified in terms of predicates that specify conditions, using priorities,

under which a subject can deny other authorized subjects access to a critical objects.

Subsequently, Yu and Gligor [134] extended the MWT notion to include qualitative aspects of

resource access and sharing behavior and devised a specification and verification proof methodology

(manual) to guarantee finite waiting times (FWT) and prevent DoS. As mentioned earlier,

Millen [97] analyzes trust assumptions, specifies a state-transition model of resource consump-

tion behavior, and suggests the use of probabilistic waiting time policies. In Millen’s resource

allocation model [97] provides a framework for expressing detailed time and space constraints to

specify denial of service rules and policies. Service denials occur when the space and time allo-

cations for some process does not meet its requirements. FWT and MWT policies can be easily

specified in this context. PWT is suggested as future work in the model.

In [95] Meadows defines a formal framework to analyze network authentication protocols. With

the help of a cost-benefit analysis framework, this work shows how cryptographic protocols can be

made more resistant to DoS by trading the costs incurred by a defender against the costs to the

attacker. By making the attackers (or unauthorized clients of a service) do more work than the

defenders, the benefit of mounting a DoS attack can be made less attractive.

We are not aware of any formal characterizations of network DoS behavior that explicitly include

qualitative and quantitative definitions of DoS and DDoS survivability as presented in this thesis.

6.4.2 DDoS Attacks

Many innovative solutions have been suggested to tackle different aspects of DDoS attacks. We

observe that most anti-DDoS solutions rely on filtering attack packets as a basic mechanism to

prevent DoS. The key to applying filtering is the ability to distinguish between attack and non-

126



attack packets. DDoS tools spoof source addresses to prevent administrators from tracing back the

flow to the zombies. However, these spurious addresses can be detected by vigilant border routers.

Filtering these datagrams by border routers (called ingress or egress filtering [54, 70]) can prevent

these packets from entering intermediate networks and contending with legitimate packets there.

In addition, most attack packets are ICMP or UDP floods and most ISPs filter out non-HTTP

traffic to HTTP servers. However, many DDoS attack scripts have started randomizing the fields

in a packet header to defy classification [86]. Therefore, identifying such attack packets may be

difficult and may require a large amount of per-flow state on routers deep in the network.

We examine some of the proposed anti-DDoS solutions to characterize attack traffic. The D-

Ward Project [38] explores the use traffic monitoring to detect “abnormal” flows on routers in source

networks (or client networks) to detect DDoS attacks and use appropriate filtering to tackle these

attacks at the source. In CenterTrack [125], network monitoring is used to detect abnormal levels

of attack traffic using special diagnostics-only routers that are interspersed with regular routers,

but also form a separate physical network. Malicious flows are directed to these routers, and they

can be isolated from the main routing paths in the network. In SOS [76], a secure overlay network

is formed over existing networks to route useful traffic to servers. Instead of burdening edge routers

with anti-DoS filtering, SOS pushes the filtering of traffic deep into the network where routers can

easily process and filter large amounts of traffic.

Many schemes to traceback and filter IP datagram attack ”streams” to their source interfaces,

in spite of spoofed addresses, have been proposed in the recent years. We present a brief summary

here to highlight the importance of such schemes to help identify the source of attack floods.

In ICMP Traceback [15], a router generates an ICMP traceback message with a certain prob-

ability and sends this packet along with the rest of the flow to the destination. Over time, the

destination receives enough traceback messages to determine all the traffic sources, including the

zombies. IP Traceback [120] is an alternative to ICMP traceback. Here routers probabilistically

mark packets (in the IP header field) with partial path information during packet forwarding. The

victim can reconstruct the complete paths after receiving a modest number of packets. The per-

formance overheads of IP Traceback are improved in Advanced and Authenticated Marking [124],

which basically authenticates the packets markings in IP Traceback. The analytical properties of

127



probabilistic traceback have also been studied [106]. Hash based IP traceback [123] uses an inno-

vative technique to encode the IP address of intermediate routers concisely in the packet itself. In

[133], the authors propose a new packet marking approach called Pi, for path identifiers, which are

embedded as fingerprints in IP datagrams and can be reconstructed by victims to identify attackers

in spite of spoofing.

IP Pushback [88, 57, 71] is a proposed IP router mechanism that enables routers to characterize

floods of suspicious attack traffic and deploy aggregate congestion control (ACC) mechanisms to

stem their flow to the victim. IP Pushback enables the mechanisms to implement filtering on

chosen intermediate routers and can be used with Traceback. A variety of different heuristics to

characterize attack packets have been proposed. However, since the defining characterizations of

DDoS attack packets are becoming harder to detect, coming up with reasonable heuristics to use

Pushback effectively is a significant challenge.

We observe that many of the solutions presented here advocate filtering as a mechanism to

prevent DDoS attacks. Some of the solutions enable filtering at the source, some on intermediate

routers and still others on servers. We believe our modeling and analysis will help quantify the

costs and benefits of implementing different filtering mechanisms and help administrators decide

which solutions are most effective in their particular context.

In the next subsection, we discuss how a QoS network addresses the DoS or DDoS problem.

6.4.3 QoS

The Internet offers very simple quality of service or QoS model, i.e., point-to-point, best-effort

data delivery. In order to get better support for real time applications and to control the ability

to share bandwidth on a particular link among different traffic classes (controlled link sharing)

various modifications to the basic service model have been proposed. Two design philosophies have

emerged in recent years : IntServ and DiffServ. The IntServ model includes best-effort service,

real-time service and controlled link sharing. It uses resource reservation[24] and admission control

as its basic building blocks.

Diffserv uses packet marking and advocates the use of special field in the IP packet[22]. Packets

are classified and marked to receive a particular per-hop forwarding behavior on nodes along their

128



path. Sophisticated classification, marking, policing, and shaping operations need only be imple-

mented at network boundaries or hosts. The mechanism of interest to us is the “In-Out” packet

marking scheme [31]. This scheme maintains a threshold value per user called the traffic meter and

marks packets in excess of a traffic meter, as “out”, but they are not dropped by the sender. These

packets may be preferentially dropped by downstream receivers. The traffic meter specifies the

end-to-end QoS parameters required by the application, but does not take bandwidth thresholds

on links into account.

A technology that provides end-to-end QoS using hop-to-hop admission control is ATM. ATM

functionality corresponds to the MAC layer and physical layer in the IP protocol stack. ATM[1]

is a switch-based connection-oriented protocol with fixed packet sizes. The fixed packet size al-

lows better prediction of QoS parameters. It defines a protocol for end-to-end service parameters

negotiation.

ATM provides five service categories: constant bit rate (CBR), real-time variable bit rate (rt-

VBR), non real-time variable bit rate nrt-VBR), available bit rate (ABR), and unspecified bit

rate (UBR). Traffic is classified into one of these five categories, based on an application’s end-

to-end QoS requirements, and packets from different applications in different classes will receive

different QoS. The protocol reserves chunks of bandwidth to different QoS classes, and implements

an admission control mechanism per class. In RSVP or some existing DiffServ schemes, unused

bandwidth within a reserved class is wasted if it is not used by the application. ATM defines a

class called ABR that uses an adaptive admission control strategy to probe and utilize unused

bandwidth belonging to other classes.

QoS networks can reduce the vulnerability of server to denial by consumption attacks by virtue

of their traffic shaping and traffic policing mechanisms. However, end-to-end resource reservation

does not prevent a malicious sender from sending excess packets that violate the service level

agreement. For this reason both admission control and per-flow statistics are necessary to detect

and punish misbehaving users in QoS networks. If the amount of state that needs to be maintained

in order to accomplish this is very large, scalability could be a issue.

To summarize our discussion on related work with respect to solutions to the DDoS problem,

we observe that a variety of techniques to address different aspects of the problem are available.

129



Our framework presents a general framework evaluating the efficacy of these techniques.

We present our conclusions, catalog lessons learned, and suggest directions for future work in

Chapter 7.

130



When one admits that nothing is certain

one must, I think, also admit that some

things are much more nearly certain than

others.

Bertrand RussellChapter 7

Conclusions

This chapter highlights the lessons learned from my study of modeling and analysis of survivability

properties for recovery-oriented security in access-control models, and summarizes solutions I ex-

plored to address relevant problems. In Section 7.1 I revisit the questions I posed in Section 3.5 and

justify how I address these concerns. This is followed by a summary of contributions in Section 7.2.

Finally, I discuss how the concepts and models I propose in this thesis can be extended in the future

in Section 7.3.

7.1 Conclusions

In this section, I present an evaluation of my thesis in terms of the success criteria I defined

in Chapter 3. Each numbered paragraph in this section is a justification of the corresponding

evaluation question from Section 3.5.

1. In my thesis, I claim that existing models of access control security make strong assumptions

about the nature of security guarantees that can be enforced by access control mechanisms

in real systems. In particular, modeling access control security as safety properties provides

a very restricted notion of information assurance. Existing state-of-the-art models cannot

capture the behavior of an access control system under threat of exposure or attack, and

fail to provide useful abstractions to model notions of recovery, from compromise or policy

enforcement failure. I believe that the modeling, specification, and verification methodology I

present in this thesis addresses these issues directly, and highlights the importance of including

these notions to build survivable security solutions. The importance of survivable security

131



can only be understated.

2. I develop my theory of recovery-oriented security using a general temporal logic framework.

I extend the state-transition formalism of access control models to explicitly incorporate

both qualitative and quantitative measures of system behavior. Qualitative temporal logic

formalisms are widely used to specify concurrent system behavior, because they can describe

the ordering of events in time, without the need to model time explicitly. The meaning

of a temporal logic formula is defined in the context of labeled state-transition graphs of

execution semantics called Kripke structures. Both synchronous and asynchronous models of

execution can be specified using these abstractions. My choice of branching time temporal

logic for specification of survivability properties is well suited to capture the nature of user

actions in the context of non-deterministic and stochastic behavioral models of access control

systems. Furthermore, I show how we can use standard augmentations of temporal logic

frameworks to model probabilistic and real-time guarantees in these models. Therefore I claim

that choosing this framework to model recovery-oriented security is well-suited to describe

temporal properties of such systems.

3. One of the major contributions of my thesis is the ability to capture the temporal nature of

security (or insecurity) guarantees in models, using availability as a measure of survivability

as well as recovery. The ability of a system to resist compromise can be measured in terms of

how long it can provide authorized access to uncompromised users and resources. The ability

to recover quickly, whenever possible, can also be captured by measuring how long the system

was unavailable, or by how fast it can become available again. Making a model resilient to

denial of service can be formulated easily as making it more available. I show how we can

specify survivability, recovery, DoS resilience and DoS resistance as availability properties.

Therefore, we can use the same concepts to describe different guarantees in the model and

use the same verification methodology uniformly. Our model provides a cost-benefit analysis

framework in terms of availability, and can be used to study the usefulness of different design

choices for recovery.

4. In my study of recovery strategies, I show how we can extend the lifetime of critical resources

132



in the system by changing access control policies and mechanisms on the fly, in a controlled

manner, without sacrificing consistency guarantees. I describe how to augment a policy

specification automatically, to preserve trust-relationships of interest. I also demonstrate

how implementation mechanisms can affect the overheads of changing access controls. The

formal study of dynamic access controls for recovery is also an original contribution of this

thesis.

5. I show how we can directly employ standard model-checking techniques to verify survivability

policies. Model checking is widely used for verifying finite state concurrent systems. For

branching time formulas expressed in CTL, PCTL and CSL, model-checking is decidable

and efficient. The models presented in this thesis are small, yet rich enough to prove different

properties about the behavior of systems under information exposure or DoS attacks.

While the need to abstract system behavior using finite-state semantics may seem restrictive,

symbolic model checking algorithms can increase the efficiency of this process. Techniques

such as abstraction, exploiting symmetry and reduction can further expand the size of models

that can be verified within a given set of memory and processing constraints. Systems that

are not finite state can be verified using model checking in combination with abstraction,

induction, or even deductive reasoning and theorem proving.

6. I claim that this thesis work is the only formalism of DDoS attacks, to the best of our knowl-

edge, which models the unique characteristics of network resource-consumption behavior. By

integrating stochastic models of arrival rates, service rates and traffic congestion behavior into

our state-transition model of access request behavior, security engineers can analyze the im-

pact of different network operating characteristics and their effect on a model’s vulnerability

to DoS and DDoS attacks. As shown by our examples, the modeling and analysis framework

can be used to study and prove survivability properties of different proposed DoS-prevention

strategies.

7.2 Summary of Contributions

In this section, I itemize the major contributions of my thesis as follows:

133



1. I describe a new methodology for information assurance that challenges the “all-or-nothing”

nature of guarantees provided by existing access control models. In particular I claim that

access control systems are regularly compromised, either maliciously or inadvertently and

safety guarantees are invalidated periodically. I argue that we need a new abstraction I call

recovery-oriented security to explore the nature and scope of guarantees in realistic system

models that are under threat of attack. I define survivability in this context as the ability of

a system to provide flexible response and recover from policy compromise.

2. I show how to extend existing access control behavior models to explicitly capture the effect of

information compromise as well as DoS behavior. I incorporate nondeterministic, probabilis-

tic, as well as real-time behavioral attributes to extend the power of expression of traditional

models. I claim these extension are the key to define as well as analyze the temporal nature

of security guarantees in real systems. I show how we can specify appropriate notions of

survivability and recoverability, as well as resilience to DoS and DDoS attacks in this ex-

tended behavioral model, using appropriate flavors of temporal logic. One of the benefits

of this methodology is the ability to use standard automated model-checking techniques for

verification of temporal security guarantees. I show how we can define models of different

3. I also explore how changing access control policies in response to vulnerabilities and threats

of exposure can preserve temporal security guarantees and increase survivability of a system.

I study the overheads of implementing flexible response using dynamic access control, and

explore how we can preserve safety and trust assumptions in this context.

4. Finally, I show how my framework can be used to formalize of the network DoS and DDoS

problem, and specify and verify both qualitative and quantitative DoS survivability proper-

ties. This formulation allows us to study different DoS-prevention strategies and compare

their relative effectiveness in reducing DoS vulnerabilities. I also show how we can integrate

stochastic modeling and analysis with behavioral models of network access control to study

the DoS problem in the context of specific network models and validate the usefulness of

different response strategies.

134



To summarize, I claim my thesis provides a rich semantic framework to specify temporal notions

of recovery-oriented security and explore the nature and scope of flexible response strategies to

improve the survivability of access control models.

7.3 Future Research

Using the specification and verification methodology from this thesis, I would like to focus on

automating the process of generating strategies to augment system models and improve the sur-

vivability of an information protection system under attack.

The ability to respond to security threats and recover from attacks on operating systems and

networks is viewed as a particularly challenging problem in information assurance. While the

administrators of a system or a network’s security-configuration have a variety of options with

respect to automated tools for intrusion detection and configuration management, it is becoming

increasingly difficult to shrink the window of opportunity for an attacker using existing tools and

mechanisms, between when a vulnerability is detected to when it is exploited. In this context,

automatic response is seen as an interesting if not controversial solution, with significant technical

and legal challenges before it can be adopted widely.

This problem can be investigated at different levels, with the final goal of developing a framework

to implement automated response actions. However, solution need to have a strong theoretical basis,

in terms of providing a methodology to prove and analyze the impact of these response actions,

with regard to their ability to recover or restore security guarantees.

To accomplish this, we propose to leverage my thesis work, and study specific instances of

automatable responses in the context of a particular installation, and design an administrative

interface that can pro-actively apply these actions in response to alerts from system logs and

intrusion detection systems.

Specifically I would like to incorporate risk analysis to study the cause and consequences of

threats and exposures on an abstract model of an information protection system. Identifying

potential sources of exposure can greatly influence a security engineer’s ability to design policies

for robustness and understand the tradeoffs between safety and availability. However, subjecting a

real system to attacks is dangerous and impractical. I propose to build a vulnerability analysis tool

135



that can take different abstract system models and associate risk values, as well as different attack

models, and analyze and quantify the costs and benefits of choosing different response actions.

To automate this process, I would like to explore techniques to build abstract models automat-

ically from a system installation. The tool will also include fault-trees and event trees, as well as

options to specify different risk models. Fault trees are used to capture the consequence of informa-

tion compromise and propagation of confidentiality and integrity failures. Fault trees are generated

by intrusion detection and anomaly detection systems and can also be compiled from vulnerability

reporting sources such as Bugtraq and CERT. A fault tree database can be automatically con-

structed for a given system model by collating the fault trees for different entities. Event-trees

capture the dynamic transitions of our abstract model and can be gathered from system logs or

specified by the user using an appropriate specification tool.

This proposed tool will also include different risk models as well as risk analysis techniques to

perform a cost-based cause-consequence analysis. Using availability as one metric, for example,

we can explore the consequence of different attacks on our model and identify critical paths and

entities that are high-risk and therefore may need stronger protection. This process will also give

us a mechanisms to study insider attacks, which have so far been notoriously difficult to model,

and use the specification and analysis techniques described above to capture insider threats and

observe their consequence. The modeling and analysis should ideally output a list of strategies to

reduce the vulnerability of attack, and a cost-benefit analysis of these strategies.

136



Appendix A

Semantics of CTL∗

Two flavors of temporal logic are popular. They differ in terms of whether they represent flow of

time implicitly in in terms of states and transitions, or whether they also include real-time in their

formalisms explicitly. In models where real-time values are not included explicitly, the two standard

temporal operators are henceforth and eventually. The henceforth operator is written symbolically

as 2 or as G (for “globally”), and asserts that the property is true in all states of the model in

the future. The eventually operator is written usually as 3 or as F(for “finally”), and denotes

that some state that can satisfy the property will be reached eventually. In addition to these two

temporal operators, the regular boolean connectives can also be used to construct temporal logic

formulas.

Temporal logics are interpreted in the context of Kripke structures, which are essentially state-

transition graphs.

We describe availability using the operators in CTL∗, which is a powerful logic for describing

properties of computation trees. Note that our abstraction of request-response trace is essentially

a computation tree. CTL∗ formulas are composed of path quantifiers and temporal operators.

Path quantifiers are used to describe the branching structure of computation trees. There are two

path quantifiers in CTL∗: A, which stands for “in all computation paths” and E for “in some

computation path”. In addition, we also have G and F as described previously, as well as X, which

requires the property hold in the second state of the path, and binary operator U for two properties

that holds if there is a state on the path where the second property holds, and at every preceding

state on the path, the first holds. Operators ∨, ¬, X, U, and E are sufficient to represent any

CTL∗ formula. There are two types of formulas in CTL∗: state formulas and path formulas. State

137



formulas are true in specific states and path formulas along specific paths. They are defined as

follows:

• If p ∈ AP , then p is a state formula.

• If f and g are state formulas, then ¬ f and f ∨ g are state formulas.

• If f is a path formula, Ef and Af are state formulas.

• If f is a state formula, then it is also a path formula.

• If f and g are path formulas, ¬f , f ∨ g, Gf , fUg, Xf , and Ff are path formulas.

For the Kripke structure M , a path π ∈M is an infinite sequence of states π = s0, s1, · · · such

that for every i ≥ 0, (si, si+1) ∈ R. πi is the suffix of π starting at si. If f is a state formula, the

notation M, s |= f means f holds at state s in M . If f is a path formula M,π |= f means f holds

along π in M . The |= relation is defined inductively as follows:

1. M, s |= p↔ p ∈ L(s)

2. M, s |= ¬f ↔M, s 6|= f

3. M, s |= f ∨ g ↔M, s |= f or M, s |= g

4. M, s |= Ef ↔ there is a path π from s such that M,π |= f

5. M, s |= Af ↔ for every path π from s, M,π |= f

6. M,π |= f ↔ s is the first state of π and M, s |= f

7. M,π |= ¬f ↔M,π 6|= f

8. M,π |= f ∨ g ↔M,π |= f or M,π |= g

9. M,π |= Xf ↔M,π1 |= f

10. M,π |= Ff ↔ there exists k ≥ 0 such that M,πk |= f

11. M,π |= Gf ↔ for all k ≥ 0, M,πk |= f

138



12. M,π |= fUg ↔ there exists k ≥ 0 such that M,πk |= g and for all 0 ≤ j < k, M,πj |= f

Note X, F,G, and U, are defined only for paths.

There are two useful sub-logics of CTL∗, one for branching time and one for linear time called

CTL (Computation Tree Logic) and LTL (Linear Temporal logic respectively. In CTL, each of

the temporal operators X, F, G, and U must be immediately preceded by a path quantifier (either

A or G). Therefore in CTL temporal operators quantify over paths that are possible from a given

state. LTL is useful for describing events along a single computation path. LTL formulas are of

the form Af where f is a path formula whose only state sub-formulas can be atomic propositions.

139



Appendix B

PRISM Code for PNS of DDoS
Victim Server

// DDoS Server Model as a CTMC

// Model as one process with two state variables http and attack

// and four probability values muh mua, ph, pa

stochastic

const double muh;

const double nmuh = (1.0-muh);

const double mua = nmuh;

const double nmua = muh;

const double ph;

const double nph = (1.0-ph);

const double pa = nph;

const double npa = ph;

module DDOS

http : [0..2] init 1;

attack : [0..2] init 0;

140



[] (http=1) & (attack=0) -> nmuh:(http’=1)&(attack’=0) + muh:(http’=2)&(attack’=0);

[] (http=2) & (attack=0) -> ph:(http’=1)&(attack’=0) + nph:(http’=0)&(attack’=1);

[] (http=0) & (attack=1) -> nmua:(http’=0)&(attack’=1) + mua:(http’=0)&(attack’=2);

[] (http=0) & (attack=2) -> npa:(http’=1)&(attack’=0) + pa:(http’=0)&(attack’=1);

endmodule

141



References

[1] Atm forum online. http://www.atmforum.com/.

[2] M. W. Alford, J. P. Ansart, G. Hommel, L. Lamport, B. Liskov, G. P. Mullery, and F. B.

Schneider. Distributed Systems: Methods and Tools for Specification. LNCS 190, Springer-

Verlag, 1985.

[3] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. In Distributed Com-

puting, 1986.

[4] R. Alur, C. Courcoubetis, and D. L. Dill. Model checking in dense real-time. In Information

and Computation, 104(1):2-34, 1993.

[5] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness. In

Information and Computation 104:35-77,, 1993.

[6] P. Ammann, S. Jajodia, C. D. McCollum, and B. Blaustein. Surviving information warfare

attacks on databases. In Proceedings of the 1997 IEEE Symposium on Security and Privacy,

pp.164-174, Oakland, CA, May 1997.

[7] P. Ammann and R. Sandhu. Extending the creation operation in the schematic protection

model. In In Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy,

IEEE Computer Society Press, 1990.

[8] Edward Amoroso. A policy model for denial of service. In Proceedings of IEEE Computer

Security Foundations Workshop III, pages 110–114, Franconia, NH USA, June 1990.

[9] Ross Anderson. A security policy model for clinical information systems. In Proceedings of

1996 IEEE Symposium on Research in Security and Privacy, 1996.

142



[10] A. Avizienis, J. C. Laprie, and B. Randell. Fundamental concepts of dependability. In LAAS

Report, April 2001.

[11] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time markov chains.

In Proceedings of the 8th International Conference on Computer Aided Verification (CAV96),

Vol 1102, LNCS, pp 269-276, Springer, 1996.

[12] Boehm B. Software engineering. In IEEE Transactions on Computers, C25(12):126-41, Dec

1976.

[13] C. Baier and M. Z. Kwiatowska. Model checking for a probabilistic branching time logic with

fairness. In DISTCMP: Distributed Computing, 11, 1998.

[14] D. Bell and L. La Padula. Secure computer systems: Unified exposition and multics inter-

pretation. In Technical Report MTR-2997, MITRE, Bedford, MA, 1975.

[15] S. Bellovin. ICMP Traceback Messages. Internet draft, March 2000.

[16] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka. Handbook of Process Algebra. Elsevier,

ISBN: 0-444-82830-3, 2001.

[17] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical framework for

reasoning about access control models. In Proceedings of the Sixth ACM Symposium on Access

control models and technologies, May 2001.

[18] D. Bertsekas and R. Gallagher. Data Networks, 2nd Edition. Prentice Hall, 1992.

[19] Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and nondeterministic

systems. In In the Proceedings of the Foundations OF Software Technology and Theoretical

Computer Science, Bangalore, India, 1995.

[20] K. Biba. Integrity considerations for secure computer systems. In Technical Report MTR-

3153, MITRE Corporation, Bedford, MA, Apr 1977.

[21] Matt Bishop. Computer Security: Art and Science. Addison-Wesley,ISBN 0-201-44099-7,

2003.

143



[22] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for

Differentiated Services. RFC 2475.

[23] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote: Trust management

for public-key infrastructures. In Security Protocols International Workshop, Cambridge,

England, 1998.

[24] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol

(RSVP) – Version 1 Functional Specification. RFC 2205.

[25] D. Brewer and M. Nash. The chinese wall security model. In Proceedings of 1989 IEEE

Symposium on Research in Security and Privacy, 1989.

[26] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, Prasad Naldurg, and Seung Yi.

Seraphim: dynamic interoperable security architecture for active networks. In OPENARCH

2000, Tel-Aviv, Israel, March 26–27, 2000.

[27] Jin Cao, William S. Cleveland, Dong Lin, and Don X. Sun. Internet traffic tends toward

poisson and independent as the load increases. In Nonlinear Estimation and Classification ,

eds. C. Holmes, D. Denison, M. Hansen, B. Yu, and B. Mallick, Springer, New York, 2002.

[28] A. Chander, D. Dean, and J. Mitchell. A state-transition model of trust management and

access control. In 14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova

Scotia, June 2001.

[29] Chroot. Securing and optimizing linux, redhat edition—a hands on guide.

http://www.faqs.org/docs/securing/chap29sec254.html, 2003.

[30] D. Clark and D. Wilson. A comparison of commercial and military computer security policies.

In Proceedings of 1987 IEEE Symposium on Research in Security and Privacy, 1987.

[31] D. Clark and J. Wroclawski. An Approach to Service Allocation in the Internet. Internet-

draft, July 1997.

144



[32] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state concurrent

systems using temporal logic specifications. In ACM Transactions on Programming Languages

and Systems, 1986.

[33] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 2000.

[34] R. W. Conway, W. L. Maxwell, and H. L. Morgan. On the implementation of security

measures in information systems. In Communications of the ACM, Volume 15(4), Apr 1972.

[35] M. J. Covington, M. J. Moyer, and M. Ahamad. Generalized role-based access control for

securing future applications. In In Proceedings of the 23rd National Information Systems

Security Conference (NISSC), October 2000.

[36] CSI-FBI. 2003 computer crime and security survey.

http://www.gocsi.com/awareness/fbi.jhtml, May 2003.

[37] M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H. Sanders, M. Seri, M. Atighetchi,

P. Rubel, C. Jones, F. Webber, P. Pal, R. Watro, and J. Gossett. Providing intrusion tolerance

with itua. In Supplement of the 2002 International Conference on Dependable Systems and

Networks, June 2002.

[38] D-Ward. Ddos network attack recognition and defense. http://www.lasr.cs.ucla.edu/ddos/.

[39] Luca de Alfaro. Temporal logics for the specification of performance and reliability. In

14th Symposium on Theoretical Aspects of Computer Science Hansestadt Lu”beck, Germany

(STACS 97), Feb 1997.

[40] D. E. Denning, P. J. Denning, S. J. Garland, M. A. Harrison, and W. L. Ruzzo. Proving

protection systems safe. In Computer Science Department, Purdue University, Indiana, Feb

1978.

[41] Dorothy Denning. A lattice model of secure information flow. In Communications of the

ACM, Volume 19(5):236-243, May 1976.

[42] Dorothy Denning. Cryptography and Data Security. Addison Wesley, 1982.

145



[43] Peter J. Denning. Third generation computer systems. In Computing Surveys, Volume 3(4),

Dec 1971.

[44] Y . Deswarte, L. Blain, and J. C. Fabre. Intrusion tolerance in distributed systems. In IEEE

Symp. on Research in Security and Privacy, Oakland, CA USA, April 1991.

[45] E. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of programs. Com-

munications of the ACM, 18(8):453–457, 1975.

[46] D. Dittrich. Stacheldraht Analysis. http://staff.washington.edu/dittrich/misc/

stacheldraht.analysis.

[47] D. Dittrich. Tribal Flood Network analysis. http://staff.washington.edu/dittrich/misc/

tfn.analysis.

[48] D. Dittrich. Trin00 analysis. http://staff.washington.edu/dittrich/misc/

trinoo.analysis.

[49] D. Dittrich. DDoS: Is There Really a Threat. Invited Talk, USENIX Security Symposium,

August 2000.

[50] B. Dutertre, H. Säıdi, and V. Stavridou. Intrusion-tolerant group management in enclaves.

In International Conference on Dependable Systems and Networks (DSN’01), pages 203–212,

Göteborg, Sweden, July 2001.

[51] R. Ellison, D. Fisher, R. Linger, H. Lipson, T. Longstaff, and N. Mead. Survivable network

systems: An emerging discipline. In Technical Report CMU/SEI-97-153, November 1997.

[52] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchro-

nization skeletons. In Science of Computer Programming, 2:241-266, 1982.

[53] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal

logic of branching time. In Journal of Computer and Systems Sciences, 30(1):1-24, 1985.

[54] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service Attacks

which employ IP Source address Spoofing. RFC 2267.

146



[55] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. A proposed standard

for role based access control. In ACM Transactions on Information and System Security ,

vol. 4, no. 3, Aug 2001.

[56] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls. In Proceedings of the

15th NIST-NSA National Computer Security Conference, Baltimore, MD, oct 1992.

[57] Sally Floyd, Steven M. Bellovin, John Ioannidis, Kireeti Kompella, Ratul Manajan, and Vern

Paxson. Pushback messages for controlling aggregates in the network. draft-floyd-pushback-

messages-00.txt, IETF internet-draft, work in progress, July 2001.

[58] V. D. Gligor. A note on the denial-of-service problem. In Proceedings of IEEE Symposium

on Security and Privacy, Oakland, California, USA, April 1983.

[59] J. Goguen and J. Meseguer. Security policies and security models. In Proceedings of 1982

IEEE Symposium on Research in Security and Privacy, 1982.

[60] J. Goguen and J. Meseguer. Unwinding and inference control. In Proceedings of 1984 IEEE

Symposium on Research in Security and Privacy, 1984.

[61] G. S. Graham and Peter J. Denning. Protection–principles and practice. In Proceedings of

Spring Joint Computer Conference, Vol40, AFIPS Press, Montvale NJ, 1972.

[62] R. Graubert. On the need for a third form of access control. In Proceedings of the 12th

National Computer Security Conference, Oct 1989.

[63] J. Gray. Probablistic interference. In Proceedings of 1990 IEEE Symposium on Research in

Security and Privacy, 1990.

[64] J. Gray and P. Syverson. A logical approach to multilevel security of probablistic systems.

In Proceedings of 1992 IEEE Symposium on Research in Security and Privacy, 1992.

[65] B. Jonsson H. Hansson. A logic for reasoning about time and probability. In Formal Aspects

of Computing, Vol. 6, pp 512-535, 1994.

[66] Joseph Y. Halpern and Moshe Y. Vardi. Model checking vs. theorem proving: a manifesto.

pages 151–176, 1991.

147



[67] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems. In

Communications of the ACM, Vol 19(8), Aug 1976.

[68] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems. In Real-

Time: Theory in Practice, LNCS 600, pages 226–251, 1991.

[69] Alefiya Hussain, John Heidemann, and Christos Papadopoulos. A framework for classifying

denial of service attacks. In Proceedings of the ACM SIGCOMM Conference, Karlsruhe,

Germany, August 2003. ACM.

[70] SANS Institute. Egress Filtering v 0.2. http://www.sans.org/y2k/egress.htm, 2000.

[71] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-based defense

against ddos attacks. In Proceedings of the Network and Distributed System Security Sympo-

sium 2002, San Diego, California , February 2002.

[72] Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and Elisa Bertino. A unified frame-

work for enforcing multiple access control policies. In In Proceedings of the ACM SIGMOD

International Conference on Management of Data, volume 26,2 of SIGMOD Record, pages

474–485, 1997.

[73] S. Jha and J. Wing. Survivability analysis of networked systems. In International Conference

on Software Engineering (ICSE), May 2001.

[74] A. K. Jones, R. J. Lipton, and L. Snyder. A linear time algorithm for deciding security. In

Proceedings of the 17th Annual Symposium on Foundations of Computer Science, 1976.

[75] P. Karger and A. Herbert. An augmented capability architecture to support lattice security

a nd traceability of access. In Proceedings of the 1984 IEEE Symposium on Security and

Privacy , pp. 2-12, 1984.

[76] A. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure overlay services. In Proceedings of

ACM SIGCOMM’02, (Pittsburgh, PA), August 2002, 2002.

[77] Leonard Kleinrock. Queueing Systems, Vol I: Theory. Wiley InterScience, 1975.

148



[78] M. Koch, L. V. Mancini, and F. Parisi-Presicce. On the specification and evolution of access

control policies. In Proceedings of the Sixth ACM Symposium on Access control models and

technologies, May 2001.

[79] K.J. Kristoffersen, C. Pedersen, and H.R. Andersen. Runtime verification of timed ltl using

disjunctive normalized equation systems. In RV03 - Third Workshop on Runtime Verification,

Boulder, Colorado, USA, 2003.

[80] Orna Kupferman, P. Madhusudhan, P. S. Thiagarajan, and Moshe Y. Vardi. Open systems

in reactive environments: Control and synthesis. In Lecture Notes in Computer Science, Vol

1877, 2000.

[81] Marta Z Kwiatkowska, Gethin Norman, and Jeremy Sproston. Pctl model checking of sym-

bolic probabilistic systems. Technical Report CSR-03-2, University of Birmingham, School

of Computer Science, April 2003.

[82] Butler W. Lampson. Protection. In Proceedings of the 5th Princeton Symposium on Infor-

mation Sciences and Systems, Reprinted ACM Operating Systems Review 1974, Mar 1971.

[83] R. Lipton and L. Snyder. On synchronization and security. In In R. DeMillo, D. Dobkin, A.

Jones , and R. Lipton, editors, Foundations of Secure Computation, Academic Press, 1978.

[84] P. Liu and S. Jajodia. Trusted Recovery and Defensive Information Warfare. Kluwer Aca-

demic Publishers,ISBN 0-7923-7572-6, 2002.

[85] Zhaoyu Liu, Prasad Naldurg, Seung Yi, Tin Qian, Roy H. Campbell, and M. Dennis Mickunas.

An agent based architecture for supporting application level security. In DARPA Information

Survivability Conference and Exposition, Hilton Head Island, SC, January 25-27, 2000.

[86] N. Long and R. Thomas. Trends in denial of service attack technology. CERT Coordination

Center, Summary, October 2001.

[87] John MacLean. A comment om the ”basic security theorem” of bell and la padula. In

Information Processing Letters, 20(2):67-70, Feb 1985.

149



[88] Ratul Manajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern Paxson, and

Scott Shenker. Controlling high bandwidth aggregates in the network (extended version.

http://www.icir.org/pushback/, July 2001.

[89] Z. Manna and A. Pnueli. Verification of temporal programs: The temporal framework. In

R.S.Boyer and J. S. Moore, editors, The Correctness Problem in Computer Science, Academic

Press, New York, 1981.

[90] D. McCullough. Specifications for multi-level security and a hook-up property. In Proceedings

of 1987 IEEE Symposium on Research in Security and Privacy, 1987.

[91] John McLean. Security models and information flow. In Proceedings of 1990 IEEE Symposium

on Research in Security and Privacy, 1990.

[92] John McLean. The specification and modeling of computer security. In IEEE Computer.

23(1)9-16, Jan 1990.

[93] John McLean. Proving noninterference and functional correctness using traces. In Journal

of Computer Security 1(1):37-57, Jan 1992.

[94] John McLean. Security models. In Encyclopedia of Software Engineering, Wiley Press, 1994.

[95] Catherine Meadows. A cost-based framework for analysis of denial of service networks. Jour-

nal of Computer Security, 9(1/2):143–164, 2001.

[96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

[97] J. K. Millen. A resource allocation model for Denial of Service. In Proceedings of the 1992

IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 1992.

[98] N. Minsky. Selective and locally controlled transport of privileges. In Proceedings of the ACM

Transactions on Programming Languages and Systems, 6(4), Oct 1984.

[99] Jelena Mirkovic, Janice Martin, and Peter Reiher. A taxonomy of ddos attacks and ddos

defense mechanisms. Technical report, UCLA CSD Technical Report no. 020018, 2002.

150



[100] Sape Mullender. Distributed Systems, Second Edition. Addison-Wesley, 1995.

[101] P. Naldurg and R. H. Campbell. Modeling insecurity: Policy engineering for survivability. In

To Appear in the Proceedings of First ACM Workshop on Survivable and Self-Regenerative

Systems, Oct 2003.

[102] Prasad Naldurg and Roy Campbell. Dynamic access control: Preserving safety and trust in

computer network defense. In ACM Symposium on Access Control Models and Technologies,

Como, Italy, June 2003.

[103] Prasad Naldurg, Roy Campbell, and M. Dennis Mickunas. Developing dynamic security

policies. In Proceedings of the 2002 DARPA Active Networks Conference and Exposition

(DANCE 2002), San Francisco, CA, USA, IEEE Computer Society Press, May 29-31, 2002.

[104] Netcraft. Ddos takes sco site down. http://news.netcraft.com/, 2003.

[105] B. Panda and J. Giordano. Defensive information warfare. In Communications of the ACM,

Vol. 42, No. 7, p. 31-32,, July 1999.

[106] K. Park and H. Lee. On the effectiveness of probabilistic packet marking for ip traceback

under denial of service attack. In Proceedings of InfoCom 2001, April 2001.

[107] Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson modeling. IEEE/ACM

Transactions on Networking, 3(3):226–244, 1995.

[108] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.

[109] A. Pnueli and L. D. Zuck. Probabilistic verification by tableaux. In In the Proceedings of the

First IEEE Symposium on Logic in Computer Science, 1986.

[110] A. Pnueli and L. D. Zuck. Probabilistic verification. In Information and Computation, 1993.

[111] PRISM. Probabilistic symbolic model checker. http://www.cs.bham.ac.uk/ dxp/prism/,

2004.

151



[112] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in cesar.

In Proceeding of Fifth International Symposium on Programming, LNCS, Vol. 37, pp 337-

371Springer-Verlag, 1982.

[113] Kemmerer R. Share resource matrix methodology: An approach to identifying storage and

timing channels. In ACM Transactions on Computer Systems, Volume 1 (3):256-277, Aug

1983.

[114] A. Sabelfeld and A. Myers. Language-based information-flow security. In IEEE Journal on

Selected Areas in Communications, 21(1), 2003.

[115] Andrei Sabelfeld and David Sand. Probabilistic noninterference for multi-threaded programs.

In Proceedings of 13th IEEE Computer Security Foundations Workshop (CSFW’00), 2000.

[116] Geetanjali Sampemane, Prasad Naldurg, and Roy Campbell. Access control for active spaces.

In Proceedings of 18th Annual Computer Security Applications Conference (ACSAC), 2002.

[117] R. Sandhu. The typed access matrix model. In Proceedings of the 1992 IEEE Symposium on

Security and Privacy, Oakland, California, USA, Apr 1992.

[118] Ravi Sandhu. The schematic protection model, its definition and analysis for acyclic attenu-

ation schemes. In Journal of the ACM, Volume 35(2), Apr 1988.

[119] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinsten, and Charles E. Youman. Role-based

access control models. IEEE Computer, 20(2):38–47, 1996.

[120] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network Support for IP

Traceback. In Proceedings of the 2000 ACM SIGCOMM Conference, pp. 295-306, Stockholm,

Sweden, August 2000.

[121] F. Schneider. Enforceable security policies. ACM Transactions on Information and System

Security, 3(1):30–50, 2000.

[122] Clay Shields. What do we mean by network denial of service? In Proceedings of the 2002

IEEE Workshop on Information Assurance and Security, West Point, N.Y., June 2002.

152



[123] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchakoun-

tio, Stephen T. Kent, and W. Timothy Strayer. Hash-based ip traceback. In Proceedings

of the ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, August 2001.

[124] D. Song and A. Perrig. Advanced and Authenticated Marking Schemes for IP Traceback.

Technical report, April 2001.

[125] R. Stone. CenterTrack: An IP Overlay Network for Tracking DoS Floods. In Proceedings of

the 9th USENIX Security Symposium, 2000.

[126] David Sutherland. A model of information. In In Ninth National Computer Security Confer-

ence, NBS/NCSC, 1986.

[127] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs.

In 26th Annual Symposium on Foundations of Computer Science, pages 327-338, Portland,

Oregon, 21-23, Oct 1985.

[128] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security. In

TAPSOFT’97: Theory and Practice of Software Development, 7th International Joint Con-

ference CAAP/FASE, Lille, France, April 14-18, 1997, Proceedings, volume 1214 of Lecture

Notes in Computer Science. Springer, 1997.

[129] Stephen Weeks. Understanding trust management systems. In 2001 IEEE Symposium on

Security and Privacy, May 2001.

[130] J. Wing. A symbiotic relationship between formal methods and security,. In Proceedings from

Workshops on Computer Security, Fault Tolerance, and Software Assurance: From Needs to

Solution,, Dec 1998.

[131] J. Wray. An analysis of covert timing channels. In In the Proceedings of the 1991 IEEE

Symposium on Research in Security and Privacy, 1990.

[132] T. Wu, M. Malkin, and D. Boneh. Building intrusion tolerant applications. In Proceedings

of the 8th USENIX Security Symposium, August 1999.

153



[133] Avi Yaar, Adrian Perrig, and Dawn Song. Pi: A path identification mechanism to defend

against DDoS attacks. In IEEE Symposium on Security and Privacy, May 2003.

[134] C. Yu and V. Gligor. A specification and verification method for preventing denial of service.

IEEE Transactions on Software Engineering, 16(6):581–592, June 1990, June 1990.

154



Vita

Prasad Naldurg is a native of Bangalore, India. He graduated from the University of Mysore,

India in 1996 with a Bachelor of Engineering degree in Computer Science and Engineering. He was

ranked first in his graduating class and awarded the Jayantilal Thakore Gold Medal for obtaining

highest scores in all subjects in his final year of studies there. He enrolled in the graduate program

at the Department of Computer Science, University of Illinois at Urbana-Champaign in 1997.

He obtained his Master of Science Degree from the University of Illinois in Computer Science in

August 2000 and his Doctor of Philosophy Degree in May 2004. He was also a Visiting Lecturer

at the Department of Computer Science at Illinois from August 2003 to May 2004. In Fall 2003,

he taught an introductory course on computer security and cryptography entitled “Introduction

to Information Assurance” for senior undergraduates and graduate students. In Spring 2004 he

taught a follow-up course “Computer Security Architecture” covering advanced material related

to formal methods and security. His research interests include systems and network security and

applications of formal methods and cryptography to related problems.

155


