
Topology Control in Heterogeneous Wireless
Networks: Problems and Solutions

Ning Li and Jennifer C. Hou
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{nli,jhou}@cs.uiuc.edu

Abstract— Previous work on topology control usually assumes
homogeneous wireless nodes with uniform transmission ranges.
In this paper, we propose two localized topology control algo-
rithms for heterogeneous wireless multi-hop networks with non-
uniform transmission ranges: Directed Relative Neighborhood
Graph (DRNG) and Directed Local Spanning Subgraph (DLSS).
In both algorithms, each node selects a set of neighbors based
on the locally collected information. We prove that (1) the
topologies derived under DRNG and DLSS preserve the network
connectivity; (2) the out degree of any node in the resulting
topology by DLSS is bounded, while the out degree cannot be
bounded in DRNG; and (3) the topologies generated by DRNG
and DLSS preserve the network bi-directionality.

I. I NTRODUCTION

Energy efficiency [1] and network capacity are perhaps two
of the most important issues in wireless ad hoc networks
and sensor networks. Topology control algorithms have been
proposed to maintain network connectivity while reducing
energy consumption and improving network capacity. The key
idea to topology control is that, instead of transmitting using
the maximal power, nodes in a wireless multi-hop network
collaboratively determine their transmission power and define
the network topology by forming the proper neighbor relation
under certain criteria.

By enabling wireless nodes to use adequate transmission
power (which is usually much smaller than the maximal trans-
mission power), topology control can not only save energy and
prolong network lifetime, but also improve spatial reuse (and
hence the network capacity) [2] and mitigate the MAC-level
medium contention [3]. Several topology control algorithms
[3]–[10] have been proposed to create power-efficient network
topology in wireless multi-hop networks with limited mobility
(a summary is given in Section III). However, most of them as-
sume homogeneous wireless nodes with uniform transmission
ranges (except [4]).

The assumption of homogeneous nodes does not always
hold in practice, since even devices of the same type may
have slightly different maximal transmission power. There also
exist heterogeneous wireless networks in which devices have
dramatically different capabilities, for instance, the communi-
cation network in theFuture Combat Systemwhich involves
wireless devices on soldiers, vehicles and UAVs. As will be
exemplified in Section III, most existing algorithms cannot be

directly applied to heterogeneous wireless multi-hop networks
in which the transmission range of each node may be different.

To the best of our knowledge, this paper is the first effort
to address the connectivity and bi-directionality issue in the
heterogeneous wireless networks.

In this paper, we propose two localized topology control al-
gorithms for heterogeneous wireless multi-hop networks with
non-uniform transmission ranges: Directed Relative Neighbor-
hood Graph (DRNG) and Directed Local Spanning Subgraph
(DLSS). In both algorithms, the topology is constructed by
having each node build its neighbor set and adjust its trans-
mission power based on the locally collected information.

We are able to prove that (1) the topology derived under
both DRNG and DLSS preserves network connectivity, i.e.,
if the original topology generated by having every node use
its maximal transmission power is strongly connected, then
the topologies generated by both DRNG and DLSS are also
strongly connected; (2) the out degree of any node in the
topology by DLSS is bounded, while the out degree of nodes
in the topology by DRNG may be unbounded; and (3) the
topology generated by DRNG and DLSS preserves network
bi-directionality, i.e., if the original topology by having every
node use its maximal transmission power is bi-directional, then
the topology generated by either DRNG or DLSS is also bi-
directional after some simple operations.

Simulation results indicate that, compared with the other
known topology control algorithms that can be applied to het-
erogeneous networks, DRNG and DLSS have smaller average
node degree (both logical and physical) and smaller average
link length. The former reduces the MAC-level contention,
while the latter implies a small transmission power needed to
maintain connectivity.

The rest of the paper is organized as follows. In Section II,
we give the network model. In Section III, we summarize
previous work on topology control, and give examples to
show why existing algorithms cannot be directly applied to
heterogeneous networks. Following that, we present both the
DRNG and DLSS algorithms in Section IV, and prove several
of their useful properties in Section V. Finally, we evaluate
the performance of the proposed algorithms in Section VI,
and conclude the paper in Section VII.
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II. N ETWORK MODEL

Consider a set of nodes(vertices),V = {v1, v2, . . . , vn},
which are randomly distributed in the 2-D plane. Assume
the area that a transmission can cover is a disk. We define
the range of a nodevi as the radius of the disk thatvi

can cover using its maximal transmission power, denotedrvi .
In a heterogeneous network, the transmission ranges of all
nodes may not be the same. Letrmin = minv∈V {rv} and
rmax = maxv∈V {rv}.

We denote the network topology generated by having each
node use its own maximal transmission power as a simple
directed graphG = (V (G), E(G)), whereE(G) = {(u, v) :
d(u, v) ≤ ru, u, v ∈ V (G)} is the edge(link) set ofG, and
d(u, v) is the Euclidean distance between nodeu and node
v. Note that(u, v) is an ordered pair representing an edge
from nodeu to nodev, i.e.,(u, v) and(v, u) are two different
edges. A uniqueid (such as an IP/MAC address) is assigned
to each node. Here we letid(vi) = i for simplicity.

We assume that the wireless channel is symmetric and
obstacle-free, and each node is equipped with the capability
to gather its location information via, for example, GPS for
outdoor applications and pseudolite [11] for indoor applica-
tions, and many other lightweight localization techniques for
wireless networks (see [12] for a summary).

Before delving into the technical discussion and algorithm
description, we give the definition of several terms that will
be used throughout the paper.

Definition 1 (Reachable Neighborhood):The reachable
neighborhood NR

u is the set of nodes that nodeu
can reach using its maximal transmission power, i.e.,
NR

u = {v ∈ V (G) : d(u, v) ≤ ru}. For each nodeu ∈ V (G),
let GR

u = (V (GR
u ), E(GR

u )) be an induced subgraph ofG
such thatV (GR

u ) = NR
u .

Definition 2 (Weight Function):Given two edges
(u1, v1), (u2, v2) ∈ E and the Euclidean distance function
d(·, ·), weight functionw : E 7→ R satisfies:

w(u1, v1) > w(u2, v2)
⇔ d(u1, v1) > d(u2, v2)
or (d(u1, v1) = d(u2, v2)

&& max{id(u1), id(v1)} > max{id(u2), id(v2)})
or (d(u1, v1) = d(u2, v2)

&& max{id(u1), id(v1)} = max{id(u2), id(v2)}
&& min{id(u1), id(v1)} > min{id(u2), id(v2)}).

This weight function ensures that two edges with different end-
vertices have different weights. Note, however, thatw(u, v) =
w(v, u).

Definition 3 (Neighbor Set):Nodev is a neighborof node
u under an algorithmA, denotedu

A−→ v, if and only if
there exists an edge(u, v) in the topology generated by the
algorithm. In particular, we useu → v to denote the neighbor
relation in G. u

A←→ v if and only if u
A−→ v andv

A−→ u. The
Neighbor Setof nodeu is NA(u) = {v ∈ V (G) : u

A−→ v}.

Definition 4 (Topology):The topology generated by an al-
gorithmA is a directed graphGA = (E(GA), V (GA)), where

V (GA) = V (G), E(GA) = {(u, v) ∈ E(G) : u
A−→}.

Definition 5 (Radius):The radius,Ru, of nodeu is defined
as the distance between nodeu and its farthest neighbor (in
terms of Euclidean distance), i.e,Ru = maxv∈NA(u){d(u, v)}.

Definition 6 (Connectivity):For any topology generated
by an algorithm A, nodeu is said to beconnected to
node v (denotedu ⇒ v) if there exists a path(p0 =
u, p1, . . . , pm−1, pm = v) such that pi

A−→ pi+1, i =
0, 1, . . . , m − 1, where pk ∈ V (GA), k = 0, 1, . . . , m. It
follows thatu ⇒ v if u ⇒ p andp ⇒ v for somep ∈ V (GA).

Definition 7 (Bi-Directionality): A topology generated by
an algorithm A isbi-directional, if for any two nodesu, v ∈
V (GA), u ∈ NA(v) implies v ∈ NA(u). In other words, the
topology generated by A is bi-directional if all edges in the
topology are bi-directional.

Definition 8 (Bi-Directional Connectivity):For any topol-
ogy generated by an algorithm A, nodeu is said to bebi-
directionally connected tonodev (denotedu ⇔ v) if there
exists a path(p0 = u, p1, . . . , pm−1, pm = v) such that
pi

A←→ pi+1, i = 0, 1, . . . , m − 1, where pk ∈ V (GA), k =
0, 1, . . . , m. It follows that u ⇔ v if u ⇔ p and p ⇔ v for
somep ∈ V (GA).

Deriving network topology consisting of only bi-directional
links facilitates link level acknowledgment, which is a critical
operation for packet transmissions and retransmissions over
unreliable wireless media. Bi-directionality is also important in
floor acquisition mechanisms such as the RTS/CTS mechanism
in IEEE 802.11.

Definition 9 (Addition and Removal):The operationAddi-
tion is to add an extra edge(v, u) into GA if (u, v) ∈ E(GA),
(v, u) /∈ E(GA), and d(u, v) ≤ rv. The operationRemoval
is to delete any edge(u, v) ∈ E(GA) if (v, u) /∈ E(GA).
Let G+

A andG−A denote the resulting topologies after applying
Addition andRemovalto GA, respectively.

Both theAdditionandRemovaloperations attempt to create
a bi-directional topology by removing uni-directional edges or
converting uni-directional edges into bi-directional. The result-
ing topology afterRemovalis alway bi-directional, although
it may not be strongly connected. The resulting topology after
Addition is not necessarily bi-directional, as it essentially tries
to increases the transmission power of a nodev to a level that
may be beyond its capability.

III. R ELATED WORK AND WHY THEY CANNOT BE

DIRECTLY APPLIED TOHETEROGENEOUSNETWORKS

Several topology control algorithms [3]–[10] have been
proposed. In this section, we first summarize these algorithm
and then give examples on why they cannot be directly applied
to heterogeneous networks.

A. Related Work

Rodoplu et al. [4] (denoted R&M) introduced the notion
of relay region and enclosure for the purpose of power
control. Instead of transmitting directly, a node chooses to



u v

(a) Relative Neighborhood Graph.

u v

p

(b) Modified Relative Neighborhood Graph(to
be defined in Section III-B).
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(c) Directed Relative Neighborhood Graph(to
be defined in Section IV).

Fig. 1. The definition of theDirected Relative Neighborhood Graph.

relay through other nodes if less power will be consumed. It
is shown in the paper that the network is strongly connected
if every node maintains links with the nodes in its enclosure
and the resulting topology is a minimum power topology.
The major drawback is that it requires an explicit propagation
channel model to compute the relay region (in the simulation
study presented in Section VI, we assume that the free-space
model is used), hence the resulting topology is sensitive to the
model used in the computation. Also, it assumes there is only
one data sink (destination) in the network.

Ramanathanet al. [5] presented two centralized algorithms
to minimize the maximal power used per node while maintain-
ing the (bi)connectivity of the network. They introduced two
distributed heuristics for mobile networks. Both centralized
algorithms require global information, and thus cannot be
directly deployed in the case of mobility. On the other hand,
the proposed heuristics cannot guarantee the preservation of
the network connectivity.

COMPOW[3] and CLUSTERPOW[7] are approaches im-
plemented in the network layer. Both hinge on the idea that if
each node uses the smallest common power required to main-
tain network connectivity, the traffic carrying capacity of the
entire network is maximized, the battery life is extended, and

the MAC-level contention is mitigated. The major drawback
is its significant message overhead, since each node has to run
multiple daemons, each of which has to exchange link state
information with their counterparts at other nodes.

CBTC(α) [6] is a two-phase algorithm in which each node
finds the minimum powerp such that some node can be
reached in every cone of degreeα. The algorithm has been
proved to preserve network connectivity ifα < 5π/6. Several
optimization methods (that are applied after the topology is
derived under the base algorithm) are also discussed to further
reduce the transmitting power.

To facilitate the following discussion, the definition of the
Relative Neighborhood Graph(RNG) is given below.

Definition 10 (Neighbor Relation in RNG):For RNG [13],
[14], u

RNG←−−→ v if and only if there does not exist a third
nodep such thatw(u, p) < w(u, v) and w(p, v) < w(u, v).
Or equivalently, there is no node inside the shaded area in
Fig. 1(a).

Borbash and Jennings [8] proposed to use RNG for the
topology initialization of wireless networks. Based on the local
knowledge, each node makes decisions to derive the network
topology based on RNG. The network topology thus derived
has been reported to exhibit good overall performance in terms
of power usage, low interference, and reliability.

Li et al. [9] presented the Localized Delaunay Triangula-
tiona, a localized protocol that constructs a planar spanner
of the Unit Disk Graph (UDG). The topology contains all
edges that are both in the unit-disk graph and the Delaunay
triangulation of all nodes. It is proved that the shortest path
in this topology between any two nodesu andv is at most a
constant factor of the shortest path connectingu andv in UDG.
However, the notion of UDG and Delaunay triangulation
cannot be directly extended to heterogeneous networks.

In [10], we proposed LMST (Local Minimum Spanning
Tree) for topology control in homogeneous wireless multi-
hop networks. In this algorithm, each node builds its local
minimum spanning tree independently and only keeps on-
tree nodes that are one-hop away as its neighbors in the
final topology. It is proved that (1) the topology derived
under LMST preserves the network connectivity; (2) the node
degree of any node in the resulting topology is bounded by
6; and (3) the topology can be transformed into one with bi-
directional links (without impairing the network connectivity)
after removal of all uni-directional links. Simulation results
show that LMST can increase the network capacity as well as
reduce the energy consumption.

Instead of adjusting the transmission power of individual
devices, there also exist other approaches to generate power-
efficient topology. By following a probabilistic approach, Santi
et al. derived the suitable common transmission range which
preserves network connectivity, and established the lower and
upper bounds on the probability of connectedness [15]. In [16],
a “backbone protocol” is proposed to manage large wireless
ad hoc networks, in which a small subset of nodes is selected
to construct the backbone. In [17], a method of calculating
the power-aware connected dominating sets was proposed to
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Fig. 2. An example that showsCBTC( 2
3
π) may render disconnectivity in heterogeneous networks. There is no path fromv1 to v3 due to the loss of edge

(v2,v3), which is discarded byv2 sincev1 andv4 have already provided the necessary coverage.
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nected: there is no path fromv5 to v2.
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(c) Topology by DLSS is strongly connected.

Fig. 3. An example that shows RNG may render disconnectivity in heterogeneous networks. There is no path fromv5 to v2 due to the loss of edge (v4,v2),
which is discarded since|(v4, v5)| < |(v4, v2)|, and |(v2, v5)| < |(v4, v2)|.
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(c) Topology by DLSS is strongly connected.

Fig. 4. An example that shows MRNG may render disconnectivity in heterogeneous networks. There is no path fromv3 to v5 due to the loss of edge
(v2,v5), which is discarded since|(v2, v3)| < |(v2, v5)|, and |(v5, v3)| < |(v2, v5)|.
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(d) The resulting topology is not
strongly connected: there is no path
from v7 to v4.

Fig. 5. An example that shows the algorithm in which each node builds a local directed minimum spanning tree and only keeps the one-hop neighbors may
result in disconnectivity.



establish an underlying topology for the network.

B. Why Existing Algorithms Cannot be Directly Applied to
Heterogeneous Networks

Most existing topology control algorithms (except [4]) as-
sume homogeneous wireless nodes with uniform transmission
ranges. When directly applied to heterogeneous networks,
these algorithms may render disconnectivity. In this subsec-
tion, we give several examples to motivate the need for new
topology control algorithms for heterogeneous networks.

As shown inFig. 2 (a)-(b) (note that in Figs. 2–5 we use
arrows to indicate the direction of the links to represent a link
from u to v), the network topology derived underCBTC(2

3π)
(without optimization) may not preserver the connectivity,
when the algorithm is directly applied to a heterogeneous
network.CBTC(5

6π) also has the same problem.
Similarly we show in Fig. 3 (a)-(b) that the network

topology derived under RNG may be disconnected when the
algorithm is directly applied to a heterogeneous network. As
RNG is defined for undirected graphs, one may tailor the
definition of RNG for directed graphs.

Definition 11 (Neighbor Relation in MRNG):ForModified
Relative Neighborhood Graph(MRNG), u

MRNG−−−−−→ v if and
only if there does not exist a third nodep such thatw(u, p) <
w(u, v), d(u, p) ≤ ru and w(p, v) < w(u, v), d(v, p) ≤ rv

(Fig. 1(b)).
As shown in Fig. 4 (a)-(b), the topology derived under

MRNG may still be disconnected (we will give another
variation of RNG for directed graphs in the next section).

One possible extension of LMST [10] is for each node
to build a local directed minimum spanning tree [18]–[20]
and keep only neighbors within one hop. Unfortunately, the
resulting topology does not preserve the strong connectivity,
as shown inFig. 5. In the next section, we will improve on
this approach to preserve the connectivity.

IV. DRNG AND DLSS

In this section, we propose two localized topology con-
trol algorithms for heterogeneous wireless multi-hop net-
works with non-uniform transmission ranges: Directed Rela-
tive Neighborhood Graph (DRNG) and Directed Local Span-
ning Subgraph (DLSS). In both algorithms, the topology is
derived by having each node build its neighbor set and adjust
its transmission power based on locally collected information.
Several nice properties of both algorithms will be discussed
in Section V.

Both algorithms are composed of three phases:
1) Information Collection: each node collects the local

information of neighbors such as position andid, and
identifies theReachable NeighborhoodNR.

2) Topology Construction: each node defines (in compli-
ance with the algorithm) the proper list of neighbors for
the final topology using the information inNR.

3) Construction of Topology with Only Bi-Directional Links
(Optional): each node adjusts its list of neighbors to
make sure that all the edges are bi-directional.

A. Information collection

The information needed by each nodeu for topology control
is the information of its reachable neighborhoodNR. This can
be obtained locally, in the case of homogeneous networks,
by having each node broadcast periodically aHello message
using its maximal transmission power. The information con-
tained in aHello message should at least include the nodeid
and the position of the node. These periodic messages can be
sent either in the data channel or in a separate control channel.
In heterogeneous networks, having each node broadcast a
Hello message using its maximal transmission power may be
insufficient. For example, as shown in Fig. 6,v1 is unable to
know the position ofv4 since v4 cannot reachv1. We will
treat this issue rigorously in Section V-D. For the time being,
we assume that by the end of the first phase every nodeu
obtains itsNR

u .

v1

v2

v3

v4

Fig. 6. An example that shows having each node broadcast aHello message
using its maximal transmission power may be insufficient for some nodes
(e.g., nodev1) to know their reachable neighborhood. This figure also serves
to show that given an arbitrary direct graph, it may be impossible to derive a
bi-directional topology.

B. Topology construction

First we define the neighbor relation used in both algo-
rithms.

Definition 12 (Neighbor Relation in DRNG):For Directed
Relative Neighborhood Graph(DRNG), u

DRNG−−−−−→ v if and
only if d(u, v) ≤ ru and there does not exist a third nodep
such thatw(u, p) < w(u, v) andw(p, v) < w(u, v), d(p, v) ≤
rp (see Fig. 1(c)).

Definition 13 (Neighbor Relation in DLSS):For Directed
Local Spanning SubGraph(DLSS),u

DLSS−−−−→ v if and only if
(u, v) ∈ E(Tu), whereTu is obtained by applying Algorithm 1
to GR

u . Tu is a directed local spanning subgraph that spans
NR

u . Hence nodev is a neighbor of nodeu if and only if
nodev is on nodeu’s directed local MSTTu, and is one-hop
away from nodeu.

DLSS is a natural extension of LMST [10] for hetero-
geneous networks. Instead of computing a directed local
MST (which minimizes the total cost of the all edges in
the subgraph, and is shown to be wrong in Section III-B),



Algorithm 1 DLSS(u)

INPUT: GR
u , the induced subgraph ofG that spans the

reachable neighborhood ofu;
OUTPUT: Tu = (VTu , ETu), a local spanning subgraph of

GR
u ;

1: VTu := V , ETu := ∅;
2: sort all edges inE(GR

u ) in the ascending order of weight
(as defined inDefinition 2);

3: for each edge(u, v) in the orderdo
4: if u is not connected tov in Tu then
5: ETu := ETu ∪ {(u, v)};
6: end if
7: if u is connected to all nodes inNR

u then
8: exit;
9: end if

10: end for

each nodeu computes a directed local subgraph according to
Algorithm 1 (which minimizes the maximum cost of all edges
in the subgraph) and takes on-tree nodes that are one-hop away
as its neighbors.

Each node can broadcast its own maximal transmission
power in the Hello message. By measuring the receiving
power of Hello messages, each nodeu can determine the
specific power level required to reach each of its neighbors
[10]. Node u then uses the power level that can reach its
farthest neighbor as its transmission power. This approach can
be applied without knowing the actual propagation model.

C. Construction of topology with only bi-directional edges

As illustrated in the previous section, some links inGDLSS

may be uni-directional. There also exist uni-directional links
in GDRNG. We can apply eitherAddition or Removal to
GDLSS and GDRNG to obtain bi-directional topologies. We
will discuss some properties of these solutions in Section V-B.

V. PROPERTIES OFDRNG AND DLSS

In this section, we discuss the connectivity, bi-directionality
and degree bound of DLSS and DRNG. We always assumeG
is strongly connected, i.e.,u ⇒ v in G for any u, v ∈ V (G).

A. Connectivity

Lemma 1:For any edge(u, v) ∈ E(G), we haveu ⇒ v in
GDLSS .

Proof: Let all the edges(u, v) ∈ E(G) be sorted in
the increasing order of weight, i.e.,w(u1, v1) < w(u2, v2) <
. . . < w(ul, vl), where l is the total number. We prove by
induction.

1) Basis: The first edge(u1, v1) satisfies w(u1, v1) =
min(u,v)∈E(G){w(u, v)}. According to Algorithm 1,
(u1, v1) and (v1, u1) will be inserted intoGDLSS , i.e.,
u1

DLSS←−−→ v1.
2) Induction: Assume the hypothesis holds for all edges

(ui, vi), 1 ≤ i < k, we proveuk ⇒ vk in GDLSS .
If uk

DLSS−−−−→ vk, then uk ⇒ vk. Otherwise in the local

topology construction ofu, before edge(uk, vk) was
inserted intoTuk

, there must already exist a pathp =
(w0 = uk, w1, w2, · · · , wm−1, wm = vk) from uk to vk,
where(wi, wi+1) ∈ E(Tuk

), i = 0, 1, · · · , m− 1. Since
edges are inserted in a ascending order of weight, we
havew(wi, wi+1) < w(uk, vk). Applying the induction
hypothesis to each pair[wi, wi+1], i = 0, 1, · · · , m− 1,
we havewi ⇒ wi+1, thusuk ⇒ vk.

Theorem 1:GDLSS preserves the connectivity ofG, i.e.,
GDLSS is strongly connected ifG is strongly connected.

Proof: SupposeG is strongly connected. For any two
nodes u, v ∈ V (G), there exists at least one pathp =
(w0 = u, w1, w2, · · · , wm−1, wm = v) from u to v, where
(wi, wi+1) ∈ E(G), i = 0, 1, · · · , m − 1. Sincewi ⇒ wi+1

by Lemma 1, we haveu ⇒ v.

Lemma 2:Given three nodesu, v, w ∈ V (GDLSS) satisfy-
ing w(u, v) > w(u, w) andw(u, v) > w(w, v), d(w, v) ≤ rw,
thenu 9 v in GDLSS .

Proof: We only need to consider the case where
d(u, v) ≤ ru sinced(u, v) > ru would implyu 9 v. Consider
the local topology construction ofu. Before we insert(u, v)
into Tu, the two edges(u, p) and (p, v) have already been
processed sincew(u, p) < w(u, v) and w(p, v) < w(u, v).
Thus u ⇒ p and p ⇒ v, which meansu ⇒ v. Therefore,
(u, v) should not be inserted intoTu according to Algorithm 1,
i.e., u 9 v in GDLSS .

Theorem 2:The edge set ofGDLSS is a subset of the edge
set ofGDRNG, i.e., E(GDLSS) ⊆ E(GDRNG).

Proof: We prove by contradiction. Given any edge
(u, v) ∈ E(GDLSS), assume(u, v) /∈ E(GDRNG). According
to the definition ofDRNG, there must exist a third nodep
such thatw(u, p) < w(u, v), d(u, p) ≤ ru and w(p, v) <
w(u, v), d(p, v) ≤ rp. By Lemma 2,u 9 v in GDLSS , i.e.,
(u, v) /∈ E(GDLSS).

Theorem 3 (Connectivity of DRNG):If G is strongly con-
nected, thenGDRNG is also strongly connected.

Proof: This is a direct result ofTheorem 1and Theo-
rem 2.

B. Bi-directionality

Now we discuss the bi-directionality property of DLSS and
DRNG. SinceAdditionmay not always result in bi-directional
topologies, we first applyRemovalto topologies by DLSS and
DRNG. It turns out the simpleRemovaloperation may lead
to disconnectivity. Examples are given in Figs. 7–8 to show,
respectively, that DLSS and DRNG withRemovalmay result
in disconnectivity.

In general,G may not be bi-directional if the transmission
ranges are non-uniform. Since the maximal transmission range
can not be increased, it may be impossible to find a bi-
directional connected subgraph ofG for some cases. An
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strongly connected: there are 2 components.

Fig. 7. An example that shows DLSS withRemovalmay result in disconnectivity.
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(c) Topology by DRNG withRemovalis not
strongly connected: there are 2 components.

Fig. 8. An example that shows DRNG withRemovalmay result in disconnectivity.

example is given inFig. 6: v1 can reachv2 and v4, v2 can
reachv1 and v3, v3 can reachv2 and v4, and v4 can reach
v2 only. Addition does not lead to bi-directionality since all
edges entering or leavingv4 are uni-directional with all nodes
already transmitting with their maximal power. On the other
hand, Removalwill partition the network. In this example,
although the graphG is strongly connected, its subgraph
with the same vertex set cannot be both connected and bi-
directional.

Now we show that bi-directionality can be ensured if the
original topology is both strongly connected and bi-directional.

Theorem 4:If the original topologyG is strongly connected
and bi-directional, thenGDLSS andGDRNG are also strongly
connected and bi-directional afterAddition or Removal.

Proof: Since E(GDLSS) ⊆ E(GDRNG), we have
E(G−DLSS) ⊆ E(G+

DLSS) andE(G−DLSS) ⊆ E(G−DRNG) ⊆
E(G

+
DRNG). Therefore, we only need to prove thatG−DLSS

preserves the strong connectivity.

In the Induction step in Lemma 1, the only reason we
cannot prove thatuk

DLSS←−−→ vk is that edge(vk, uk) may not
exist. Given thatG is bi-directional, we are able to prove
that uk

DLSS←−−→ vk. Hence for any edge(u, v) ∈ E(G), we
have u ⇔ v in GDLSS . The removal of asymmetric edges
in GDLSS does not affect this property. Therefore,G−DLSS is
still strongly connected.

u
vα

2

α
2

Fig. 9. The definition ofCone(u, α, v).

C. Degree Bound

It has been observed that any minimum spanning tree of a
simple undirected graph in the plane has a maximum node
degree of 6 [21]. However, this bound does not hold for
directed graphs. An example is shown in Fig. 10, where node
u has 18 neighbors. In this section, we will discuss the node
degree in the topology by DLSS and DRNG.

Definition 14 (Disk): Disk(u, r) is the disk centered at
nodeu with a radius ofr.

Definition 15 (Cone):Cone(u, α, v) is the unbounded
shaded region shown in Fig. 9.

The following corollary is a direct result of Lemma 1.
Corollary 1: If v is a neighbor ofu’s in GDLSS , and

d(u, v) ≥ rmin, thenu can not have any other neighbor inside
Disk(v, rmin).

Theorem 5:For any nodeu ∈ V (GDLSS), the number of
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2

rmin

2

u

rmin + ε
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Fig. 10. An example that shows the out degree in a heterogenous network
can be very large. The transmission range ofu is rmax and the transmission
range for all other nodes isrmin, where rmax = 2(rmin + ε), ε > 0.
All nodes are so arranged that the distance between any node and its closest
neighbor isrmin + ε. Therefore, the only links in the network are those from
u to all the other nodes. Since relaying packets is impossible,u has to use
its maximal transmission power and keeps all 18 neighbors.

neighbors inGDLSS that are insideDisk(u, rmin) is at most
6.

Proof: Let N(u) be the set of neighbors ofu in GDLSS

that are insideDisk(u, rmin). Let the nodes inN(u) be
ordered such that for theith node wi and the jth node
wj (j > i), w(u, wj) > w(u, wi). By Lemma 2, we have
w(u, wj) ≤ w(wi, wj) (otherwiseu 9 wj). Thus∠wiuwj ≥
π/3, i.e., nodewj cannot reside insideCone(u, 2π/3, wi).
Therefore, nodeu cannot have neighbors other than nodewi

insideCone(u, 2π/3, wi). By induction on the rank of nodes
in N(u), the maximal number of neighbors thatu can have is
at most 6.

Theorem 6:The out degree of node inGDLSS is bounded
by a constant that depends only onrmax andrmin.

Proof: For any nodeu in GDLSS , there are at most
6 neighbors insideDisk(u, rmin) from Theorem 5. Also
from Corollary 1, the set of disks{Disk(v, rmin

2 ) : v ∈
NDLSS(u), v /∈ Disk(u, rmin)} are disjoint. Therefore, the
total number of neighbors ofu is bounded by:

c1 = 6+
⌈

π[(rmax + rmin

2 )2 − ( rmin

2 )2]
π( rmin

2 )2

⌉
= 4dβ(β+1)e+6,

whereβ = rmax

rmin
. Actually we can observe that Fig. 10 shows

the scenario where the maximum out degree ofu is achieved
if ε → 0. Therefore, we can further tighten the bound. Since
the hexagonal area (as shown in Fig. 10) centered at every
neighbor ofu is disjoint with each other, the total number of
neighbors ofu is bounded by:

c2 =
⌈π(rmax + rmin√

3
)2

√
3

2 r2
min

⌉
− 1 =

⌈
2π√

3
(β +

1√
3
)2

⌉
− 1.

u v

p1
p2
p3

p4

Fig. 11. The out degree may be unbounded inGDRNG.

The bound given in Theorem 5 is actually quite large. We
will show in Section VI that the average maximum degree
is much smaller for networks with random distributed nodes.
Also note that what has been discussed so far is actually the
logical node degree, i.e., the number of logical neighbors. In
practice, it is more important to consider thephysical node
degree, i.e., the number of nodes within the transmission
radius. If omni-directional antennas are used, the physical
degree cannot be bounded for an arbitrary topology. However,
with the help of directional antennas, we will be able to bound
the physical degree given that the logical degree is bounded
under DLSS (except in some extreme cases, e.g., a large
number of nodes are of the same distance from one node). The
idea is that, when transmitting to a specific neighbor, nodeu
should adjust the direction and limit the transmission power
so that no other nodes will be affected.

Notice that the out degree is not bounded inGDRNG. An
example is given in Fig. 11. For allpi that lies inside the
shaded area, as long asrpi < d(pi, v), the edge(u, v) in
GDRNG will not exclude edges(u, pi), i = 1, 2, . . .. As a
result, the out degree ofu is unbounded.

D. Localized Algorithms

As mentioned in Section IV, in the case that nodes may
have different maximal transmission powers, the operation of
having each nodeu broadcast its own position information to
all the other nodes withinru is not sufficient to ensure each
nodeu obtains the information of reachable neighborhoodNR

u

(Fig. (6)). Fortunately with the desirable properties of DRNG
and DLSS proved in Sections V-A and V-B, we show that it is
sufficient for nodeu to collect neighborhood information only
from nodes whose maximal transmission range covers node
u. That is, the original information exchange algorithm that
requires only “one-hop” information suffices.

Consider a directed simple graph with less edges:G′ =
(V (G′), E(G′)), where E(G′) = {(u, v) : d(u, v) ≤
min(ru, rv), u, v ∈ V (G)}. For any edge(u, v) ∈ E(G′),
sinced(u, v) ≤ min(ru, rv), we have(v, u) ∈ E(G′), which
meansG′ is bi-directional. DefineNR

u
′ = {v ∈ V (G) :

d(u, v) ≤ min(ru, rv)}, ru
′ = maxv∈NR

u
′{d(u, v)}, where



(a) Original topology (without topology control) is strongly connected. (b) Topology by R&M is strongly connected.

(c) Topology by DRNG is strongly connected. (d) Topology by DLSS is strongly connected.

Fig. 12. Topologies derived by R&M, DRNG, and DLSS.

ru
′ ≤ ru since for anyv ∈ NR

u
′
, d(u, v) ≤ ru. Let rmin

′ =
minv∈V {rv

′} and rmax
′ = maxv∈V {rv

′}. By requiring each
nodeu to broadcast its position and id to all other nodes within
ru, we are able to determineNR

u
′

andru
′. We can then apply

DRNG and DLSS on top ofG′ and prove that Theorems 1-5
still hold even if the original topology isG′.

Theorem 7:Theorems 1–6 still holds if the original topol-
ogy is G′.

Proof: We replaceG, ru, NR
u , rmin, andrmax with G′,

ru
′, NR

u
′
, rmin

′ and rmax
′ in the proof of Lemma 1–2 and

Theorem 1–6. Then following the same line of arguments, we
can prove that they still hold if the original topology isG′.

Theorem 8:If the original topology isG′ (which is a
subgraph ofG), GDLSS andGDRNG are bi-directional after
Addition or Removal.

Proof: We apply Theorem 4 toG′, for G′ is bi-
directional.



VI. SIMULATION STUDY

In this section, we evaluate the performance of R&M,
DRNG, and DLSS by simulations. All three algorithms are
known to preserve network connectivity in heterogeneous
networks.

In the first simulation, 50 nodes are uniformly distributed
in a 1000m × 1000m region. The transmission ranges of
nodes are uniformly distributed in[200m, 250m]. Fig. 12 gives
the topologies derived using the maximal transmission power
(labeled as NONE), R&M (under the two-ray ground model),
DRNG, and DLSS for one simulation instance. As shown in
Fig. 12, R&M, DRNG and LMST all significantly reduce the
average node degree, while maintaining network connectivity.
Moreover, both DRNG and DLSS outperforms R&M in the
sense that fewer edges are formed in the topology.
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Fig. 13. Comparison of DLSS, DRNG and R&M with respect to average
radius and average edge length.

In the second simulation, we vary the number of nodes in
the region from 100 to 300, and each data point is an average
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(b) Average physical out degree.

Fig. 14. Comparison of R&M, DRNG and DLSS with respect to average
out degree.

of 50 simulation runs. The transmission ranges of nodes are
uniformly distributed in [200m, 250m]. Fig. 13 shows the
average radius and the average link length for the topologies
derived under NONE(no topology control), R&M, DRNG,
and DLSS. DLSS outperforms the others, which implies that
DLSS can provide a better spatial reuse and use less energy
to communicate.

We also compare the out degree of the topologies by
different algorithms. The result of NONE is not shown because
its out degrees increase almost linearly with the number of
nodes and are significantly larger than those under R&M,
DRNG, and DLSS. Fig. 14 shows the average logical/physical
out degree for the topologies derived by R&M, DRNG, and
DLSS. The average out degrees under R&M and DRNG
increase with the increase in the number of nodes, while those
under DLSS actually decrease. Fig .15 shows the average
maximum logical degree and the largest maximum logical
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Fig. 15. Comparison of R&M, DRNG and DLSS with respect to the
maximum logical degree.

out degree for each number of nodes. The largest maximum
logical degree under DLSS is at most 4, and is well below the
theoretical upper bound obtained in Theorem 6. Also DLSS
has much smaller degrees than the other topologies. Similar
results can be observed in Fig. 16 for physical degrees. The
only difference is that the physical degrees are in general larger
than the logical degrees for the same network.

VII. CONCLUSIONS

In this paper, we have proposed two local topology control
algorithms, Directed Relative Neighborhood Graph (DRNG)
and Directed Local Spanning Subgraph (DLSS), for heteroge-
neous wireless multi-hop networks in which each node may
have different maximal transmission ranges. We show that as
most existing topology control algorithms (except R&M [4])
do not consider the fact that nodes may have different maximal
transmission ranges, they render disconnected network topol-
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Fig. 16. Comparison of R&M, DRNG and DLSS with respect to the
maximum physical degree.

ogy when directly applied to heterogeneous networks. Then
we devise DRNG and DLSS and prove that (i) both DRNG
and DLSS preserve network connectivity; (ii) both DRNG
and DLSS preserve network bi-directionality ifAddition and
Removeoperations are applied to the topologies derived under
these algorithms; and (iii) the out degree of any node is
bounded in the topology derived under DLSS, while that may
be unbounded under DRNG. The simulation study validates
the superiority of DRNG and DLSS over R&M.

As part of our future research, we will pursue the following
open problems: (1) given a topology in which each node
transmits with different maximal transmission power, what is
the probability that the topology is bi-directional with respect
to the distribution and the density of nodes, and the distribution
of the transmission ranges? and (2) How will MAC-level
interference affect network connectivity and bi-directionality?
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