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Abstract— This work presents an approach to generate 3D 

sound by using a set of artificial neural networks (ANNs). The 

proposed method is capable to reconstruct the Head Related 

Impulse Responses (HRIRs) by means of spatial interpolation. In 

order to cover the whole reception auditory space, without 

increasing the network complexity, a structure of multiple 

networks (set), each one modeling a specific area was adopted. The 

three main factors that influence the model accuracy --- the 

network's architecture, the reception area's aperture angles and 

the HRIR's time shifts --- are investigated and an optimal setup is 

presented. The computational effort to process the ANN is shown 

to be slightly smaller than traditional interpolation methods and 

all error calculation reached very low levels, validating the method 

to be used in the design of a 3D sound emitter capable of provide 

navigation aid for the visually impaired. Two approaches are 

presented in order to detect obstacles, one which makes use of 

computational vision techniques and other with laser proximity 

sensors. 

 

Index Terms—Acoustical Virtual Reality, Auralization, 

Artificial Neural Networks, HRIR Interpolation, ETA devices. 

 

Resumen— Este trabajo presenta un abordaje para generar 

sonido 3D utilizando un conjunto de redes neuronales artificiales 

(RNAs). El método propuesto es capaz de reconstruir la 

Respuestas Impulsivas Asociadas a Cabeza Humana (HRIRs) 

mediante interpolación espacial. Con el fin de cubrir todo el 

espacio de recepción auditivo, sin aumentar la complejidad de la 

red, fue adoptada una estructura de múltiples redes (conjunto), 

cada una modelando un área específica. Los tres factores 

principales que influyen en la exactitud del modelo --- la 

arquitectura de la red, ángulos de apertura de la zona de recepción 

y los cambios de tiempo del HRIR --- son investigados y es 

presentada una configuración óptima. El esfuerzo computacional 

necesario para procesar la RNA muestra ser menor que métodos 

tradicionales de interpolación y todos los cálculos de error 

alcanzan niveles muy bajos, validando el método para ser utilizado 

en el diseño de un emisor de sonido 3D capaz de proporcionar 

asistencia en la navegación de discapacitados visuales. Dos 

enfoques se presentan con el fin de detectar obstáculos, uno que 
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hace uso de técnicas de visión computacional y otro con sensores 

de proximidad de láser. 

  

Palabras clave— Realidad Virtual Acústica, Aurilización, Redes 

Neuronales Artificiales, Interpolación de HRIR, Dispositivos ETA. 

I. INTRODUCTION 

  

It is well known that navigation could represent a dangerous 

activity for the visually impaired. Nonetheless, the recent 

development of ETA devices (Electronic Travel Aid) provides 

means to detect obstacles (position, distance or even size). In 

such a case, the human hearing attribute can be one of the best 

ways to communicate a save path to walk avoiding obstacles. 

In this sense, virtual acoustic reality is the most powerful tool 

to consider for generating a 3D sound emitter. 

Nowadays, acoustical simulation encompasses not only the 

assessment of acoustical parameters, such as levels and 

reverberation times, but accounts with a powerful tool: The 

auralization. It consists in generating the sound heard by a 

subject when immersed into a simulated environment, which 

can be a simple room, a somewhat complex theater, an 

industrial plant or even an urban space. This sound must be 

reproduced to be heard by a human being, in an environment 

free from sound reflections, i.e, in an anechoic chamber with a 

cross-talk cancellation system --- which is unavailable for most 

users --- or through an equalized headphone set. 

 

The sound that arrives at the ears entrance is altered due to 

diffraction and absorption, among other phenomena [1], which 

is highly dependent on the wavefront incidence direction. The 

human head and torso constitute natural acoustic filters from 

every source position to the ears entrance. Such filters can be 

modeled as Finite Impulse Response (FIR) systems, known as 

Head-Related Impulse Responses (HRIRs). They are 

responsible to confer the 3D sound sensation in virtual 
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environments and to provide directional cues for human ability 

to distinguish the sound source locations [2]. 

 

Considering that auralization is a virtual reality process and 

that HRIR modeling is an important part of such systems, 

computational load is always a subject of concern. The most 

common solution consists in reducing the number of 

mathematical operations and/or simplifying the models 

involved in the auralization process. Nevertheless, such 

approach may cause a significant reduction of the 3D sound 

sensation and therefore compromise the receiver ability to 

recognize the sound source's direction. 

 

Although, on real or simulated environments, the sound 

wavefront may come from anywhere and, even in the most 

complete HRIR databases, these functions are measured for 

discrete spatial locations.  Such spatial discreteness leads to 

undesired audible effects, mainly when fast sound source 

movements are reproduced, producing ‘clicks’ or subtle 

changes [3]. In this case, two solutions are available: To round 

off the sound direction to the closest measured one; or to 

interpolate the closest functions to achieve a better estimative 

of such direction characteristics. Several techniques have been 

presented for HRIR interpolation [4, 5, 6, 7] while other were 

developed for continuous HRIR [8, 9, 10]. 

 

In a previous work, a method based on Artificial Neural 

Networks (ANNs) was introduced for interpolating HRIRs 

[11]. In that model an ANN committee is responsible for several 

reception areas around the listener, where each network models 

the functions (HRIRs) inside those areas. 

 

The ANN main task is to synthesize an interpolated HRIR, 

receiving as input a vector with the direction of the desired 

sound source. This is accomplished thanks to a training 

procedure, in which several target functions are generated by 

using the bilinear interpolation technique (as shown in Fig. 1) 

and repeatedly presented to the network for learning purposes. 

In this approach, the interpolated (target) function is given by 

weighted sum of four known HRIR (measured ones): 

 

HRIR̂(𝑛) = ∑ 𝛼𝑖HRIR𝑖(𝑛)4
𝑖=1 ,  (1) 

 

where 𝛼𝑖 are the weights for the measured HRIR𝑖(𝑛) [12]. 

 
Figure 1: Bilinear interpolation scheme for a given direction coordinate i. 

 

It is worth mention that the auralization procedure also 

involves a convolution product between an interpolated HRIR 

(corresponding to the sound source position) and an arbitrary 

anechoic signal. Nevertheless, this interpolation task constitutes 

an optimization that will facilitate the implementation of a 3D 

sound emitter, a constitutive part of the electronic travel aid 

(ETA) device for the visually impaired that is currently being 

developed.  

 

In this work, the procedure to determine the optimal 

architecture and the reception area size, is presented. First, the 

model is presented, then the different steps to setup and to train 

the ANN to achieve the HRIRs interpolation capability are 

described. Then, the model performance is evaluated according 

to different error criteria. Finally, two approaches are presented 

in order to provide means to identify obstacles in which virtual 

sound sources will be simulated. 

 

II. MODEL DESCRIPTION 

 

An ANN is consisted by a set of simple processing elements, 

called artificial neurons, which have mutual influence behavior 

via a network of excitatory or inhibitory weights [13]. In order 

to define the optimal values of these synaptical weights 

(randomly initiated at first), a common supervised learning 

procedure is used. In such training procedure, which is called 

backpropagation [14], the ANN’s weights are adjusted 

proportionally to their contribution to the observed error 

between the network output and the desired outputs (targets). 

 

In this case, a feed-forward multi-layer ANN [15] was 

chosen to implement the HRIR interpolator system, due to the 

fact that the multi-layer feature provides means to optimize the 

ANN response by adjusting the network architecture (number 

of layers and number of neurons in each layer). 

 

The network architecture, their number of inputs, outputs and 

internal layers depend on the data nature of excitation and 

output. Working as an interpolator, the input is the sound source 

direction, represented in a spherical coordinate system by two 

angular variables: The azimuth (ϕ) and the elevation (θ) angles. 

The desired outputs are the HRIR coefficients (time samples), 

whose targets are obtained from bilinear interpolation 

technique, as shown in Fig. 1. 

 

The number of samples originally defined by the 

measurements conducted by Gardner and Martin [16] was 512 

at a sampling rate of 44.1 kHz. However, most part of these 

samples tends to zero, due to the natural decay of the HRIR 

functions. Therefore, the most significant information is 

contained, approximately, in the first 100 samples [17]. 

Therefore, the number of samples chosen for the output 

functions was 128, since it facilitates any post signal processing 

with “power of two”' Fast Fourier Transform (FFT) algorithm. 
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The error used for synaptical weight optimization during the 

ANN's training is the mean squared error (MSE) between the 

target functions and the network output. The network 

architecture has an input vector with 2 elements (azimuth and 

elevation), one hidden layer with L neurons and the output layer 

with 128 neurons, as shown in Fig. 2. 

 

 
Figure 2: Network architecture for HRIR interpolation. 

 

In order to improve the system performance, the listener 

surrounding space is split in several areas, as shown in Fig. 3. 

The subdivision area criteria is based on the tradeoff between 

network complexity and modeling error. Each region 

encapsulates several HRIRs, whose similarity depends on the 

aperture angle, i.e., wider regions present less correlated 

functions, especially for incidence direction where the sound 

suffers higher diffraction effects. 

 
Figure 3: Network operation area limited in azimuth by ϕ and ϕ+Δϕ and in 

elevation by θ and θ+Δθ. 

 

A similar research [18] uses just one network to cover a wide 

reception area. Although a complex architecture was used, the 

errors still were not small enough for an auralization 

processing. Therefore, it was assumed that smaller areas will 

facilitate the training procedure (producing smaller errors) and 

guaranteeing simple network architectures (single hidden layer 

with a few neurons for fast processing speed) due to the 

similarity of the functions involved. The numerical results will 

show if this assumption is correct. 

 

Since each target function comes from an interpolation 

procedure whose input can be any arbitrary direction, it is 

possible to generate as many input/target pairs as needed. In 

order to cover the entire reception area, a grid distribution was 

applied to establish the position of the training parameters. The 

positions of the validation parameters were randomly chosen. 

All this taking care not to produce a pair where exist a measured 

HRIR, as shown in Fig. 4. The measured functions will be used 

later in order to test the accuracy of the RNA model. 

 

 
Figure 4: Input/target pairs distribution inside the reception area. 

III. CRITERIA FOR PERFORMANCE EVALUATION  

 

The model performance, including training error and target-

output (mis)matching, is governed mainly by the following 

factors: 

a. Number of neurons in the hidden layer: It defines 

the specificity in which a network will respond to 

training. An over-dimensioned number of neurons, 

besides demanding more computational effort to be 

processed, may lead the network to learn 

unimportant details of the training parameters, 

losing its generalization capacity for new 

parameters (overfitting). On the other hand, too few 

neurons in the hidden layer may decrease the 

network capacity to learn and, therefore, lose the 

output resolution. 

b. Reception area aperture: When working with 

areas, the similarity of the HRIR inside such areas 

may contribute or degradate the network 

performance, according to the spectral 

characteristics of HRTFs, i.e., magnitude and phase, 

since the training is done in the time domain. Inside 

small areas there are only a few measured functions, 

which cause high similarity in the target functions, 

since they are derived from interpolation of very 

close locations. Besides, closer functions (HRIRs) 

present very small delays and highly correlated 

spectrum. On the other hand, wider areas, such as 

90°, 180° or even 360° of azimuth, will include 

targets with very low similarity, both in spectrum 

and delays. Such differences require higher network 

complexity to deal with such variety of data. 

Therefore, the investigation of the aperture areas is 

a key element for the success of the proposed 

model. However, such similarity is not uniform 

around the listener space. It depends on the sound 

source location and may lead to a non-uniform 

space discretization. 

c. Time shifts: The HRIRs present initial delays that 
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depend on the position of sound source relative to 

the head (ears). These time-shifts are caused by the 

distance between the sound source and the ears 

entrance. The presence of such delays may increase 

the network performance if the functions were 

highly correlated in terms of spectral characteristics 

(magnitude and/or phase). This occurs generally for 

smaller areas. However, for wider areas, these 

delays may decrease the network ability to learn 

patterns, since there are high spectral fluctuation 

between input samples and the time-shift are also 

larger due to the possibility of sources located far 

from each other. Therefore, for such situation, by 

removing these initial time delay, a more 

homogeneous set of data may aid the training 

process. 

 

Therefore, it was observed that the influence of combined 

effects of the above parameters requires a more detailed 

analysis. As stated before, the MSE (training error) is not 

suitable for correctly evaluating the network performance under 

the human hearing point of view. In this section, one error 

criteria is presented in order to evaluate the accuracy of the 

proposed interpolation system. 

 

 

A. Mean Magnitude Absolute Error (MAE) 

 

The Mean Magnitude Absolute Error is a difference measure 

between the magnitudes from target and output functions. It is 

a scalar computed for a given direction. Equation (2) presents 

the average of the absolute differences between magnitudes.  

 

MAE(𝜃, 𝜙) = 10 log (
1

Ω
∑ |M𝜃,𝜙(𝜔) − M̂𝜃,𝜙(𝜔)|Ω

𝜔=1 ),       (2) 

 

where M𝜃,𝜙(𝜔) is the magnitude of the frequency response 

H𝜃,𝜙(𝜔) of the target function, given by 

 

M𝜃,𝜙(𝜔) = |H𝜃,𝜙(𝜔)|,                                (3) 

 

while M̂𝜃,𝜙(𝜔) is the same for the output function for a given 

direction (𝜃, 𝜙) and Ω is the number of discrete frequency bins 

used in the FFT. 

 

IV. MODEL PERFORMANCE ANALYSIS  

 

In order to determine the system behavior as a function of the 

mentioned parameters, several networks were trained for 

different configurations. Networks were trained from aperture 

angles varying from 5° × 5° (𝛥𝜙 × 𝛥𝜃, azimuth and elevation) 

to 40° × 40°, covering the whole auditory listener space. For 

each reception area's size (a network's operation area), the train 

parameters distribution density was kept constant. 

 

Also, for every trained area, two situations were considered: 

HRIR functions with time-shifts (original measured delays) and 

functions whose delays were removed. In such case, the delay 

were removed according to the assumption of a spherical shape 

head, where the distance D𝜃,𝜙 traveled by the sound wave were 

calculated considering the duplex theory [19], stated below. 

 

D𝜃,𝜙 = 2𝑟 cos−1(cos(2𝜋𝜃) cos(2𝜋|𝜙 − 𝑎|)),                        (4) 

 

where 𝜃 and 𝜙 are the elevation and azimuth of the considered 

HRIR, r is the radius of the sphere and a is the azimuth position 

of the considered ear (90° for the right ear and 270° for the left 

one). 

 

 A comparison between the original HRIR and its time-shift 

removed version can be seen in Fig. 5 for the horizontal plane, 

covering all azimuth angles. 

 

From Fig. 5 one may observe that the initial energy is 

concentrated at approximately the same time, except for 

contralateral sound source locations (about 270°), where there 

is not a well-defined starting energy point, due to the hear 

barrier and torso diffraction effects. 

 

 
(a) 
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(b) 

 

Figure 5: Comparison of delay removal for a fixed elevation in 𝜃 = 0° and 

azimuth variations of 1° from 0° to 360°: (a) Original HRIRs (b) Delayless 

HRIR versions. 

 

 

A. Overall averaged error  

 

As mentioned, the MSE is not suitable for evaluating the 

interpolation quality. The HRIR energy varies according to the 

sound source location, which may present lower errors for 

functions with lower energy levels. In this case, the mismatch 

between target and output can be large, but the MSE may be 

smaller than when those functions have higher energy levels 

and smaller differences. 

 

The performance of each network (𝑁𝑝) can be measured by 

averaging the MAE for representative directions inside the 

operating area. 

 

𝑁𝑝 =
1

𝑆
∑ MAE𝑠

𝑆
𝑠=1 ,                                           (4) 

 

where S is the total number of considered directions, s is a 

sequential index which represents an individual direction. The 

considered functions for this calculation had fixed an elevation 

(0°) and azimuth steps of one degree (Δϕ  = 1°), i.e. the HRIRs 

computed in the horizontal plane in which the human resolution 

is more accurate. With this, the optimum number of neurons in 

the hidden layer can be determined by increasing that number 

from 2 to 10, for both cases: with and without delays. The 

results of simulations are shown in Fig. 6, where the overall 

average errors MAE is presented and compared for several 

aperture angles and targets.

 

 

 
Figure 6: MAE overall average results for different reception areas 

 

 

Figure 6 presents the MAE for two situations: with original 

initial delays and when delays were removed. Solid lines 

represent simulation with original delays. From this figure, one 

observes that for both metrics the lower errors were achieved 

by networks with smaller areas. Increasing the areas the error 

also increases. The smallest error is obtained for targets with 

original delays. When delays were removed from targets of the 

networks with the smallest areas (dashed lines) the error 

becomes 2-3 dB higher. On the other hand, as the aperture size 

increase, the difference between the errors with and without 

delays decreases. The approximate size when the errors are 

similar occurs for networks between 20° × 20°  and 30° × 30°. 

 

From this error behavior, one may conclude that if the 

training is performed with smaller areas, the original delays 

should be preserved, since they contribute with slight time 

differences in highly correlated targets. For larger areas these 

delays does not contribute to the learning process. The 

functions already present variations and lower correlation than 

when small areas are used. Therefore, by removing such delays, 

the error for larger areas decreases. 

 

Another conclusion that can be extracted from Fig. 6 is 

related to the number of neurons in the hidden layer. It is 

observed that the best performance is found when L=4 is used, 
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for a 5° × 5° working area and preserving the original delays of 

the HRIRs. The overall behavior of networks with 5° × 5° with 

original delays is almost flat and presented variation smaller 

than 1 dB. Therefore, for such small areas the number of 

neurons in the hidden layer has a very slight influence in the 

global behavior. 

 

Errors at higher frequencies may increase objective error 

metrics, but will not present significant disturbance in the 

perception of the sound source location [2]. The same occurs 

for very low frequencies, as stated by Fletcher and Munson in 

the Equal-loudness contours curves [20] and the ISO 226 

standard [21].  

V. NUMERICAL RESULTS 

 

In order to present few examples of the proposed 

interpolation scheme, focusing on specific directions instead of 

averages of several functions and errors, four measured HRIRs 

were chosen. From Fig. 7 to Fig. 10, it is presented in the five 

plots: 

a) time domain comparison between output and target; 

b) magnitude and (d) phase frequency response 

comparison; 

c) absolute errors in time (upper plot) and magnitude 

(lower plot). 

 

Such directions – elevation 𝜃 = 0° and azimuths 0°, 90°, 180° 

and 270° –  were chosen due to the their strong variation in 

spectra, energy and initial delays.  

 
Figure 7: Comparative results between ANN modeling and HRIR measurement: (a) Time domain. (b) Magnitude in the frequency domain. (c) Absolute error in 

time and frequency domains. (d) Phase in the frequency domain phase 
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Figure 8: Comparative results between ANN modeling and HRIR measurement: (a) Time domain. (b) Magnitude in the frequency domain. (c) Absolute error in 

time and frequency domains. (d) Phase in the frequency domain phase 

 

 

 

 
Figure 9: Comparative results between ANN modeling and HRIR measurement: (a) Time domain. (b) Magnitude in the frequency domain. (c) Absolute error in 

time and frequency domains. (d) Phase in the frequency domain phase 
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Figure 10: Comparative results between ANN modeling and HRIR measurement: (a) Time domain. (b) Magnitude in the frequency domain. (c) Absolute error in 

time and frequency domains. (d) Phase in the frequency domain phase 

 

 

 

A general comparison between the bilinear technique and the 

ANN model, for fixed elevation in 𝜃 = 0° and azimuth variations 

of 1°, are presented in the time domain in Fig. 11 and in the 

frequency domain (magnitude) in Fig. 12. No noticeable 

differences are observed. 

 

                                         (a)                                                                                                     (b) 

 
Figure 11: Time domain interpolation results with time shifts for fixed elevation in θ = 0° and azimuth variations of 1°: (a) Bilinear (b) ANN. 
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Figure 12: Frequency domain interpolation results with time shifts for fixed elevation in θ = 0° and azimuth variations of 1°: (a) Bilinear (b) ANN. 

 

VI. COMPUTATIONAL COST 

 

This section presents a comparison between the 

implementation costs of the typical bilinear interpolation 

method (BIM) and the ANN interpolation scheme presented in 

this work. The established parameter for such comparison is the 

required number of elementary arithmetic operations for each 

method. The ANN execution does not consider the training 

computational load, since there is no synaptical weights 

actualization during this phase. Therefore, the number of 

arithmetic operations 𝐴0 is given by 

 

𝐴0 = 2[𝑒 ∙ 𝑛1 + (∑ 𝑛𝑗 ∙ 𝑛𝑗+1
𝑚−1
𝑗=1 ) + 𝑛𝑚 ∙ 𝑠],          (5) 

 

 

 

where e is the input vector size, 𝑛𝑗 is number of neurons in the 

jth intermediate layer, m is the number of intermediate layers 

and s is the number of neurons in the output layer. 

 

The results presented in the previous section came from an 

ANN set with two elements input vector, one intermediate layer 

with 2 neurons and a 128 neurons output layer. The 

computational load for the BIM will cost 4 + (6 × 𝐿)  

multiplications and 6 + (3 × 𝐿)  additions. For 𝐿=128, the 

values indicated in the left column of Table 1 were obtained 

while the figures corresponding to the ANN, computed in Eq._5 

with 𝑠 = 128, m = 1, 𝑒 = 2 and three differents 𝑛𝑚 (2, 3, 4) are 

presented in the third, fourth and fifth columns of Table 1. By 

comparing these results it can be stated that the artificial neural 

network model presents a computational complexity reduction 

of almost 49.83%. 

VII. APPROACHES FOR OBSTACLE DETECTION 

 

Once the technique for interpolate HRIRs had proven its 

accuracy and computational convenience, the next step is to 

generate a 3D sound emitter. This can be achieved by 

implementing a convolution product between the ANN’s result 

and an arbitrary anechoic sound. This procedure can be found 

in the broadly majority of signal processing signals books. 

 

Nevertheless, in order to have means to apply this solution, 

the ANNs inside the 3D sound emitter must be feed with 

spherical coordinates that pin point the obstacle position. 

Therefore, a device with obstacle detection capabilities must be 

provided. Two approaches will be developed for this end.  

 

A. Computational Vision for obstacle detection and 

proximity  

 

Artificial vision is one of artificial intelligence techniques 

applied for many years for the detection of different types of 

objects. Therefore, it is proposed to develop an artificial vision 

system for the detection and classification of obstacles. In this 

sense, several techniques could be applied. For instance, Stereo 

Vision [22] allows the identification of objects and proximity 

in three-dimensional space. This information can be 

transformed in distance and position of the detected obstacles. 

In a second phase, an ANN could be used for classification and 

interpretation of relevant obstacles characteristics. Figure 13 

shows how obstacles can be represented in real time through 

computer vision. 

 

 
Figure 13. Representation of a computer vision technique for detection and 

classification of objects. 
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The phases for obstacle detection and classification are 

described in Fig. 14.  

 

 
Figure 14. Phases for detection and classification of objects.  

 

 

B. Laser scanning for obstacle detection and proximity 

measurement  

 

Modern electronic sensor systems for obstacle detection are 

widely used in robotics applications and assistance to people.  

 

One of the most effective approaches to apply this relies on 

laser proximity sensors. Such approach exhibit excellent 

benefits for obstacle detection and proximity measurement 

without contact or friction with the objects in question. Distance 

measurement by these devices is done in the following ways: 

 

 Flight time [23] 

 Phase shift 

 

Based on the aforementioned methods it is essential that the 

sensor has the ability to scan the scene taking n samples as 

shown in Fig. 15.   

 
 

 

 
Figure 15. Laser Scanning [24] 

 

 

Depending on the opening angle of the laser sensor it is 

possible to detect a point cloud to identify the presence of 

objects. Adding a sensor that has the ability to perform a vertical 

scan can have more information and a more detailed point 

cloud. 

 

 

The point cloud provides a wealth of information to the user, 

allowing to pin point the object’s position and distance relative 

to user that acts as a reference frame. 

 

The steps to identify the obstacles through the use of this type 

of sensor are shown in Fig. 16. 
 

 

 
 

Figure 16. Phases for laser scanning for obstacle detection and proximity 

measurement 

 

VIII. CONCLUSIONS 

 

The main goal of this study was to present an interpolation 

procedure for HRIRs by using a committee of artificial neural 

networks. The Mean Absolute Error (MAE) results show that 

the obtained accuracy refrains the use of reception areas with 

smaller angle apertures. The time shifts, although more subtle 

in smaller reception areas than those found in bigger ones, still 

constitutes a learning pattern for networks with the adequate 

capacity to learn from it. Such capacity is defined by the number 

of neurons in the hidden layer. 

 

The model performance presents larger deviations in high 

frequency components which are faded away because of the 

generalization property in the ANN modeling. Nevertheless, 

these deviations can be neglected due to the low energy present 

in such frequencies and also to the limited characteristics of the 

human hearing in high frequencies. 

 

In summary, the size of the reception area is a critical element 

to be considered for ensuring a high precision interpolator. A 

classical interpolation technique, such as a bilinear one, could 

be substituted by an ANN whose output presented very small 

errors if compared with the corresponding target functions.  

Acquisition Images per frame

Processing image

Obstacle detection- Stereo Vision

Calculate distance of object

Object Classification - Neural Networks

Activate the laser scanning sensors

Perform point cloud detection through yaw 
scanning and store of samples

Perform point cloud detection through pitch 
scanning and store of samples

Concatenate point clouds obtained by the sensors

Determine location of closer objects

TABLE 1 

COMPARISON OF THE COMPUTATIONAL COST BETWEEN BIM AND ANN 

INTERPOLATION OF FUNCTION WITH L = 128. THREE ARCHITECTURES ARE 

CONSIDERED. 

Detail BIM n1=2 n1=3 n1=4 

Number of additions (+) 390 260 390 520 

Number of multiplication (×) 772 260 390 520 

Computational gain (+) - 33.33% 0.00% -33.33% 
Computational gain (×) - 66.32% 49.48% 32.64% 

Mean computational gain - 49.83% 24.74% -0.35% 
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Preliminary comparisons performed in time and frequency 

domains with actual measured functions, show that an ANN 

committee of reduced architecture (with 1 hidden layer with at 

most 2-4 neurons), working inside 5° × 5°  reception areas and 

trained with functions with original delays, is able to substitute 

an interpolation method with a computational reduction of 

almost 50% while keeping a similar precision. 

Of course, by using such small reception areas, the system 

must deal with a considerable increment of the number of 

networks to be used and involves a larger spent in memory 

resources. Nevertheless, current computers have enough 

memory to work with such memory requirements without 

compromising the result's generation speed. 

 

The next step of this research is to implement a convolution 

product process in order to insert the 3D sound effect of the 

interpolated HRIR into an arbitrary signal (3D sound emitter). 

At the same time, the obstacle detection approaches will be 

implemented in proper hardware architecture in order to feed 

spatial coordinates to the 3D sound emitter. 
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