
Tehnički vjesnik 28, 6(2021), 2127-2137 2127

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20190721135322
Preliminary communication

Applying LCS/XCS to the RTS Games Domain

Damijan NOVAK*, Domen VERBER

Abstract: Real-Time Strategy games (RTS) are representatives of the highest class of computational complexity in computer game genres. To cope with the high complexity
of the state-action space of RTS game worlds, various Machine Learning algorithms are being used and researched extensively. In this article, we apply eXtended Classifier
Systems (XCS) to the domain of RTS games. The XCS algorithm belongs to a Learning Classifier Systems (LCS) group known for their adaptability, generalisation, and
scalability. We build the game agent named AIXCS. It uses a group of XCS algorithms, which generate a set of unit-actions used in the RTS game. The AIXCS operates
without prior learning from the game runs and in tight timing constraints. The AIXCS was put to the test against other game agents in the micro RTS game environment, with
positive results regarding successful game operation at runtime.

Keywords: AI; game agent; LCS; micro RTS; real-time strategy games; XCS

1 INTRODUCTION

Real-Time Strategy (RTS) games are a sub-genre of
strategy computer games based on classical board games
like chess or tic-tac-toe. The basic gameplay of RTS games
usually takes place on some fictitious terrain, where
players battle with each other. Usually, the players may
also have to gather resources and manage the economy to
build new units and structures. An important aspect of an
RTS game is the construction of a base, which offers
protection, unit upgrades, research capabilities, etc. Players
need to master strategy, tactics and low-level unit
behaviour, sometimes called micro management or
reactive control, to win the game.

RTS games are high complexity games [1] because:
the number of involved units is high (at one single time it
can surpass several hundred units); information presented
to the player can be imperfect (e.g. parts of a map can be
hidden) or incomplete (e.g. information, about what kind
of units the opponent chose to play with, is unknown to the
player); randomness, uncertainty and non-deterministic
behaviour can be included in the game engine operation;
temporal continuity (the previous action constrains future
action(s)); etc. This high computational complexity
motivated an article from Buro [2], which was published in
2003, with the idea that RTS games can be used not just for
gaming, but also as testbeds for Artificial Intelligence (AI)
research.

The researchers tackled the RTS game domain with
many types of Machine Learning (ML) techniques, for
example, Monte-Carlo Tree Search, Deep Q Networks,
rule mining, etc. The review of different computational
intelligence methods (and successful applications) [3] and
significant AI system (including evolutionary computation
and deep RL) [4] shows rapid and extensive research
regarding the ML domain. We decided to narrow it by
limiting ourselves to its Reinforcement Learning (RL)
category, which is based on reward received from the
environment, and does not need prior large databases of
game data (e.g. game replays of professional human
players). In the article by Stanescu et al. [5] it was also
nicely stated: "Without a large number of high-quality
records, reinforcement learning techniques will likely need
to be considered in future work".

Therefore, the main agenda of the article is to combine
the RL and RTS game domains by creating a complete RTS
game playing agent based on the Learning Classifier
Systems (LCS). The agent will be tested against other
respected game agents of the field. The motivation of
choosing the LCS came from a survey written by Shafi and
Abbass [6], which examined usage of LCS in games. The
survey showed that LCS literature on the domain of RTS
games is very scarce, and further research in the matter is
very relevant.

LCS belongs to the category of the reinforcement
learning (RL) and the Genetic Algorithms (GA). It uses
evolutionary algorithm approach (along with other
heuristics) to acquire rules regarding the environment. The
learning process is used continually, with the goal of
finding an optimal solution to a given problem.

There are many different types of LCS algorithms. We
decided to use eXtended Classifier Systems (XCS) [7]. The
decision was made on behalf of its efficient generalisations
over complete state-action space. This is necessary for
optimal gameplay. Otherwise the solution will be stuck in
some local optima. However, efficient generalisation is
also needed. The computational complexity of RTS game
worlds is too prohibitive to allow exhaustive search of
every state-action pair in the search space. Applying XCS
to the game domain will test the suitability of such
algorithms for operations and making decisions in a real-
time game environment.

In previous research the usage of XCS in RTS games
was studied in Rudolph et al. [10], where they created four
separate micro management agents, each with its specific
behaviour. They compared all the created agents playing
between each other in basic scenarios. They proposed, but
did not implement the inclusion of strategic command.
They also did not include the resource gathering and
production of units and structures. In contrast, we
developed a complete RTS game agent that also
incorporates resource management and production, as well
as the strategic module.

Domains of RTS games and LCS algorithms were also
combined before by researchers Tspanos et al. in [8], with
a simplified version of the original LCS framework called
Zeroth-level Classifier System (ZCS) [9]. The authors
stated that the adaptation of an initial random set of rules

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

2128 Technical Gazette 28, 6(2021), 2128-2137

through ZCS and repetitive game-playing, resulted in
policies that dominated the static rule-based player.

For simulation and evaluation of the game agent, we
decided to use micro RTS game engine [11]. It offers a
simpler environment than fully-fledged RTS games like
StarCraft™. Other researchers also use the same game
engine, which allows for comparison among their
solutions. For operations inside the micro RTS
environment, a game agent named AIXCS was designed,
which utilises the XCS algorithms. Structure of the game
agent and its interaction with the game environment can be
seen in Fig. 1. The structure of the presented game agent is
universal enough and could also be used in other game
genre environments wherever multiple units need to be
operated simultaneously by the strategy level.

Figure 1 Game agent structure and its interaction with the game environment

Our game agent operates without any prior training

[12]. This is because the international competition rules
usually prohibit saving data between matches for
additional processing, or because pre-processing is not
possible. Otherwise, if interested, more about the prior
learning of XCS agents in RTS games can be found in [12].
We must also note that, due to the inner complexity of our
game agent, which includes multiple XCS algorithms and
many game policies at play, we decided to include some
limitations into the initial design. The most notable
limitation is that we currently only process one game state
in advance (i.e. no chaining of states). This limitation will
help us understand better how XCS operates in the RTS
game domain.

This paper is structured as follows: Section 2 gives a
description of the microRTS simulation environment. In
section 3 the general LCS structure and the details of the
XCS algorithm are given. The XCS interaction with

reinforcement and the environment programme is provided
in Section 4. Section 5 explains the use of XCS for the full
RTS gameplay. Section 6 explains the syntactic and
semantic validation of classifiers (internal rules of XCS)
and how to manage them in the RTS environment. Section
7 describes the experiment set-up and the results.
Discussion is given in section 8. Section 9 offers the
conclusion, current limitations of the agent and outlines for
future work.

2 microRTS

microRTS is a simple simulation environment,
designed with similar rules to the fully-fledged RTS games
(e.g. Command & Conquer™ and StarCraft). It provides
an Open AI integration API to create and evaluate different
solutions quickly. It is used in many research articles and
competitions between different solutions at prestigious
conferences [13].

The microRTS game contains four types of mobile
units (Worker, Light, Heavy and Ranged), two kinds of
structures (Base and Barracks), one type of resource and a
wall. The base produces workers [11]. Workers gather
resources and build structures.They have only a limited
firepower. Barracks produce military units (Light, Heavy
and Ranged). Military units vary in their capabilities (e.g.
a Ranged unit has a longer attack range). The wall is used
as a physical barrier in the environment.

The simulation environment of the microRTS allows
different game scenarios. Among others, it is possible to
define the size of the map, the starting positions and types
of the structures and units, starting position of the
resources, etc. It also allows executing the game with the
GUI turned off, which makes simulation much faster.
Many game agents are pre-included. Some of them are
further described in the section 7.

An example of a microRTS game state with all the
environment elements is shown in Fig. 2. For greater
clarity, only the description of the environmental elements
for the first player, positioned at the bottom right corner,
was included. The opponent starts at the top left corner.

Figure 2 The example of microRTS game state

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

Tehnički vjesnik 28, 6(2021), 2127-2137 2129

3 LCS/XCS
3.1 LCS

LCS are rule-based systems. At the core they comprise
a population of classifiers: C = {C1, C2, …, Cn}. Classifiers
take the form of "IF condition THEN action" [14].
Condition is a vector that represents some game state.
During the execution, each condition is matched with the
actual input (state variables) provided by the environment.
Each condition vector element is formed from the set of {0,
1, #}[15]. Values 0 and 1 represent the situation where
classifier bits must exactly match the corresponding bits of
the state variable. The symbol # represents a don't care
value where the value in the state variable is ignored. For
example, the condition 11#10 matches both 11010 and
11110 values of the state vector. This allows for
generalisation of the condition. The action part of the
classifier specifies the action that the classifier is
propagating. Some examples of actions are: "produce
worker left", "harvest", "wait", etc. Some groups of LCS's
can introduce other attributes.

LCS learning, evolving of existing rules, as well as
creation of new rules comes on an account of interaction
with an environment from which it receives some
numerical reward. Reward is the indication of the benefit
of the actions. The goal is the maximisation of the amount
of the reward gathered in the long run [16]. To achieve that
goal, LCS learns an action-value function [17]. This
function maps state-action pairs into a payoff (a real
number). The payoff is used to guide the search for new
rules, which should, ideally, be better at making more
effective decisions.

During LCS operation, adaptability, generalisation,
and scalability take place. LCSs are adaptive [14], and
capable of runtime learning in rapidly changing situations
by exploiting their GA. GA's purpose is to evolve the
population of classifiers to improve the solution of the
problem. New set of rules should be better in terms of being
more accurate, or in being able to predict a higher payoff.
Generalisation is also an important feature.The system that
generalises properly can a) Represent in a compact form
what it has learned, and b) Can apply what it has learned to
previously unseen situations [16].

3.2 XCS

Because of our requirement of LCS to cope with the
large and very complex state-action space of the RTS
environment, the LCS's group XCS was chosen, for which
literature [18] shows that it can learn a state-value function
over the complete state-action space with efficient
generalisations.

The implementation of our XCS algorithm is based on
the work of Butz and Wilson [19]. Their work comprises a
modular structured pseudo code with accompanying
explanations. The XCS algorithm also interacts with
reinforcement and the environment programme. The
details of interaction and implementation are explained in
Section 4.

XCS is a kind of the RL algorithms. It operates in an
environment by taking some actions and for which it
receives reward. The reinforcement component of XCS
uses a form of Q-learning [20]. Q-learning allows agents to

map states and actions to their utilities. The important part
of Q-learning is the Markovian environment assumption,
which states that any information needed to determine the
optimal actions is reflected in the agent's state
representation [21]. The process where the agent firstly
observes the environment's output, consisting of a reward
and the next state, and, secondly, upon that output executes
a proper action, is called a Markov Decision Process
(MDP) [22]. MDP specifies a finite set of states and
actions. As long as all of those actions are sampled
repeatedly in all states and action-values are represented
discretely, Q-learning delivers convergence to the
optimum action-values with probability one [23].

Inside the XCS algorithm [19] (Fig. 3) the knowledge
about a problem is kept in classifiers. The algorithm uses
four sets: Population set [P], Match set [M], Action set [A],
and the Previous Action set [A]-1. [P] contains all
classifiers that exist in XCS at any time t. [M] includes all
classifiers that match the current situation. [A] is formed
out of the current [M], and consists of those classifiers from
[M] that will be executed in the current cycle. [A]-1 is a
record of [A] from the previous XCS iteration. [A]-1 is only
used if we are dealing with a multi-step problem (i.e. the
problem might require multiple steps in order to solve it
successfully). Our current solution is implemented as a
single-step problem and the [A]-1 is not used.

Figure 3 Pseudocode of the XCS algorithm

The pseudocode starts with the initialisation of the

main components: The environment programme env,
reinforcement programme rp and XCS. At the XCS
initialisation phase the [P] is created, and a bond is formed
from the XCS algorithm to the game policy. Next, the XCS
cycle is started, which lasts until the termination criteria
signal is sent from rp. At the beginning of the cycle, the
input state σ (also called sensory information) is received

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

2130 Technical Gazette 28, 6(2021), 2128-2137

from the environment. σ is then matched with [P] to create
[M]. Matching is done by comparing specified bits of
condition and of σ. During the execution of the algorithm
some bits (or group of bits) of the condition can be set to a
don't care value # [7]. This can occur at the covering and/or
mutation phase.

If, after the creation of [M], the number of unique
actions is lower than the number of all the available actions
of the current search space, the covering operation occurs
which covers all the available actions. After that, the
Prediction Array (PA) is formed from the [M] [15], which
consists of as many real values as there are unique actions.
Each value is the estimate of the pay off that the system
expects when an action is executed (Eq. (1)).

M

M

PA
cl.a a&cl

cl .a a&cl

cl.p cl. f

cl. f

 (1)

Legend: cl - classifier, a - action, p - prediction, f -

fitness.
Pay off is a fitness-weighted average of the predictions

of all classifiers in [M] that advocate that action [24]. It is
calculated by considering each classifier in [M] and taking
the sum of its prediction (cl.p) multiplied by its fitness to
the prediction value total for that action (cl.f). This sum is
then divided by the sum of fitnesses for that action.

After the PA has been created, the algorithm selects the
action with the highest prediction, and executes that action
in the env. This is also known as the simulation phase.
After the simulation is complete, the rp returns reward ρ.
Using the ρ, updating of [A] occurs (with the possibility of
deleting in [P]). Lastly, GA is called upon an [A]
(considering σ inserting in [P]).

XCS differs from all other LCS's variants in its rule
fitness for GA. Rule fitness is not based on the amount of
reward received, but purely upon the accuracy of
predictions of reward [25]. Another important difference is
that GA takes place in the [A] (implicit niching) and not in
the [P]. In XCS, each classifier also keeps certain
additional parameters (alongside condition, action and
prediction estimates) needed for functioning. Those
parameters are: Prediction error ε (a value which reflects
the deviation of prediction from the actual reward), fitness
f (the accuracy of the prediction of the classifier),
experience exp (it represents the number of times the
classifier has belonged to an [A]), time stamp ts (it denotes
the last occurrence of a GA in an [A] to which this classifier
belonged), action set size as (it estimates the average size
of the action sets this classifier has belonged to), and
numerosity num (the number of micro-classifiers [ordinary
classifiers] this classifier-which is technically called a
macro-classifier-represents) [10, 19].

4 REINFORCEMENT AND ENVIRONMENT

PROGRAMMES

The Reinforcement and Environment programmes are
important interfaces that help XCS with its operations (Fig.
4) [19]. They provide the XCS algorithm with information
on an as-needed basis. With these two interfaces the raw

information from the RTS domain is processed to the input
format requirements of an XCS algorithm.

Figure 4 Interaction between XCS, environment, game policy and both

programmes

4.1 Reinforcement Programme

The main objective of the reinforcement programme is
to return the reward to the XCS algorithm for the specific
unit that has executed an action. XCS uses this reward to
update its [A]. Reward is calculated over the game state
that was provided using the evaluation function that the
game policy holds. Evaluation function is usually
implemented as a subtraction of max and min player scores
of the current game state.

To help with evaluation of the game state, we first tried
evaluation policies that were already part of the micro RTS
package, but initial testing did not return the results we
anticipated. This was because those policies were made to
fit better with other kinds of algorithms, e.g. Puppet Search
[26]. So, we decided to create a specific interface, which
uses domain knowledge and extracts relevant features from
the environment to be used for evaluation of state. The
group of features that we selected as relevant includes:
Number of friendly and enemy units by categories (worker,
light, heavy and ranged), flags which signal if a friendly or
an enemy base is under threat or if it was already damaged,
number of friendly and enemy bases / hit points / units /
stockpiled resources. These relevant features were selected
by hand from the group of features during initial pre-testing
(for selection of some of the features we found inspiration
in the works of Tspanos et al. [8] and Lujan [12]). The final
selection was done through simple matching of which
feature was showing better reward results regarding a given
game policy. We also took advice from [27], which said:
"… reward can be configured using a range of flags, but
we strongly discourage disingenuous engineering of the
reward function…". This advice was reflected in pre-
testing by not applying the simple tactics (e.g. 2 vs. 2 light
units), but on playing the bigger scenarios (e.g. full game
starting with one base and one worker) while making
observations as to which reward feature made a difference
in overall performance.

4.2 Environment Programme

The main operations that are covered by the
Environment programme are: Executing the combined
player-actions for a given unit on the game state; receiving
all the available unit actions for all the units on the

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

Tehnički vjesnik 28, 6(2021), 2127-2137 2131

playfield; filtering the unit actions based on the specific
game policy; getting sensory information (used by XCS
during [M]`s creation); getting purified (higher
abstraction) data from the game state (XCS uses it for
initial creation or covering of classifiers and while
executing GA over [A]). The Environment programme is
also responsible for two very important methods of
syntactic and semantic validations of the classifier and of
the action in play.

5 USE OF XCS FOR THE FULL-BLOWN RTS GAMEPLAY

In this Section, we connect the domain of Machine
Learning (XCS algorithm) with the RTS game domain by
presenting the components further required for creation of
the full-blown RTS game agent (Fig. 1). In the first part of
the Section, we are presenting five policies. One game
policy is associated with exactly one XCS algorithm. These
policies provide the units with a specific behaviour (e.g.
production management), and cover all aspects of the RTS
game play (including strategic command, because one
game policy is specially dedicated to such a purpose).
Second, we describe how each unit's actions, present on the
game map, are combined to form the Player Actions with
the strategy module's help. The XCS algorithm selects a
unit's actions by following game policy agenda. In the third
part, we present the map coding representation, which
allows the XCS algorithm to compare the condition of its
classifiers to the environment sensory information (the
sensory input is provided by the environment programme).

5.1 Game Policy

Each XCS algorithm`s behaviour is defined by its
game policy. Connection to the game policy is established
at the start of the XCS creation and initialisation. We used
two groups of policies: Tactical and strategic. Tactical
policies operate with direct calls to the game engine with
the commands for the specific units. Strategic policies use
commands which are of higher abstraction and are not
directly related to the game engine calls (e.g. more workers
must go harvesting).

Tactical policies are set to an XCS that is associated
with a single unit, while strategic policies oversee general
gameplay, so they influence multiple units. We created five
policies that cover all the actions that can be executed in
the micro RTS game environment. The first one is the
production policy, responsible for creating new units, and
for constructing base and barrack buildings. The second is
the tactical military policy, which defines if the unit
movement command is needed, if it must retreat, or the unit
has to attack a specific location. The third game policy is
similar to the second one, with the difference that the move
command has specific direction (up, down, left and right).
The third game policy replaces the second one, when there
are nearby enemy units. The range threshold of how far
away the enemy is positioned can be set in advance. The
fourth is a tactical harvest policy, specifying if a worker
will wait, or if it will go harvesting. The fifth is a strategic
military policy, updating two weights that determine the
global behaviour of the game agent either towards the
attack or the harvest. The weights can go up, down, or they

can stay the same. Weights values are transferred (kept)
between the game states.

Complete game agent behaviour is formed when each
unit has at least one XCS algorithm set and connected to
the game policy. The strategic policy is an on/off choice. It
is turned on by default. A game agent can operate using
only the tactical policies.

Each game policy contains a common set of
parameters used by XCS during its running time:
 size of set [P],
 number of actions,
 learning rate values,
 bit size of condition,
 GA probabilities, etc.

The game policy also includes the following important
variables:
 exact number and list of actions that it is associated
with (e.g. production of a worker),
 a flag to signal if the game policy is tactical or
strategic, and
 a flag that signals if for condition presentation the XCS
uses the detailed game map representation with all the
elements included (used by default), or if it uses aggregated
environment information (e.g. the number of enemy
workers).

Actual values of constants used by an agent and its
XCS algorithms are presented in Section 7.

5.2 Player-Actions and Their Use by Strategy Module

When a player makes a decision and issues an action
to a single unit, we call it unit-action. The game field can
contain many units, and each is capable of executing
several actions; a unit can always execute a wait action. A
set of all unit-actions issued by a player in each decision
cycle is called player-actions (for that purpose, micro RTS
implements a class PlayerAction [28]).

The player-actions may contain commands for
multiple units at the same time. Many game related
algorithms already have the capability to use player-actions
operations directly (e.g. game trees [29]). On the other
hand, XCS is not capable to use PlayerActions directly, and
can only return a single (the best) unit-action. Our solution
to deal with the problem was to cover every single unit that
is under our command with one (or more) XCS, and then
keeping the best action from each unit in an object called
combined.

Some units can be under the control of more than just
one XCS algorithm, because they have different types of
modus operandi, and, thus, can be covered by more than
one game policy (e.g. a worker can be used for harvesting
or for attacking). The decision, which XCS should be used
at specific time, is made according to the weights from the
strategic module. E.g. workers can switch between
harvesting and attacking modes, based on which weight is
of higher value.

5.3 Representation of Classifier and Sensory Input for

Usage in microRTS

To match condition of classifier and environment input
σ, they must have the same length and the same

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

2132 Technical Gazette 28, 6(2021), 2128-2137

representation. They are both built upon the representation
of the environment (map). To create the representation of
the map, we decided to take a different approach than those
seen in the work of Tspanos et al. [8]. We opted to use full
map representation to create a binary vector instead of
purified information retrieved and abstracted from the map
(e.g. the number of friendly workers). This way we do not
need crafting of abstraction by hand. Additionally, we also
preserve more spatial information presented on the map.

The two-dimensional structure of the map cells was
transformed into a one-dimensional vector. The content of
each cell is encoded with four bits.The encoding is shown
in Tab. 1. For example, if the map contains 8 × 8 cells, a
one-dimensional condition of 256 bits - [map] × [4 bits per
cell] = 8 × 8 × 4, is created.

Table 1 Map coding table

Name of the environmental element
Representation in bits (4

bits needed)
Base (Friendly) 0 0 0 0
Barracks (Friendly) 0 0 0 1
Worker (Friendly) 0 0 1 0
Light (Friendly) 0 0 1 1
Ranged (Friendly) 0 1 0 0
Heavy (Friendly) 0 1 0 1
Base (Enemy) 0 1 1 0
Barracks (Enemy) 0 1 1 1
Worker (Enemy) 1 0 0 0
Light (Enemy) 1 0 0 1
Ranged (Enemy) 1 0 1 0
Heavy (Enemy) 1 0 1 1
Resource 1 1 0 0
Wall 1 1 0 1
Empty 1 1 1 0
Hidden (for future research, dealing with
partial observability)

1 1 1 1

6 CLASSIFIER CORRECTNESS
6.1 Syntactic and Semantic Validations of Classifiers

To make sure that results from classifiers during all
phases of XCS operation are valid, and that the XCS cycle
would not stop unintentionally, syntactic and semantic
validation of classifiers during XCS processing is
implemented. Syntactic validation checks if the action can
be executed for a specific condition. If the action and
condition are not compatible, the classifier is disregarded
for future use. Semantic validation is made directly on the
active game state. The basic XCS algorithm does not
include the points of reference where exactly the syntactic
and semantic checking should be performed. For this, we
considered the work of Vasilyev [30]. He suggests that the
syntactic validity is checked at the stage of classifier
formation, and the semantic one is checked directly during
the game playtime.

In our implementation, syntactic validations must be
made at population set creation, at match set creation
(whenever covering operations occur) and at the crossover
operations of the GA algorithm. In contrast, the semantic
validation is made before the combined object is executed
on the active game state. The purpose of syntactic
validation is to make a basic check if a single unit-action is
being legal against the environment. For this we must first
create the synthetic game state from the classifier
conditions. This state only holds the information about
units and structures on their rightful positions, but without

the details of what actions they are all presently executing.
Second, we check the legality of execution of each
classifier's unit-actions by utilising the micro RTS method
isUnitActionAllowed. For example, the syntax validation
will fail if the map contains a unit that wants to move left,
but there is a wall present.

Semantic validation checks if the set of unit-actions
(player-actions present in the combined object) passes
execution (through utilisation of microRTS game state API
methods) on the deep copy of the game playing game state.
Creation of the deep copy is needed so that the original
game play state does not become corrupted. Unit-actions
that are not allowed are filtered out from the player-actions
set that holds them. If there are not enough resources to
complete the specific action request (violation of resource
usage), the action is also not allowed.

6.2 Managing Classifiers in the RTS Environment

Managing the condition and action of a classifier in the
RTS environment is not a trivial procedure. When XCS
initialises, it starts with fixed number of classifiers in its set
[P]. The condition and action for those classifiers are
chosen randomly. The choosing of an action is straight
forward. The action is chosen randomly from the list of
currently available actions considering the game. On the
other hand, the condition of a classifier cannot be created
completely at random. The opposite would frequently
produce conditions that are not feasible, e.g. a condition
where the whole map is made just of the resources.
Consequently, classifiers with non-feasible conditions
would be constantly removed from the initial [P].

To cope with this problem, we designed our own
solution in three steps. First, we made a copy of the original
game state. Second, on that copy, we executed a random
player-actions set for both players. We must consider
actions from both players; otherwise the reward received
just by one player would not be correct (i.e. enemy units
holding still while our friendly units are performing actions
is not realistic). Third, we create the condition of the
classifier from the copy of the game state by using the
encoding presented in Tab. 1. The result is a set [P] of
randomly created classifiers, which are syntactically
correct.

In this scenario, there is a possibility that several
classifiers with the same condition and action are created
in the process. This could lead to stopping of learning due
to premature convergence at local optima [31]. This topic
will be investigated further in our future work.

7 EXPERIMENT AND RESULTS

The experiment was designed to test our game agent's
performance against the other game agents. The
experiment was executed using two cases. First, we used a
simple battle scenario: A map with the size of 4 × 4 cells
with only military units (2 vs. 2 light units). Battles
constitute a significant part of the RTS games, and a good
performance is desired in such localised matches. Second,
we used a full-blown RTS game: A map of the size 8 × 8
cells, comprising the full game configuration. This will
help us evaluate our agent better against dynamic

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

Tehnički vjesnik 28, 6(2021), 2127-2137 2133

opponents during operations in runtime-only game mode
(i.e. without prior pre-learning of classifiers).

7.1 Experimental Set-Up

The experiment was carried out on an i7-3770k CPU
computer @ 3.50 (turbo: 3.9) GHz, 4 cores (only one core
was used for experimentation), 16 GB RAM, OS Windows
10 Pro and Java version 1.8.0. The experiment was set in
the latest version of microRTS environment at the time of
preparing this article [32]. We set up our experiment
following the guidelines from the article [11], where each
player starts with one base and one worker. The experiment
was executed in a perfect information environment (fully
observable and deterministic). Maps used for both
scenarios are included inside the microRTS package under
the names "melee 4 × 4 light2" and "basesWorkers 8 × 8".

The experiment was executed by using the class
CompareAllAIsObservable, which is part of the micro RTS
tests package. We made three changes to that class
regarding our experiment: Tests were limited to the two
before mentioned maps; game agents PuppetSearchMCTS
(utt) and our AIXCS agent were added to the list of the
agents to test; the experiment was run only to test our agent
against the others. Each experiment was designed to run
with AIXCS first for 10 matches against every other agent.
Then, we switched the sides for another 10 matches. When
players switch their sides, their starting position on the map
also changes. Everything else inside the experiment class
was left unchanged. There was no transfer learning from
one match to another.

The parameters of the experiment were pre-set as
follows: Each match was limited to 3000 cycles/frames
(with max. inactive cycles set to 300), continuing = true,
time = 100, max_actions = 100, max_playouts = −1,
playout_time = 100, max_depth = 10 and
randomised_ab_repeats = 10.

XCS constants (internal working parameters) were set
as follows: N = 83 ([P] size number), α = 0.05 (learning
rate for updating ρ), β = 0.01 (learning rate for p, ε and f),
δ = 0.1 (specifies the fraction of the mean fitness in [P],
below which the fitness of a classifier may be considered
in its probability of deletion), θGA = 25 (GA threshold), ε0
= 10 (error below which classifiers are considered to have
equal accuracy), θdel = 20 (deletion threshold), ν = 5
(power parameter), χ = 0.5 (crossover probabilities), μ =
0.01 (mutation probability), θsub = 20 (subsumption
threshold), P# = 0.33 (probability of using a # in one
attribute in condition when covering), pI = εI = fI = 0 (used
as initial values in new classifiers), pexp = 0.045
(exploration probability), [A] subsumption and GA
subsumption are set to false, and for condition presentation
the whole game map was used with all the information
included. γ (discount factor) is currently not set and not
used, because our XCS algorithm, at this point, does not
execute multi-step problems.

7.2 Game Agents in Testing

In the experiment we included the following game
agents which were all part of the microRTS package [5, 11,
33]:

 RandomAI: The game agent makes a completely
random selection of actions.
 RandomBiasedAI: Based on RandomAI, but the
probability of choosing to attack or harvest action is five
times higher than that of selecting any other actions.
 LightRush: The agent uses only one worker to mine
resources. Gathered resources are then first spent to build
one barracks structure. All the rest of the resources are
forwarded towards Light combat units' production, which
are sent immediately to attack the nearest target.
 RangedRush: Similar to LightRush, except it builds a
Ranged combat unit instead of Light combat units.
 WorkerRush: Similar to LightRush and RangeRush,
except that the barracks are not needed (the workers are
built directly from the base structure).
 PortfolioAI: Uses a collection of four predefined AI's
(RandomBiasedAI, LightRush, RangedRush, and
WorkerRush) to create combinations of two game agents
for a single match. It keeps scores (by utilisation of the
evaluation function) of the matches and counts how many
times matches occurred with the same set up of two game
agents. It returns the action from the AI that obtained the
best results (Minimax).
 IDRTMinimax: The game agent uses the Minimax
algorithm, but not its standard version. The algorithm that
the game agent is using, is not defined by the game agent`s
moves, but rather the time. Here, acronym RT stands for
Real-Time. The ID acronym represents Iterative-
Deepening, because the algorithm uses up all the available
time to search in a tree as deeply as possible.
 IDRTMinimaxRandomized: Similar to the previous
game agent, but with the special mechanics of the
randomised alpha-beta algorithm (the algorithm has better
assessment for situations where players execute moves
simultaneously).
 IDABCD: Alpha-Beta Considering Duration is similar
to RTMinimax, but with modifications that allow for
operations like durative moves (more info can be found in
the work of Churchill et al. [34]).
 MonteCarlo: A standard Monte Carlo search algorithm.
 MonteCarlo (with max_actions): A standard Monte
Carlo search algorithm, but with the limit of only
considering a subset of all the possible actions that can be
executed in each game state which is of the size
max_actions.
 NaiveMCTS (four versions [11]): Standard Monte
Carlo search but using Naïve sampling. Four variations
(which differ in their initial parameter settings) were used
in the experiment (all versions` parameters were set by the
game agents` author and were not changed in any way):
NaiveMCTS#1 (max_depth = 1, εl = 0.33, ε0 = 0.75),
NaiveMCTS#2 (max_depth = 1, εl = 1.00, ε0 = 0.25),
NaiveMCTS#3 (max_depth = 10, εl = 0.33, ε0 = 0.75) and
NaiveMCTS#4 (max_depth = 10, εl = 1.00, ε0 = 0.25). Note:
max_depth set to 1 transforms NaiveMCTS into NaiveMC.
 UCT: A standard real-time UCT algorithm with Upper
Confidence Bound 1 (UCB1) sampling policy.
 DownSamplingUCT: Each node in the search tree can
only go up to a maximum predefined number of actions, and
is therefore not allowed to cover all the available actions at
one time (note: Random choosing of actions stays the same

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

2134 Technical Gazette 28, 6(2021), 2128-2137

as in the standard UCT, but it only operates until the
maximum allowed number of actions is met).
 UCTUnitActions: This search tree speciality is in the
fact that it is based on unit-actions rather than on player-
actions.
 PuppetSearchMCTS: An adversarial search
framework based on scripts that can expose choice points
to a look-ahead procedure (for this experiment we used a
basic configurable script with a unit type table (utt)). Here,
Monte Carlo adversarial search tree was used to search
over sequences of puppet moves (which gave the algorithm
its name).

7.3 Results

Experiment results carried for the map "melee4 ×
4light2" are shown in Tab. 2.

Table 2 Wins / ties / losses of AIXCS against other game agents in the "melee4

× 4light2" map
Column of game agents against which

AIXCS plays
AIXCS

(Wins/ties/losses)
RandomAI 20 / 0 / 0
RandomBiasedAI 19 / 0 / 1
LightRush 10 / 10 / 0
RangedRush 7 / 11 / 2
WorkerRush 6 / 14 / 0
PortfolioAI 7 / 13 / 0
IDRTMinimax 0 / 20 / 0
IDRTMinimaxRandomized 0 / 18 / 2
IDABCD 12 / 5 / 3
MonteCarlo 20 / 0 / 0
MonteCarlo (with max_actions) 20 / 0 / 0
NaiveMCTS#1 0 / 13 / 7
NaiveMCTS#2 1 / 12 / 7
NaiveMCTS#3 3 / 6 / 11
NaiveMCTS#4 5 / 6 / 9
UCT 0 / 11 / 9
DownSamplingUCT 2 / 5 / 13
UCTUnitActions 3 / 4 / 13
PuppetSearchMCTS (utt) 9 / 11 / 0
AIXCS 0 / 20 / 0

Simple scenario results show that, against game

agents, RandomAI, RandomBiasedAI, MonteCarlo and
MonteCarlo (with max actions), AIXCS show superior
performance. Establishing the performance dominance
against purely random oriented agents is always a good
first step when testing (evolutionary) game agents (i.e. the
performance of the tested game agent must be above the
category of random methods. Otherwise, there would not
be much confidence about the efficiency.

Against game agents: LightRush, RangedRush,
WorkerRush, PorfolioAI, IDABCD and basic
PuppetSearchMCTS (utt), AIXCS delivers a strong
performance, which results in either a win or a tie. This is
a clear indication that AIXCS's internal logic of operation
gets enough information from one game state for XCS
algorithms to compute relevant classifiers, and to choose
player-actions that are able to overturn a non-basic game
agent.

When battling against agents of IDRTMinimax and
IDRTMinimaxRandomized, games end mostly in a tie.
Against all variants of NaiveMCTS and UCT, there is a
strong tilt towards a tie or a loss. With DownSamplingUCT
and UCTUnitActions there is a very high chance of a loss.
Ties and losses are most likely due to the XCS algorithms'

lack of foresight (i.e. currently they only observe one game
state in advance) when connected to the tactic policies.

Experiment results carried for the map
»basesWorkers8 × 8« are shown in Tab. 3.

Table 3 Wins / ties / losses of AIXCS against other game agents in the
"basesWorkers8 × 8" map

Column of game agents against which
AIXCS plays

AIXCS
(Wins/ties/losses)

RandomAI 19 / 1 / 0
RandomBiasedAI 16 / 3 / 1
LightRush 0 / 0 / 20
RangedRush 0 / 0 / 20
WorkerRush 0 / 0 / 20
PortfolioAI 1 / 1 / 18
IDRTMinimax 4 / 16 / 0
IDRTMinimaxRandomized 5 / 15 / 0
IDABCD 7 / 8 / 5
MonteCarlo 13 / 7 / 0
MonteCarlo (with max_actions) 17 / 3 / 0
NaiveMCTS#1 1 / 2 / 17
NaiveMCTS#2 0 / 1 / 19
NaiveMCTS#3 0 / 0 / 20
NaiveMCTS#4 0 / 1 / 19
UCT 0 / 6 / 14
DownSamplingUCT 2 / 10 / 8
UCTUnitActions 0 / 1 / 19
PuppetSearchMCTS (utt) 1 / 0 / 19
AIXCS 3 / 14 / 3

In the second experiment, game agents played a full

microRTS game, starting with one base and one worker.
Matches against LightRush, RangedRush, WorkerRush
and Portfolio (which is mostly a mix of rush AI's),
therefore, end up with defeat. The defeat is also against
NaiveMCTS variants, PuppetSearchMCTS, UCT and
UCTUnitsActions. All of those are MCTS based AI's.
Against a basic UCT game agent there are no wins, but it
manages to get to a tie in six out of the twenty matches.

Based on the data shown in Tab. 3, AIXCS clearly
outperforms both variants of random, MonteCarlo and
Minimax game agents. Wins and ties are also favoured
towards AIXCS when dealing with IDABCD. We can
establish that the good performance against randomly
based agents has been preserved when switching from a
simple scenario to the full-blown RTS game. The
experiment data also show that, although Minimax and
IDABCD are tree-based agents, which can traverse over
multiple game states, they do not utilise their full potential
(i.e the complexity of RTS games is probably too high for
them).

The second experiment established that, at this point,
AIXCS does not do well when dealing with beginning rush
tactics. This was somehow expected, because an 8x8 map
is relatively small, and there is little time to counter hard-
coded and well-tuned rush tactics. So, without offline
processing or deeper traversing through the game states,
good enough countermeasures could not evolve that could
deal with constant attacks on the nearby units.
Consequently, the base is eventually destroyed by rushing
units, and our game agent cannot produce new units
anymore. We can establish that beginning rushes are at this
stage too hard for our XCS algorithms.

After the experiment was completed, we also made
some visual observations to see why so many matches
against MCTS game agents end up in defeat. We noticed
that AIXCS plays the games in a defensive-like style, while

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

Tehnički vjesnik 28, 6(2021), 2127-2137 2135

MCTS based AIs are very offensive-oriented. MCTS game
agents are also slightly better at combat micromanagement,
because AIXCS, from time to time, fails to execute attack
action when it should do so. E.g. sometimes a friendly
worker, when positioned next to a cell of an enemy worker,
fails to attack, even if that is the only logical solution. We
must note that AIXCS does not lose the game straight
away, but the combination of constant pressure and better
micromanagement of MCTS game agents, eventually leads
to destruction of the friendly base. Some of the MCTS (e.g.
NaiveMCTS#4) gameplay behaviour of pressure and
micromanagement looks very similar to the rush tactics.

The research challenge that we identified during the
experiment is the need to make the XCS based game agent
perform more offensively when facing a (strictly) offensive
opponent. Additional experiments designed for
performance evaluations against rushing opponents could
reveal if a change of XCS parameters` values would
change the overall evolutionary behaviour (e.g. switching
towards higher exploration); changing strategic policies
(e.g. for beginning, middle and end game); could provide
enough countermeasures to get through the beginning of
the game (if the rush tactic fails, the game agent that started
it, is usually in an inferior position); and provide additional
data (e.g. what kind of actions classifiers in population
propagate when dealing with an attacking opponent) that
could maybe offer clues on how to design an XCS
algorithm that would cope with the RTS multi-game-state-
steps.

8 DISCUSSION

Results are encouraging for simple scenarios, and to
some degree for the full RTS game. We anticipated that the
results of the second experiment would not be on a par win
wise with the first experiment, because of the large number
of XCS algorithms that must be executed in parallel in a
limited time. With even larger maps there would not be
enough processing time for multiple XCS algorithms to
converge towards the best game possible. So appropriate
scalability analysis is one of our top priorities to investigate
in the future (e.g. through parallelisation of operational
load across multiple cores). This would provide us with the
overall picture of how evolutionary algorithmic
components behave when used in the runtime game
environment regarding the changing search-space sizes.

The groups of XCS's can operate in runtime mode, but
the degree of establishing when and how exactly classifiers
form good player-actions in current game state is not yet
clear. More research is needed: Room for improvement lies
in the optimisation of initial parameters; finding out which
parameters have the biggest impact on the game play;
analysis of what kind of classifiers formed in sets;
establishing when generalisation towards good results
starts forming; which new tactical or strategic policies are
needed; are current game policies adding or subtracting
from the expected behaviour; what kind of condition
should classifiers use (full map representation or already
extracted environment information); establishing a chain
of game states that XCS traverses through; etc.

9 CONCLUSION

This paper has presented a game agent which uses a
group of XCS algorithms that form a single player-actions`
set as an output result and applied it to the RTS games
domain. Five game policies and a strategy module were
used to form an internal structure of operation. In its
current form, three limitations are included in the design.
Limitations imposed are that, currently, there is no
chaining of game states while deciding the next best action
through simulations (no computation done over multiple
frames-also known as direct reward (environment)), the
map coding Tab. 1 is currently only suitable for two
players, and no algorithmic optimisation was used on many
parameters. Because there is no chaining of states, an agent
creates a new set of XCS algorithms with every new frame.
We use the "One frame at a time" example seen in Monte-
Carlo Tree Search (MCTS) algorithms, which are
implemented alongside a microRTS engine source code.
Every agent gets an allocation of a time slice for every
game frame computation, during which it must return the
player-actions that it wants to play with.

The reason to impose no chaining of states` limitation
was to simplify the initial development of an agent and to
better understand agents many dynamic parts:
 each game policy impacts game agents` behaviour,
 XCS uses many internal initialisation parameters and
variables,
 XCS algorithms are computationally heavy,
 the rewarding scheme includes many score parameters
which are set up through flags,
 XCS cooperation with the Reinforcement and
Environment programmes, etc.

Experiments showed that, although a game agent at
this stage does not defeat all of the game agents it plays
against (e.g. Naïve based game agents), it delivers a good
gameplay in full game scenario versus game agents based
on random, Monte Carlo, Minimax techniques, and (with
more than satisfactory results) also for Alpha-beta,
considering duration. Therefore, learning classifier
systems are worthy of further research and do show great
promise for the game domain [6]. The stepping-stone for
the further research was accomplished successfully.

Future work will focus on delayed reward
(environment). This will include dealing with a more
sophisticated reward system, which would be capable of
acquiring the relevant reward and then delivering it over a
chain of states. To support such a chain reward system,
simulation parts, etc., will need to be reworked. This will
include XCS's need to use the parameter for discount factor
(γ) of rewards. Here, additional research and testing is
needed, because literature shows that temporal-oriented
rewards are not suitable for XCS algorithms [35], and that
spatial-oriented reward will need to be considered. Other
research attention should be given to the XCS being able
to operate with a dynamic and changing number of actions
in each game state. We also believe that the XCS based
game agent shows (great) possibility of operating in a
partially observable environment, but additional research
is needed in that direction as well.

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

2136 Technical Gazette 28, 6(2021), 2128-2137

Acknowledgements

The authors acknowledge the financial support from
the Slovenian Research Agency (Research Core Funding
No. P2-0057).

10 REFERENCES

[1] Synnaeve, G. & Bessiere, P. (2016). Multi-scale Bayesian

modeling for RTS games: An application to StarCraft AI.
IEEE Transactions on Computational intelligence and AI in
Games, 8(4), 338-350.
https://doi.org/10.1109/TCIAIG.2015.2487743

[2] Buro, M. (2003). Real-time strategy games: A new AI
research challenge. IJCAI'2003, Mexico: Morgan
Kaufmann, 1534-1535.

[3] Tang, Z., Shao, K., Zhu, Y., Li, D., Zhao, D., & Huang, T.
(2018). A review of computational intelligence for StarCraft
AI. IEEE SSCI, 1167-1173.
https://doi.org/10.1109/SSCI.2018.8628682

[4] Arulkumaran, K., Cully, A., & Togelius, J. (2019).
AlphaStar: An evolutionary computation perspective. arXiv
preprint, arXiv:1902.01724.
https://doi.org/10.1145/3319619.3321894

[5] Stanescu, M., Barriga, N. A., Hess, A., & Buro, M. (2016).
Evaluating real-time strategy game states using
convolutional neural networks. IEEE CIG, 1-7.
https://doi.org/10.1109/CIG.2016.7860439

[6] Shafi, K. & Abbass, H. A. (2017). A survey of learning
classifier systems in games [Review article]. IEEE
Computational Intelligence Magazine, 12(1), 42-55.
https://doi.org/10.1109/MCI.2016.2627670

[7] Wilson, S. W. (1995). Classifier fitness based on accuracy.
Evolutionary computation. 3(2), 149-175.
https://doi.org/10.1162/evco.1995.3.2.149

[8] Tspanos, M. T., Chatzidimitriou, K. C. & Mitkas, P. A.
(2011). A zeroth-level classifier system for real time strategy
games. Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and
Intelligent Agent Technology, 2, 244-247.
https://doi.org/10.1109/WI-IAT.2011.177

[9] Wilson, S. W. (1994). ZCS: A Zeroth Level Classifier
System. Evolutionary computation, 2(1), 1-18.
https://doi.org/10.1162/evco.1994.2.1.1

[10] Rudolph, S., von Mammen, S., Jungbluth, J., & Hähner, J.
(2016). Design and evaluation of an extended learning
classifier-based starcraft micro ai. European Conference on
the Applications of Evolutionary Computation, Springer,
Cham, 669-681. https://doi.org/10.1007/978-3-319-31204-0_43

[11] Ontañón, S. (2013). The combinatorial multi-armed bandit
problem and its application to real-time strategy games.
AIIDE, 58-64.

[12] Lujan, A. (2009). Generation of rule-based adaptive
strategies for games. PhD Thesis, Univ of Ottawa, Canada.

[13] Ontañón, S., Barriga, N. A., Silva, C. R., Moraes, R. O., &
Lelis, L. H. (2018). The first microrts artificial intelligence
competition. AI Magazine, 39(1), 75-83.
https://doi.org/10.1609/aimag.v39i1.2777

[14] L. Bull. (2015). A brief history of learning classifier systems:
from CS-1 to XCS and its variants. Evolutionary
Intelligence, 8(2-3), 55-70.
https://doi.org/10.1007/s12065-015-0125-y

[15] Urbanowicz, R. J. & Moore, J. H. (2009). Learning classifier
systems: A complete introduction, review, and roadmap.
Journal of Artificial Evolution and Applications.
https://doi.org/10.1155/2009/736398

[16] Holmes, J. H., Lanzi, P. L., Stolzmann, W., & Wilson, S. W.
(2002). Learning classifier systems: New models, successful

applications. Information Processing Letters, 82(1), 23-30.
https://doi.org/10.1016/S0020-0190(01)00283-6

[17] Sutton, R. S. & Barto, A. G. (1998). Reinforcement
Learning: An introduction. MA: MIT Press, Cambridge.
https://doi.org/10.1109/TNN.1998.712192

[18] Butz, M. V., Goldberg, D. E., & Lanzi, P. I. (2003). Gradient
descent methods in learning classifier systems: improving
XCS performance in multistep problems. Illigal Report
2003028, Illinois Genetic Algorithms Laboratory.

[19] Butz, M. V. & Wilson, S. W. (2000). An algorithmic
description of XCS. In International Workshop on Learning
Classifier Systems, Springer, Berlin, Heidelberg, 253-272.
https://doi.org/10.1007/3-540-44640-0_15

[20] Watkins, C. J. (1989). Learning from delayed rewards. Ph.D.
Thesis, Cambridge university.

[21] Lin, L. J. & Mitchell, T. M. (1992). Memory Approaches to
Reinforcement Learning in Non-Markovian Domains.
Carnegie-Mellon University. Department of Computer
Science.

[22] A. Schwartz. (1993). A Reinforcement Learning Method for
Maximizing Undiscounted Rewards. In Proceedings of the
tenth international conference on machine learning, 298,
298-305. https://doi.org/10.1016/B978-1-55860-307-3.50045-9

[23] Watkins, C. J. C. H. & Dayan P. (1992). Machine learning.
Technical Note: Q-Learning, 8, 279-292.
https://doi.org/10.1023/A:1022676722315

[24] Daneshfar, F. (2013). Intelligent load-frequency control in a
deregulated environment: continuous-valued input, extended
classifier system approach. IET generation, transmission &
distribution, 7(6), 551-559.
https://doi.org/10.1049/iet-gtd.2012.0478

[25] Butz, M. V., Kovacs, T., Lanzi, P. L., & Wilson, S. W.
(2004). Toward a theory of generalization and learning in
XCS. IEEE transactions on evolutionary computation, 8(1),
28-46. https://doi.org/10.1109/TEVC.2003.818194

[26] Barriga, N. A., Stanescu, M., & Buro, M. (2018). Game tree
search based on non-deterministic action scripts in real-time
strategy games. IEEE Transactions on Games, 10(1), 69-77.
https://doi.org/10.1109/TCIAIG.2017.2717902

[27] Samvelyan, M., Rashid, T., de Witt, C. S., et. al. (2019). The
StarCraft Multi-Agent Challenge. arXiv preprint,
arXiv:1902.04043v1 [cs.LG].

[28] Ontanón, S. (2016). Informed monte carlo tree search for
real-time strategy games. In 2016 IEEE Conference on CIG,
IEEE, 1-8. https://doi.org/10.1109/CIG.2016.7860394

[29] Saffidine, A., Finnsson, H., & Buro, M. (2012). Alpha-beta
pruning for games with simultaneous moves. Twenty-Sixth
AAAI Conference on Artificial Intelligence.

[30] Vasilyev, A. S. (1999). Classifier systems learning in
dynamic environment. Scientific proceeding of Riga
Technical Unniversity 5. serija. Datorzinatne. Information
technology and management science, 5. sejums, 175-187.

[31] Squillero, G. & Tonda, A. (2016). Divergence of character
and premature convergence: A survey of methodologies for
promoting diversity in evolutionary optimization.
Information Sciences, 329, 782-799.
https://doi.org/10.1016/j.ins.2015.09.056

[32] Ontañón, S. (2019). Retrieved from:
https://github.com/santiontanon/microrts

[33] Ontañón, S. (2019). Retrieved from
https://github.com/santiontanon/microrts/wiki/Artificial-
Intelligence

[34] Churchill, D., Saffidine, A., & Buro, M. (2012). Fast
Heuristic Search for RTS Game Combat Scenarios. In Eighth
Artificial Intelligence and Interactive Digital Entertainment
Conference.

[35] Tang, K. W. & Jarvis, R. A. (2005). Is XCS Suitable For
Problems with Temporal Rewards?.In CIMCA-IAWTIC'06,
2, 258-264.

Damijan NOVAK, Domen VERBER: Applying LCS/XCS to the RTS Games Domain

Tehnički vjesnik 28, 6(2021), 2127-2137 2137

Contact information:

Damijan NOVAK, Teaching Assistant & PhD. student
(Corresponding author)
University of Maribor, Faculty of Electrical Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia
E-mail: damijan.novak@um.si

Domen VERBER, Assistant Professor, PhD
University of Maribor, Faculty of Electrical Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia
E-mail: domen.verber@um.si

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

