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Chapter 1

Introduction

Information extraction is the process of converting a natural language text into a structured repre-

sentation. The structured representation reects concepts expressed by the text, and relationships

that hold among the concepts. Examples of possible extracted concepts are people, organizations,

places, times and dates, money amounts and percentage changes in �nancial publications, university

courses and student grades. The extracted concepts can be related; examples of frequent relations

include the aÆliation relation, which speci�es that a person is aÆliated with an organization, a

location relation between a person/organization and a place, and social relations between people.

Information extraction can be seen as a process of decoding the natural language text to recover

the original (conceptual) representation that the underlying text aims to express. By recovering all

concepts and relations represented by the text and re�ning the conceptual vocabulary to account

for �ner nuances of natural language, information extraction approaches, in the limit, the problem

of natural language understanding. While understanding itself is an elusive goal, we can hypothesize

that the mechanism for representing natural language in a structural form and using the represen-

tation in performing further inferences will play an crucial role in the ability of intelligent machines

to pass an operational test of natural language understanding.

Less ambitious applications of information extraction abound. A structured representation of

natural language documents can be readily stored in a relational database, and provide the basis for

question answering applications [88]. It can also be integrated with other structured data, and used

as part of data mining [52], the process of discovering new and interesting nuggets of information in

a database. In many current applications, the extracted concepts and relations provide helpful text

visualizations allowing users to quickly grasp essential concepts and relations of a natural language
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document [70].

Information extraction applications of recent years were spurred by growth of the World Wide

Web. Indeed, information extraction holds the promise of converting WWW into a huge conceptual

database, rather than the existing database of web pages and links between them. Such a database

would lead to a dramatic shift from the current information retrieval paradigm: keyword-based

search [106].

History of information extraction is fairly recent. Starting from the late 80s, the DARPA-

sponsored Message Understanding Conferences (MUC) [1, 2, 3, 4, 5] essentially created the �eld of

information extraction. MUC was a response to increasing growth of online text that needed to be

processed by human analysts. Early MUC attempted to de�ne a set of events of interest that could

be expressed in the text (e.g., vehicle launch). Each event was described by record template (e.g.,

what, when, where), and the goal of an information extraction system was to �ll the template by

extracting information from text. Later, MUC compartmentalized extraction problems and de�ned

separate tasks for extraction of named entities, relations, coreference resolution, and others.

Experience of MUC proved that information extraction is very diÆcult, even for humans. For

example, various aspects of the information extraction task exhibited the inter-annotator agreement

of only 60-80 percent. Yet for many well-de�ned problems, such as named entity extraction, the

best extraction systems currently achieve over 90% performance.

Early information extraction systems were manually engineered by computational linguists.

The systems comprised a set of general linguistic patterns (e.g., �nite state machines) and domain-

dependent patterns that identi�ed building blocks of underlying text and extracted the required

information therefrom. Building information extraction systems manually is fairly arduous process

that requires signi�cant knowledge of both the language and the extraction domain. In the process,

experience and skill of the knowledge engineer play a critical part. Over the 90s, manually engi-

neered systems exhibited very good performance for the tasks of named entity extraction, relation

extraction, and others [14]. The knowledge engineering paradigm is still the approach of choice for

most information extraction systems that are being built at the present moment.

In the second half of the 90s, several adaptive (or learning) systems have been built for infor-

mation extraction. The machine learning systems are based on annotated information extraction
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data. The systems use the data to learn models that are employed to extract information from new

texts. Most early learning systems for information extraction were heavily inuenced by the speech

processing community [55] and based on the like formalisms: variants of probabilistic modeling of

the underlying text. Notable systems are Hidden Markov Model-based named entity extraction

system [20] and Lexicalized Probabilistic Context Free Grammar-based parsing and relation ex-

traction system [79]. In the late nineties, other modeling approaches were applied to information

extraction including maximum entropy modeling [93] and inductive logic programming [25].

With the advent of Internet, adaptive information extraction techniques were used to extract

data from web pages. Due to the semi-structured nature web pages (i.e., presence of html tags

that in many cases delimit the information of interest), a community of wrapper induction [69, 84]

appeared. Wrapper induction methods represent a variety of special purpose techniques for learning

�nite state machines that use formatting clues for information extraction. For relatively regular

web pages, the wrapper induction methods require very few (less than 5) labeled web pages to

produce wrappers (extraction models), with excellent performance. However, the techniques are

not applicable to the general information extraction problem, where formatting regularities are

absent.

Applications of machine learning approaches to the problem of information extraction and

natural language processing, in general, pose both practical and theoretical challenges for machine

learning.

From the practical perspective, the sheer amount of natural language data (tens and hundreds

thousands of examples) requires development of very eÆcient algorithms for learning and inference

processes. Furthermore, the feature vector representation of natural language data embeds the

data into a very high dimensional spaces (tens and hundreds thousands on dimensions). Many

classical learning algorithms are not applicable for spaces of such dimensionality. Another aspect of

the feature vector representation is that despite the increased overall dimensionality, any particular

example feature vector is very sparse, that is, it contains few non-zero coordinates. Most learning

algorithms used in NLP applications exploit example sparsity to drastically improve their eÆciency.

From the theoretical perspective, very high dimensionality of the data requires re-examination

of the current generalization theory, in its applicability to NLP learning problems. In fact, it
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is frequently the case with the NLP problems, that the dimensionality of the feature space far

exceeds the number of training examples. Most classical learning theory results fail to hold in such

circumstances (see Section 2.5). An alternative analysis of learning algorithm generalization ability

was recently undertaken that provides for dimensionality independent bounds, but more work is

still necessary to make the analysis applicable to NLP problems [17, 46]. We also note that nearly

all theoretical analyses of learning are worst-case, i.e., they are required to hold for any distribution

of the input data (the formal de�nition is found in Section 2.3). For NLP problems, the worst-case

analysis is overly pessimistic due to presence of numerous constraints stemming from language

regularities. An ability to incorporate the constraints into theoretical analyses would provide much

more realistic generalization bounds [100, 47].

1.1 Overview

This section presents a brief summary of the following chapters.

In Chapter 2, we survey the �eld of machine learning. We introduce important statistical

and computational concepts, as well as delineate a number of pertinent theoretical results and

algorithms that are used in subsequent chapters.

We then leverage recent advances of machine learning to design and implement a novel informa-

tion extraction system. The architecture of the system follows the common paradigm of building

information extraction systems. Namely, we separate information extraction process in a sequences

of tasks:

� Part of speech tagging.

� Entity extraction and coreference resolution.

� Relation extraction.

We formalize each of the tasks as a learning problem and apply learning algorithms to the problem.

Below we briey examine each of the constituent tasks and our novel contributions to their solution.

Chapter 3 addresses the problem of part of speech tagging. Part of speech tagging is the problem

of identifying parts of speech of words. We formalize the task as a multiclass classi�cation problem,
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and apply the SNOW (Sparse Network of Winnows) learning system [96, 63] to learn the part of

speech classi�er. We perform a comprehensive experimental evaluation of the system and argue

that SNOW architecture is appropriate for NLP applications. Chapter 3 reects our joint work

with Dan Roth, it previously appeared as [99].

In Chapter 4, we discuss the problem of entity extraction. The goal of entity extraction is to

identify all entities mentioned in text, and classify them by types. Entity extraction is comple-

mented by coreference resolution, which is the problem of determining whether di�erent extracted

entities correspond to the same real-world entities. We introduce a classi�cation approach for en-

tity extraction, and consider coreference resolution from the decoding perspective. That is, we

design novel decoding algorithms that, given local coreference decisions, produce a global coherent

interpretation of document entities. We experimentally evaluate algorithms for entity classi�ca-

tion and coreference resolution using the evaluation methodology of the recent Automatic Content

Extraction (ACE) program [10].

Chapter 5 addresses the problem of relation extraction. Relation extraction is the problem

determining relations of interest that hold between extracted entities. We formalize relation ex-

traction as a classi�cation problem, and apply kernel methods to learn the relation classi�ers. We

design novel kernels that are de�ned in terms of shallow parses and give eÆcient algorithms for

computing the kernels. We evaluate the kernel approach experimentally, with promising results.

Chapter 5 is a joint work with Chinatsu Aone and Anthony Richardella, it was previously published

as [111].

Finally, in Chapter 6 we combine the constituent pieces into one coherent extraction system.
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Chapter 2

Machine Learning

Learning is the process of estimating unknown dependencies from observations. The concept of

learning has been studied and formalized in di�erent �elds, viz., philosophy, psychology, cognitive

science, statistics, pattern recognition, and computer science. In this section, we survey quantitative

formalizations of the process of learning and show how they converge and give rise to the modern

conceptual framework of statistical and computational learning theory.

Let X be a (measurable) set of possible observations. The underlying assumption in most

learning models is that there exists a �xed unknown probability distribution P over X. The

learning process receives a set S observations from X sampled independently according to P and

seeks to estimate an unknown dependency from the �nite sample S.

2.1 Classical Statistics

The classical (parametric) statistics [41] is concerned with estimating the form of the probability

distribution P whose density function p is assumed to have an analytic parametric description

p(x) = p(x;w), where w 2 W is a vector of density parameters in some parameter space W . The

number of parameters is usually assumed to be small, and the corresponding class of densities

P = fp(x;w) : w 2Wg is supposed to include the true underlying density. The classical statistical

approach usually sidesteps the issue of selecting the class P, and only deals with determining the

values of the parameters w, given that the true density belongs to the class P.
The most prevalent approach to parametric density estimation aims to maximize the probability

of the �nite sample S = fx1; x2; : : : ; xmg, where xi's are sampled independently from a �xed
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unknown distribution P . De�ne the likelihood function P (Sjw) to be:

P (Sjw) =
mY
i=1

p(xi; w) (2.1)

We then seek w� 2W maximizing P (Sjw):

w� = argmaxw2WP (Sjw) (2.2)

The combination of (2.1) and (2.2) is termed the maximum likelihood approach for density esti-

mation. It is common to replace the likelihood function P (Sjw) with the log-likelihood function

Lp(Sjw) in order to make the optimization problem (2.2) more tractable1:

Lp(Sjw) =
mX
i=1

log p(xi; w) (2.3)

Then, the optimization criterion (2.2) is obviously equivalent to

w� = argmaxw2WLp(Sjw) (2.4)

2.2 Classical Pattern Recognition

The classical approach to pattern recognition leverages the conceptual framework of parametric den-

sity estimation and applies it to the problem of classi�cation [38]. Namely, the observations in the

sample S are augmented with class membership information: S = f(x1; y1); (x2; y2); : : : ; (xm; ym)g,
where yi 2 Y; i = 1; 2; : : : ;m, and Y = fc1; c2; : : : ; ckg is the set of k classes. There is a �xed

unknown probability distribution P (x; y) over the cross product X � Y = f(x; y) : x 2 X; y 2
Y g. In the classical setting, the corresponding density function p(x; y) is usually decomposed as

P
k p(ck)p(xjck), and the class densities are then assumed to have simple parametric descriptions,

i.e., p(xjck) = p(x;wk), where wk is the parameter vector for the kth class density.

We de�ne a misclassi�cation loss function l : Y � Y ! R that quanti�es the misclassi�cation

1Gradient computation for the log-likelihood function is often much less complex than that for the likelihood
function.
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error. For example, the most commonly used 0-1 loss function is de�ned as follows:

l0(y; y
0) =

8><
>:

1; if y 6= y0

0; if y = y0
(2.5)

We de�ne a classi�er c : X ! Y as a function mapping the set of observations X into a set of

classes Y . De�ne the classi�er risk(expected loss) with respect to the probability distribution P to

be

R(c) =

Z
X�Y

l(y; c(x))dP (x; y) (2.6)

If p(x; y) is a density function corresponding the probability distribution P , then (2.6) can be

written as

R(c) =

Z
X

Z
Y

[l(y; c(x))p(yjx)dy] p(x)dx (2.7)

Since the density function p(x) is never negative, the equation (2.7) implies that the risk R(c) is

minimized, if the integrand is minimized at each point x, that is, the optimal classi�er cb is chosen

so that ([38])

cb(x) = y0;where y0 = argminy2Y
P

yi2Y
l(yi; y)p(yijx) (2.8)

In particular, for the 0-1 loss function,

cb(x) = y0;where y0 = argmaxy2Y p(yjx) (2.9)

The classi�er (2.8) is termed the Bayes optimal classi�er, and the corresponding riskR(cb) is termed

the Bayes risk.

Given a �nite sample S, the goal is to output a classi�er c with the minimum expected loss

with respect to the distribution P (x; y). If we assume that the densities p(xjc1); p(xjc2); : : : ; p(xjck)
belong a common parametric family of probability distributions (p(xjci) = p(xjwi) 2 P), then
we can use the maximum likelihood approach for estimating w1; w2; : : : ; wk from the sample S.

Furthermore, the prior class probabilities p(ci) can be estimated from the sample as well. Finally,

the Bayes formula implies that

p(cijx) = p(xjci)p(ci)
p(x)

(2.10)
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Hence, p(cijx) ' p(xjci)p(ci), and the knowledge of class densities and prior probabilities uniquely

determines the Bayes optimal classi�er (2.8).

There are however several problems with the classical approach to classi�cation. First, knowl-

edge that the densities p(xjci) belong to a certain family of parametric probability distribution

is often unavailable, especially for high-dimensional data. Second, even if the exact parametric

family is known, it may be very diÆcult to produce reliable estimates of parameters wi, from a

�nite sample S.2 Finally, it has been argued that the problem of density estimation from a �nite

sample is, in general, more diÆcult than the problem of learning a classi�er c without resorting

to modeling the underlying distribution [107]. These observations provide a motivation for recent

developments in statistical learning theory.

2.3 Classi�cation and Statistical Learning Theory

The statistical learning theory methodology suggests that a classi�cation learning problem be solved

directly via �nding a classi�er c : X ! Y rather than modeling the class distributions explicitly

[107, 108]. The classi�er c(w); w 2 W is sought in a set C = fc(w) : w 2 Wg, where W is some

parameter space. The set C is termed the (classi�er) hypothesis space.

Note that the Bayes optimal classi�er may not, in general, belong to C. Therefore, we seek to

learn a classi�er c� that has the minimum risk with respect to P (x; y) within C:

c� = c(w�) = argminc2CR(c) (2.11)

For a classi�er c 2 C, we de�ne the error of c with respect to the optimal classi�er c�:

error(c; c�) = R(c)�R(c�) (2.12)

Let A be an algorithm that produces a classi�er c 2 C from the random sample S. We call

such an algorithm a learning algorithm. From the practical standpoint, we need to ascertain that

error(c; c�) will be small, with high probability, as the sample size m is increased. More precisely,

2The density estimation problem belongs, in general, to a class of ill-posed problems, which implies that presence
of noise in the sample S can have a signi�cant impact on estimation accuracy.
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we seek to bound the number of training examples m (sample complexity) suÆcient to make the

error of the classi�er c small, with high probability:

Pmferror(c; c�) � �g > 1� Æ (2.13)

where Pm is the product distribution over the set of m labeled examples sampled independently

according to a �xed unknown distribution P , � is the required approximation of the classi�er c with

respect to the distribution P , and Æ is the con�dence of the approximation (with respect to the

random sample S of length m).

A classi�er satisfying (2.13) is termed probably approximately correct (PAC). The corresponding

learning model is referred to as the PAC model of learning, and the learning algorithm A that

produces a PAC classi�er is termed a PAC learning algorithm for the hypothesis class C [105].

Note that the PAC learning model is distribution-free, that is, the condition (2.13) must hold for

any �xed unknown distribution P . PAC bounds are therefore inherently worst-case and, in many

cases, overly pessimistic, especially, for high-dimensional learning problems in natural language

processing, where the class of underlying distributions is constrained.

Selection of the classi�er c(w) is based on the training sample S. The selection criteria that

determine the classi�er c(w) from the sample S are termed an inductive principle [107]. A learning

algorithm implements a particular inductive principle. We already introduced the maximum likeli-

hood inductive principle for density estimation in Section 2.1. The maximum likelihood inductive

principle states that we should select the parameters of a probability distribution that maximize

the likelihood of the sample S. The maximum likelihood inductive principle is a speci�c instance of

a general empirical risk minimization (ERM) inductive principle that forms a basis for statistical

learning theory.

De�ne empirical risk R(c) of a classi�er c(w) on a sample S = f(x1; y1); : : : ; (xm; ym)g as

Remp(c) =
1

m

mX
i=1

l(yi; c(xi)) (2.14)

The empirical risk minimization principle states that we should select a classi�er c�emp(w) 2 C that
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minimizes the empirical risk (2.14):

c�emp = c(w�
emp) = argminc2CRemp(c) (2.15)

The statistical learning theory addresses questions of relationship between the empirical risk

Remp and the true risk R. In particular, it studies convergence of the empirical risk Remp to the

true risk R. We will examine the convergence in Section 2.5.

2.4 Computational Learning Theory

The computational learning theory [105, 61] emphasizes the computational complexity of learning

algorithms in terms of the required accuracy and con�dence parameters � and Æ. Formally, a

learning algorithm A is a polynomial PAC learning algorithm for a class C, if for any distribution

P , given a sample of m = poly(1
�
; 1
Æ
), the algorithm A outputs a classi�er c, so that

Pmferror(c; c�)g > 1� Æ (2.16)

and the running time of A is polynomial in 1
�
and 1

Æ
[60].

In many cases, there is a natural complexity parameter n associated with the domain of ob-

servations X (e.g., X � R
n). In such cases, the learning algorithm A is also required to depend

polynomially on n.

Unfortunately, for most interesting hypothesis spaces and the 0-1 loss function, the problem

of learning is computationally hard. That is, existence of polynomial learning algorithms would

violate widely accepted beliefs in the computational complexity theory (e.g., NP 6= P ). Let us

consider an important example of such hypothesis spaces.

Example 1 Let X � R
n , Y = f�1; 1g, and Clin is the class of half-spaces (linear classi�ers) in R

n .

For a half-space c described by a separating hyperplane ch(x) = w�x+w0, w = (w1; w2; : : : ; wn) 2 Rn :

c(x) = sgn(ch(x)) = sgn(w � x+ w0) =

8><
>:

1; if w � x+w0 � 0

�1; if w � x+w0 < 0
(2.17)
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We will see in Section 2.5 that the sample complexity of learning half-spaces is linear in n and

polynomial in 1
�
and 1

Æ
. However, the problem of �nding the minimum empirical risk classi�er in

Clin, for the 0-1 loss function, is computationally hard [12].

We can eschew the negative results of computational learning by restricting the class of distri-

butions P. For instance, the most common restriction is to assume that for any P 2 P, the optimal

classi�er c� 2 C has zero risk R(c�). Equivalently, the class of distributions P is functionally decom-

posed, i.e., 8P 2 P 9c� : X ! Y , so that P (x; y) = 0, if y 6= c�(x). Most work in computational

learning theory is done in this setting, and many interesting hypothesis classes are (polynomially)

learnable, if P is functionally decomposed [61].

We can also avoid using the 0-1 loss function and replace it with a smoother upper bound that

will reduce the computational complexity of the problem. A number of such smooth loss functions

have been proposed, resulting in tractable learning algorithms (e.g, Support Vector Machine [33]).

Moreover, the recent analysis [112] reveals that the classi�ers obtained by minimizing the smooth

loss functions can approximately3 reach the error rate of the optimal classi�er c�.

2.5 Learning to Classify: Classical Results

We will now study the relationship between the empirical risk Remp(c) and the true risk R(c), in

the case of binary classi�ers and the 0-1 loss function. We assume that Y = f�1; 1g. The presented
results can be generalized to multi-class classi�ers and arbitrary loss functions.

We will present bounds that describe the relationship between the true risk and empirical risk

in terms of the number of examples and complexity of the hypothesis class C. We now quantify

complexity of a hypothesis class via a combinatorial concept that plays a very important role in

the learning theory [109].

De�nition 1 Let S = fx1; x2; : : : ; xmg, and C be a hypothesis class (of binary classi�ers). Then

we say that the sample S is shattered by C, if 8(y1; y2; : : : ; ym) 2 f�1; 1gm, there is a c 2 C such

that c(xi) = yi; i = 1; 2; : : : ;m.

3The distance function measuring the approximation error is determined by the underlying smooth loss function,
see [112] for details.
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In other words, a sample is shattered by C, if classi�ers from C can induce all possible classi�-

cations of the sample.

De�nition 2 The Vapnik-Chevronenkis dimension (VC dimension) [109] of a hypothesis class C
(V CD(C)) is the size of largest sample shattered by C.

Example 2 Let Clin be a class of half-spaces in R
n . Then, the VC dimension of the class of half

spaces is equal to n+1. That is, there is a set of n+1 points that can shattered by half-spaces, but

no set of n+ 2 points can be shattered [34].

Using the concept of VC dimension, we can formulate the bounds for convergence of a classi�er

empirical risk to its true risk.

Theorem 1 ([108]) Let C be a hypothesis space with VC dimension d. For any probability distribu-

tion P on X�f�1; 1g and any c 2 C, with probability 1�Æ over m examples sampled independently

from P :

R(c) � 2Remp(c) +
4

m

�
d log

2em

d
+ log

4

Æ

�
(2.18)

provided that d � m.

For the case, when the empirical risk is zero, we have a tighter bound:

Theorem 2 ([21]) Let C be a hypothesis space with VC dimension d. For any probability distribu-

tion P on X�f�1; 1g and any c 2 C with zero empirical risk on m examples sampled independently

from P , with probability 1� Æ

R(c) � �(m; C; Æ) = 2

m

�
d log

2em

d
+ log

2

Æ

�
(2.19)

provided that d � m and m > 2
�
.

Note that both Theorem 1 and Theorem 2 assume that the sample size is greater than the

VC dimension of hypothesis class. For linear classi�ers (half-spaces), which we will employ for

the NLP problems, the VC dimension is roughly equal to the number of features present in data

(see Example 2). For most NLP problems, the number of features exceeds the number of training

examples; therefore, Theorem 1 and Theorem 2 are not applicable to the NLP domain.
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The negative results for the NLP domain notwithstanding, the bounds (2.18) and (2.19) do

provide insight into the nature of generalization. They show that complexity of a hypothesis class

is as important for generalization as the small error on the training set. Namely, embedding a

hypothesis class C1 into another hypothesis class C2 such that V CD(C1) < V CD(C2) will likely
reduce the empirical risk, but also increase the right hand side of (2.19) and the second summand

in (2.18). Therefore, we have a trade-o� between the empirical risk and hypothesis class complexity.

The trade-o� suggests varying complexity of a hypothesis class via a hierarchy of hypothesis classes:

C1 � C2 � � � �

V CD(C1) < V CD(C2) < � � �

For each hypothesis class Ci, we determine the classi�er ci with the least empirical risk Remp(ci),

and minimize the bounds (2.18) or(2.19) over all ci's. Such an approach to classi�er selection (model

selection) is termed structural risk minimization [108]. Note that, with the existing bounds (2.18)

and (2.19), structural risk minimization is hardly applicable for practical model selection, since the

bounds are extremely loose, especially for NLP applications.

Thus, dependence of the convergence bounds on VC dimension and, hence, dimensionality of

the feature spaces makes the bounds impractical for high-dimensional problems. We next introduce

an alternative analysis of generalization that provides for dimensionality-independent bounds.

2.6 Learning to Classify: Margin-based Results

In this section, we restrict our attention to the class of linear classi�ers Clin. The results can be

generalized to arbitrary classes of thresholded real-valued functions.

De�nition 3 For a classi�er c 2 Clin and a labeled example (xi; yi), where yi 2 f�1; 1g, de�ne
the margin �i of c(w) on (xi; yi) as

�i = yich(xi) = yi(w � xi + w0) (2.20)
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We also term the distribution of �i on a sample S the margin distribution of c with respect to

S. The minimum margin in the margin distribution is termed the margin �(c; S) of c with respect

the training set S. If C � Clin, then the margin �(C; S) of C with respect to S is de�ned as

�(C; S) = max
c2C

�(c; S) = max
c2C

min
(xi;yi)2S

yich(xi) (2.21)

Note that if �(C; S) is positive, then there is a classi�er c 2 C that classi�es the sample S

correctly.

We will now present generalization bounds using �(C; S). Without loss of generality, we assume

that for any c = c(w;w0) 2 Clin, w0 = 0 and kjwjj2 = 1.

The �rst bound for the case, when there is a c 2 C with zero empirical risk, is given by the

following theorem:

Theorem 3 ([17]) Let Clin be a class of linear classi�ers and � > 0. Then, for any probability

distribution P on X �f�1; 1g, such that 9R 2 R; P fx : jjxjj2 � Rg = 0, with probability 1� Æ over
a random sample S of size m, for any classi�er c with margin �(c; S) � �:

R(c) � �(m; C; Æ; �) = 2

m

�
64R2

�2
log

em�

8R2
log

32m

�2
+ log

4

Æ

�
(2.22)

provided that m > 2
�
and 64R2

�2
< m.

Note that the bound (2.22) is dimension-independent. Therefore, the number of features in a

learning problem does not directly a�ect generalization. This is the drastic di�erence from the

bounds (2.18) and (2.19), where the number of features is factored in via the feature-dependent VC

dimension. Another important implication of Theorem 3 is that the bound (2.22) is data-dependent.

That is, we can state the bound only after ascertaining that the margin of a classi�er on a particular

sample S is greater than the �xed �.

For the case, when the training data is noisy, and their correct classi�cation is impossible using

the classi�ers in Clin, we need to introduce an additional concept to give margin-based generalization

bounds.

De�nition 4 For a classi�er c 2 Clin, a labeled example (xi; yi)(yi 2 f�1; 1g), and the target
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margin �, de�ne the margin slack variable �((xi; yi); c; �) as

�((xi; yi); c; �) = �i = max(0; �� �i) (2.23)

The margin slack variable quanti�es how far a classi�er c is from having the margin � on a

labeled example. For a sample S = ((x1; y1); (x2; y2); : : : ; (xm; ym)), a classi�er c, and the target

margin �, the vector � = �(S; c; �) = (�1; �2; : : : ; �m) is termed the margin slack vector of S with

respect to c and �.

We can now state a general margin-based generalization bound.

Theorem 4 ([17]) Let Clin be a class of linear classi�ers and � > 0. Then, there is a constant c,

such that for any probability distribution P on X�f�1; 1g, such that 9R 2 R; P fx : jjxjj2 � Rg = 0,

with probability 1� Æ over a random sample S of size m, for any classi�er c:

R(c) � c

m

�
R2 + jj�jj22

�2
log2m+ log

1

Æ

�
(2.24)

where � = �(S; c; �)

Theorem 4 suggests that given a training sample S we will minimize the generalization bound

by seeking a classi�er that minimizes

R2 + jj�jj22
�2

(2.25)

Note that minimizing (2.25) does not necessarily lead to minimizing the number of misclassi�ca-

tions. As we noted in Section 2.4, minimizing the number of misclassi�cations is computationally

intractable. The bound (2.24) will allow us to obtain a tractable version of learning linear classi�ers

by replacing the 0-1 loss function with a loss function based on (2.25).

2.7 Support Vector Machine

The Support Vector Machine [33] is an algorithm that minimizes the fraction (2.25). We �rst note

the reciprocal relationship between the norm of the weight vector jjwjj2 and the margin �. Let

us remove the unit norm restriction from w and instead �x the corresponding (geometric) margin
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�
jjwjj2

= 1. Then, (2.25) is equivalent to ([35])

R2 + jj�jj2

jjwjj22

�2
= jjwjj2R2 + jj�jj22 (2.26)

where

yich(xi) = yi(w � x+ w0) � 1� �i; i = 1; 2; : : : ;m (2.27)

�i � 0; i = 1; 2; : : : ;m

In practice, minimization of (2.26) is replaced with a more general criterion:

jjwjj2 + Cjj�jj22 ! min (2.28)

where C > 0 is some constant that is determined via cross-validation. The optimization problem

with the objective function (2.28) and the constraints (2.27) is termed the Support Vector Machine

(SVM) [33].

The SVM optimization problem is a quadratic program. There are numerous quadratic pro-

gramming packages available; however, o�-the-shelf algorithms, in general, have complexity of

O(m3). While the complexity is a big improvement compared with lack of tractable algorithms

for minimizing the number of classi�cation mistakes, it is still too demanding for many practical

learning problems involving tens and hundreds of thousands of examples. We note that, in recent

years, there were signi�cant advances and algorithm design for the SVM optimization problem,

and a number of state-of-the-art algorithms exhibit sub-quadratic complexity [57]. Yet the desire

to scale algorithms to larger datasets led to rebirth of a class of online learning algorithms that do

not require signi�cant computational resources.

2.8 Online Linear Learning Algorithms

Online learning algorithms are a class of learning algorithms that process one (labeled) example

at a time. At each point in time, an online learning algorithm maintains a current hypothesis
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(classi�er). Given a new example, the algorithm updates the current hypothesis.

Many online learning algorithms are mistake-driven[74]. Given a new example, a mistake-driven

algorithm uses the current hypothesis to predict the example label. If the predicted label is di�erent

from the actual label, the algorithm updates its hypothesis using an appropriate update rule.

Let us denote mA(S) the number of mistakes that an online learning algorithm A makes on a

(possibly in�nite) sequence of examples S. Let S be a set of possible example sequences. Denote

mA(S) = max
S2S

mA(S)

We say that an algorithm A is mistake-bounded on S, if there is a M 2 R, such that for any

sequence S 2 S the number of mistakes mA(S) is bounded by M :

mA(S) �M

The resulting mistake-bound model of learning [74] is closely related to the PAC model of

learning, for any mistake-bound learning algorithm can be converted into a PAC learning algorithm.

Moreover, if the mistake boundM is polynomial in the natural complexity parameters of the data,

then the corresponding PAC learning algorithm will be polynomial as well [74].

We now present several online learning algorithms that are extremely scalable and thus well-

suited for NLP learning problems. All of the algorithms learn linear classi�ers in Rn .

2.8.1 Perceptron

Perceptron [94] is a classical learning algorithm whose design was inspired by workings of the

neuron. The algorithm pseudocode in shown as Algorithm 1 (without loss of generality, we assume

that w0 = 0).

Algorithm 1 The Perceptron Learning Algorithm

w := (0; : : : ; 0)
for all (xi; yi) 2 S do
if yi(w � xi) < 0 then
w := w + yixi

end if
end for
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The following theorem quanti�es the number of Perceptron mistakes on a sequence of examples

S.

Theorem 5 ([87]) Let S be an example sequence, such that 9� > 0 9R > 0; �(Clin; S) � � and

8(xi; yi) 2 S; jjxjj2 � R. Then,

mPerceptron(S) � R2

�2
(2.29)

Note that the bound (2.29) is present in the generalization bound (2.22) highlighting the rela-

tionship between a good mistake bound and quality of generalization.

For the case, when the examples are not linearly separable, we have the following theorem:

Theorem 6 ([44]) Let S be an example sequence with no duplicate examples, such that 9R >

0; 8(xi; yi) 2 S; jjxjj2 � R. Let c be a linear classi�er in R
n . Then,

mPerceptron(S) � (R+ jj�jj2)2
�2

(2.30)

where � = �(S; c; �).

Note again the similarity of the bound (2.30) to the bound (2.24) that led to the design of the

Support Vector Machine.

2.8.2 Winnow

Winnow [73] is an online linear learning algorithm with a multiplicative update rule. When a

mistake is made on the example, rather than adding (subtracting) the example to (from) the

weight vector, as Perceptron does, Winnow multiplies (divides) the corresponding weights by a

learning parameter �.

For simplicity, we assume that X is restricted to f0; 1gn and constrain the class of linear

classi�ers over f0; 1gn to the class of positive linear classi�ers C+
lin = fc(w) 2 Clin : w0 = �1; wi >

0; i = 1; : : : ; ng. Winnow is shown as Algorithm 2 below (xij denotes the jth coordinate of the ith

example, and � is the threshold parameter):

The following theorem quanti�es the number of mistakes Winnow makes while learning positive

linear classi�ers:
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Algorithm 2 The Winnow Learning Algorithm

w := (1; : : : ; 1)
for all (xi; yi) 2 S do
if yi(w � xi � �) < 0 then
wj := wj�

yixij ; j = 1; : : : ; n
end if

end for

Theorem 7 ([73]) Let S be an example sequence, such that 9c(w) 2 C+
lin 9� > 0; �(c; S) � �.

Then, if � = 1 + �
2 and � = n,

mWinnow(S) = O

�
jjwjj1 max

�
logn

�2
;
1

�

��
(2.31)

where jjwjj1 =
Pn

j=1wj.

Note that the bound (2.31) is di�erent from the previous bounds, for it depends on complexity

of the classi�er c, where the complexity is measured as L1 norm of its weight vector. It is the

remarkable property of Winnow that while dependence on the complexity classi�er is linear, de-

pendence on the dimensionality of the feature space is only logarithmic. The property is termed

feature eÆciency and the algorithm is said to be feature-eÆcient. It can be shown that a similar

bound for Perceptron would involve linear dependence on dimensionality of the feature space [64],

thus making Winnow more appropriate for the case when the target classi�er is assumed to have a

sparse representation in the feature space.

It is often the case in NLP applications that there exist good classi�ers with sparse representa-

tions; therefore, Winnow is well-suited for NLP learning problems.

2.8.3 Sparse Network of Winnows (SNOW)

The SNOW (Sparse Network Of Winnows) [63, 96] is a learning architecture based on the Winnow

learning algorithm. SNOW is a two-layer network of linear classi�ers. Nodes in the �rst layer of

the network represent the input features; target nodes (i.e., the correct values of the classi�er) are

represented by nodes in the second layer. Links from the �rst to the second layer have weights;

each target node is thus de�ned as a (linear) function of the lower level nodes. The network is

sparse in that a target node need not be connected to all nodes in the input layer. For example, it
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is not connected to input nodes (features) that were never active with it in the same example, or

it may decide, during training, to disconnect itself from some f the irrelevant input nodes, if they

were not active often enough.

Learning in SNOW proceeds in an online fashion. Every example is treated autonomously by

each target subnetworks. It is viewed as a positive example by a few of these and a negative

example by the others. At prediction time, given an example, the information propagates through

all the competing subnetworks; and the one which produces the highest activity gets to determine

the prediction.

While the Winnow learning algorithm is used at each target node to learn its dependence on

other nodes, the SNOW architecture overcomes Winnow restrictions. Namely, SNOW is naturally

suited for multiclass learning and able to learn a class of general linear classi�ers in a feature-

eÆcient manner. The SNOW architecture also incorporates a number of such attractive properties

as the ability to discard infrequent features and produce con�dence for classi�cation decisions.

2.9 Kernel Methods

We presented several linear learning algorithms that exhibit good generalization and low compu-

tational complexity. Yet, for many learning problems, the optimal decision boundaries cannot be

expressed via linear classi�ers. For such learning problems, we have to either enlarge the hypothesis

space to include non-linear classi�ers, or transform the feature space so that a linear classi�er will be

suÆcient for producing a good decision boundary in the new feature space. Naturally, the feature

transformation has to be non-linear and the linear classi�er in the transformed feature space will

correspond to non-linear classi�er in the original feature space. Formally, we seek a transformation

� = (�1; �2; : : : ; �N ):

�(x) = �(x1; : : : ; xn) = (�1(x); : : : ; �N (x))

Let F be the transformed space, and c : F ! f�1; 1g be a linear classi�er in the transformed space.

Then,

c(x) = w � �(x) + w0 =
NX
j=1

wj�j(x) + w0 (2.32)

For many linear learning algorithms, the produced weight vectors have an alternate represen-
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tation as a linear combination of the training examples:

w =

nX
i=1

�iyixi + �0 (2.33)

where �i � 0; i = 1; : : : ; n. Similarly, for a transformed feature space:

w =

nX
i=1

�iyi�(xi) + �0 (2.34)

For example, observe that the Perceptron learning algorithm in Section 2.8.1 updates the weight

vector by adding positive examples or subtracting negative examples [44]. Therefore, Perceptron

produces a weight vector that has the representation (2.33), with �0 = 0. If learning is done in the

transformed feature space, substituting (2.34) into (2.32) gives

c(x) =

mX
i=1

�iyi

NX
j=1

�j(xi)�j(x) =

mX
i=1

�iyih�(xi); �(x)i (2.35)

where h�; �i is a dot product of two vectors.

The representation (2.35) is termed the dual representation of linear classi�ers. Note that the

ability to compute the dot product h�(�); �(�)i is suÆcient to run the Perceptron algorithm in the

transformed space, if we maintain the dual representation (2.34) of the weight vector. Moreover,

if we can compute the function k(x; x0) = h�(x); �(x0)i directly from x; x0, without creating the

transformed examples �(x) and �(x0) explicitly, we will still be able to conduct Perceptron learning.

The function k(x; x0) = h�(x); �(x0)i is termed a kernel. A kernel computation corresponds to a

dot product computation in the transformed feature space [35]. Using the kernel function, we can

rewrite (2.35) as

c(x) =

mX
i=1

�ik(xi; x)

A learning algorithm that processes learning examples only via computing dot products between

them is termed a dual learning algorithm. Perceptron is not the only learning algorithm that allows

for a dual formulation. In fact, development of kernel methods was fueled by the fact that the dual

optimization problem for the Support Vector Machine also leads to dot product-based formulation.

The dual optimization problem for (2.27) and (2.28) is equivalent to the following optimization
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problem [33, 108]

mX
i=1

�i � 1

2

mX
i;l=1

yiyl�i�l(hxi; xli+ 1

C
Æil)! max

mX
i=1

yi�i = 0 (2.36)

�i � 0; i = 1; : : : ;m

where Æil = 1, if i = l, and Æil = 0, if i 6= l. It follows from (2.36) that SVM can learn in a

transformed space �(X) by substituting an appropriate kernel function k(xi; xl) for h�(xi); �(xl)i.
In many cases, it may be possible to compute the dot product of certain features without enu-

merating all the features. For example, let x 2 R
2 , and consider the following feature transformation

�(x) = �(x1; x2) = (1;
p
2x1;

p
2x2; x

2
1;
p
2x1x2; x

2
2). Then, observe that

h�(x); �(x0)i = (hx; x0i+ 1)2

Therefore, we can compute the kernel k(x; x0) eÆciently without explicit enumeration of the trans-

formed features, which include products of the original features, in addition to the original features

themselves. The result can be generalized to products of length d in R
n by de�ning the kernel

k(x; x0) = (hx; x0i + 1)d. In fact, kernel functions can correspond to in�nite-dimensional feature

spaces, as it is the case with the Gaussian kernel k(x; x0) = e
�
jjx�x0jj

�2 [108].

It is also possible to take a kernel function k, rather than features, as a starting point of a

learning algorithm application. Indeed, any symmetric4 and positive-semide�nite5 function k (over

examples) is necessarily a kernel [35]. Intuitively, a kernel can be treated as a similarity function,

and many learning applications allow to design natural similarity function over learning examples.

We pursue this approach in Chapter 5, where we design domain-speci�c similarity functions, and

then prove that the functions are kernels.

4A binary function k(x; x0) is termed symmetric (over X), if 8x; x0 2 X; k(x; x0) = k(x0; x)
5A binary symmetric function k(x; x0) is termed positive-semide�nite (over X), if 8x1; : : : ; xn 2 X, the n � n

matrix (k(xi; xj))
n
i;j=1 is positive-semide�nite (has only non-negative eigenvalues).
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2.10 Probabilistic Modeling

We noted in Section 2.2 that the problem of estimating a probability distribution in a high-

dimensional space from a �nite sample is a very diÆcult task. However, if additional knowledge

about the structure of the high-dimensional space is available, the knowledge can be leveraged to

make the estimation process more tractable.

A most common type of knowledge available is a set of (conditional) independence assumptions

that can be imposed on the domain features. For example, consider the classi�cation problem

introduced in Section 2.2. Let p(xjyi) be a probability distribution corresponding to the ith class.

Let us impose the assumptions that the features x1; x2; : : : ; xn are independent given the class

membership information yi. Then, the class probability distribution can be decomposed as

p(xjyi) = p(x1jyi)p(x2jyi) � � � p(xnjyi)

Now we can estimate each probability distribution p(xj jyi), j = 1; 2; : : : ; n via maximum likelihood.

We can then use the estimated probability distributions for classi�cation as delineated in Section 2.2.

Such an approach to classi�cation is termed Naive Bayes [38], and it is the most prevalent algorithm

for numerous problem in natural language processing, especially, text categorization.

We can portray graphically the conditional independence assumptions introduced above, as

shown in Figure 2.1.

Figure 2.1: Naive Bayes Graphical Model

Figure 2.1 is an example of a directed graphical model [89]. A directed graphical model is a

directed acyclic graph G = (V;E), where V is the set of graph nodes and E is the set of graph edges.

The graph nodes correspond to random variables (features). For each node v of the graph we de�ne

the parent set of nodes parents(v) as fu 2 V : (u; v) 2 Eg. Descendants of a node v are nodes
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that are reachable from v in G. The graph edges enforce conditional independence assumptions.

Namely, a node is independent of its non-descendants given its parents. The conditional probability

distributions p(vjparents(v)) uniquely determine the joint probability distribution, for

p(V ) = p(v1; : : : ; vn) =
nY
i=1

p(vijparents(vi))

Directed graphical models are often called Bayesian networks [89]. In recent years, Bayesian

networks became an extremely popular tool for encoding probabilistic domain knowledge in complex

domains.

Since a Bayesian network is uniquely determined by its conditional probability distributions, we

can use the maximum likelihood approach to estimate the p(vjparent(v)) given a �nite sample. In

practice, the conditional probability distributions may be diÆcult to estimate due to lack of data,

and various smoothing techniques are needed to produce robust estimates. Moreover, some of the

network random variables may be hidden, i.e., not present in the sample. In that case, we will need

to use the EM algorithm [36] to determine network parameters.

Bayesian networks are commonly used for inference, which is the process determining the prob-

abilities or most probable values of hidden variable of a Bayesian network, given values for its

visible variables. For example, the process of determining a class label y given an unlabeled exam-

ple x is an inference. In general, the process of inference in Bayesian networks is computationally

intractable [95]. In practice, the computational complexity of approximate algorithms for inference

is linear in the network size [83], although the approximation error guarantees are not known.

Figure 2.2: Conditional Model

Consider the graphical model in Figure 2.2. In contrast to the Naive Bayes model, the variables

x1; x2; : : : ; xn are not required to be independent and the distribution p(yjx1; : : : ; xn) cannot be
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factored. Let us assume that the variable y 2 f�1; 1g and that the distribution p(yjx1; : : : ; xn) has
the following form:

p(yjx1; : : : ; xn) = 1

1 + e�yw
T x

(2.37)

where w is the vector of parameters. The resulted model is termed the logistic regression model.

The special parametric form of the logistic regression model implies that its maximum likelihood

estimation leads to a concave optimization problem with a unique maximum. Hence, numerous

eÆcient optimization algorithm can be used to �nd the maximum likelihood estimate [80].

In natural language processing and, in particular, information extraction, Bayesian networks

have been used since the early 90s to model sequential data.

Figure 2.3: Hidden Markov Model

Consider the graphical model in Figure 2.3 that describes a random process. The random

variable st is the state of random process at a time t, and st�1 is the state of the random process at

time t� 1. At each time t, the random process emits an observation wt with probability p(wtjst).
The process also moves from the state st�1 to the state st according to the conditional probability

p(stjst�1). We assume that the distributions p(wtjst) and p(stjst�1) are stationary, i.e, independent

of t. The random process is called a Hidden Markov Model.

In NLP applications, observations wt usually correspond to visible elements of language (phonemes,

words, etc.), while the states st correspond to the hidden high-level linguistic constructs (parts of

speech, word classes, etc.) [27].

The Hidden Markov Model admits eÆcient estimation and inference algorithms. In a fully

observable case (all st and wt are visible), we can use maximum likelihood for estimation. If the

states are hidden, the Baum-Welch algorithm [18] provides a fairly eÆcient (though not necessarily

optimal) mechanism for estimating HMM parameters. The Viterbi decoding algorithm [42] is used
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for determining the most probable state sequence given an observation sequence. Complexity of

the Viterbi algorithm is O(mn2), where m is the sequence length, and n is the number of possible

values for the random variable st.

HMMs belong to a class of generative models for natural language. Generative models impose a

dependency structure that speci�es that surface elements of natural language have been generated

by hidden elements via the postulated dependency structure. Furthermore, generative models

describe the joint distribution of both surface elements and hidden structural elements. During

the estimation process, the parameters of the dependency structure are estimated. During the

prediction process, a decoding (inference) algorithm is invoked to determine the most probable

hidden elements that provide a high-level interpretation of the surface text. Other examples of

generative models for NLP include Probabilistic Context Free Grammars (PCFGs) [27] and Markov

Random Fields [30, 72].

Probabilistic Context Free Grammars are a probabilistic analog of context free grammars. More

precisely, grammar productions A ! B are augmented with probabilities specifying how likely a

particular production to be invoked for a non-terminal symbol (A). PCFGs are more appropriate

that HMMs for modeling non-local dependencies in text. They are the formalism of choice for

natural language parsing. However, the estimation and inference algorithms for PCFGs are more

complex than those of HMMs.

Markov Random Fields (MRF) [72] are undirected graphical models. An undirected graphical

model is described by an undirected graph G = (V;E). As it is the case with directed graphical

models, nodes in the graph correspond to random variables. However, MRFs do not have the intu-

itive generative interpretation of directed graphical models. Instead of using conditional probability

distribution, MRFs decompose the joint probability distribution over its random variables as the

product of potential functions de�ned over the cliques of the graph G. Let Cl(G) be the set of all

cliques of the graph G, and let  cl(v) be a potential function of a clique cl 2 Cl that depends on

the subset variables corresponding to the clique nodes. Then,

p(V ) = p(v1; v2; : : : ; vn) =
1

Z

Y
cl2Cl

 cl(v) (2.38)

where Z =
P

(v1;:::;vn)

Q
cl2Cl  cl(v) is a normalizing constant.
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The Hammersley-Cli�ord theorem [51] states that the expression (2.38) for a probability distri-

bution is equivalent to the condition that dependencies in the MRF are local, that is, a variable is

independent of its non-neighbors given its neighbors in G.

MRFs are an attractive formalism because its likelihood function (2.3) is necessarily convex,

which guarantees absence of local maxima in the estimation process. Unfortunately, complexity of

the estimation process is rather high. The inference mechanism for MRFs is essentially equivalent

to that in Bayesian networks, and approximate algorithms exist for fast inference.

Figure 2.4: Maximum Entropy Graphical Model

Recently, Maximum Entropy Models [19], a special case of MRFs, were frequently used for NLP

problems. The graphical structure of a typical Maximum Entropy Model is shown in Figure 2.4,

where vi's are (observed) random variables, and c is a (hidden) classi�cation random variable. The

Maximum Entropy model is a undirected Naive Bayes model. It is also the MRF, where the cliques

are just edges connecting the observed nodes to the classi�cation node. Therefore, Maximum

Entropy models inherit absence of local maxima of the likelihood function and admit somewhat

more eÆcient estimation algorithms.
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Chapter 3

Part of Speech Tagging

Part of speech tagging is the problem of identifying parts of speech of words in a presented text.

Since words are ambiguous in terms of their part of speech, the correct part of speech is usually

identi�ed from the context the word appears in. For example, in the sentence, \The can will rust",

\the" is a de�nite determiner, \can" is a singular noun, \will" is a modal verb, and \rust" is a verb.

On the other hand, in the sentence, \We can contest the will", \can" is a modal verb, and \will" is

a singular noun. The examples showcase ambiguity inherent in making part of speech assignments.

They also lead us to believe that determining parts of speech is an important prerequisite for high-

level tasks in natural language processing. In particular, part of speech information plays a crucial

role in information extraction systems.

3.1 Related Work

In recent years, a number of approaches have been tried for solving the problem. The most notable

methods are based on Hidden Markov Models(HMM) [68, 102], Maximum Entropy models [92],

and transformation based learning [24].

3.1.1 Probabilistic Modeling

In the part of speech HMM model, the states correspond to the part of speech tags and the

observations are words. The dependency structure of the model is shown in Figure 2.3. In the

model, a part of speech only depends on the previous part of speech. We can expand the context

of part of speech dependencies by making the part of speech at the time t also depend on the part
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of speech at the time t� 2, whereby we obtain a trigram POS tagger shown in Figure 3.1.

Figure 3.1: Trigram Graphical Model

Other dependency structures are possible; for instance, we can make the part speech at the time

t depend on the part of speech at the time t� 1 and and the word at the time t (Figure 3.2). The

model is an example of conditional models. Conditional models do not model the joint probability

distribution of hidden and visible variables, but instead model conditional probability distributions

of hidden variables given visible variables. The conditional probability distribution p(pos(t)jpos(t�
1); w(t)) can be estimated using such techniques as Maximum Entropy [92].

Figure 3.2: Conditional Graphical Model

3.1.2 Transformation-based Learning

Transformation based learning(TBL) [24] is a machine learning approach for rule learning. The

learning procedure is a mistake-driven algorithm that produces a set of rules. The hypothesis of

TBL is an ordered list of transformations. A transformation is a rule with an antecedent t and a

consequent c 2 C. The antecedent t is a condition on the input sentence. For example, a condition

might be the preceding word tag is t. That is, applying the condition to a sentence s de�nes

a feature t(s). Phrased di�erently, the application of the condition to a given sentence s, checks
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whether the corresponding feature is active in this sentence. The condition holds if and only if the

feature is active in the sentence.

The TBL hypothesis is evaluated as follows: given a sentence s, an initial labeling is assigned

to it. Then, each rule is applied, in order, to the sentence. If the condition of the rule applies, the

current label is replaced by the label in the consequent. This process goes on until the last rule in

the list is evaluated. The last labeling is the output of the hypothesis.

In its most general setting, the TBL hypothesis is not a classi�er [24]. The reason is that, in

general, the truth value of the condition of the ith rule may change while evaluating one of the

preceding rules. For example, in part of speech tagging, labeling a word with a part of speech

changes the conditions of the following word that depend on that part of speech(e.g., the preceding

word tag is t).

TBL uses a manually-tagged corpus for learning the ordered list of transformations. The learn-

ing proceeds in stages, where on each stage a transformation is chosen to minimize the number of

mislabeled words in the presented corpus. The transformation is then applied, and the process is

repeated until no more mislabeling minimization can be achieved.

For example, in POS, the consequence of a transformation labels a word with a part of speech.

[24] uses lexicon for initial annotation of the training corpus, where each word in the lexicon has a

set POS tags seen for the word in the training corpus. Then a search in the space of transformations

is conducted to determine a transformation that most reduces the number of wrong tags for the

words in the corpus. The application of the transformation to the initially labeled corpus produces

another labeling of the corpus with a smaller number of mistakes. Iterating this procedure leads

to learning an ordered list of transformation which can be used as a POS tagger.

3.2 Problem Formalization

Let s be a input sentence. A sentence s is a sequence of words w1; w2; : : : ; wT . We aim to assign to

each word wi its part of speech posi thereby producing a tagged sentence (w1; pos1); : : : ; (wn; posn).

Let POS be the set of all parts of speech, and let context(wi) be the feature vector representation

of the context of word wi. The context features correspond to properties of words surrounding the

word wi. Let Context be the set of all possible contexts. We will assign parts of speech to words
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by using a classi�er cpos : Context! POS.

Let S = fs1; s2; : : : ; smg be the training corpus, where every word is labeled with its correct

part of speech. We will use the training corpus to estimate the classi�er cpos by converting the

corpus in a set of labeled examples f(context(w); pos(w)) : w 2 Sg, and learning a classi�er from

the examples.

At the evaluation stage, given a sentence s without POS information, we will generate unlabeled

examples f(context(w)) : w 2 sg, and the classi�er cpos will assign POS labels to examples.

Note that, at the training stage, the context features can include the true parts of speech of

words surrounding the word w, for which an example is generated. Since this information is not

available at the evaluation stage, we will use already predicted part of speech tags as well as the

word baseline tags computed from the lexicon, to compute the corresponding context features.

Hence, part of speech prediction will be done in the presence of attribute noise, and we seek a

classi�er that is robust with respect to the noise.

3.3 SNOW for Part of Speech Tagging

We address the POS problem from the standpoint of SNOW. That is, we represent a POS tagger

as a network of linear classi�ers and use Winnow for learning weights of the network. The SNOW

approach has been successfully applied to other problems of natural language processing [49, 66, 96].

However, this problem o�ers additional challenges to the SNOW architecture and algorithms. First,

we are trying to learn a multi-class predictor, where the number of classes is unusually large(about

50) for such learning problems. Second, evaluating hypothesis in testing is done in a presence of

attribute noise.

We address the �rst problem by restricting the parts of speech a tag for a word is selected from.

Second problem is alleviated by performing several labeling cycles on the testing corpus.

3.4 The Tagger Network

The tagger network consists of a collection of linear classi�ers, each corresponds to a distinct part of

speech. The 50 parts are taken from the WSJ corpus. The input nodes of the network correspond
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to the features. The features are computed for a �xed word in a sentence. We use the following set

of features ( the features 1-8 are part of [24] features):

1. The preceding word is tagged pos1.

2. The following word is tagged pos1.

3. The word two before is tagged pos1.

4. The word two after is tagged pos1.

5. The preceding word is tagged pos1 and the following word is tagged pos2.

6. The preceding word is tagged pos1 and the word two before is tagged pos2.

7. The following word is tagged pos1 and the word two after is tagged pos2.

8. The current word is w.

9. The most probable part of speech for the current word is pos1.

The most probable part of speech for a word is taken from a lexicon. The lexicon is a list of

words with a set of possible POS tags associated with each word. The lexicon can be computed

from available labeled corpus data, or it can represent the a-priori information about words in the

language.

Training of the SNOW tagger network proceeds as follows. Each word in a sentence produces

an example. Given a sentence, features are computed with respect to each word thereby producing

a positive examples for the part of speech the word is labeled with, and the negative examples for

the other parts of speech. The positive and negative examples are presented to the corresponding

subnetworks, which update their weights according to Winnow.

In testing, this process is repeated, producing a test example for each word in the sentence.

In this case, however, the POS tags of the neighboring words are not known and, therefore, the

majority of the features cannot be evaluated. We discuss later various ways to handle this situation.

The default one is to use the baseline tags - the most common POS for this word in the training

lexicon.
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Once an example is produced, it is then presented to the networks. Each of the subnetworks

is evaluated and we select the one with the highest level of activation among the classi�ers corre-

sponding to the possible tags for the current word. After every prediction, the tag output by the

SNOW tagger for a word is used for labeling the word in the test data. Therefore, the features of

the following words will depend on the output tags of the preceding words.

3.5 Experimental Results

The data for all the experiments was extracted from the Penn Treebank WSJ corpus. The training

and test corpus consist of 600000 and 150000, respectively. The �rst set of experiment uses only the

SNOW system and evaluate its performance under various conditions. In the second set SNOW is

compared with a naive Bayes algorithm and with Brill's TBL, all trained and tested on the same

data. We also compare with Baseline which simply assigns each word in the test corpus its most

common POS in the lexicon. Baseline performance on our test corpus is 94:1%.

A lexicon is computed from both the training and the test corpus. The lexicon has 81227

distinct words, with an average of 2:2 possible POS tags per word in the lexicon.

3.5.1 Investigating SNOW

We �rst explore the ability of the network to adapt to new data. While online algorithms are

at a disadvantage - each example is processed only once before being discarded - they have the

advantage of (in principle) being able to quickly adapt to new data. This is done within SNOW

by allowing it to update its weights in test mode. That is, after prediction, the network receives a

label for a word, and then uses the label for updating its weights.

In test mode, however, the true tag is not available to the system. Instead, we used as the

feedback label the corresponding baseline tag taken from the lexicon. In this way, the algorithm

never uses more information than is available to batch algorithms tested on the same data. The

intuition is that, since the baseline itself for this task is fairly high, this information will allow the

tagger to better tolerate new trends in the data and steer the predictors in the right direction. This

is the default system that we call SNOW in the discussion that follows.

Another policy with on-line algorithms is to supply it with the true feedback, when it makes
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a mistake in testing. This policy (termed adp-SNOW) is especially useful when the test data

comes from a di�erent source than the training data, and will allow the algorithm to adapt to

the new context. For example, a language acquisition system with a tagger trained on a general

corpus can quickly adapt to a speci�c domain, if allowed to use this policy, at least occasionally.

What we found surprising is that in this case supplying the true feedback did not improve the

performance of SNOW signi�cantly. Both on-line methods though, perform signi�cantly better

than if we disallow on-line update, as we did for noadp-SNOW. The results, presented in Table 3.1,

exhibit the advantage of using an on-line algorithm.

noadp-SNOW SNOW adp-SNOW

96.5 97.13 97.2

Table 3.1: E�ect of adaptation: Performance of the tagger network with no adaptation(noadp-
SNOW), baseline adaptation(SNOW), and true adaptation(adp-SNOW).

One diÆculty in applying the SNOW approach to the POS problem is the problem of attribute

noise alluded to before. Namely, the classi�ers receive a noisy set of features as input due to the

attribute dependence on (unknown) tags of neighboring words. We address this by studying quality

of the classi�er, when it is guaranteed to get (almost) correct input.

Table 3.2 summarizes the e�ects of this noise on the performance. Under SNOW we give the

results under normal conditions, when the the features of the each example are determined based

on the baseline tags. Under SNOW+cr we determine the features based on the correct tags, as

read from the tagged corpus. One can see that this results in a signi�cant improvement, indicating

that the classi�er learned by SNOW is almost perfect. In normal conditions, though, it is a�ected

by the attribute noise. In attempt to reduce the e�ect of the noise under SNOW+cyc we use

the results of the �rst testing cycle as the initial labeling for the next testing cycle. Indeed, from

this standpoint, POS tagging can be viewed as a reduction in attribute noise of the testing data.

Clearly, the input to the second cycle is less noisy (by more than 2%), resulting in a slight increase

in performance. The �rst cycle decreased attribute noise by more than 2%. The following cycle,

however, led to a minor improvement in performance(0.1%). Additional cycles did not produce

any noticeable improvement. The tagger appears to have reached a local maximum(with respect

to tagging accuracy).
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Baseline SNOW+cr SNOW

94.1 98.8 97.13

Table 3.2: Quality of classi�er: The SNOW tagger was tested with correct initial tags
(SNOW+cr) and, as usual, with baseline based initial tags.

Next, we experimented with the sensitivity of SNOW to several options of labeling the training

data.

� Usually both features and labels of the training examples are computed in terms of correct

parts of speech for words in the training corpus. (this approach was used in the experiments

described above).

� We call the labeling Semi-supervised when we only require the features of the training exam-

ples to be computed in terms of the most probable pos for words in the training corpus, but

the labels still correspond to the correct parts of speech.

� The labeling is Unsupervised when both features and labels of the training examples are

computed in terms of most probable POS of words in the training corpus.

Baseline SNOW+uns SNOW+ss SNOW

94.1 94.3 97.13 97.13

Table 3.3: E�ect of supervision. Performance of SNOW with unsupervised (SNOW+uns), semi-
supervised (SNOW+ss) and normal mode of supervised training.

It is not surprising that the performance of the tagger learned in an semi-supervised fashion is

the same as that of the one trained from the correct corpus. Intuitively, since in the test stage the

input to the classi�er uses the baseline classi�er, in this case there is a better �t between the data

supplied in training (with a correct feedback!) and the one used in testing.

The results of learning from all three kinds of training data and then applying the learned

taggers to the test data, which are initially labeled with most probable part of speech, are shown

in Table 3.3. We see that the tagger learned in the unsupervised fashion is slightly better than the

baseline, and the results of semi-supervised and supervised taggers are basically the same.
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3.5.2 Comparative Study

We compared performance of the SNOW tagger with one of the best POS taggers, based on Brill's

TBL, and with a naive Bayes (e.g., [38] based tagger. We used the same training and test sets.

The results are summarized in Table 3.4.

Baseline NB TBL SNOW adp-SNOW

94.1 96 97.15 97.13 97.2

Table 3.4: Comparison of tagging performance. Tagging accuracy is compared for Naive
Bayes(NB), TBL, SNOW and adp-SNOW taggers.

In can be seen that the TBL tagger and SNOW perform essentially the same. However, given

that SNOW is an online algorithm, we have tested it also in its (true feedback) adaptive mode,

where it is shown to outperform them. It is interesting to note that a simple minded NB method

also performs quite well.

Another important point of comparison is that the NB tagger and the SNOW taggers are

trained with the features described in Section 3.4. TBL, on the other hand, uses a much larger set

of features. Moreover, the learning and tagging mechanism in TBL relies on the inter-dependence

between the produced labels and the features. However, [91] demonstrate that the inter-dependence

impacts only 12% of the predictions. Since the classi�er used in TBL without inter-dependence can

be represented as a linear classi�er[96], it is perhaps not surprising that SNOW performs as well as

TBL. Also, the success of the adaptive SNOW taggers shows that we can alleviate the lack of the

inter-dependence by adaptation to the testing corpus. It also highlights importance of relationship

between a tagger and a corpus.

3.5.3 Alternative Performance Metrics

We propose additional measures of POS tagging performance. First, many words can have only

one part of speech in the language. If this information is available to a tagging program, then

tagging performance for these words should be 100%. That is, the words are deterministic with

respect to their parts of speech. We believe that it often misleading to reect tagging accuracy

for deterministic words in performance measures. Therefore, In Table 3.5 we present the results

only for ambiguous words which, we feel, is a better performance measure. For example, out of
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150000 words from the testing corpus that we used, about 65000 were deterministic. Naturally,

excluding the deterministic words from the performance measure led to a decrease in the values of

the measure. The results of tagging accuracy for non-deterministic words are shown in Table 3.5.

Baseline NB TBL SNOW adp-SNOW

90.1 93 95 95 95.2

Table 3.5: Performance for ambiguous words.

Sometimes we may be interested in determining POS classes of words rather than simply parts

of speech. For example, some natural language applications may require identifying that a word is

a noun without specifying the exact noun tag for the word(singular, plural, proper, etc.). In this

case, we want to measure performance with respect to POS classes. That is, if the predicted part

of speech for a word is in the same class with the correct tag for the word, then the prediction is

termed correct.

Out of 50 POS tags we created 12 POS classes: punctuation marks, determiners, preposition

and conjunctions, existential "there", foreign words, cardinal numbers and list markers, adjec-

tives, modals, verbs, adverbs, particles, pronouns, nouns, possessive endings, interjections. The

performance results for the classes are shown in Table 3.5.3.

Baseline NB TBL SNOW adp-SNOW

96.2 97 97.95 97.95 98

Table 3.6: Performance for POS classes. The 50 parts of speech are separated into 12 non-
overlapping classes. Tagging accuracy is then computed with respect to predicting the right class
rather than the correct part of speech.

3.5.4 Discussion

We applied SNOW to the problem of part of speech tagging, with excellent results. Our investiga-

tion indicates that SNOW architecture is well-suited for natural language processing applications

due to its ability to e�ectively exploit data sparsity as well as eÆcient online processing of examples.

We also observed that performance of SNOW for part of speech tagging is comparable to that of

Transformation-based Learning, the state-of-the-art method, which is much more computationally

intensive.
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The computational complexity of SNOW during both training and evaluation is linear in the

number of classes. The linear dependence may make the architecture diÆcult to scale to larger

problems with hundreds and thousands of classes (e.g., word prediction). We note the recent work

of [40], which introduces sequential model in conjunction with SNOW, that addresses the problem

of linear dependence and allows to e�ectively reduce the complexity of both training and evaluation

for multi-class problems.
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Chapter 4

Entity Extraction and Coreference

Resolution

Entity extraction is the process of recognizing entities in text. A well-de�ned set of possible entities

is determined by a particular information extraction application. For example, entities may include

people, organizations, and locations. Entities can also be expressed as names (John Smith), noun

phrases (chief scientist of WorldCom Corp.), or pronouns (he).

4.1 Entity Extraction Overview and Related Work

We will distinguish the entity extraction sub-tasks corresponding to name, nominal (noun phrase),

and pronoun entity extraction. Such di�erentiation is useful from the algorithmic perspective

since, historically, di�erent algorithms have been developed for extraction of names, nominals, and

pronouns. We will now present each of the entity extraction subtasks in more detail.

4.1.1 Named Entity Extraction

Named Entity Extraction is the earliest widely studied information extraction task. Several Message

Understanding Conferences included named entity extraction as an evaluation task and resulted in

signi�cant advances in named entity identi�cation [4, 5].

According to the Conferences, a named entity extraction system seeks to identify all proper

names and quantities that represent people, organizations, locations, dates, times, money amounts

and percentages. For example, the sentence Arthur Rudolph, the developer of the giant

Saturn 5 rocket that launched a crew of American astronauts on the first manned
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flight to the moon in 1969, died Friday after he lapsed into a coma at his home in

Hamburg, Germany has the person entity Arthur Rudolph, the three location entities, the moon,

Hamburg, Germany, and the two date entities 1969, Friday. The set of named entities is domain-

dependent, and di�erent information extraction applications may de�ne a totally di�erent set of

named entities.

Early systems for named entity extraction were manually built. They comprised a collection of

cascaded �nite-state machines that extracted entities based on hand-crafted patterns ([14, 54, 78]).

Such manually built systems, though sometimes achieving excellent performance, are diÆcult and

expensive to maintain. They also su�er from lack of portability since a new type of text or a new

domain usually requires signi�cant modi�cation of the hand-crafted patterns.

The adaptive approaches to named entity extraction were pioneered by an inuential HMM-

based extraction system [20]. The system represents a generative model for text, where the states

of HMM correspond to particular entity types, or absence thereof. The system graphical model is

shown in Figure 4.1.

Figure 4.1: Named Entity Extraction Graphical Model

The conditional probability distributions p(NtjNt�1; wt�1) and p(wtjNt; Nt�1) are very diÆcult

to estimate due to data sparsity. In order to counter data sparsity, multi-level back-o� techniques

are used for estimation [59, 65]. Back-o� techniques interpolate the conditional probabilities, for

which not enough training data is available, with less speci�c conditional probabilities. For example,

~p(NtjNt�1; wt�1) = �p(NtjNt�1; wt�1) + (1� �)p(NtjNt�1)

where � depends on the number of occurrences of (Nt�1; wt�1) in the training data. The back-o�

process can be applied recursively to p(NtjNt�1) to obtain even more robust estimates.
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Other graphical models are possible for named entity extraction. Recently, conditional models

have been applied to named entity extraction, with superior results [93, 23]. Conditional models can

avoid heuristics of back-o� estimation by plugging in any learning learning algorithm that produces

a classi�er that outputs conditional probabilities. This will lead to a more robust estimation process

as well as the ability to augment conditional probability distributions with additional features (e.g.,

case-sensitivity), which are not easy to incorporate in the back-o� estimation process.

4.1.2 Nominal Entity Extraction

Nominal entities are noun phrases denoting the entities of interest. For example, in the sentence,

Arthur Rudolph, the developer of the giant Saturn 5 rocket that launched a crew of

American astronauts on the first manned flight to the moon in 1969, died Friday

after he lapsed into a coma at his home in Hamburg, Germany, the noun phrase the

developer of the giant Saturn 5 rocket that launched a crew of American astronauts

on the first manned flight to the moon in 1969 denotes a nominal person entity.

The task of extracting nominal entities per se was not part of the MUC e�ort. The noun phrases

were to be extracted, according to MUC, only if they were attached to (denoted) a named entity.

The recent Automatic Content Extraction program [10] extended the extraction task to include

nominal entities as well. For example, in the sentence The jury deliberated for three hours,

the noun phrase the jury is to be extracted and treated as a nominal person entity, according to

the ACE guidelines.1

In contrast to the named entity extraction problem, where recognition and classi�cation of

entities are considered and modeled simultaneously, it is bene�cial for nominal entity extraction

to explicitly separate the tasks of noun phrase recognition and their subsequent classi�cation into

one of the pre-de�ned entity types. This separation is a result of signi�cant body of research on

the general problem of noun phrase identi�cation (chunking). While the task of extracting nominal

entities is only beginning to be studied extensively, the problem of noun phrase chunking has been

the object of signi�cant research in recent years [7]. We will briey review prevalent approaches to

noun phrase chunking.

1See [10] for details.
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Noun phrase chunking is usually considered as part of the general chunking (or shallow parsing)

paradigm that seeks to assign a partial syntactic structure to a sentence. In contrast to full parsing,

shallow parsing does not provide a complete interpretation of a sentence, but instead identi�es only

a limited number of phrases. It has been argued [8] that for many natural language processing

applications, a solution to the much more complex problem of full parsing is not necessary and

can be superseded with that of shallow parsing, which is, in general, an easier and more tractable

task. The types of phrases (chunks) identi�ed by shallow parsers include noun phrases, verb

phrases, prepositional phrases, and others. Sometimes shallow parsers identify subject/verb/object

structure and predicate/argument structure as well.

In the original shallow parsing paper [8], Abney presented a manual approach to chunking by

constructing a set of �nite-state machines based on words and their part of speech information.

Yet the diÆculties associated with building shallow parsers manually as well as availability of

training data (e.g., the fully parsed Wall Street Journal corpus), led to signi�cant developments in

application of machine learning to the shallow parsing problem. In particular, the recent chunking

competition under the aegis of the Computational Natural Language Learning (CoNLL) conference

[6] showcased a variety of learning algorithms and their performance on the the problem.

From the learning perspective, the chunking problem is formalized as a tagging problem: each

word is assigned a tag denoting the position of the word in a phrase, if any. The tag may reect

that the word begins a phrase (B), the word is located inside a phrase (I), or that the word is

outside of a phrase (O). Such a tagging approach is sometimes termed BIO modeling. A learning

algorithm applied to the tag representation of the shallow parsing problem seeks to learn a classi�er

that predicts, for each word, its tag given the word context that may include surrounding words,

part of speech tags, as well as the chunking tags.

Many learning approaches exhibit excellent performance on the shallow parsing problem. We

note the applications of SNOW [82], regularized Winnow [104], and Support Vector Machines [67]

that deliver state of the art performance for the problem.

Since the technology of noun phrase identi�cation is readily available, it is natural to separate

extraction of nominal entities into two stages. The �rst stage utilizes the general shallow parsing

component to output a set of noun phrases, while the second phase performs an additional classi�-
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cation step that determines whether an extracted noun phrase represents an entity of interest. We

do adopt the two stage approach in our work, but remark that straightforward one-stage extraction

of only the target nominal entities, as de�ned by the extraction task, may be a viable alternative

and deserves to be studied in the future.

4.1.3 Pronominal Entity Extraction

Pronominal entities are pronouns that denote entities of interest. For pronouns, the recognition

problem is trivial, for the class of pronouns is closed, and they can be unambiguously identi�ed

in text.2 However, the pronoun classi�cation problem by the entity type is diÆcult. For example,

some pronouns are pleonastic, that is, they do not refer to anything: It is cold.

For many pronouns, it is diÆcult to determine the type of the entity a pronoun denotes based on

its local context alone: The negotiations between the two countries ended successfully.

They both confirmed plans for further cooperation. The pronoun they in the previous sen-

tence refers to the two countries, and this information can only be ascertained by taking into

account the larger context that comprises more than a single sentence.

The diÆculty of classifying pronouns on their own suggests that their classi�cation need not be

considered as a independent problem, but instead treated in conjunction with the task of coreference

resolution. Indeed, we pursue the combinational approach in Section 4.5.1 and show that it improves

extraction performance.

4.2 Coreference Resolution Overview

Coreference resolution is the problem of determining whether di�erent extracted entities correspond

to the same real-world entities.

In the literature, the problem of anaphora resolution is often studied [81], which is closely re-

lated to the coreference resolution problem. Anaphora is a phenomenon of referring to an already

mentioned entity in a document. The reference is then called an anaphor and the referred entity is

termed an antecedent. Anaphora resolution problem is usually restricted to nominal and pronominal

2There are exceptions, of course. For instance, we sometimes need to disambiguate the pronoun \I" from the
roman numeral \I".
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anaphors, thereby ignoring the problem of named entity coreference, which is extremely important

for information extraction. Additionally, since anaphora addresses (literally) only backward ref-

erences, the infrequent phenomenon of forward references (termed cataphora) is not covered by

anaphora resolution. In our presentation, the term \coreference resolution" implies resolution of

named, nominal, and pronominal entities that subsumes both backward and forward references.

The information extraction perspective on coreference resolution imposes a limited scope on

the set of entities to be resolved. Indeed, we are not interested in resolving all coreferences in a

document, but only those involving entities to be extracted as part of a speci�c extraction task.

Thus, we can safely ignore coreference resolution of noun phrases if they are deemed irrelevant to

the extraction task at hand.

Let us de�ne the coreference relation coref on a set of document entities. We say that the

relation coref(x; y) holds if and only if the entities x and y are coreferent. It is clear that coref is

an equivalence relation (it is obviously reexive, symmetric, and transitive); hence, it induces a set

of equivalence classes of document entities. The goal of coreference resolution is to produce a set

of equivalence classes that have one-to-one correspondence to the real-world entities mentioned in

the document. In other words, no two extracted entities denoting di�erent real-world entities may

be part of the same equivalence class, and no two extracted entities denoting the same real world

entity may belong to di�erent equivalence classes.

It is frequently helpful to compartmentalize the relation coref(x; y) and, hence, the coreference

resolution task into three di�erent subtasks corresponding to di�erent kinds of entities involved.

More precisely, if x or y is a pronominal entity, then we obtain a pronoun resolution problem.

Otherwise, if x or y is a nominal entity, then we have a noun phrase resolution problem. Finally,

if both x and y are named entities, then it is a name resolution problem.

An information extraction system needs to address all three aspects of the coreference resolution

problem. Yet di�erent modeling and algorithmic choices may be appropriate for name, noun phrase,

and pronoun resolution. In fact, there is hardly a paper on coreference resolution that addresses

all of the three problems at the same time. Most existing studies concentrate on either pronoun or

noun phrase coreference resolution. We now survey the related work in the �eld.

Most early work on coreference and anaphora resolution dealt with pronoun coreference [71, 62].
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The early approaches identi�ed a set of pronouns in a document, and, for each pronoun, sought

to determine the best antecedent. Di�erent de�nitions of \best" led to di�erent carefully designed

and complex rules that were sometimes based on existing discourse theories [103].

The area of pronoun and noun phrase coreference resolution was greatly revitalized since mid-

1990s by application of learning approaches to the problem. We note, amongst many, the work of

[13, 77, 86, 85].

We consider the following components in adaptive approaches to coreference resolution.

� Coreference examples and their feature representation.

� Coreference examples generation process.

� Learning algorithms for coreference classi�ers.

� Decoding algorithm that combines predictions of coreference classi�ers into a coherent dis-

course interpretation.

Let us examine the components in more detail.

A coreference example represents a pair of entities. For noun phrase and pronominal coreference,

the pair is usually comprised of a nominal or pronominal anaphor and its candidate antecedent.

A coreference example is a feature-based representation of a pair of entities that is designed to

make manifest the properties of the anaphor and its candidate antecedent that are most helpful in

making the decision whether the anaphor indeed refers to the antecedent in question. For instance,

the popular features are shown below.

� Distance feature (number of sentences between an anaphor and an antecedent).

� Number agreement feature (true if and only if an anaphor and an antecedent are both singular

or both plural).

� Gender agreement features (true if an anaphor and an antecedent have the same gender; false,

they have di�erent gender; unknown, if gender cannot be determined).

� Semantic class agreement (true if an anaphor and an antecedent belong to the same semantic

class in a certain semantic taxonomy (e.g., Wordnet)).
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Most learning-based systems for coreference resolution employed larger hand-crafted feature

sets [86]. A coreference example has a binary label reecting whether the entities that constitute

the example are indeed coreferent or not.

There are two common approaches to generating coreference examples. First, since an example

is generated for a pair of entities, every feasible anaphor/antecedent pair can be used to produce

coreference examples. Such a generation process, however, leads to an extremely large set of exam-

ples even for small corpora annotated with coreference information since the number of examples

generated per document is quadratic in the number of document entities. Moreover, many exam-

ples generated in this fashion correspond to entities residing far from one another in the original

documents, and therefore, at least for nominal and pronominal coreference resolution, they do not

carry much information of relevance to coreference decisions.

An alternative approach to generation of coreference examples, proposed by [86], ameliorates

for the drawbacks of the all-pairs approach by focusing on examples that are most useful from the

coreference perspective. The example generation algorithm proceeds from a �xed anaphora back-

ward (in text), and generates a negative example for each candidate antecedent until an antecedent

coreferent with the anaphor is encountered. A positive example is generated for the antecedent,

and the process of generating examples, for the �xed anaphor, stops. Much fewer examples are

generated in this manner, and positional information is naturally incorporated in the examples.

In Section 4.4, we describe an extension of this example generation process that we adopt in our

experiments.

Few learning algorithms have been experimentally evaluated on the coreference resolution prob-

lem. Most published studies employed a decision tree algorithm [13, 85], with the notable exception

of a uni�ed probabilistic modeling approach of [28].

In the absence of training data, we note application of clustering for coreference of noun phrases

[26]. Namely, the noun phrase attributes are used to de�ne a distance function that is used within

a heuristic clustering algorithm to produce a clustering of noun phrases that aims to correspond to

the coreference partition of the corresponding noun phrase entities.

Finally, the coreference decoding procedure that combines the predictions of coreference classi-

�ers into a single coherent interpretation did not yet receive much attention in the literature. The
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most prevalent decoding approach is to classify an ordered list of candidate antecedents for a �xed

anaphora and select either the �rst one that is predicted to be the true antecedent by the classi�er

[86], or the most con�dent one [85]. Our major contribution is the introduction of an alternative

decoding framework that yields more coherent interpretation of coreference classi�er predictions.

4.3 Entity Classi�cation

We approach the problem of entity extraction from the classi�cation perspective. We take an

existing generic shallow parsing system as a starting point of our investigation. Examples of such

systems abound [9, 11]. In our experiments presented in Section 4.6, we employ the manually built

shallow parsing component of [15].

The goal of our entity extraction approach is to transform a generic name and noun phrase

output by a shallow parsing system into task-speci�c extracted entities. More precisely, we consider

each name and noun phrase that are part of a produced shallow parse and re-classify them into the

vocabulary of a particular extraction task.

The classi�cation approach to entity extraction is modest yet immensely practical. The task of

adapting the general shallow representation of text to speci�c needs provides a very cost-eÆcient

way of reusing general linguistic mechanisms for new tasks and domains.

Let us consider the sentence, Police have arrested a man carrying a live hand grenade

at Gatwick Airport and evacuated one terminal, and restrict the extraction task to that of

people, organizations, and locations. In the sentence, there is a single named entity, Gatwick

Airport and several noun phrases: Police, a hand grenade, a man, a man carrying a live

hand grenade, and one terminal. According to our extraction task, the named entity Gatwick

airport and the noun phrase Police are classi�ed as organizations, the (embedded) noun phrases

a man and a man carrying a live hand grenade are classi�ed as people, the noun phrase one

terminal is classi�ed as location, and the noun phrase hand grenade is not part of the extraction

vocabulary so no entity type is assigned to it.

During the training stage of the entity classi�cation, an example is generated for every generic

name and noun phrase produced by the shallow parser. An example is labeled with the type of

the extracted entity in the task-speci�c extraction vocabulary. Naturally, many extracted generic
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entities will not correspond to any of the task-speci�c entities; therefore, many of the generated

examples will have no labels.

For instance, for the nominal entity a man carrying a live hand grenade, we will use the

features of the noun phrase (e.g, its head man) as well as the context around the noun phrase (e.g.,

the preceding verb arrested) to generate the nominal entity classi�cation example.

We will use the training examples to learn a multiclass classi�er Cl in the following manner.

We decompose the multiclass learning task into a set of binary learning tasks, where each binary

classi�er Clt corresponds to a type t of extracted entities. Therefore, a generated example becomes

a positive example for Clt, if it is labeled with t, and a negative example for Clt, otherwise. In

Section 4.6, we experiment with a number of learning algorithms for the task.

In the spirit of the SNOW system, we require each of the learned classi�ers Clt to output a

score scoret(con) given the context con of an entity to be classi�ed. We deem that the classi�er

Clt predicts the label t if and only if the corresponding score scoret(con) is positive.

For some learning algorithms and the corresponding classi�ers, the scores scoret(con) can be

converted into conditional probabilities pCl(tjcon) denoting the probability of the type t given the

context con.

During the evaluation stage, we generate an example for each of the generic names and noun

phrases produced by a generic shallow parsing systems and apply all of the binary classi�ers to

the example, thereby obtaining predictions for each possible entity. If none of the binary type

classi�ers predicted a label for the example, we assert that the corresponding generic entity is not

to be extracted. If one or more binary classi�ers predicted labels for the generic entity, we assign

to the entity the type corresponding to the prediction with the largest score.

Thus, the entity classi�cation system outputs a set of entities for a document, with each entity

assigned a predicted entity type. The following task of coreference resolution is aimed at aggregating

the extracted entities that correspond to single real-world entity.

4.4 Coreference Resolution

The goal of the coreference resolution module is to partition the extracted entities of the same type

into a set of equivalence classes. Each equivalence class will correspond to a single real-world entity
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that aggregates a set of extracted entities in a document.

We will describe two approaches to coreference resolution. For each approach, we delineate the

example generation and decoding algorithms. The particular feature representations and algorithms

employed will be described as part of the experiments in Section 4.6. We will also present two

theoretical reformulations of the coreference resolution task that reduce it to problems of continuous

optimization.

4.4.1 Preliminaries

Let E = e1; e2; : : : ; en a set of extracted entities. In the remainder of this section, we assume that

the entities are of the same type since coreference resolution processing steps of entities of di�erent

types can be conducted independently of one another. Note that in Section 4.5.1, where entity

classi�cation is interleaved with the coreference resolution process, we relax this assumption.

At the training stage, the entities are partitioned in a set of equivalence classes: E = E1 [E2 [
� � �Ek, where Ei \Ej = ;; i 6= j. At the evaluation stage, we seek to produce such a partition.

Let c be a classi�er that given a pair of entities (ei; ej) determines whether they are coreferent

or not. Formally, c : E � E ! f�1; 1g where the label of 1 corresponds to entity coreference and

the label of �1 corresponds to absence thereof.

At the training stage, we use the equivalence class information to learn the coreference classi�er

for a pair of entities. At the evaluation stage, we apply the classi�er to produce the coreference

decisions.

Application of the coreference classi�er is not straightforward, since the equivalence class con-

straint leads to dependence between individual classi�er predictions. For example, if the entity

pairs (e1; e2), (e2; e3) are classi�ed as coreferent, and the pair (e1; e3) is classi�ed as non-coreferent,

then we have a contradiction, because transitivity of the equivalence class relation implies that the

pair (e1; e3) is also coreferent. We need a way to resolve the contradictions in a principled manner.

We call an algorithm that combines predictions of individual coreference classi�ers a coreference

decoding algorithm. Additionally, a particular decoding algorithm needs to be coupled with a cor-

responding example generation algorithm. In the following discussion, we introduce two coreference

decoding algorithms and their corresponding example generation algorithms and evaluate them
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experimentally.

We will introduce additional notation to streamline our presentation. Let R be a binary relation

over a set X. We denote by R� the transitive closure of the binary relation R.

We incorporate additional knowledge in the coreference resolution process by imposing con-

straints on the set of possible anaphor/antecedent pairs. Note that, for the sake of brevity, we

use the words \anaphor" and \antecedent" for both anaphora and cataphora phenomena. The

constraints are speci�ed by the following relation IsCandidateAntecedent:

isCandidateAntecedent(anaphor; antecedent) =

=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1; if anaphor is pronominal, and anaphor follows antecedent

1; if anaphor is pronominal, and antecedent is not pronominal

1; if anaphor is nominal, and antecedent is not pronominal, and it precedes anaphor

1; if anaphor is nominal, and antecedent is a name

1; if anaphor is a name, and antecedent is a name that precedes anaphor

0; otherwise

The constraints restrict the list of possible antecedents for di�erent classes of anaphora by in-

corporating coreference knowledge. The knowledge speci�es that pronominal anaphora never refer

forward to other pronouns, that nominal anaphora refer to preceding nominals or names, and names

refer only to preceding names.

4.4.2 Sequential Transitive Coreference Decoding

The sequential transitive decoding algorithm is a standard decoding algorithm used for coreference

resolution [86]. We describe the example generation and decoding components of the algorithm.

The example generation algorithm is shown as Algorithm 3. For each entity ei in the document,

the algorithm proceeds backward in the document and generates a negative example for each

candidate antecedent ej non-coreferent with ei until the �rst candidate antecedent ek coreferent

with ei is encountered. The algorithm then generates a single positive example for the entity ek. If

there are no preceding entities coreferent with ei, the algorithm proceeds forward in the document

and generates examples in the same manner.
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In order to reduce the number of examples generated, the algorithm utilizes the fact that

antecedent and anaphor are usually close in text, and generates examples for only D preceding and

D following antecedents for a �xed anaphora, where D is an input parameter to the algorithm.

Algorithm 3 The Sequential Coreference Example Generation Algorithm

(e1; e2; : : : ; en) is the list of entities ordered by their location in the document
coref is the true coreference relation
D is the maximum distance between an anaphor and an antecedent
for all i = 1; 2; : : : ; n do
anaphor = ei
j = i� 1
d = max(1; i�D)
while j � d and ((not isCandidateAntecedent(anaphor; ej)) or coref(ei; ej) = �1) do
if isCandidateAntecedent(anaphor; ej) then
generate negative coreference example for the pair (ei; ej)

end if
j = j � 1

end while
if j � d then
generate positive coreference example for the pair (ei; ej)

else
j = i+ 1
d = min(n; i+D)
while j � d and ((not isCandidateAntecedent(anaphor; ej)) or coref(ei; ej) = �1) do
if isCandidateAntecedent(anaphor; ej) then
generate negative coreference example for the pair (ei; ej)

end if
j = j + 1

end while
if j � d then
generate positive coreference example for the pair (ei; ej)

end if
end if

end for

Let us consider the following sentence, A woman who ran down her1 cheating husband with

her2 Mercedes after catching him with his mistress was convicted of murder Thursday

in a real-life Texas soap opera in which she claimed it was all a tragic accident.

From this sentence, we will generate coreference examples for the following anaphor/antecedent

pairs for person entities, in the order of generation (+ or � sign indicates whether the example is

positive or negative).
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� ((\her1","a woman"), +)

� ((\her2","her1"), +)

� (("her cheating husband","a woman"), �)

� ((\him","her2"), �)

� ((\him","her cheating husband"), +)

� ((\his","him"), +)

� ((\his mistress","her cheating husband"), �)

� ((\his mistress","a woman"), �)

� ((\she",\his mistress"), �)

� ((\she",\his"), �)

� ((\she",\him"), �)

� ((\she",\her2"), +)

The sequential transitive decoding algorithm is shown as Algorithm 4. The algorithm processes

entities sequentially in order of their appearance in the document. The algorithm establishes a

coreference relation between an entity ei and the closest preceding entity classi�ed as coreferent

with ei by the learned coreference classi�er. If no such preceding entity is found, the algorithm

establishes a coreference relation between the entity ei and the closest following entity classi�ed as

coreferent with ei. After a single pass through the document, the equivalence classes are constructed

via the transitive closure of the established coreference relations.

The following theorem analyzes the computational complexity of the sequential transitive de-

coding algorithm.

Theorem 8 The running time of the sequential transitive decoding algorithm is O(nDq), where q

is the complexity of evaluating the coreference classi�er c.
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Algorithm 4 The Sequential Transitive Decoding Algorithm

(e1; e2; : : : ; en) is the list of entities ordered by their location in the document
c is the coreference classi�er
D is the maximum distance between an anaphor and an antecedent
for all i = 1; 2; : : : ; n do
j = i� 1
d = max(1; i�D)
while j � d and ((not isCandidateAntecedent(anaphor; ej)) or coref(ei; ej) = �1) do
j = j � 1

end while
if j > 0 then
coref(ei; ej) = 1

else
j = i+ 1
d = min(n; i+D)
while j � d and ((not isCandidateAntecedent(anaphor; ej)) or c(ei; ej) = �1) do
j = j + 1

end while
if j � d then
coref(ei; ej) = 1

end if
end if

end for
Output coref�

Proof: For each entity, the algorithm evaluates the coreference classi�er at most 2D times. The

complexity bound follows. 2

Note that the parameter D represents the natural trade-o� in the decoding algorithm between

the decoding accuracy and the decoding time.

The application of the sequential transitive decoding algorithm to the sentence, A woman who

ran down her1 cheating husband with her2 Mercedes after catching him with his

mistress was convicted of murder Thursday in a real-life Texas soap opera in which

she claimed it was all a tragic accident, with the correct coreference classi�er, will mirror

the presented process of example generation and lead to the following entity equivalence classes:

� \a woman", \her1", \her2", \she"

� \her cheating husband", \him", \his"

� \his mistress"
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In Section 4.6, we experimentally evaluate the sequential transitive decoding algorithm for

coreference resolution.

4.4.3 Loss-based Coreference Decoding

We introduce a formal framework for coreference decoding based on the classi�cation framework

introduced in Chapter 2. We formalize the coreference decoding problem in the framework, analyze

its hardness, and propose an approximate algorithm for decoding problem solution.

Let A be a learning algorithm for learning a coreference classi�er c mapping a pair of entities

(e1; e2) to f�1; 1g. Let l be a loss function that is being minimized by A.

Let E1; E2; : : : ; Ek be a partition of E. De�ne the variable eij that indicates whether two entities

belong to the same equivalence class, as follows:

eij =

8><
>:

1; if 9l 2 f1; : : : ; kg; ei 2 El and ej 2 El

�1; otherwise

Let E = feijg be an equivalence class partition of the entities E. Then, the partition induces

the following loss with respect to the classi�er c:

l(c; E) =
X
i;j

l(eij ; c(ei; ej)) (4.1)

During training, the algorithm A learns the classi�er c that minimizes (4.1), given the partition

of E. During evaluation, the decoding algorithm searches for the partition E� that minimizes the

partition loss (4.1), given the classi�er c.

E� = argminE l(c; E)

4.4.4 Problem Hardness

For hardness considerations, we restrict our attention to the 0-1 loss function l. It is helpful to

re-interpret the problem (4.6) in graph-theoretic terms. Let c be a coreference classi�er output

by a learning algorithm minimizing the 0-1 loss function. Consider the complete weighted graph
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G = (V;E) whose node vi corresponds to the entity ei and the edge (vi; vj) has the weight -1 or +1.

We seek to partition the resulted graph in a set of connected components, and we are penalized

for each positive edge lying between the partition components and for each negative edge lying

within a component. Note that in contrast to the standard formulation of graph-theoretic partition

problems, the number of partition is not �xed. In addition, the edge weights are allowed to be both

positive and negative.

We also observe that, if the coreference classi�er c is perfect, the coreference equivalence classes

can be easily constructed by removing all negative edges from the graph and equating each resulted

connected component with an equivalence class.

It turns out that the 0-1 loss function formulation of the coreference decoding problem is an

instance of a recently analyzed correlation clustering problem [16]. The analysis implies that the

problem is NP-hard. Therefore, we have to resort to heuristics to induce the equivalence class

partition eÆciently.

4.4.5 Semi-separable Loss Functions

Let us introduce an additional restriction on the loss function.

De�nition 5 Let c be a classi�er that produces a score of ch(x) on an example x. A loss function

l(y; ch(x)) is termed semi-separable, if there is a function f : R ! R such that

l(y; ch(x)) = max(0;�yf(x)) (4.2)

Some natural loss functions are semi-separable. For example, the 0-1 loss function is semi-

separable with f being sgn function.

We now show that for semi-separable loss functions, the partition optimization problem with

loss (4.1) can be replaced with a more manageable equivalent optimization problem.

Theorem 9 Let E = feijg and E 0 = fe0ijg be two partitions of E. Then

X
i;j

max(0;�eijf(ei; ej)) �
X
i;j

max(0;�e0ijf(ei; ej)) (4.3)
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if and only if X
i;j

eijf(ei; ej) �
X
i;j

e0ijf(ei; ej) (4.4)

Proof: Denote

Ia = f(i; j) : eij = e0ijg Id = f(i; j) : eij = �e0ijg

I+a = f(i; j) 2 Ia : �eijf(ei; ej) � 0g I�a = f(i; j) 2 Ia : �eijf(ei; ej) < 0g

I+d = f(i; j) 2 Id : �eijf(ei; ej) � 0g I�d f(i; j) 2 Id : �eijf(ei; ej) < 0g

Ia and Id are the sets of index pair where partitions eij and e
0
ij agree and disagree, respectively.

The superscripted subsets of Ia and Id determine the subsets where the eijf(ei; ej) is positive or

negative. Let us denote fij = eijf(ei; ej) and f
0
ij = e0ijf(ei; ej). Then, (4.4) can be written as

X
(i;j)2Ia

fij +
X

(i;j)2Id

fij �
X

(i;j)2Ia

f 0ij +
X

(i;j)2Id

f 0ij

Since fij = f 0ij for (i; j) 2 Ia and fij = �f 0ij for (i; j) 2 Id, we obtain that (4.4) is equivalent to

X
(i;j)2Id

fij � 0

Similarly, (4.3) can be written as

�
X

(i;j)2I+
d

fij � �
X

(i;j)2I�
d

f 0ij

whence

0 �
X

(i;j)2I�
d

fij +
X

(i;j)2I+
d

fij =
X

(i;j)2Id

fij

2
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Corollary 1 Let l be a semi-separable loss function. Then,

min
E

X
i;j

l(eijf(ei; ej)) = max
E

X
i;j

eijf(ei; ej) (4.5)

Hence, for semi-separable loss functions, the optimization objective can be written as follows.

X
i;j

eijwij ! max (4.6)

where wij = f(ei; ej).

Now observe that minimizing the functional (4.6), with respect to E , is equivalent to �nding a

minimum cut of the graph G, i.e., partition of the graph vertex set V into disjoint sets V1; V2; : : : ; Vk,

so that the sum of weights edges between leading from Vi to Vj ; i 6= j, is minimized. Indeed, let

W =
P

i;j wij , W
+ =

P
i;j;eij=1 wij, and W

� =
P

i;j;eij=�1wij . Note that W
� is the value of the

graph cut and W+ =W �W�. Then

max
E

X
ij

eijwij = max
E

(W+ �W�) = max
E

(W � 2W�) = min
E
(W�)

Note that in contrast to the standard (weighted) mincut formulation, the number of partitions

k is not �xed. Additionally, the weights wij are not necessarily positive. For example, if we �x

k = 2, then, for positive weights, there are numerous eÆcient mincut algorithms applicable to

the problem [29]. On the other hand, for a �xed k � 3 and/or negative weights wij; i 6= j, the

optimization problem is NP-hard [45]. In our case, for a variable k, the assumption of all positive

(negative) weights leads to the trivial one-class (n classes) solution.

Greedy Decoding

The greedy decoding algorithm incrementally optimizes (4.1). The example generation component

and the decoding component of the greedy algorithm for semi-separable loss functions are shown

as Algorithm 5 and Algorithm 6, respectively.

The example generation algorithm for greedy decoding generates coreference examples for every

eligible pair of entities in the document. The algorithm may lead to a very large number of examples
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generated. We reduce the number of examples by restricting possible the distance between an

anaphor and an antecedent.

Algorithm 5 The Example Generation Algorithm for Greedy Decoding

(e1; e2; : : : ; en) is the list of entities ordered by their location in the document
coref is the true coreference relation
D is the maximum distance between an anaphor and an antecedent
I = ff1g; f2g; : : : ; fngg
for all (ei; ej); fig 2 I; fjg 2 I; ji� jj � D do
if isCandidateAntecedent(ei; ej) then
generate an example for (ei; ej) with label coref(ei; ej)

end if
end for

Let us consider the example of example generation for the sentence presented in section 4.4.2.

In addition to all examples shown therein, the Algorithm 5 will also generate the following examples

(with D being large);

� ((\her1","her cheating husband"), �)

� ((\her1","his mistress"), �)

� ((\her2","a woman"), +)

� ((\her2","her cheating husband"), �)

� (("her cheating husband","his mistress"), �)

� ((\him","her1"), �)

� ((\him","a woman"), �)

� ((\him","his mistress"), �)

� ((\his","her cheating husband"), +)

� (\his","her2"), +)

� (\his","her1"), +)

� (\his","a woman"), +)
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Algorithm 6 The Greedy Decoding Algorithm

(e1; e2; : : : ; en) is the list of entities ordered by their location in the document
c is the true coreference classi�er
D is the maximum distance between an anaphor and an antecedent
I = ff1g; f2g; : : : ; fngg
for all (ei; ej); fig 2 I; fjg 2 I do
if ji� jj � D then
if isCandidateAntecedent(ei; ej) then
wfig;fjg = ch(ei; ej)

end if
else
wfig;fjg = 0

end if
end for
Sort fwfig;fjgg
wmax = wi�;j� = maxi2I;j2Iniwi;j

while jIj > 1 and wmax > 0 do
I = I n fi; jg
for all k 2 I do
wk;i�[j� = wk;i� + wk;j�

end for
I = I [ fi� [ j�g
wmax = wi�;j� = maxi2I;j2Iniwi;j

end while

� ((\his","his mistress"), �)

� ((\she",\her1"), +)

� ((\she",\a woman"), +)

It is clear that a lot more examples are generated in this manner compared with the sequential

decoding example generation examples. The examples enjoy signi�cant redundancy, which shall

help coreference classi�ers to better focus on correct coreference decisions during the decoding

process.

The greedy algorithm for maximizing the weight is shown as Algorithm 6. In the algorithm, we

use bold i to denote sets of indices. The greedy algorithm seeks to exploit the redundancy prevalent

among the coreference examples and make coreference decisions based on multiple coreference

predictions.

The greedy decoding algorithm initially puts each extracted entity into a separate equivalence

class and then iteratively merges the equivalence classes, while the merge improves the cumulative
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loss function (4.1). During each iteration, the pair of classes is selected in a greedy fashion to

optimize the loss weight improvement achieved by the merge. Note that the algorithm iteratively

updates the weights between the already merged equivalence classes.

The greedy decoding may help prevent mistakes made by the sequential decoding algorithm.

In our coreference example, the sequential decoding algorithm may incorrectly corefer the pronoun

she with the noun phrase his mistress, since this decision will be considered in isolation from

other coreference decisions. The greedy algorithm may, however, corefer the pronoun she with

other pronouns her2 and her1, and only then attempt to resolve the three pronouns together to

one of the two noun phrases (a woman and his mistress) and by aggregating the coreference

information may be less likely to make the resolution mistake.

The following theorem analyzes the computational complexity of the greedy decoding algorithm

for coreference resolution.

Theorem 10 The computational complexity of the greedy decoding algorithm is O(nD(q+log(nD)),

where q is the time complexity of the evaluating the coreference classi�er c.

Proof: The algorithm computes the coreference classi�er for every pair of entities lying at most

D entities from each other in O(nDq) time. The computed coreference weights are then sorted in

O(nD log(nD)). The process of merging entities, in the worst case, requires n� 1 iterations, where

each iteration takes O(D log(nD)) time, since an entity has non zero coreference weights with only

O(D) other entities, and the complexity of an insertion in the sorted list is O(log(nD)). Hence,

the complexity bound follows. 2

4.4.6 Continuous Optimization Approach

In this section, we exhibit two reductions of the coreference resolution problem to continuous

optimization problems. We will show that the optimal solutions to the continuous problems are

necessary the optimal coreference partitions. The reductions are interesting reformulations of the

coreference resolution problem, mostly from the theoretical perspective.
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Pairwise Reduction

Let us make a variable change xij =
1
2(eij + 1) mapping the set f�1; 1g to the set f0; 1g. Hence,

eij = 2(xij�1), and the objective function in (4.6) becomes
P

ij wijeij = 2
P

ij wijxij�W . Hence,

the optimization problem (4.6) is equivalent to:

P
i;j wijxij ! max

xii = 1; 8i = 1; : : : ; n

xij = xji; 8i; j = 1; : : : ; n

xij = 1 ^ xjl = 1) xil = 1;8i; j; l = 1; : : : ; n

xij 2 f0; 1g

(4.7)

Consider the matrix X = (xij). Note that if xij = 0, then the ith column xi and the jth column

xj are orthogonal, i.e, xi � xj = 0, and if xij = 1, then xi = xj and xi � xj = ki =
Pn

l=1 xil. Hence,

any xi is an eigenvector of the matrix X, with the eigenvalue of ki, since

X � xi = kixi

Whereby we get that

X �X = K �X (4.8)

where K = diag(k1; : : : ; kn) is a diagonal matrix, whose diagonal elements are eigenvalues of X.

Note that for a partition with k equivalence classes, the matrix X is of rank k, whose only k

non-zero eigenvalues are the cardinalities of the k equivalence classes.

We now show that the equation (4.8) provides necessary and suÆcient conditions for the matrix

X to represent a transitive relation. Since necessity follows from the above discussion, we only need

to prove suÆciency. In fact, we will prove a stronger statement below.

Theorem 11 Let xij 2 [0; 1], xii = 1, xij = xji; i; j = 1; : : : ; n, and X satis�es (4.8). Then,

xij 2 f0; 1g, and the matrix X represents an equivalence relation
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Proof: To prove that xij 2 f0; 1g, observe that it follows from (4.8) that

nX
l=1

x2il = xii

nX
l=1

xil =

nX
l=1

xil

nX
l=1

xil(xil � 1) = 0

Whence xil 2 f0; 1g; 8i; l. Now note that (4.8) also implies that

X
s

xisxjs = xij
X
s

xis;8i; j (4.9)

Suppose that the relation represented by X is not transitive, hence, there exist indices i1; j1; s1,

such that xi1s1 = 1, xs1j1 = 1, and xi1j1 = 0. But then, the right side in (4.9), for i = i1; j = j1, is

equal to zero, and the left side is equal to xi1s1xs1j1 + : : : > 0. Contradiction. Thus, xij = 1, and

the relation is transitive. 2

Hence, the coreference resolution problem is equivalent to the following quadratic programming

problem: P
i;j wijxij ! max

X �X = K �X
K = diag(

P
j x1j; : : : ;

P
j xnj)

xij = xji; xii = 1;8i; j
xij 2 [0; 1]

(4.10)

We next present an alternative reduction that leads to a more manageable quadratic program-

ming problem, with the number of constraints linear in n.

Equivalence Class Reduction

Let E = fE1; E2; : : : ; Ekg be a partition of entities E. Note that k � n, where n = jEj. We augment

the partition with a set of empty equivalence classes Ek+1; : : : ; En, thereby �xing the number of

equivalence classes to be n, for any partition.

Let us now introduce the variables yij denoting that the entity ei belongs to the equivalence
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class Ej :

yij =

8><
>:

1; if ei 2 Ej

0; otherwise

The constraints imposed on the variables yij only require that each entity be assigned to exactly

one equivalence class:
nX
j=1

yij = 1; i = 1; : : : ; n (4.11)

Now observe that the variables xij have the following relationship to the variables yij:

xij =
nX

k=1

yikyjk = yTi yj

where yi = (yi1; : : : ; yin).

Therefore, the objective function of (4.7) can be written as

X
ij

wijy
T
i yj

Thus, we obtain the alternative formulation of the coreference resolution problem.

X
ij

wijy
T
i yj ! max (4.12)

nX
j=1

yij = 1; i = 1; : : : ; n

yij 2 f0; 1g

We will now show that (4.12) can be reduced to an equivalent continuous quadratic programming

problem. We present the reduction in two steps. First, we show we can eliminate the constraints

(4.11). Then, we prove that an optimal solution to the resulting unconstrained program in the

interval [0; 1] is a 0-1 vector.

Lemma 1 Let W = 2
P

ij jwij j + 1. Then, the optimization problem (4.12) is equivalent to the
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following unconstrained problem.

X
ij

wijy
T
i yj +W

nX
i=1

0
@ nX

j=1

yij �
X
j1 6=j2

yij1yij2

1
A! max (4.13)

Proof: The lemma follow from the observation that W
Pn

i=1(
Pn

j=1 yij �
P

j1 6=j2
yij1yij2) = W

if
PK

j=1 yij = 1, and W
Pn

i=1(
Pn

j=1 yij �
P

j1 6=j2
yij1yij2) � 0, otherwise. 2

Observe that incorporating the constraints into the objective function (4.4.6) did not change

the form of the objective function (for brevity, we introduce the single-indexed variables z to denote

double-indexed variables y and let N = n2):

f(z1; : : : ; zN ) =
X
i6=j

wijzizj +
X
i

zi ! max (4.14)

Theorem 12 ([22]) An optimal solution to the problem (4.14) on the interval [0; 1] is a 0-1 vector.

Proof: Let � = (�1; : : : ; �N ) 2 [0; 1]n be an optimal solution of (4.14). We will construct a 0-1

vector (z�1 ; : : : ; z
�
N ) such that f(z�) � f(�). Denote

dfi(z1; : : : ; zi�1; zi+1; : : : ; zN ) = f(z1; : : : ; zi�1; 1; zi+1; : : : ; zN )� f(z1; : : : ; zi�1; 0; zi+1; : : : ; zN )

ri(z) = f(z)� dfi(z)zi

Note that both dfi(z) and ri(z) do not depend on zi.

Let us now replace � with �(1) such that �
(1)
1 = 1 if df1(�) � 0 and �

(1)
1 = 0 otherwise. Also,

�
(1)
i = �i for i 6= 1. Then,

f(�(1))� f(�) = r1(�
(1))� r1(�)) + (df1(�

(1))� df1(�))(�
(1)
1 � �1) = �df1(�)(�(1)1 � �1) � 0

By applying the procedure recursively to �(1); �(2); : : : we obtain the 0-1 vector z� = �(N), and

f(z�) = f(�(N)) � f(�(N�1)) � � � � � f(�(1)) � f(�)
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Hence, either f(�) = f(z�) or � is not an optimal solution of (4.14). 2

While the presented reductions provide elegant theoretical formulations of coreference resolu-

tion, from a mathematical programming perspective, we note that �nding a local maximum of a

quadratic program with n2 variables takes, in general, O(n6) [76]. The complexity bound makes

the approach impractical. Moreover, the local maximum is not necessarily a global maximum, for,

as we indicated in Section 4.4.4, the global optimization of cumulative loss function for coreference

resolution is, in general, an NP-hard problem.

4.5 Combining Entity Classi�cation and Coreference Resolution

In the above presentation, we considered entity classi�cation and coreference resolution as two

independent tasks. There are examples, however, when coreference resolution and entity classi�ca-

tion can hardly be considered in isolation, and signi�cant bene�t in the accuracy of tasks can be

achieved by exploiting the synergy between them.

Let us consider the following sentences. The negotiations between the two countries

ended successfully. They both confirmed plans for further cooperation. The pronoun

they in the second sentence is a pronominal entity with type location referring to the two

countries. Yet the immediate context of the makes correct type classi�cation by itself a very

diÆcult task. On the other hand, the decision of co-referring they with the two countries is a

fairly simple one. Thus, in this case, it is appropriate to delay the entity type classi�cation task

until after coreference resolution is done. In fact, correct coreference information unambiguously

determines the entity type of they.

The observation leads us combining entity type classi�cation with coreference resolution and

introducing the idea of delaying type classi�cation to the stage of coreference resolution. We there-

fore remove the assumption that all entities have the same type at the coreference resolution stage.

Instead, we assume that an entity type classi�er Cl outputs a conditional probability distribution

of types pCl(tijconi) given the syntactic context coni of the entity ei.

We also assume that that possible types for di�erent entities are pairwise conditionally inde-
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pendent, given the local context information for entities:

p(ti; tjjconi; conj) = pCl(tijconi)pCl(tjjconj)

The loss of coreferring two entities ei and ej depends on the types that they are assigned. Let

ei(t) denote the entity ei instantiated with type t and c be a coreference classi�er, as before. Note,

the coreference classi�er can be applied to the pair of entities ei(ti) and ej(tj) only if ti = tj since

only entities with the same type can corefer. Then,

l(eij ; ti; tj) =

8><
>:

pCl(tijconi)pCl(tj jconj)l(eij ; c(ei(ti); ej(tj))), if ti = tj

1, otherwise

Let T be a type assignment to all entities e1; : : : ; en. The cumulative partition and type assignment

loss, with respect to the coreference classi�er c and type classi�er Cl, can be written as follows:

l(c; Cl; E ;T ) =
X
ti=tj

pCl(tijconi)pCl(tj jconj)l(eij ; c(ei(ti); ej(tj))) (4.15)

Thus, the goal of the decoding algorithm is to search for the partition E� and the type assignment

T � that minimize the partition and type assignment loss (4.15), given the coreference classi�er c

and the type classi�er Cl:

(E�;T �) = argmin(E;T )l(c; Cl; E ;T )

4.5.1 Greedy Coreference Decoding and Entity Classi�cation Algorithm

For semi-separable loss functions, let us denote

wij(ti; tj) =

8><
>:

pCl(tijconi)pCl(tj jconj)ch(ei(ti); ej(tj)); if ti = tj

�1, otherwise

We note that the analogue of Theorem 9 can be proved for the combined setting as well, which

implies that the objective function for the combined type and coreference decoding has the following
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form: X
ti=tj

wij(ti; tj)eij !E;T max (4.16)

We now adapt the greedy decoding algorithm for coreference resolution presented in Sec-

tion 4.4.5 to the combined coreference and type classi�cation setting.

The modi�ed greedy decoding algorithm for semi-separable loss functions involving type clas-

si�cation is shown as Algorithm 7. The algorithm computes, for every entity, the probability

distribution of types conditional upon the entity context. For every eligible pair of entities and

every type, the algorithm computes the weight of merging the entities and assigning them the types.

Initially, each entity is assigned to a separate equivalence class. Then, the greedy merging process

is interleaved with assignment of types. We use the notation type(ei) = t to assign the type t to the

entity ei. Once two equivalence classes are selected for a merge, the merge also �xes the types of

entities in the equivalence classes. The merging process stops when no merge can further improve

the objective function (4.15).

The following theorem analyzes the computational complexity of the greedy decoding algorithm

for coreference resolution and type classi�cation.

Theorem 13 The computational complexity of the Algorithm 7 is O(n(r +DjT j log(nDjT j) +Dq)),

where q and r are the time complexities of the evaluating the coreference classi�er c and the entity

type classi�er Cl, respectively, and jT j is the number of possible entity types.

Proof: The time complexity of evaluating the type classi�er on all entities is O(nr). The time

complexity of evaluating the coreference classi�ers on all eligible pairs of entities is O(nDq). The

number of produced typed weights is O(nDjT j). Consequently, as we observed in the proof of

Theorem 10, the sorting and merging process takes O(nDjT j log(nDjT j)) time. Hence, the time

complexity follows. 2

4.6 Experiments

In this section, we evaluate the proposed decoding algorithms experimentally. For the evaluation,

we use coreference-annotated data prepared as part of the of the Automatic Content Extraction
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Algorithm 7 The Greedy Decoding Algorithm for Coreference Resolution and Type Classi�cation

(e1; e2; : : : ; en) is the list of entities ordered by their location in the document
c is the true coreference classi�er
Cl is the entity type classi�er
T is the set of entity types
D is the maximum distance between an anaphor and an antecedent
I = ff1g; f2g; : : : ; fngg
for all (ei; ej); fig 2 I; fjg 2 I do
if ji� jj � D then
for all t 2 T do
if isCandidateAntecedent(ei; ej) then
wfig;fjg(t) = pC l(tjconi)pC l(tjconj)ch(ei(t); ej(t))

end if
end for

else
for all t 2 T do
wfig;fjg(t) = 0

end for
end if

end for
Sort fwi;j(t)g
wmax = wi�;j�(t

�) = maxi2I;j2Ini;t2T wi;j(t)
while jIj > 1 and wmax > 0 do
if i� = fi�g then
type(ei�) = t�

end if
if j� = fj�g then
type(ej�) = t�

end if
I = I n fi; jg
for all k 2 I do
wk;i�[j�(t

�) = wk;i�(t
�) + wk;j�(t

�)
for all t 2 T n ft�g do
wk;i�[j�(t) = �1

end for
end for
I = I [ fi� [ j�g
wmax = wi�;j�(t

�) = maxi2I;j2Ini;t2T wi;j(t)
end while
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(ACE) program [10].

4.6.1 Automatic Content Extraction (ACE) Program

The goal of the ACE program is to develop automatic content extraction technology to support

processing of language data [10]. We will focus on one task of the ACE program: detection of

entities.

The entities to be detected as part of the ACE program are categorized in the following types.

� Person. Person entities are restricted to denote humans. Person entities also include �ctional

characters (Santa Claus) and groups of people, unless the groups satisfy the criteria of

organization entities.

� Organization. Organizations are restricted to denote groups of people exhibiting a formal

associational structure. They include business units, government agencies, sports teams,

music bands, etc.

� GPE (Geopolitical Entity). GPE s denote politically de�ned geographic regions. GPEs do not

distinguish between a geographic territory, the territory government, or its people. For exam-

ple, consider the GPE uses of France in the following sentences. France enjoy a temperate

climate (the geographic territory). France signed a treaty with the United States

(the government). France elected a new president (the people).

� Facility. Facilities denote permanent man-made structures such as buildings, factories, sta-

diums, prisons, museums, and space stations, barns, parking garages and airplane hangars,

streets, highways, airports, ports, train stations, bridges, and tunnels.

� Locations. Locations are restricted to geographic entities lacking political connotations, such

as land masses, bodies of water, and geological formations. These include, for example, the

solar system, Mars, the continents, the Mideast, the Hudson River, Mt. Everest, and Death

Valley.

We note that ACE uses a slightly di�erent terminology in describing particular entities (text

fragments) as \entity mentions", and using the word \entities" to denote the actual equivalence
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classes of \entity mentions" corresponding to real-world entities.

The equivalence classes of entities are also classi�ed whether they are named, nominal, or

pronominal. An entity equivalence class is termed named, if it includes a named entity. If an

equivalence class includes only pronouns, then it is called pronominal. Otherwise, the equivalence

class is nominal. This classi�cation is used during the ACE evaluation process, which we will

consider next.

4.6.2 ACE Evaluation Methodology

The goal of the ACE entity detection task is to detect entities in text and compile them into

equivalence classes. The entity detection performance is measured on the level of equivalence

classes. There are two types of entity detection errors: misses and false alarms. A miss happens

when an evaluated system fails to output a true equivalence class. A false alarm happens, when a

spurious equivalence class is output.

In order to determine miss and false alarm errors, the output equivalence classes must be

associated with (mapped to) the true equivalence classes. The mapping is accomplished by mapping

an output equivalence to a true equivalence that has the maximum overlap, in terms of entities, with

the output equivalence class.3 The additional constraints are imposed on the mapping that require

that each true equivalence class be associated with at most one output equivalence class, and each

output equivalence class be associated with at most one true equivalence class. Additionally, for

two equivalence classes to be associated they both have to have the same entity type. A miss error

occurs when a true equivalence class cannot be mapped to an output equivalence class, and a false

alarm error occurs when an output equivalence class cannot be mapped to a true equivalence class.

The ACE entity evaluation function uses the miss and false alarm statistics of a system to

compute an entity evaluation measure as follows. The miss and false alarms statistics are categorized

by the entity type and the entity level (named, nominal, pronominal). Let Nmiss(type; level),

Nfa(type; level) denote the number of missed and false alarm equivalence classes, respectively, of a

�xed type and a �xed level. Let N(type; level) be the total number of true equivalence classes for a

type and a level. Let Cmiss(type; level) and Cfa(type; level) be the costs of missing and incorrectly

3See [10] for a detailed description of the mapping algorithm
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Cmiss;fa(type; level) Name Nominal Pronominal

Person 1 0.2 0.04
Organization 0.5 0.1 0.02
GPE 0.25 0.05 0.01
Location 0.1 0.02 0.004
Facility 0.05 0.01 0.002

Table 4.1: Miss and False Alarm Cost

Training Data Testing Data

# newswire articles 130 29
# newspaper articles 76 17
# broadcast news articles 216 51

Table 4.2: Number of training and testing documents.

predicting an entity for a �xed type and a �xed level. The cost functions used in ACE evaluation are

presented in Table 4.1. The ACE entity evaluation measure VEDT (called ACE value) is computed

as

VEDT = 1�
P

type

P
level (Nmiss(type; level)Cmiss(type; level) +Nfa(type; level)Cfa(type; level))P

type

P
level Cmiss(type; level)N(type; level)

The ACE entity value of 1 represents a perfect system, while the value of 0 represents a system

that outputs nothing. Note that it is quite possible for the value to be negative, if the system

outputs too many spurious entities.

4.6.3 Training and Testing Data

The training data for our experiments comprised a collection of newswire, newspaper, and broadcast

news articles from the �rst 6 months of 1998. The testing data were selected from the same sources

and covered the last 3 months of 1998. The parameters of the training and testing set are shown in

Table 4.2. Each of the documents in the training and testing data was annotated with both type,

level , and coreference information.

We used the data to conduct a number of experiments evaluating the quality of learning and

decoding algorithms for type classi�cation. The experiments are presented in the following sections.
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4.6.4 Learning Algorithms

We evaluated two learning algorithms in our experiments: Support Vector Machine and Logistic

Regression. Both algorithms learn linear classi�er in feature spaces.

We used the standard con�guration of the SVM light [58] implementation in our experiments,

with the regularization parameter C = 1.

We have implemented logistic regression via an application of the conjugate gradient opti-

mization procedure [80] to minimizing the logistic loss function on the training data. The sparse

structure of examples makes the implementation fairly eÆcient and comparable, in terms of the

running time, to the SVM light implementation.

4.6.5 Entity Classi�cation Evaluation

We �rst measure the performance of entity type classi�ers. We formalized the entity type classi�-

cation problem in Section 4.3. Recall that we generate an example for every name, noun phrase,

and pronoun output by the shallow parser. The example is labeled with the true entity type, if

any, of the corresponding chunk output by the shallow parser.

The examples features describe the properties of the chunk context. The context covers the

chunk under consideration (current), the preceding chunk (previous), the following chunk (next),

and the parent chunk (parent). The parent chunk is a noun phrase, for candidate entities within a

noun phrase, and a sentence, otherwise. For each of the chunks, the shallow parser also produces a

set of attributes. The attributes are the text of a chunk (text), the head of a chunk (the stemmed

head of noun or verb phrase), the part of speech tag of a chunk (pos), and a generic entity type of

a chunk (type) (a person/organization/location type assigned by the shallow parser to mostly

name chunks). We will use the notation chunk:attribute to refer to an attribute of a chunk (e.g.,

current:text). The entity type examples include the following features (where X is a variable

instantiated with the value of the corresponding attribute).

� current:text = X, parent:text = X, previous:text = X, next:text = X.

� For noun and verb phrase chunks: current:head = X, parent:head = X, previous:head = X,

next:head = X.
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Training Data Testing Data

Named Nominal Pronominal Name Nominal Pronominal

# Person examples 5288 5548 5996 1195 1362 1476
# Organization examples 2997 1743 809 604 444 309
# GPE examples 5006 1178 458 989 280 99
# Location examples 264 301 14 44 62 2
# Facility examples 226 477 19 33 105 7

# Total examples 14451 10170 8837 3182 2604 2314

Table 4.3: Entity type classi�cation examples

� current:pos = X, parent:pos = X, previous:pos = X, next:pos = X.

� For chunks assigned generic entity types: current:type = X, parent:type = X, previous:type =

X, next:type = X.

We separated the entity type classi�cation problem into three learning subproblems for classi-

fying named, nominal, and pronominal entities. We trained three distinct classi�er for the three

subproblems.

We used the training and testing documents to generate training and testing examples for entity

type classi�cation. The examples statistics are presented in Table 4.3.

We use the standard classi�cation evaluation methodology that was proposed originally for

information retrieval [106]. For each entity type, we quantify its classi�cation performance in terms

of F-measure [106].

We say that an example is positive, for an entity type, if it has been labeled with the entity

type. Otherwise, the example is negative. Precision is the ratio of the number of correctly classi�ed

positive examples to the number of predicted positive examples. Recall is the ratio of the number

of correctly predicted positive examples to the number of true positive examples. F-measure (Fm)

combines precision and recall as follows:

Fm =
2 � precision � recall
(precision+ recall)

We also micro-averaged F-measure over all types, where the averaging weights are proportional to

the number of examples labeled with a corresponding type.
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Name Nominal Pronominal All

SVM LR SVM LR SVM LR SVM LR

Person 91.6 91.4 87.4 87.1 89 89.1 89.2 89.1
Organization 85.2 86 71.3 72.6 30 29.4 68.1 68.7
GPE 94.1 93.9 78.2 77.9 17 16.8 85.2 85
Location 55.7 54.3 69.5 70.2 0 0 62.6 62.5
Facility 51.2 49.3 65.6 64.5 0 0 59.2 57.9

Total 90.1 90.1 81.5 81.6 75.2 75.2 83.1 83.1

Table 4.4: Entity type classi�cation performance

The combined entity type performance is shown in Table 4.4.4 The results that indicate that

both SVM and logistic regression exhibit the same accuracy in entity type classi�cation.

4.6.6 Coreference Resolution Evaluation

We described in Section 4.4 the example generation and inference algorithms for coreference resolu-

tion. In the description, we implied that there is a single coreference classi�er that, given an anaphor

and a candidate antecedent, predicts whether the anaphor and the antecedent are coreferent.

In the experiments, we relax the assumption of the single classi�er. Instead, we split the

coreference resolution classi�er into several distinct classi�ers depending on an anaphor. The split

is a result of the fact that di�erent features are appropriate for di�erent kinds of an anaphor. For

example, while the distance between an anaphor and and antecedent (in terms of words, sentences,

paragraphs) might be extremely useful for pronominal anaphors, it is not a valuable feature for

name coreference resolution. Also, di�erent coreference usage patterns may be prevalent for di�erent

kinds of anaphor. For instance, we may expect that the pronouns \I" and \it" behave di�erently

with respect to coreference phenomena. Hence, di�erent models may be appropriate for di�erent

kinds of pronominal anaphors.

The Table 4.5 shows the categorization of anaphors and their corresponding coreference classi-

�ers. Note that the coreference resolution and example generation algorithms presented above stay

the same, with the exception that multiple distinct datasets will be generated during the example

generation process based on di�erent kinds of anaphors, and di�erent classi�ers will be learned and

invoked in the decoding algorithms depending on the kinds of anaphors.

4We report the performance in percentage points.

75



Anaphor Coreference Classi�er

Name cname

Nominal cnominal

Pronominal: it,its cit
Pronominal: you, your cyou
Pronominal: they, their, them cthey
Pronominal: we, I, my, us,our cfirst
Pronominal: he, she, his, him, her cthird

Table 4.5: Coreference classi�ers

Anaphor/Antecedent Attributes Used

Name

text (the name text)
gender (the name gender, if any)
last name (the last name of the name, if any)
�rst name (the �rst name of the name, if any)

Nominal

head (the noun phrase head)
gender (the noun phrase gender, if any)
plural (whether the noun phrase is plural or singular)

Pronominal

text (the pronoun text)
gender (the pronoun gender, if any)
plural (whether the pronoun is plural or singular)
personal pronoun type (�rst/second/third person pronoun)
possessive (whether the pronoun is possessive or not)

Table 4.6: Attributes used in coreference resolution

The Table 4.6 lists attributes employed to generate coreference example features for all types

of anaphors. Below we list features for each of the coreference classi�ers de�ned in terms of the

attributes of the anaphors and antecedents.

The cname classi�er employs the following features.

� Every conjunction A = X ^ B = Y , where A is an anaphor attribute, B is an antecedent

attribute, and X and Y are the corresponding values of the attributes in the given anaphor

and the antecedent.

� For every common attribute A of an anaphor and an antecedent, the value of the proposition,

anaphor:A = antecedent:A that reects the same attributes have the same value in both the

given anaphor and the antecedent.

The cnominal classi�er and all pronominal classi�ers employed the following features.
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� Every conjunction A = X ^ B = Y , where A is an anaphor attribute, B is an antecedent

attribute, and X and Y are the corresponding values of the attributes in the given anaphor

and the antecedent.

� For every common attribute A of an anaphor and an antecedent, the value of the proposition,

anaphor:A = antecedent:A that reects that the same attributes have the same value in both

the given anaphor and the antecedent.

� The number of words between the anaphor and the antecedent.

� The number of sentences between the anaphor and the antecedent.

� The number of paragraph between the anaphor and the antecedent.

� The number of candidate antecedent between the anaphor and the antecedents.

Note that the last four distance features are either positive or negative depending whether the

antecedent is before or after the anaphor. We also discretized all of the distance features, that

is, we converted them into boolean features, where a boolean feature corresponds to a particular

discretization bin. We used the entropy-based discretization procedure, with a stopping criterion

based on the minimum description length [37].

Coreference Evaluation Results

We adopt the ACE evaluation methodology presented in Section 4.6.2 to evaluate the coreference

resolution performance.

We apply both the sequential decoding algorithm and the greedy decoding algorithm in conjunc-

tion the Support Vector Machine and Logistic Regression learning algorithms. In both algorithms,

we set the parameter D = 10 that quanti�es the maximum number of candidate antecedents be-

tween an anaphor and an antecedent.

Note that the loss functions employed by both SVM and logistic regression are not semi-

separable. In order to make the greedy decoding algorithm applicable, we have approximated

the loss functions with the following semi-separable loss function:

l(y; ch(x)) = max(0;�ych(x))
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Sequential Decoding Greedy Decoding

SVM LR SVM LR
Person 70.8 71.0 70.8 71.5
Organization 53.9 54.5 55.7 56.0
GPE 85.0 85.8 85.4 85.7
Location 17.9 12.7 16.6 12.7
Facility 36.0 32.6 36.3 34.2

Total 67.9 68.3 68.4 69.0

Table 4.7: ACE Values for Di�erent Decoding Algorithms

where ch = w � x is the score of a linear coreference classi�er c.

The Table 4.7 presents the ACE values for the coreference decoding algorithms combined with

the corresponding type classi�cation algorithms. It is worth noting that human-level performance

for the task is circa 80%[32]. Therefore, the best con�guration of the system achieves more than

85% of the human-level performance.

We note that logistic regression exhibited overall better coreference performance than SVM, and

that greedy coreference decoding algorithm provides a slight leverage compared to the sequential

decoding algorithm at the expense of extra computational complexity.

4.6.7 Evaluation of Combining Type Classi�cation with Coreference

Resolution

We next determine incorporation of type classi�cation in the coreference resolution process does

improve the extraction performance.

In order to incorporate the type classi�er scores into the coreference resolution process, we �rst

need to convert them into conditional probabilities, which we accomplish via the logistic function:

p(tjx) = 1

1 + e�Clt(x)
(4.17)

For logistic regression, the formula (4.17) represents the conditional probability of the type t given

the example x (see Section 2.10). For SVM, the formula is only a heuristic approximation of the

conditional probability.

The ACE values in the combined setting are shown in Table 4.8. The performance results that
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SVM LR
Person 70.9 72.5
Organization 55.9 55.4
GPE 85.8 84.0
Location 13.6 20.5
Facility 35.7 30.4

Total 68.6 69.3

Table 4.8: ACE Values for Entity Classi�cation and Coreference Combination

indicate that the combined setting leads to an improvement in extraction accuracy.

4.6.8 Discussion

The experimental results indicate that, somewhat surprisingly, logistic regression is slightly superior

to SVM in application to coreference resolution. Comparison of decoding algorithms shows that

the greedy decoding algorithm that exploits redundancy of multiple coreference decisions does

provide an advantage over the sequential transitive decoding algorithm. The sequential decoding

procedure was however 3-4 times than faster the the greedy algorithm, in our experiments. Finally,

combination of coreference resolution with entity type classi�cation leads to correction of entity

type mistakes, which translates into better extraction performance.

In general, our approach to entity extraction and coreference resolution is part of the paradigm of

inference with classi�ers [98]. The paradigm stipulates that complex learning problems be divided

into modular classi�cation learning sub-problems. The best-of-the-breed learning algorithms are

then employed for solving the self-contained learning problems. Yet an application of the learned

classi�ers in tandem requires an appropriate inference procedure than exploit classi�ers' inter-

dependencies. We showcased several instances of such inference procedures for entity extraction and

coreference resolution. We believe that the inference with classi�ers approach is a viable direction in

addressing large-scale learning problems involving multiple inter-dependent classi�cation decisions,

and its further investigation is warranted.

79



Chapter 5

Relation Extraction

Relation Extraction is the problem determining relations of interest that hold between extracted

entities. For example, an extracted person-organization pair of entities may belong to an aÆliation

relation, specifying that a person is a member of an organization. Two people, on the other hand,

may be involved in such social relations as friend, relative, associate, and others.

Relation extraction is an important step towards semantic interpretation of underlying text.

Indeed, the set of entities present in text and relations that connect them provides a powerful

vocabulary for text understanding.

5.1 Related Work

The problem of relation extraction from natural language texts was previously addressed by Message

Understanding Conferences (MUC) [5]. A number of systems were developed that relied on parsing

and manual pattern development for identifying the relations of interest (see, for example, [14]). An

adaptive system [79], presented under the aegis of MUC, used lexicalized probabilistic context-free

grammars augmented with semantic information to produce a semantic parse of text for detecting

organization-location relations.

Recently, Hidden Markov Models have been used for extracting relations from semi-structured

records (\paper title", \author", and \aÆliation" extraction from article headers) [43]. HMMs

are mostly appropriate for modeling local and at problems. Relation extraction from natural

language often involves modeling long range dependencies, for which HMM methodology is not

directly applicable.
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5.2 Problem Formalization

Recall that the entity extraction system is built on top of a generic shallow parsing system. There-

fore, after entity processing we obtain a shallow parse augmented with entity type information.

We use the shallow parse as input to relation extraction system. We do not utilize coreference

information in relation extraction.

Let us consider the sentence, \John Smith is the chief scientist of WorldCom Corp.". The

shallow parsing system produces the representation of the sentence shown in Figure 5.1.

Figure 5.1: The shallow parse representation of the sentence \John Smith is the chief scientist
of WorldCom Corp.". The tags are assigned by the generic shallow parsing system, while the
(entity) types are assigned by the entity extraction system. The tags \Det" and \Prep" denote
\Determiner" and \Preposition", respectively.

The sentence is represented a shallow parse tree. In contrast to common parse trees, the type of

a parent node does not determine the structure of its children nodes. Instead of providing the full

interpretation of the sentence, shallow parsing only identi�es its key elements. Therefore, shallow

parsing is fairly robust, and is able to generate structured representations even for ungrammatical

sentences.

We next convert the shallow parse tree into examples for the person-affiliation relation.

This type of relation holds between a person and an organization. There are three nodes in

the shallow parse tree in Figure 5.1 referring to people.1 There is one organization node in the

1Note that since coreference information is not available, we no not know whether the nodes refer to the same
person.
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tree. We create an example for the person-affiliation relation by taking a person node and an

organization node in the shallow parse tree and assigning attributes to the nodes specifying the

role that a node plays in the person-affiliation relation. The person and organization under

consideration will receive the member and aÆliation roles, respectively. The rest of the nodes will

receive none roles reecting that they do not participate in the relation. We then attach a label to

the example by asking the question whether the node with the role of member and the node with

the role of aÆliation are indeed (semantically) aÆliated, according to the sentence. For the above

sentence, we will then generate three positive examples, shown in Figure 5.2.

Figure 5.2: The three person-affiliation examples generated from the shallow parse in Fig-
ure 5.1. The \Label=+1" means that the examples do express the relation.

Note that in generating the examples between the person and organization entities, we elim-

inated the nodes that did not belong to the least common subtree enclosing the entities, thereby

removing irrelevant subtrees.

To summarize, a relation example is shallow parse, in which nodes are augmented with the role

attribute, and each node of the shallow parse belongs to the least common subtree comprising the

relation entities under consideration.

We now formalize the notion of relation example. We �rst de�ne the notion of the example

node.
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De�nition 6 A node p is a set of attributes fa1; a2; : : :g. Each node may have a di�erent number

of attributes. The attributes are named.

We use p:a to denote the value of attribute with the name a in the node p, e.g., p:Type = Person

and p:Role = member. If a node P does not have an attribute a, we say that P:a = �.

De�nition 7 An (unlabeled) relation example is de�ned inductively as follows:

� Let p be a node, then the pair P = (p; []) is a relation example, where by [] we denote an

empty sequence.

� Let p be a node, and [P1; P2; : : : ; Pl] be a sequence of relation examples. Then, the pair

P = (p; [P1; P2; : : : ; Pl]) is a relation example.

We say that p is the parent of P1; P2; : : : ; Pl, and Pi's are the children of p. We denote by P:p

the �rst element of the example pair, by P:c the second element of the example pair, and use the

shorthand P:a to refer to P:p:a, and P [i] to denote Pi. If unambiguous, we also use P:ai to denote

the child Pi of P such that Pi:T ext = ai (Pi:Head = ai, for noun and verb phrases).

A labeled relation example is unlabeled relation example augmented with a label l 2 f�1;+1g.
An example is positive, if l = +1, and negative, otherwise.

We now de�ne kernels on relation examples that represent similarity of two shallow parse trees.

5.3 Kernels for Relation Extraction

Kernels on parse trees were previously de�ned by [31]. The kernels enumerated (implicitly) all

subtrees of two parse trees, and used the number of common subtrees, weighted appropriately, as

the measure of similarity between two parse trees. Since we are operating with shallow parse trees,

and the focus of our problem is relation extraction rather than parsing, we use a di�erent de�nition

of kernels.

The nodes of the shallow parse trees have attributes, and we need to use the attributes in the

kernel de�nition. We de�ne a primitive kernel function on the nodes in terms of nodes' attributes,

and then extend it on relation examples.
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We �rst de�ne a matching function t(�; �) 2 f0; 1g and a similarity function k(�; �) on nodes. The

matching function de�ned on nodes determines whether the nodes are matchable or not. Many

matching functions are possible.

In the case of relation extraction, we can de�ne nodes as matchable only if their types and roles

match. If nodes do not have types, then their tags should match as well. Thus,

t(P1:p; P2:p) =

8>>>><
>>>>:

1; if P1:T ype = P2:T ype 6= � and P1:Role = P2:Role

1; if P1:T ype = P2:T ype = � and P1:Tag = P2:Tag

0; otherwise

The similarity function on nodes is computed in terms of the nodes' attributes.

k(P1:p; P2:p) =

8><
>:

1; if P1:Head = P2:Head or P1:T ext = P2:T ext

0; otherwise

Then, for two relation examples P1; P2, we de�ne the similarity function K(P1; P2) in terms of

similarity function of the parent nodes and the similarity function Kc of the children. Formally,

K(P1; P2) =

8><
>:

0; if t(P1:p; P2; p) = 0

k(P1:p; P2:p) +Kc(P1:c; P2:c); otherwise
(5.1)

Di�erent de�nitions of the similarity function Kc on children give rise to di�erent K's. We now

give a general de�nition of Kc in terms of similarities of children subsequences. We �rst introduce

some helpful notation (similar to [75]).

We denote by i a sequence i1 � i2 � : : : � in of indices, and we say that i 2 i, if i is one of

the sequence indices. We also use d(i) for in � i1 + 1, and l(i) for length of the sequence i. For a

relation example P , we denote by P [i] the sequence of children [P [i1]; : : : ; P [in]].

For a similarity function K, we use K(P1[i]; P2[j]) to denote
P

s=1;:::;l(i)K(P1[is]; P2[js]). Then,

we de�ne the similarity function Kc as follows

Kc(P1:c; P2:c) =
X

i;j;l(i)=l(j)

�d(i)�d(j)K(P1[i]; P2[j])
Y

s=1;:::;l(i)

t(P1[is]:p; P2[js]:p) (5.2)
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The formula (5.2) enumerates all subsequences of relation example children with matching par-

ents, accumulates the similarity for each subsequence by adding the corresponding child examples'

similarities, and decreases the similarity by the factor of �d(i)�d(i), 0 < � < 1, reecting how spread

out the subsequences within children sequences. Finally, the similarity of two children sequences is

the sum all matching subsequences similarities.

The following theorem states that the formulas (5.1) and (5.2) de�ne a kernel, under mild

assumptions.

Theorem 14 Let k(�; �) and t(�; �) be kernels over nodes. Then, K as de�ned by (5.1) and (5.2) is

a kernel over relation examples.

To prove the theorem, we need the following lemmas.

Lemma 2 ([53]) Let K be a kernel on a set U � U and for all �nite non-empty A;B � U de�ne

�K(A;B) =
P

x2A;y2BK(x; y). Then �K is the kernel on the product of the set of all �nite, nonempty

subsets of U with itself.

Lemma 3 ([35]) If K1 is a kernel over a set X, and K2 is a kernel over a set Y , then

K1
L
K2((x; x

0); (y; y0)) = K(x; x0) +K(y; y0) is a kernel over a set X � Y . The kernel K1
L
K2

is called the direct sum of kernels K1 and K2.

Corollary 2 If K1; : : : ;Kn are kernels over the corresponding sets X1; : : : ; Xn, and then the direct

sum K1
L � � �LKn((x1; x

0
1); : : : ; (xn; x

0
n)) =

P
i=1;:::;nK(xi; x

0
i) is a kernel over the set Xi � � � � �

Xn.

Lemma 4 ([35]) If K1 is a kernel over a set X, and K2 is a kernel over a set Y , then

K1
N
K2((x; x

0); (y; y0)) = K(x; x0)K(y; y0) is a kernel over a set X � Y . The kernel K1
N
K2 is

called the tensor product of kernels K1 and K2.

Corollary 3 If K1; : : : ;Kn are kernels over the corresponding sets X1; : : : ; Xn, and then the tensor

product K1
N � � �NKn((x1; x

0
1); : : : ; (xn; x

0
n)) =

Q
i=1;:::;nK(xi; x

0
i) is a kernel over the set Xi�� � ��

Xn.
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Proof of Theorem 14: For two relation examples P1 and P2, of which at least one has no

children, K(P1; P2) = k(P1:p; P2:p)t(P1:p; P2:p). Therefore, K is a kernel as a product of two

kernels[35].

For two relation examples P1 and P2 with non-empty children lists, we �rst extend each children

subsequence to be of length M = max(l(P1:c); l(P2:c)) by appending to it a sequence of \empty"

children, thereby embedding the space of all subsequences in the space of subsequences of length

M . We also extend the t(�; �) and k(�; �) to empty nodes by making empty nodes match only with

empty nodes, and putting k(x; y) = 0, if x or y is empty. We also let d(i) denote in� i1 +1, where

in is the last \non-empty" index of the sequence i.

We then observe that Kc(P1:c; P2:c) can be written as

Kc(P1:c; P2:c) =
X
i;j

�d(i)�d(j)K(P1[i]; P2[j])
Y

s=1;:::;M

t(P1[is]:p; P2[js]:p)

K(P1[i]; P2[j]) is a direct sum of kernels de�ned over individual children, hence, it is a kernel over

subsequences children by Corollary 2. Similarly,
Q

s=1;:::;l(i) t(P1[is]:p; P2[js]:p) is a tensor product

of kernels, hence, it is a kernel over subsequences of children by Corollary 3. Since the set of kernels

is closed with respect to product and scalar multiplication,

�d(i)�d(j)K(P1[i]; P2[j])
Q

s=1;:::;M t(P1[is]:p; P2[js]:p) is a kernel over subsequences of children. Ap-

plication of Lemma 2 to this kernel, where U is the set of subsequences of children entails that Kc

is a kernel over two children sequences represented as sets of their subsequences.

Finally, since a sum and a product of kernels is also a kernel,

K(P1; P2) = t(P1:p; P2:p)k(P1:p; P2:p) + t(P1:p; P2:p)Kc(P1:c; P2:c)

is a kernel over relation examples. 2

We �rst consider a special case of Kc, where the subsequences i and j are assumed to be

contiguous and give a very eÆcient algorithm for computing Kc. In Section 5.3.2, we address a

more general case, when the subsequences are allowed to be sparse (non-contiguous).
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5.3.1 Contiguous Subtree Kernels

For contiguous subtree kernels, the similarity function Kc enumerates only contiguous children

subsequences, that is, for a subsequence i in (5.2), is+1 = is + 1 and d(i) = l(i). Since then

d(i) = d(j) as well, we slightly abuse notation in this section by making � stand for �2 in formula

(5.2). Hence, (5.2) becomes

Kc(P1:c; P2:c) =
X

i;j;l(i)=l(j)

�l(i)K(P1[i]; P2[j])
Y

s=1;:::;l(i)

t(P1[is]:p; P2[js]:p) (5.3)

Let us consider a relation example corresponding to the sentence \James Brown was a scientist

at the University of Illinois". The example is shown in Figure 5.3. We compare the example with

the relation example #1 in Figure 5.2.

Figure 5.3: A relation example for the sentence \James Brown was a scientist at the University of
Illinois".

According to the de�nitions (5.1) and (5.3), for the examples P1 (relation example #1) and P2

(relation example #4), the kernel function is computed as follows (Assume that the matching and

similarity functions are those de�ned in Section 5.3. Also assume that � = 0:5).

K(P1;P2) = k(P1:p; P2:p)

+Kc([P1:JohnSmith; P1:be; P1:scientist];[P2:JamesBrown; P2:be; P2:scientist])

= 0:5(k(P1:JohnSmith; P2:JamesBrown)+k(P1:be; P2:be)+K(P1:scientist; P2:scientist))

+0:52(k(P1:JohnSmith; P2:JamesBrown)+2k(P1:be; P2:be)+K(P1:scientist; P2:scientist))

+0:53(k(P1:JohnSmith; P2:JamesBrown)+k(P1:be; P2:be)+K(P1:scientist; P2:scientist))
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= 1:125+0:875K(P1:scientist; P2:scientist)

= : : :

= 1:125+0:875�1:875

= 2:765625

The core of the kernel computation resides in the formula (5.3). The formula enumerates all

contiguous subsequences of two children sequences. We now give a fast algorithm for computing

Kc between P1 and P2, which, given kernel values for children, runs in time O(mn), where m and

n is the number of children of P1 and P2, respectively.

Let C(i; j) be the Kc computed for suÆxes of children sequences of P1 and P2, where every

subsequence starts with indices i and j, respectively. That is,

C(i; j) =
X

i;j;i1=i;j1=j;l(i)=l(j)

�l(i)K(P1[i]; P2[j])
Y

s=1;:::;l(i)

t(P1[is]:p; P2[js]:p)

Let L(i; j) be the length of the longest sequence matching states in the children of P1 and P2

starting with indices i and j, respectively. Formally,

L(i; j) = maxfl :
Y

s=0;:::;l

t(P1[i+ s]:p; P2[j + s]:p) = 1g

Then, the following recurrences hold:

L(i; j) =

8><
>:

0; if t(P1[i]:p; P2[j]; p) = 0

L(i+ 1; j + 1) + 1; otherwise
(5.4)

C(i; j) =

8><
>:

0; if t(P1[i]:p; P2[j]; p) = 0

�(1��L(i;j))
1�� K(P1[i]; P2[j]) + �C(i+ 1; j + 1); otherwise

(5.5)

The boundary conditions are:

L(m+ 1; n+ 1) = 0

C(m+ 1; n+ 1) = 0
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The recurrence (5.5) follows from the observation that, if P1[i] and P2[j] match, then every

matching pair (c1; c2) of sequences that participated in computation of C(i + 1; j + 1) will be

extended to the matching pair ([P1[i]; c1]; [P2[j]; c2]), and

C(i; j) = �K(P1[i]; P2[j]) +
X

(c1;c2)

�l(c1)+1(K(P1[i]; P2[j]) +K(c1; c2))

=
X

s=1;:::;L(i;j)

�sK(P1[i]; P2[j]) + �
X

(c1;c2)

�l(c1)K(c1; c2))

=
�(1� �L(i;j))

1� �
K(P1[i]; P2[j]) + �C(i+ 1; j + 1)

Now we can easily compute Kc(P1:c; P2:c) from C(i; j).

Kc(P1:c; P2:c) =
X
i;j

C(i; j) (5.6)

The time and space complexity of Kc computation is O(mn), given kernel values for children.

Hence, for two relation examples the complexity of computing K(P1; P2) is the sum of computing

Kc for the matching internal nodes (assuming that complexity of t(�; �) and k(�; �) is constant).

5.3.2 Sparse Subtree Kernels

For sparse subtree kernels, we use the general de�nition of similarity between children sequences

as expressed by (5.2).

Let us consider a example corresponding to the sentence \John White, a well-known scientist

at the University of Illinois, led the discussion.". The example is shown in Figure 5.4. We compare

the example with the relation example #1 in Figure 5.2.

According to the de�nitions (5.1) and (5.3), for the examples P1 (relation example #1) and P2

(relation example #5), the kernel function is computed as follows (Assume that the matching and

similarity functions are those de�ned in Section 5.3. Also assume that � = 0:5).

K(P1;P2) = k(P1:p; P2:p)+

+Kc([P1:JohnSmith; P1:be; P1:scientist];[P2:JohnWhite; P2:comma; P2:scientist; P2:lead; P2:discussion])
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Figure 5.4: A relation example for the sentence \James Brown, a well-known scientist at the
University of Illinois, led the discussion.". The tag \Punc" denotes \Punctuation".

= 0:52(k(P1:JohnSmith; P2:JohnWhite)+k(P1:be; P2:lead)+K(P1:scientist; P2:scientist))

+0:520:54k([P1:JohnSmith; P1:be]; [P2:JohnWhite; P2:lead])+

+0:530:53([P1:JohnSmith; P1:scientist]; [P2:JohnWhite; P2:scientist])+

+(0:52+0:56)K(P1:scientist; P2:scientist)

= 0:265625�K(P1:scientist; P2:scientist)

= : : :

= 0:265625�2:078125

= 0:552

As in the previous section, we give an eÆcient algorithm for computing Kc between P1 and P2.

The algorithm runs in time O(mn3), given kernel values for children, where m and n (m � n) is

the number of children of P1 and P2, respectively.

Let Kc;q(i; j) be Kc computed using subsequences of length q in pre�xes of children sequences

of P1 and P2 ending with indices i and j.

Kc;q(i; j) =
X

i�f1;:::;ig

X
j�f1;:::;jg
l(i)=l(j)=q

�d(i)�d(j)K(P1[i]; P2[j])T (i; j)

where

T (i; j) =
Y

s=1;:::;l(i)

t(P1[is]:p; P2[js]:p)
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Let Cq(i; j; a) be the Kc computed using subsequences of length q in pre�xes of children se-

quences of P1 and P2 ending with indices i and j, respectively, with a number a 2 R added to

each result of kernel children computation, and setting a damping factor for a sequence i(j) to be

�i�i1+1(�i�i1+1). Formally,

Cq(i; j; a) =
X

i�f1;:::;ig

X
j�f1;:::;jg
l(i)=l(j)=q

[�i�i1+j�j1+2(K(P1[i]; P2[j]) + a)T (i; j)]

Then the following recurrences hold:

C0(i; j; a) = a

Cq(i; j; a) = �Cq(i; j � 1; a) +

X
s=1;:::;i

[t(P1[s]:p; P2[j]:p)�
i�s+2 � Cq�1(s� 1; j � 1; a +K(P1[s]; P2[j]))]

Kc;q(i; j) = �Kc;q(i; j � 1) +

X
s=1;:::;i

[t(P1[s]:p; P2[j]:p)�
2 � Cq�1(s� 1; j � 1;K(P1[s]; P2[j]))]

Kc =
X

q=1;:::;min(m;n)

Kc;q(m;n)

The above recurrences do not allow, however, for an eÆcient algorithm in computing Kc due

to presence of real-valued parameter a.

In order to obtain an eÆcient dynamic programming algorithm, we rewrite Cq(i; j; a) as follows:

Cq(i; j; a) = aCq(i; j) +
X

r=1;:::;q

Cq;r(i; j)

where

Cq(i; j) =
X

i�f1;:::;ig

X
j�f1;:::;jg
l(i)=l(j)=q

�d(i)�d(j)T (i; j)
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and

Cq;r(i; j) =

8>>>>><
>>>>>:

X
i1=1;:::;i
j1=1;:::;j

[t(P1[i1]:p;P2[j1]:p)�i�i1+j�j1+2Cq�1;r(i1�1;j1�1)]; if q 6= r

X
i1=1;:::;i
j1=1;:::;j

[t(P1[i1]:p;P2[j1]:p)�i�i1+j�j1+2K(P1[i1];P2[j1])Cq�1(i1�1;j1�1)]; if q = r

Observe that Cq(i; j) computes the subsequence kernel of [75] (with matching nodes) for pre�xes

of P1 and P2. Hence, we can use the result of [75] to give O(qij) for Cq(i; j) computation. Denote

C 0
q(i; j) =

X
s=1;:::;i

t(P1[s]:p; P2[j]:p)�
i�s+2Cq�1(s� 1; j � 1)

Then

Cq(i; j) = �Cq(i; j � 1) + C 0
q(i; j)

and

C 0
q(i; j) = t(P1[i]; P2[j])�

2Cq�1(i� 1; j � 1) + �C 0
q(i; j � 1)

Using the same trick for Cq;r(i; j), we get

Cq;r(i; j) = �Cq;r(i; j � 1) + C 0
q;r(i; j)

where

C 0
q;r(i; j) =

8><
>:
�C 0

q;r(i; j � 1) + t(P1[i]; P2[j])�
2Cq�1;r(i� 1; j � 1); if q 6= r

�C 0
q;r(i; j � 1) + t(P1[i]; P2[j])�

2K(P1[i]; P2[j])Cq�1(i� 1; j � 1); o.w.

That completes our list of recurrences of computing Kq(i; j; a). The boundary conditions are

Kc;q(i; j) = 0; if q > min(i; j)

Cq(i; j) = 0; if q > min(i; j)

C0(i; j) = 1;

C 0
q(i; j) = 0; if q > min(i; j)
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Cq;r(i; j) = 0; if q > min(i; j) or q < r

C 0
q;r(i; j) = 0; if q > min(i; j) or q < r

5.4 Experiments

In this section, we apply kernel methods to extracting two types of relations from text:

person-affiliation and organization-location.

A person and an organization are part of the person-affiliation relation, if the person is

a member of or employed by organization. A company founder, for example, is de�ned not to be

aÆliated with the company (unless, it is stated that (s)he also happens to be a company employee).

A organization and a location are part of the organization-location relation, if the

organization's headquarters is at the location. Hence, if a single division of a company is located

in a particular city, the company is not necessarily located in the city.

The nuances in the above relation de�nitions make the extraction problem more diÆcult, but

they also allow to make �ne-grained distinctions between relationships that connect entities in text.

5.4.1 Experimental Methodology

The (text) corpus for our experiments comprises 200 news articles from di�erent news agencies

and publications (Associated Press, Wall Street Journal, Washington Post, Los Angeles Times,

Philadelphia Inquirer).

We used the existing shallow parsing system to generate the shallow parses for the news articles.

We generated relation examples from the shallow parses for both relations, as described in Sec-

tion 5.2. That is, for the person-affiliation relation, a relation example was generated for every

(person,organization) pair of entities that appeared in the same sentence. The relation example

was labeled as positive, if the person was aÆliated the organization, and it was labeled as neg-

ative otherwise. We again note that no coreference information was used in generating examples.

The resulting examples' statistics are shown in Table 5.1.

For each relation, we randomly split the set of examples into a training set (60% of the examples)

and a testing set (40% of the examples). We obtained the models by running learning algorithms on
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person-affiliation org-location

#positive 1262 506
#negative 2262 1409

#total 3524 1915

Table 5.1: Number of examples for relations.

the training set, testing the models on the test set, and computing performance measures. In order

to get stable performance estimates, we averaged performance results over 10 random train/test

splits. For each of the algorithms, we also computed the learning curves by gradually increasing

the number of examples in the training set and observing performance change on the test set. The

learning curves were also averaged over 10 random train/test splits.

For extraction problems, the system performance is usually reected using the performance

measures of information retrieval: precision, recall, and F-measure [106]. Precision is the ratio of

the number of correctly predicted positive examples to the number predicted positive examples.

Recall is the ratio of the number of correctly predicted positive examples to the number of true

positive examples. F-measure (Fm) combines precision and recall as follows:

Fm =
2 � precision � recall
(precision+ recall)

We report precision, recall, and F-measure for each experiment. We also present F-measure learning

curves for each learning curve experiment.

In the experiments below, we present the performance of kernel-based algorithms for relation

extraction in conjunction with that of feature-based algorithms. Note that the set of features used

by the feature-based learning algorithms (presented in Appendix 6.3) is not the same as the set of

implicit features employed by kernel-based learning algorithms. The features used correspond to

small subtrees of the shallow parse representations of relation examples, while the kernel formulation

can take advantage of subtrees of any size. Therefore, in comparing the performance of kernel-based

and feature-based methods, we seek to evaluate how much advantage a kernel formulation can give

us with respect to a less expressive feature formulation.

We now describe the experimental setup of the algorithms used in evaluation.

94



5.4.2 Kernel Methods Con�guration

We evaluated two kernel learning algorithms: Support Vector Machine (SVM) [33] and Voted

Perceptron [44]. For SVM, we used the SVMLight [56] implementation of the algorithm, with

custom kernels incorporated therein. We implemented the Voted Perceptron algorithm as described

in [44].

We implemented both contiguous and sparse subtree kernels and incorporated them in the kernel

learning algorithms. For both kernels, � was set to 0.5. The only domain speci�c information in

the two kernels was encapsulated by the matching t(�; �) and similarity k(�; �) functions on nodes,

as de�ned in Section 5.3.

We should emphasize that the above de�nitions of t and k are the only domain-speci�c infor-

mation that the kernel methods use. Certainly, the kernel design is somewhat inuenced by the

problem of relation extraction, but the kernels can be used for other (not necessarily text-related)

problems as well, if the functions t and k are de�ned di�erently.

We also normalized the computed kernels before their use within the algorithms. The nor-

malization corresponds to the standard unit norm normalization of examples in the feature space

corresponding to the kernel space [35]:

K(P1; P2) =
K(P1; P2)p

K(P1; P1)K(P2; P2)

For both SVMLight and Voted Perceptron, we used their standard con�gurations (e.g., we did

not optimize the value of C that interpolates the training error and regularization cost for SVM,

via cross-validation). For Voted Perceptron, we performed two passes over the training set.

5.4.3 Linear Methods Con�guration

We evaluated three feature-based algorithms for learning linear discriminant functions: Naive-

Bayes, Winnow, and SVM.

We designed features for the relation extraction problem. The features are conjunctions of

conditions de�ned over relation example nodes. The features are listed in Appendix 6.3.

Again, we use the standard con�guration for both algorithms: for Naive Bayes we employed
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Recall Precision F-measure

Naive Bayes 75.59 91.88 82.93
Winnow 80.87 88.42 84.46
SVM (feature-based) 76.21 91.67 83.22
Voted Perceptron (contiguous) 79.58 89.74 84.34
SVM (contiguous) 79.78 89.9 84.52
Voted Perceptron (sparse) 81.62 90.05 85.61
SVM (sparse) 82.73 91.32 86.8

Table 5.2: Person-affiliation performance (in percentage points)

Recall Precision F-measure

Naive Bayes 71.94 90.40 80.04
Winnow 75.14 85.02 79.71
SVM (feature-based) 70.32 88.18 78.17
Voted Perceptron (contiguous) 64.43 92.85 76.02
SVM (contiguous) 71.43 92.03 80.39
Voted Perceptron (sparse) 71 91.9 80.05
SVM (sparse) 76.33 91.78 83.3

Table 5.3: Organization-location performance (in percentage points)

add-one smoothing [55]; for Winnow, learning rate (promotion parameter) was set to 1.1 and the

number of training set passes to 2. For SVM, we used the linear kernel and set the regularization

parameter (C) to 1.

5.4.4 Experimental Results

The performance results for person-affiliation and organization-location are shown in Ta-

ble 5.2 and Table 5.3, respectively.

The results indicate that kernel methods exhibit good performance in relation extraction. The

results should be taken with caution though, for kernel-based and feature-based learning algorithms

employ very di�erent representations of examples. Indeed, kernel methods work (implicitly) in far

richer feature spaces than those used by feature-based algorithms. It is therefore not surprising that

their performance is generally superior. If such rich feature spaces could be explicitly generated

and employed within feature-based algorithms, the performance picture could be di�erent.

In order to answer the question whether such rich feature spaces could be generated eÆciently,

we attempted to generate the features corresponding to sparse subtree kernels. The features rep-
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resent all possible relation example subtrees, in which subsets of nodes are instantiated with the

values of their Text/Head attributes. The generation process led to a combinatorial explosion in

the number of features that prevented successful completion of the experiments.2 Therefore, the

equivalent feature-based representation of sparse subtree kernels is not feasible, at least with limited

computational resources. It is though an open issue whether a less expressive yet more tractable

feature representation would be suÆcient to bridge the gap between the two approaches.

One practical problem in applying kernel methods to NLP is their speed. Training kernel

classi�ers, especially with custom kernels, takes an order of magnitude more time compared to

the training time for feature classi�ers. Therefore, kernel methods are more diÆcult to tune.

Moreover, we found out that tuning of kernel algorithms is a complicated process by itself, for

slight modi�cation in the kernel implementation and/or parameters may lead to major changes in

performance.

Kernel classi�ers are also much slower compared to feature classi�ers.3 Indeed, an application

of a kernel classi�er requires evaluation of numerous kernels whose computational complexity may

be too high for practical purposes. Many low level problems in natural language processing involve

very large corpora with tens and hundreds of thousands of examples. Even if kernel classi�ers

only depend on a small subset of the examples (for instance, support vectors of SVM), the need to

evaluate thousands of complex kernels during the classi�er application may render kernel methods

inappropriate for various practical settings. Therefore, there is a pressing need to develop algorithms

that combine the advantages of kernel methods with practical constraints that require eÆcient

application of the classi�ers learned.

Sparse vs. Contiguous: Learning Curves

The Figure 5.5 depicts F-measure learning curves for for kernel-based algorithms algorithms with

di�erent kernels.

The learning curves indicate that the sparse subtree kernel is far superior to the contiguous

subtree kernel. From the enumeration standpoint, the subtree kernels implicitly enumerate the

exponential number of children subsequences of a given parent, while the contiguous kernels essen-

2The desktop computer used for the experiments (1.2GHz Pentium III, 512Mb) ran out of memory.
3In our experiments, features classi�ers were nearly 10 times faster than kernel classi�ers.
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Figure 5.5: Learning curve (of F-measure) for the person-affiliation relation (on the left) and
org-location relation (on the right), comparing kernel-based learning algorithms with di�erent
kernels.

tially operate with n-grams, whose number is just quadratic in a children sequence length. This

exponential gap between the sparse and contiguous kernels leads to a signi�cant performance im-

provement. The result is promising, for it showcases that it is possible to (implicitly) consider

an exponential number of features while paying just a low polynomial price, with a signi�cant

performance boost.

5.5 Discussion

Kernel-based methods are an elegant approach for learning in rich structural domains. Our results

show that, for relation extraction, the methods perform very well, while allowing for minimal

ingestion of problem knowledge.

Our work follows recent applications of kernel methods to natural language parsing [31] and

text categorization [75]. The common theme in all the papers is that objects' structure can be

leveraged in a fairly eÆcient and statistically sound way.

The NLP domain is precisely the domain where the structural descriptions of objects (words,

phrases, sentences) can be exploited. While the prevalent n-grams approach to language modeling

imposes statistical and computational constraints, kernel-based language modeling may help eschew

the constraints. We hypothesize that the methods will require much fewer examples in achieving the

state of the art performance for a range of NLP problems than approaches based on probabilistic

98



modeling.

Design of kernels for structural domains is a very rich research area. An interesting direction

to pursue would be to use extensive work on distances de�ned on structural objects [101] in kernel

design. The distance-based methods have already found widespread application in bioinformatics

[39], and can be fruitfully extended to work in the NLP domain as well. [110] presents suÆcient

conditions for a Pair Hidden Markov Model (which is a probabilistic version of edit distance) to

constitute a kernel. More generally, the work of [48] makes it possible to use any distance measure

to embed objects (and de�ne a dot product) in a pseudo-euclidean space. Incidentally, SVM can be

adapted for the pseudo-euclidean representations [50, 90], hence, applicable in structural domains,

where natural distance functions exist.

5.6 Relation Extraction and Coreference Resolution

In order for the developed algorithms for relation extraction to be deployed within an information

extraction system, the decisions output by relation classi�ers have to be combined with other

information. In particular, coreference information is crucial for determining whether two extracted

relations correspond to the same relation between two real word entities. For example, let the

relation person-affiliation(\He","WorldCom") be extracted from the sentence \He works for

WorldCom", and the relation person-affiliation(\John Smith","the company") be extracted

from the sentence \John Smith is the chief scientist of the company". If there is coreference

information coreferring \He" with \John Smith" and coreferring \the company" with \WorldCom",

then the two extracted relations can be merged thereby producing a more informative relation

between the two names: person-affiliation(\John Smith","WorldCom").

In general, exploring the interplay between coreference resolution and relation extraction is a

viable direction for further research in information extraction.
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Chapter 6

Putting It All Together: a Trainable

Information Extraction System

In the preceding chapters, we presented a number of algorithms for part of speech tagging, en-

tity extraction, coreference resolution, and relation extraction. This chapter describes how the

algorithms and components �t together in the design of a complete information extraction system.

6.1 Training Information Extraction System

The training process of the information extraction (IE) system is shown in Figure 6.1. The process

assumes availability of documents with the following labeling information necessary for di�erent ex-

traction subtasks: part of speech tagging, entity information, coreference information, and relation

information.

Figure 6.1: Training Information Extraction System
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The labeled documents are employed within the example generation modules to generate exam-

ples for extraction subtasks. For each of the extraction subtasks, the relevant example generator

focuses on the corresponding portion of labeled documents and uses the document and label in-

formation to compute relevant features and compile them into examples, as we described in the

preceding chapters. Thus, the output of the example generation modules is a collection of labeled

datasets, where each dataset contains a set of labeled examples for a particular extraction subtask.

Each of the extraction subtasks corresponds to a particular classi�er. We derive the classi�ers

by applying learning algorithms to the generated datasets. Di�erent learning algorithms may

be applied to di�erent datasets, thereby leading to di�erent types of classi�ers used for di�erent

extraction subtasks. Indeed, the algorithm speci�cation is de�ned declaratively outside of the

system. The declaration allows for easy manipulation of algorithm parameters and greatly facilitates

learning experiments.

The learned classi�ers are saved externally to be loaded during the extraction system applica-

tion.

6.2 Applying Information Extraction System

The information extraction process is shown in Figure 6.2.

Figure 6.2: Applying Information Extraction System

The process comprises a sequence of tasks. Output of one task is considered as input for the

following task, with the exception of entity classi�cation and coreference resolution that can be

101



conducted simultaneously. The learned classi�ers are loaded from outside the extraction system

and used to perform the required classi�cation tasks within the corresponding modules.

The architecture of the system allows for classi�er transparency. That is, new classi�ers can be

easily \plugged-in" in the extraction system at run time.

The extraction results consists of entities, their equivalence classes, and relations that have been

discovered by the system. The results are represented in the XML form and can be stored in the

database, if necessary.

6.3 Final Remarks

We presented a variety of machine learning techniques and explained how they can be e�ectively

applied to the problem of information extraction.

We experimentally evaluated the SNOW system for part of speech tagging, developed novel

decoding algorithms for entity classi�cation and coreference resolution, and introduced the classi�-

cation methodology and designed novel kernels for relation extraction. In our work, we were guided

by the prevailing philosophy that such a complex and multi-task problem as information extraction

can be reasonably segmented into a number of simple learning subproblems. Di�erent properties of

the learning problems give rise to di�erent learning techniques being appropriate for their solution.

It was our goal to select and extend the suitable learning techniques for their subsequent application

to the extraction subproblems.

For complex learning tasks, the process of applying learned classi�ers leads to interesting infer-

ence problems, when the classi�ers are to be used in conjunction with constraints governing their

application. We studied an example of such constraints in coreference resolution and entity clas-

si�cation. We foresee further advances in developing inference mechanisms that involve a broader

range of extraction subproblems, classi�ers, and constraints.

In general, natural language processing represents an extremely fertile area for advancing the

state of the art of machine learning research. In particular, applications of machine learning to

information extraction require tackling new challenges in dealing with sparse data, noise, and

complex dependencies. Furthermore, classi�er application leads to complex inference problems

that are only beginning to be addressed in both learning theory and practice.
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We believe that our work will be a valuable contribution to understanding the phenomenon of

learning in natural language, and the ability of arti�cial systems to reproduce the phenomenon.
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Features for Relation Extraction

In the process of feature engineering, we found the concept of node depth (in a relation example)

to be very useful. The depth of a node P1:p (denoted depth(P1:p)) within a relation example P is

the depth of P1 in the tree of P . We also de�ned a derived attribute TypeTag as follows:

P:TypeTag =

8><
>:

P:Type; if P:Type 6= �

P:Tag; if P:Type = �

The features are itemized below (the lowercase variables text, typeTag, role, and depth are instan-

tiated with speci�c values for the corresponding attributes).

� For every node P1:p in a relation example, add the following features:

{ depth(P1:p) = depth ^ P1:T ypeTag = typeTag ^ P1:Role = role

{ depth(P1:p) = depth ^ P1:T ext = text ^ P1:Role = role

{ depth(P1:p) = depth ^ P1:Tag = tag ^ P1:Role = role

� For every pair of nodes P1:p, P2:p in a relation example, such that P1 is the parent of P2, add

the following features:

{ depth(P1:p) = depth^P1:T ypeTag = typeTag^P1:Role = role^ depth(P2:p) = depth^
P2:T ypeTag = typeTag ^ P2:Role = role ^ parent

{ depth(P1:p) = depth^P1:T ypeTag = typeTag^P1:Role = role^ depth(P2:p) = depth^
P2:T ext = text ^ P2:Role = role ^ parent

{ depth(P1:p) = depth ^ P1:T ext = text ^ P1:Role = role ^ depth(P2:p) = depth ^
P2:T ypeTag = typeTag ^ P2:Role = role ^ parent
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{ depth(P1:p) = depth ^ P1:T ypeTag = text ^ P1:Role = role ^ depth(P2:p) = depth ^
P2:T ext = text ^ P2:Role = role ^ parent

� For every pair of nodes P1:p, P2:p in a relation example, with the same parent P , such that

P2 follows P1 in the P 's children list, add the following features:

{ depth(P1:p) = depth^P1:T ypeTag = typeTag^P1:Role = role^ depth(P2:p) = depth^
P2:T ypeTag = typeTag ^ P2:Role = role ^ sibling

{ depth(P1:p) = depth^P1:T ypeTag = typeTag^P1:Role = role^ depth(P2:p) = depth^
P2:T ext = text ^ P2:Role = role ^ sibling

{ depth(P1:p) = depth ^ P1:T ext = text ^ P1:Role = role ^ depth(P2:p) = depth ^
P2:T ypeTag = typeTag ^ P2:Role = role ^ sibling

{ depth(P1:p) = depth ^ P1:T ypeTag = text ^ P1:Role = role ^ depth(P2:p) = depth ^
P2:T ext = text ^ P2:Role = role ^ sibling

� For every triple of nodes P1:p, P2:p, P3:p in a relation example, with the same parent P , such

that P2 follows P1, and P3 follows P2 in the P 's children list, add the following features:

{ depth(P1:p) = depth^P1:T ypeTag = typeTag^P1:Role = role^ depth(P2:p) = depth^
P2:T ypeTag = typeTag ^ P2:Role = role ^ depth(P3:p) = depth ^ P3:T ext = text ^
P3:Role = role ^ siblings

{ depth(P1:p) = depth^P1:T ypeTag = typeTag^P1:Role = role^ depth(P2:p) = depth^
P2:T ext = text ^ P2:Role = role ^ depth(P3:p) = depth ^ P3:T ypeTag = typeTag ^
P3:Role = role ^ siblings

{ depth(P1:p) = depth ^ P1:T ext = text ^ P1:Role = role ^ depth(P2:p) = depth ^
P2:T ypeTag = typeTag ^ P2:Role = role ^ depth(P3:p) = depth ^ P3:T ypeTag =

typeTag ^ P3:Role = role ^ siblings
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