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Modeling the Performance of MapReduce
Applications for the Cloud

Iván Carrera and Cláudio Geyer

Abstract—In the last years, Cloud Computing has become a
key technology that made possible to run applications without
needing to deploy a physical infrastructure. The challenge with
deploying distributed applications in Cloud Computing envi-
ronments is that the virtual machine infrastructure should be
planned in a time and cost-effective way.

This work is a summary of a previous work presented by the
authors as a Master’s thesis, with the goal of showing that the
execution time of a distributed MapReduce application, running
in a Cloud computing environment, can be predicted using a
mathematical model based on theoretical specifications. This
prediction is made to help the users of the Cloud Computing
environment to plan their deployments, i.e., quantify the number
of virtual machines and its characteristics. After measuring the
application execution time and varying parameters stated in the
mathematical model, and after that, using a linear regression
technique, the goal is achieved finding a model of the execution
time which was then applied to predict the execution time of
MapReduce applications. Experiments were conducted in several
configurations and showed a clear relation with the theoretical
model, revealing that the model is in fact able to predict the
execution time of MapReduce applications. The developed model
is generic, meaning that it uses theoretical abstractions for the
computing capacity of the environment and the computing cost
of the MapReduce application.

Index Terms—MapReduce, Cloud, Hadoop, FLOPs, MRBS,
Performance

Resumen—En los ltimos aos, Cloud Computing se ha con-
vertido en una tecnologa clave que ha hecho posible ejecutar
aplicaciones sin la necesidad de utilizar una infraestructura
fsica. El desafo de implementar aplicaciones distribuidas en
ambientes de Cloud Computing es que la infraestructura de
mquinas virtuales debe considerar aspectos relacionados con
el costo y el tiempo de utilizacin. Este trabajo es el resumen
de uno anterior, presentado por los autores como tesis de
maestra, con el objetivo de demostrar que el tiempo de ejecucin
de una aplicacin distribuida MapReduce, ejecutndose en un
ambiente de Cloud Computing, puede ser predicho utilizando
un modelo matemtico basado en especificaciones tericas. Esta
prediccin se realiza para ayudar a los usuarios de un ambiente
de Cloud Computing a planificar sus implementaciones, es decir,
cuantificar el nmero de mquinas virtuales y sus caractersticas.
Despus de medir el tiempo de ejecucin de las aplicaciones y
variando los parmetros establecidos por el modelo matemtico, y
seguidamente usando una tcnica de regresin lineal, el objetivo
se alcanza al encontrar un modelo del tiempo de ejecucin que
fue posteriormente aplicado para aplicaciones MapReduce. Los
experimentos fueron realizados en diferentes configuraciones y
mostraron una clara relacin con el modelo terico, mostrando as
que el modelo es capaz de predecir el tiempo de ejecucin de
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aplicaciones MapReduce. El modelo desarrollado es genrico, es
decir que usa abstracciones tericas para la capacidad de cmputo
del ambiente y el costo computacional de la aplicacin MapReduce.

Palabras clave—MapReduce, cloud, hadoop, FLOPs, MRBS,
rendimiento

I. INTRODUCTION

Cloud Computing, as defined in [1] by the U.S. National
Institute of Standards and Technology NIST, is a computing
model that enables ubiquitous, on-demand network access to
a shared pool of configurable computing resources. Likewise,
the U.S. Department of Energy, DoE, says in [2] that a Cloud
Computing model still lacks a good performance management,
even though it can bring to the general user a big gain in terms
of scalability, and usability of a computing infrastructure.

MapReduce is a programming model and an associated
implementation for processing and generating large data-sets
proposed by Google [3]. MapReduce performance depends,
amongst other things, on the type of data that is going to be
processed, so various types of workloads can have different
characteristics.

Research presented in [4] establishes a number of parame-
ters that have to be configured by the system administrators
of a MapReduce application, in a way that is time-effective.
As it is discussed in works as [5] and [6], an optimal cluster
size should save money by optimizing infrastructure Cloud
resources for the MapReduce user and the Cloud provider.
This optimization can let users to take a better advantage of
the resources they are using in the Cloud.

The research in this paper is the summary of a Master’s
thesis presented by the authors in [7], and motivated by the
need of being able to predict the execution time of a distributed
application running in a Cloud Computing environment, that
would allow users to perform Capacity Planning, and so plan
their virtual clusters in a way that is cost and time-effective.
The main objective of this paper is to present a formula for
predicting the execution time of a MapReduce application.
This research’s main approach is to develop a prediction model
as was described in [8].

The prediction will be done with a formula that computes
the execution time t of the application as a function of four
variables:

1) W, the amount of workload;
2) p, the number of virtual machines the application will

be run on top of, since it is a distributed application;
3) A, the type of the MapReduce application, since Map

Reduce is a very versatile framework and many different

ISSN: 1390-9134 - 2015 LAJC



42 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 2, NOVEMBER 2015

applications can be programmed with it. A will be
expressed as a relation between the number of operations
per GB the application has to perform in order to process
the W amount of data in Map and Reduce phases; and,

4) T, the capacity of the p computers that compose the
cluster on top of which the application will be run. T
will be expressed in terms of the number of operations
per second that every computer in the cluster is capable
of perform.

Thus,
t = f(W,p,A, T ) (1)

This work is intended to help users to know ‘a priori’ how
much time it will take for the application to run, so they
can plan their virtual machine clusters, and find a best-suited
configuration for their MapReduce application.

The experimental results of this work are a valuable con-
tribution, showing that it is possible to model the execution
time of a MapReduce application, and how the performance of
a MapReduce application in terms of execution time changes
when running in different environment configurations.

The remainder of this paper is organized as follows: section
II talks about the related research works about modeling the
performance of MapReduce applications, section III addresses
the theoretical mathematical model used for this work, sec-
tion IV explains the performed experiments, how they were
designed and executed, section V discusses the experimental
results and how they prove our theoretical approach, and
finally, section VI talks about the Conclusions of this work
and suggests the future work for further research.

II. RELATED WORK

Extensive and comprehensive models for each phase of
MapReduce are presented in [9]. In said work, the MapReduce
algorithm has two sets of tasks: Map, run first, and Reduce, run
last. The Map task execution is divided into five phases: Read,
Map, Collect, Spill and Merge; and in the same way, the Re-
duce task execution is divided into four phases: Shuffle, Merge,
Reduce and Write. In [9], the execution time is calculated as
a function of three parameters: d, data properties, r, cluster
resource properties, and c, configuration parameter settings. It
also shows a set of formulas that are useful to determine the
execution time of a MapReduce job, introducing the concept
of ‘cost’ for the stages, understood as what determines the
amount of performed operations on the CPU or the hard drive
to process data or write/read data from/to the hard drive. The
Technical Report does not go further and does not assess
the models with experimentation. The models are exclusively
theoretical.

Another interesting work in the topic of MapReduce and
Performance Evaluation is [10]. In said work, authors present
three cost functions that show a relationship between some
characteristics of the MapReduce application and the time
that takes for the application to execute. These three cost
functions for MapReduce differ from each other by taking
into account more or less complexity of the MapReduce
application; for example, the simplest approach assumes that
the amount of input data is fixed, so it is not necessary to

take into account in the cost function. Authors assess their
performance model taking into account specific parameters of
MapReduce applications like the number Map and Reduce
slots, the number Map and Reduce rounds, the complexity of
Map and Reduce phases and the cost of scheduling all said
processes.

Other work showing performance models of MapReduce is
[11], where MapReduce is modeled in three separated phases:
Map, Shuffle and Reduce. Also, said work takes into account
three parameters: memory, understood as the capacity of a
cluster node to save information in its hard disk, machine,
understood as the total number of nodes composing the cluster
and time, as the running time available for the execution of the
MapReduce application. Authors describe also the execution
of a MapReduce job subject to a probability function of
correctness, meaning that the job will be executed with no
error in only some cases, defined by the probability function.

Authors in [12] determine 5 design factors of a cluster
utilized to run MapReduce application that affect the perfor-
mance, namely:

1) I/O mode. Which is the way the MapReduce application
gets its input data: direct mode, when reading directly
from the hard drive or streaming mode, when streaming
by a communication scheme as TCP/IP or JDBC,

2) Indexing. Even if MapReduce is typically used for un-
sorted data, when using sorted files, or database indexed
tables, performance seems to improve,

3) Data parsing. If there is any decoding procedures inside
the Map phase that can be fixed or variable along the
execution,

4) Grouping schemes of input data, and
5) Block-level scheduling. Showing that the scheduler

performs faster when using larger blocks.
Authors also investigated alternative implementation strate-

gies for each factor, and how they affect the general perfor-
mance of MapReduce applications. They have evaluated the
performance of MapReduce with representative combinations
of these five factors using a benchmark consisting of seven
tasks. Amongst their findings is that MapReduce achieves
elastic scalability through block-level scheduling.

III. PROPOSED MODEL

Hadoop [13] is a Java implementation of MapReduce
proposed by the Apache Foundation. It is the most used
MapReduce implementation [14]. Hadoop’s API (Application
Programming Interface) allows the user to program the Map
and the Reduce functions.

Hadoop was originally thought to be run as a distributed
application on top of a cluster of homogeneous machines,
sharing a distributed filesystem. Hadoop uses a distributed
filesystem called the Hadoop Distributed FileSystem HDFS,
which is similarly an open implementation of the Google
FileSystem GFS described in [3]. HDFS performs similarly
to Google File System [15]. HDFS is based on NFS, working
as a shared partition, accessible from all machines, in every
hard disk of the nodes composing the MapReduce cluster.

The Hadoop execution algorithm is based on the MapRe-
duce proposed by Google. According to the Hadoop execution
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algorithm [13], represented in figure 1 [14], it has four defined
phases:

Fig. 1. MapReduce execution flow

1. Data distribution. The first process is to copy the data to
the HDFS. This is done by the master node. The time length
of this step depends on three factors: (1) the amount of data
that has to be copied to the cluster nodes, (2) the number of
nodes, and (3) the speed of the network that connects said
nodes. Normally, all nodes would receive approximately the
same amount of data workload, because the approach used is
write-once read many.

2. Map phase. The second process is mapping the data,
taking the input data and generating an output composed of
<key, value> pairs according to the programming of the Map
phase. Each node processes the data that it has locally stored.
Since the Map phase is run by all the nodes in parallel, the time
length of this phase would depend on the amount of workload
a single node has to process, the speed of said node to process
said individual workload, and the number of operations that
involve the processing of the individual workload.

3. Shuffle. Once the Map phase has reached a 5% of its
progress, map outputs are sorted to ease the processing in the
next phase. Output data from the Map phase is transmitted
over the network to the data nodes according to its content.
The time length of this phase depends on the amount of data
is transmitted and the speed of the network. This phase runs in
parallel with the Map phase, and for matters of timing, we can
only takes into account the shuffling of the last map outputs.

4. Reduce phase. Finally, the reduce phase takes the
output of the shuffle phase and process it according to its
programming. The time length of this phase depends on the
amount of data that is going to be processed, the number of
operations that would be required to process the Reduce inputs,
again, the speed of the node.

Following, we propose propose an equation that can quan-
tify the execution time of a Hadoop application, based on the
aforementioned Hadoop algorithm.

As said in section I, there are 4 parameters for the evaluation
of the MapReduce application, namely:

1) W, the amount of workload the application is intended
to process, expressed in units of storage;

2) p, the number of computers the application will be run
on top of, since it is a distributed application, it is
supposed to be run on top of a cluster of computers,
expressed as an integer;

3) A, the type of the MapReduce application, since MapRe-
duce is a very versatile framework and many different
applications can be programmed with it. A will be
expressed as a the number of operations per unit of
storage performed by the application in Map and Reduce
phases; and,

4) T, the processing capacity of the p computers that
compose the cluster on top of which the application will
be run. T will be expressed in terms of the number of
operations per second that every machine in the cluster
is capable of perform.

In order to build a mathematical model of the MapReduce
execution time, we have to make some considerations:

• The Data Distribution phase is not considered inside the
execution time of the Hadoop program, so its duration
can be disregarded;

• The Shuffle phase starts when the Map phase has reached
a 5% of its completion, and runs simultaneously with the
Map phase;

• For matters of simplifying the model, the Shuffle phase
time will be considered only as the time when the Map
phase has already finished;

• The Reduce phase starts only when the Shuffle phase has
been fully completed;

• The Map and Reduce phases run in slots, that means that
each node can run more than one Map or Reduce task in
parallel; usually, the number of slots is related with the
number of cores a node has.

Thus, the execution time of a Hadoop program can be
modeled as the sum of the times of all phases:

ttotal = tMAP + tSHUFFLE + tREDUCE (2)

The time of the Map phase tMAP can be computed as the
product of the time of a single Map task times the number of
Map tasks per node:

tMAP = tUMAP
· nMAP

p
(3)

The time of a single Map task tUMAP
is computed as the

product of the amount of workload for a single Map task
WMAP (known as a chunk size) times the cost of a single
Map task CUMAP

(expressed as a relation of the number of
floating point operations FLOPs required by the Map task and
the chunk size), and divided by the capacity T of a single node
(the number of floating point operations FLOPs per second):

tUMAP
=

WMAP · CUMAP

T
(4)

The number of Map tasks for a job is computed as the
division between the total Workload and the chunk size:

nMAP =

⌈
W

chunksize

⌉
(5)

The time of the Reduce phase tREDUCE can be computed
as the product of the time of a single Reduce task times the
number of Reduce tasks per node:

tREDUCE = tUREDUCE
· nREDUCE

p
(6)

The time of a single Reduce task tUREDUCE
is computed

as the product of the amount of input workload for a single
Reduce task WUREDUCE

times the cost of a single Reduce task
CUREDUCE

, and divided by the capacity T of a single node
(the number of floating point operations FLOPs per second):

tUREDUCE
=

W IN
UREDUCE

· CUREDUCE

T
(7)
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Replacing respectively equations 4 and 7 into equations 3
and 6 we have:

tMAP =
WMAP · CUMAP

T
· nMAP

p
(8)

tREDUCE =
W IN

UREDUCE
· CUREDUCE

T
· nREDUCE

p
(9)

Also, the time for the Shuffle phase tSHUFFLE can be
computed as the product of the size of the output data of a
single Map task times the number of remaining Shuffle tasks
divided by the bandwith of the network:

tSHUFFLE =
WOUT

UMAP
· (nMAPmodp)

B
(10)

The size of the output data of a single Map task WOUT
UMAP

can be computed as the division between the total amount of
output data of the Map phase divided by the number of Map
tasks.

WOUT
UMAP

=
WOUT

MAP

nMAP
(11)

So, replacing equations 8, 9 and 10 in equation 2, and
simplifying W IN

REDUCE , we have:
ttotal =

WMAP ·CUMAP

T · nMAP

p +
WOUT

MAP ·(nMAPmodp)
nMAP ·B

+
W IN

UREDUCE
·CUREDUCE

T ·p
Equation III will serve as the performance model for

MapReduce applications as a function of the parameters of
the distributed system.

IV. EXPERIMENTS

A. Scenarios

In order to verify the model of equation III, it is required that
experiments are performed in several different environments,
comprising private and public infrastructure, physical and
virtual cloud infrastructure. The environments where the tests
were run in, are described following:

1) Cluster gradep
The gradep is a computer cluster on premises of
Institute of Informatics INF, in the Federal University
of Rio Grande do Sul UFRGS, composed of 18 nodes in
total. Each node has an Intel Pentium 4 2.79 GHz CPU
with 2 GB in RAM, and a Gigabit Ethernet connection.
Each time the applications were run, the worker nodes
were randomly chosen amongst these 18 machines to
avoid errors produced by running all times in the same
cluster nodes.

2) Amazon EMR
Amazon Elastic MapReduce EMR [16] is a web ser-
vice from Amazon Cloud services that uses Hadoop to
process data across a cluster of Amazon EC2 instances
[17].
For the purposes of this research work, the m1.small
instance type was used. EC2 instance types are specified
in [17]. The processing power of Amazon EC2 instances
is expressed in ECU, which is a unit with the equivalent
CPU power of a 1.0-1.2 GHz 2007 Opteron or Xeon

processor as specified to Amazon EC2 documentation.
The m1.small instance type, for example, has the
processing power of 1 ECU.
According to [18], the theoretical peak performance
can be computed for different instances from the ECU
definition: a 1.1 GHz 2007 Opteron can perform 4
flops per cycle at full pipeline, which means at peak
performance one ECU equals 4.4 gigaflops per second.

3) Windows Azure HDInsight
Windows Azure HDInsight [19] is a Hadoop-based
service from Microsoft Azure for running an Apache
Hadoop solution in a Cloud Computing environment.
HDInsight uses the General Purpose Instances from
Microsoft Azure.
In this work we used the Large (A3) compute instance
type. According to the Windows Azure documentation,
the A3 compute instance type has a 4 cores 1.6 GHz
processor, and 7GB in RAM.

B. Software description

Varying the applications in the tests help the model to
identify when it cannot be useful, or if it only serves for a
certain type of applications. The applications used for the tests
are described following:

• In the gradep cluster, two applications, named sort
and wordcount, were used. These applications form
part of the text-processing benchmark from the
MapReduce Benchmark Suite MRBS described in [20].
As it is explained in [21], the sort application takes an
input of text registers, and sorts them depending on its
contents. And the wordcount application, as explained
in [3], takes a text input and counts the occurrences of
each word, resulting in a sorted list of words indicating
how many times they appeared in the input text.
The wordcount application is CPU bound, meaning
that the execution time is mainly limited by the pro-
cessing power of the CPU, and the sort application is
CPU bound and IO Bound were used, meaning that the
execution time is mainly limited by the CPU and the IO
system.

• And finally, in the Cloud environments of Amazon and
Azure it was used a log processing application, which
basically is a text processing application similar to the
ones used in the environments explained above.
In 2013, a private company located in Brazil, asked the
GPPD/INF research group for help to develop and test
a MapReduce application to process large amounts of
logs and to be run in a Cloud environment. The project
supported the research presented in this dissertation by
providing a use case for what it is intended to do, to
predict the execution time of a MapReduce application
running in a Cloud environment. The log processing ap-
plication takes the log records and rearranges the contents
of each text line, leaving the output slightly smaller than
the output. The logs contain the same information but in
a different order. More information about the application
and the project can be found in [22].
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C. Specification of Experiments

1) Evaluation Technique: In the present work we used two
evaluation techniques, one for develop the performance model
in equation III, and another one to assess said performance
model. Analytical Modeling was first used as an evaluation
technique, where, based on theoretical models of MapReduce,
a formula to model its performance was developed. The
second evaluation technique used in this work is Experimen-
tal Measurement. In this technique, the analytical/theoretical
hypothesis is tested with experimentation.

2) Performance Metrics: As it has been discussed earlier
in this work, and modeled in equation III, the performance
metric used in the experiments is the execution time of the
applications, considered from the beginning of the first Map
operation, until the end of the last Reduce operation.

3) Workload: As said in [23], when the workload used in
the experiments is a typical application, and it is applied to
test a set of environments, it is called a benchmark.

4) Parameter Values: The values for the 4 parameters
described in section I depend on the scenarios described in
section IV-A.

Table I shows the used values in the different scenarios.

TABLE I
PARAMETER VALUES

Scenario gradep cluster AWS Azure

W {1, 5, 10, 20,
25} [GB]

{1, 5, 10, 20,
25} [GB]

{1, 5, 10, 20,
25} [GB]

p {4, 8, 12, 16}
[nodes]

{4, 6, 8} [nodes] {4, 6, 8} [nodes]

A text processing log processing log processing
T gradep m1.small A3

In table I, W, the amount of workload is expressed in GB;
p, the number of nodes is an integer; A, the type of the Map
Reduce application is expressed as an application type, while
in the formula this categorical value has to be changed for
a numeric one in [flops/GB]; and T, the node capacity is
expressed as the name of the cluster the node belongs to, or
the instance type if it belongs to a Cloud environment, while
in the formula this categorical value has to be changed for a
numeric one in [flops].

V. RESULTS

A. Private Cluster gradep

As shown in table I, in the gradep cluster, two applications
were run to obtain and test the performance model. These
applications were taken from the text-processing benchmark
of MRBS [20]. Values for W and p in table I were arbitrarily
established in function of the available nodes in gradep
cluster. Each combination was run 20 times, for a total of
800 executions.

After the executions for the sort application, we noticed
that the Map phase output WOUT

MAP is proportional to the Map
phase input WMAP . This makes sense because the amount of
Map output data would depend on the amount of Map input
data, and the following relation can be established:
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Fig. 2. Execution time vs. Workload for the gradep cluster

WOUT
MAP ∝WMAP (12)

WMAP = kWOUT
MAP (13)

And when replacing equation 13 into equation III, it sim-
plifies to:

ttotal = WMAP

pT · (CUMAP
+ k · CUREDUCE

)

+
WOUT

MAP ·(nMAPmodp)
nMAP ·B

Without making these simplifications in equation III, we
could not be able to calculate the values for A. Equation V-A
shows the linear relation between the execution time t and the
workload WMAP .

Also, since it was required to quantify the computational
power of the cluster nodes, that can be done using a bench-
mark. However, the tests were already performing a bench-
mark over the cluster, so, with the experimental data, it was
possible compute the relation between the cost for Map and
Reduce phases CUMAP

+k ·CUREDUCE
and the computational

power of the nodes T using the linear regression tool of the
software R [24]. The value of the relation between the cost
for Map and Reduce phases and the computational power was
computed to:

CUMAP
+ k · CUREDUCE

T
= 6.05e−7

[
s

Byte

]
(14)

With an standard error of SE = 1.15e−8 and a coefficient
of determination of R2 = 0.88. A value of R2 = 0.88 gives
us the confidence that the model is pretty close to an optimal
fit, but considering this model being general and that it has
to serve different values, it can be considered as a very good
model.

In figure 2 it is shown the experimental data, grouped by the
number of nodes used in each experiment and the correspond-
ing line for the mathematical model with two auxiliary lines
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TABLE II
RESULTS FOR MODEL ASSESSING ON THE GRADEP CLUSTER

Values Predicted Value Exp. Value Error

W=1, p=6 401.6 430.7 7.24%
W=1, p=10 373.4 374.8 0.38%
W=1, p=14 339.7 387.3 14.0%
W=5, p=6 899.3 962.1 6.98%
W=5, p=10 752.9 734.7 2.42%
W=5, p=14 687.9 653.1 5.05%
W=10, p=6 1521.4 1442.0 5.22%

W=10, p=10 1227.3 1241.0 1.12%
W=10, p=14 1123.0 1250.3 11.33%
W=20, p=6 2765.6 2526.2 8.66%

W=20, p=10 2176.0 2454.4 12.8%
W=20, p=14 1993.3 2021.5 1.41%
W=25, p=6 3387.7 3392.4 0.14%

W=25, p=10 2560.3 2557.0 3.52%
W=25, p=14 2428.5 2296.9 5.42%

showing the 95% confidence interval of the model. Figure 2
shows that the experimental results follow a clear trend that
is followed by the model.

After modeling the execution time, giving values to the
formula of equation V-A, more experiments were run to assess
the model, with the results detailed in table II.

Results in table II show that the model from equation V-A,
using the values in equation 14, was actually able to predict
the execution time of the MapReduce applications with a
reasonable error. This error is small considering that when
expressed in absolute value it reduces to a few minutes of
execution. We have to keep in mind that these models are
meant to be used in Cloud infrastructures, where a few minutes
of difference do not mean excessive changes in the cost of
using the platforms.

B. Amazon Elastic MapReduce

The experiments using the cloud infrastructure of Amazon
Elastic MapReduce followed the values shown in table I. Each
combination was run 10 times, for a total of 150 executions.

The main restrictions for only running 10 times was the
budget and the fact that the account for running the tests
in Amazon Web Services belonged to the enterprise that
asked the GPPD/INF research group for assistance as it was
explained in subsection IV-B and in [22].

The log processing application, as explained in section IV-B
is an example of a sort application, meaning that the relation
explained in equation 12 serves in this case as well. So, the
model to follow with this environment is the one explained in
equation V-A.

The value of the cost for Map and Reduce phases was
computed using the software R [24] to:

CUMAP
+ k · CUREDUCE

= 2.16e6
[
flop

Byte

]
(15)

With an standard error of SE = 6.46e4 and a coefficient of
determination of R2 = 0.88.

Following, in figure 3 it is shown the experimental data,
grouped by the number of nodes used in each experiment and
the corresponding line for the mathematical model with two

auxiliary lines showing the 95% confidence interval of the
model.
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Fig. 3. Execution time vs. Workload for the Amazon EMR Environment

After modeling the execution time, giving values to the
formula of equation V-A, more experiments were performed
in order to assess the model, with the results described in table
III:

TABLE III
RESULTS FOR MODEL ASSESSING OF THE AMAZON MEASURES

Values Predicted Value Exp. Value Error

W=1, p=5 531.01 458.22 13.71%
W=1, p=7 488.23 361.53 25.95%
W=5, p=5 1061.4 870.24 18.01%
W=5, p=7 860.64 780.91 9.26%

W=10, p=5 1724.38 1556.93 9.71%
W=10, p=7 1326.15 1186.78 10.51%
W=20, p=5 3050.35 2826.88 7.33%
W=20, p=7 2257.17 2928.47 29.74%
W=25, p=5 3713.33 3556.38 4.23%
W=25, p=7 2722.68 2414.57 11.32%

Table III shows the percentage error from comparing the
execution times obtained. Errors show a gap between exper-
imental and theoretical values, however, considering that in
a Cloud environment the execution times are charged by the
hour or fraction, this values should be considered important
only when reaching values close to one hour.

C. Windows Azure HDInsight

Experiments using the Windows Azure HDInsight cloud
infrastructure used values from the table I. Each combination
was run 10 times, for a total of 150 executions.
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Similarly to the experiments in Amazon Elastic MapReduce,
the main restrictions for only running 10 times each combi-
nation of parameter values were the budget and the fact that
we were not the owners of the account for running the tests.

As in the previous case, the log processing application being
an example of a sort application, follows the model explained
in equation V-A. And, since there was no data to assign a
value to T for the A3 Azure node type, the relation between
the cost for Map and Reduce phases CUMAP

+ k ·CUREDUCE

and the computational power T was computed to:

CUMAP
+ k · CUREDUCE

T
= 2.16e6

[
s

Byte

]
(16)

With an standard error of SE = 1.06e−5 and a coefficient
of determination of R2 = 0.86.

In figure 4 it is shown the experimental data, grouped by
the number of nodes used in each experiment and the corre-
sponding line for the mathematical model with two auxiliary
lines showing the 95% confidence interval of the model.
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Fig. 4. Execution time vs. Workload for the Azure HDInsight Environment

After the execution time model was obtained, giving values
to the formula of equation V-A, more experiments were run
to assess the model and to verify that it was able to predict
the performance of a MapReduce application running in the
Azure HDInsight cloud environment. Each combination of W
and p was run 10 times as well, in order to obtain the average
and error values shown in table IV.

The values in table IV show the percentage error from com-
paring the execution times obtained. As in the previous cases,
since experiments deal with commercial Cloud environments,
where execution time is charged by the hour or fraction, this
values should be considered big when reaching values close
to one hour.

TABLE IV
RESULTS FOR MODEL ASSESSING THE MEASURES ON THE AZURE

HDINSIGHT ENVIRONMENT

Values Predicted Value Exp. Value Error

W=1, p=6 401.6 430.7 7.24%
W=1, p=10 373.4 374.8 0.38%
W=1, p=14 339.7 387.3 14.0%
W=5, p=6 899.3 962.1 6.98%

W=5, p=10 752.9 734.7 2.42%
W=5, p=14 687.9 653.1 5.05%
W=10, p=6 1521.4 1442.0 5.22%
W=10, p=10 1227.3 1241.0 1.12%
W=10, p=14 1123.0 1250.3 11.33%
W=20, p=6 2765.6 2526.2 8.66%
W=20, p=10 2176.0 2454.4 12.8%
W=20, p=14 1993.3 2021.5 1.41%
W=25, p=6 3387.7 3392.4 0.14%
W=25, p=10 2560.3 2557.0 3.52%
W=25, p=14 2428.5 2296.9 5.42%

As we can see from the results of tables III and IV,
it is possible to predict the performance of a MapReduce
application running in a Cloud Computing environment, thus
achieving the main goal of this work.

VI. CONCLUSIONS AND FURTHER WORK

This research work was successful when predicting the
execution time of MapReduce applications in the Cloud. A
mathematical model with the form: t = f(W,p,A, T ) was
developed and specified in some cases.

The mathematical model is based on the Hadoop Algorithm
model described in section III. The formulae expressed in
the same section was able to compute the execution time of
MapReduce applications, for the cases described in section IV.

Results of section V show that there is an error rate when
assessing the predictions made by the formula. It means that
some further work, focusing in tuning the formula, should be
done. Also, the shown simplifications of the formula allow us
to see more easily the factors that have a direct impact on the
execution time of the MapReduce applications.

The formula expressed in equation III is a suitable model
for the execution time of MapReduce applications. Amongst
its strengths we can say that it is a general model, since
it does not depend on a type of application or hardware,
it models the execution time with general parameters like
the computing power of nodes, expressed as a number of
operations per second performed by their processors, and the
computing cost of Map and Reduce phases, expressed as the
number of operations that the nodes have to process per unit of
storage. This model should be able to compute the execution
time of a large set of MapReduce applications.

In this work we have proven the idea explained in [8] where
we said that following a performance evaluation methodology,
we should be able to predict the execution time of a distributed
application in a Cloud environment and, conversely, given a
time constraint we could be able to know what virtual infras-
tructure can be enough to execute the distributed application.

Being able to predict the execution time of distributed
applications in the Cloud can be useful when preparing a
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budget. A MapReduce user can calculate the time and know
how much time it will take to run the application.

As it was stated in the motivation of this work, further work
is encouraged to test the approach described in this work with
different distributed applications, and different scenarios. Also,
further research can be done in order to improve the services
of Cloud providers, namely:

From the point of view of a Cloud provider, being able to
tell the time that a distributed application will take to run ‘a-
priori’ is useful in business models like the Spot Instances of
Amazon [17]. In said business model, providers offer virtual
machines with lower prices, based on the fact that they were
reserved for other users for a longer time than the one they
were actually busy. So, the provider can re-lease the virtual
machines in lower prices. If a provider is able to know when
a virtual machine will be freed, it can predict when it can be
used as a Spot Instance.

With the models exposed in section V, a Cloud provider can
use the approach explained in this work to program a feature
of its Cloud platform where a Cloud user can know how much
time a given MapReduce application will take to run, letting
him program his budget.

Some other improvements in Cloud services can be per-
formed, and hopefully this work can serve as a basis of a
subject that could represent an important advance in Cloud
services.
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