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Abstract: Real-Time Strategy games (RTS) are representatives of the highest class of computational complexity in computer game genres. To cope with the high complexity 
of the state-action space of RTS game worlds, various Machine Learning algorithms are being used and researched extensively. In this article, we apply eXtended Classifier 
Systems (XCS) to the domain of RTS games. The XCS algorithm belongs to a Learning Classifier Systems (LCS) group known for their adaptability, generalisation, and 
scalability. We build the game agent named AIXCS. It uses a group of XCS algorithms, which generate a set of unit-actions used in the RTS game. The AIXCS operates 
without prior learning from the game runs and in tight timing constraints. The AIXCS was put to the test against other game agents in the micro RTS game environment, with 
positive results regarding successful game operation at runtime. 
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1 INTRODUCTION 
 

Real-Time Strategy (RTS) games are a sub-genre of 
strategy computer games based on classical board games 
like chess or tic-tac-toe. The basic gameplay of RTS games 
usually takes place on some fictitious terrain, where 
players battle with each other. Usually, the players may 
also have to gather resources and manage the economy to 
build new units and structures. An important aspect of an 
RTS game is the construction of a base, which offers 
protection, unit upgrades, research capabilities, etc. Players 
need to master strategy, tactics and low-level unit 
behaviour, sometimes called micro management or 
reactive control, to win the game. 

RTS games are high complexity games [1] because: 
the number of involved units is high (at one single time it 
can surpass several hundred units); information presented 
to the player can be imperfect (e.g. parts of a map can be 
hidden) or incomplete (e.g. information, about what kind 
of units the opponent chose to play with, is unknown to the 
player); randomness, uncertainty and non-deterministic 
behaviour can be included in the game engine operation; 
temporal continuity (the previous action constrains future 
action(s)); etc. This high computational complexity 
motivated an article from Buro [2], which was published in 
2003, with the idea that RTS games can be used not just for 
gaming, but also as testbeds for Artificial Intelligence (AI) 
research. 

The researchers tackled the RTS game domain with 
many types of Machine Learning (ML) techniques, for 
example, Monte-Carlo Tree Search, Deep Q Networks, 
rule mining, etc. The review of different computational 
intelligence methods (and successful applications) [3] and 
significant AI system (including evolutionary computation 
and deep RL) [4] shows rapid and extensive research 
regarding the ML domain. We decided to narrow it by 
limiting ourselves to its Reinforcement Learning (RL) 
category, which is based on reward received from the 
environment, and does not need prior large databases of 
game data (e.g. game replays of professional human 
players). In the article by Stanescu et al. [5] it was also 
nicely stated: "Without a large number of high-quality 
records, reinforcement learning techniques will likely need 
to be considered in future work". 

Therefore, the main agenda of the article is to combine 
the RL and RTS game domains by creating a complete RTS 
game playing agent based on the Learning Classifier 
Systems (LCS). The agent will be tested against other 
respected game agents of the field. The motivation of 
choosing the LCS came from a survey written by Shafi and 
Abbass [6], which examined usage of LCS in games. The 
survey showed that LCS literature on the domain of RTS 
games is very scarce, and further research in the matter is 
very relevant. 

LCS belongs to the category of the reinforcement 
learning (RL) and the Genetic Algorithms (GA). It uses 
evolutionary algorithm approach (along with other 
heuristics) to acquire rules regarding the environment. The 
learning process is used continually, with the goal of 
finding an optimal solution to a given problem. 

There are many different types of LCS algorithms. We 
decided to use eXtended Classifier Systems (XCS) [7]. The 
decision was made on behalf of its efficient generalisations 
over complete state-action space. This is necessary for 
optimal gameplay. Otherwise the solution will be stuck in 
some local optima. However, efficient generalisation is 
also needed. The computational complexity of RTS game 
worlds is too prohibitive to allow exhaustive search of 
every state-action pair in the search space. Applying XCS 
to the game domain will test the suitability of such 
algorithms for operations and making decisions in a real-
time game environment. 

In previous research the usage of XCS in RTS games 
was studied in Rudolph et al. [10], where they created four 
separate micro management agents, each with its specific 
behaviour. They compared all the created agents playing 
between each other in basic scenarios. They proposed, but 
did not implement the inclusion of strategic command. 
They also did not include the resource gathering and 
production of units and structures. In contrast, we 
developed a complete RTS game agent that also 
incorporates resource management and production, as well 
as the strategic module. 

Domains of RTS games and LCS algorithms were also 
combined before by researchers Tspanos et al. in [8], with 
a simplified version of the original LCS framework called 
Zeroth-level Classifier System (ZCS) [9]. The authors 
stated that the adaptation of an initial random set of rules 
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through ZCS and repetitive game-playing, resulted in 
policies that dominated the static rule-based player. 

For simulation and evaluation of the game agent, we 
decided to use micro RTS game engine [11]. It offers a 
simpler environment than fully-fledged RTS games like 
StarCraft™. Other researchers also use the same game 
engine, which allows for comparison among their 
solutions. For operations inside the micro RTS 
environment, a game agent named AIXCS was designed, 
which utilises the XCS algorithms. Structure of the game 
agent and its interaction with the game environment can be 
seen in Fig. 1. The structure of the presented game agent is 
universal enough and could also be used in other game 
genre environments wherever multiple units need to be 
operated simultaneously by the strategy level. 
 

 
Figure 1 Game agent structure and its interaction with the game environment 

 
Our game agent operates without any prior training 

[12]. This is because the international competition rules 
usually prohibit saving data between matches for 
additional processing, or because pre-processing is not 
possible. Otherwise, if interested, more about the prior 
learning of XCS agents in RTS games can be found in [12]. 
We must also note that, due to the inner complexity of our 
game agent, which includes multiple XCS algorithms and 
many game policies at play, we decided to include some 
limitations into the initial design. The most notable 
limitation is that we currently only process one game state 
in advance (i.e. no chaining of states). This limitation will 
help us understand better how XCS operates in the RTS 
game domain. 

This paper is structured as follows: Section 2 gives a 
description of the microRTS simulation environment. In 
section 3 the general LCS structure and the details of the 
XCS algorithm are given. The XCS interaction with 

reinforcement and the environment programme is provided 
in Section 4. Section 5 explains the use of XCS for the full 
RTS gameplay. Section 6 explains the syntactic and 
semantic validation of classifiers (internal rules of XCS) 
and how to manage them in the RTS environment. Section 
7 describes the experiment set-up and the results. 
Discussion is given in section 8. Section 9 offers the 
conclusion, current limitations of the agent and outlines for 
future work. 
 
2 microRTS 
 

microRTS is a simple simulation environment, 
designed with similar rules to the fully-fledged RTS games 
(e.g. Command & Conquer™ and StarCraft). It provides 
an Open AI integration API to create and evaluate different 
solutions quickly. It is used in many research articles and 
competitions between different solutions at prestigious 
conferences [13]. 

The microRTS game contains four types of mobile 
units (Worker, Light, Heavy and Ranged), two kinds of 
structures (Base and Barracks), one type of resource and a 
wall. The base produces workers [11]. Workers gather 
resources and build structures.They have only a limited 
firepower. Barracks produce military units (Light, Heavy 
and Ranged). Military units vary in their capabilities (e.g. 
a Ranged unit has a longer attack range). The wall is used 
as a physical barrier in the environment.  

The simulation environment of the microRTS allows 
different game scenarios. Among others, it is possible to 
define the size of the map, the starting positions and types 
of the structures and units, starting position of the 
resources, etc. It also allows executing the game with the 
GUI turned off, which makes simulation much faster. 
Many game agents are pre-included. Some of them are 
further described in the section 7.  

An example of a microRTS game state with all the 
environment elements is shown in Fig. 2. For greater 
clarity, only the description of the environmental elements 
for the first player, positioned at the bottom right corner, 
was included. The opponent starts at the top left corner. 
 

 
Figure 2 The example of microRTS game state 
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3 LCS/XCS 
3.1 LCS 
 

LCS are rule-based systems. At the core they comprise 
a population of classifiers: C = {C1, C2, …, Cn}. Classifiers 
take the form of "IF condition THEN action" [14]. 
Condition is a vector that represents some game state. 
During the execution, each condition is matched with the 
actual input (state variables) provided by the environment. 
Each condition vector element is formed from the set of {0, 
1, #}[15]. Values 0 and 1 represent the situation where 
classifier bits must exactly match the corresponding bits of 
the state variable. The symbol # represents a don't care 
value where the value in the state variable is ignored. For 
example, the condition 11#10 matches both 11010 and 
11110 values of the state vector. This allows for 
generalisation of the condition. The action part of the 
classifier specifies the action that the classifier is 
propagating. Some examples of actions are: "produce 
worker left", "harvest", "wait", etc. Some groups of LCS's 
can introduce other attributes. 

LCS learning, evolving of existing rules, as well as 
creation of new rules comes on an account of interaction 
with an environment from which it receives some 
numerical reward. Reward is the indication of the benefit 
of the actions. The goal is the maximisation of the amount 
of the reward gathered in the long run [16]. To achieve that 
goal, LCS learns an action-value function [17]. This 
function maps state-action pairs into a payoff (a real 
number). The payoff is used to guide the search for new 
rules, which should, ideally, be better at making more 
effective decisions. 

During LCS operation, adaptability, generalisation, 
and scalability take place. LCSs are adaptive [14], and 
capable of runtime learning in rapidly changing situations 
by exploiting their GA. GA's purpose is to evolve the 
population of classifiers to improve the solution of the 
problem. New set of rules should be better in terms of being 
more accurate, or in being able to predict a higher payoff. 
Generalisation is also an important feature.The system that 
generalises properly can a) Represent in a compact form 
what it has learned, and b) Can apply what it has learned to 
previously unseen situations [16]. 
 
3.2 XCS 
 

Because of our requirement of LCS to cope with the 
large and very complex state-action space of the RTS 
environment, the LCS's group XCS was chosen, for which 
literature [18] shows that it can learn a state-value function 
over the complete state-action space with efficient 
generalisations. 

The implementation of our XCS algorithm is based on 
the work of Butz and Wilson [19]. Their work comprises a 
modular structured pseudo code with accompanying 
explanations. The XCS algorithm also interacts with 
reinforcement and the environment programme. The 
details of interaction and implementation are explained in 
Section 4. 

XCS is a kind of the RL algorithms. It operates in an 
environment by taking some actions and for which it 
receives reward. The reinforcement component of XCS 
uses a form of Q-learning [20]. Q-learning allows agents to 

map states and actions to their utilities. The important part 
of Q-learning is the Markovian environment assumption, 
which states that any information needed to determine the 
optimal actions is reflected in the agent's state 
representation [21]. The process where the agent firstly 
observes the environment's output, consisting of a reward 
and the next state, and, secondly, upon that output executes 
a proper action, is called a Markov Decision Process 
(MDP) [22]. MDP specifies a finite set of states and 
actions. As long as all of those actions are sampled 
repeatedly in all states and action-values are represented 
discretely, Q-learning delivers convergence to the 
optimum action-values with probability one [23].  

Inside the XCS algorithm [19] (Fig. 3) the knowledge 
about a problem is kept in classifiers. The algorithm uses 
four sets: Population set [P], Match set [M], Action set [A], 
and the Previous Action set [A]-1. [P] contains all 
classifiers that exist in XCS at any time t. [M] includes all 
classifiers that match the current situation. [A] is formed 
out of the current [M], and consists of those classifiers from 
[M] that will be executed in the current cycle. [A]-1 is a 
record of [A] from the previous XCS iteration. [A]-1 is only 
used if we are dealing with a multi-step problem (i.e. the 
problem might require multiple steps in order to solve it 
successfully). Our current solution is implemented as a 
single-step problem and the [A]-1 is not used. 
 

 
Figure 3 Pseudocode of the XCS algorithm 

 
The pseudocode starts with the initialisation of the 

main components: The environment programme env, 
reinforcement programme rp and XCS. At the XCS 
initialisation phase the [P] is created, and a bond is formed 
from the XCS algorithm to the game policy. Next, the XCS 
cycle is started, which lasts until the termination criteria 
signal is sent from rp. At the beginning of the cycle, the 
input state σ (also called sensory information) is received 
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from the environment. σ is then matched with [P] to create 
[M]. Matching is done by comparing specified bits of 
condition and of σ. During the execution of the algorithm 
some bits (or group of bits) of the condition can be set to a 
don't care value # [7]. This can occur at the covering and/or 
mutation phase. 

If, after the creation of [M], the number of unique 
actions is lower than the number of all the available actions 
of the current search space, the covering operation occurs 
which covers all the available actions. After that, the 
Prediction Array (PA) is formed from the [M] [15], which 
consists of as many real values as there are unique actions. 
Each value is the estimate of the pay off that the system 
expects when an action is executed (Eq. (1)). 
 

   

 

M

M
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cl.a a&cl

cl .a a&cl

cl.p cl. f

cl. f
  

 






                                        (1) 

 
Legend: cl - classifier, a - action, p - prediction, f - 

fitness. 
Pay off is a fitness-weighted average of the predictions 

of all classifiers in [M] that advocate that action [24]. It is 
calculated by considering each classifier in [M] and taking 
the sum of its prediction (cl.p) multiplied by its fitness to 
the prediction value total for that action (cl.f). This sum is 
then divided by the sum of fitnesses for that action. 

After the PA has been created, the algorithm selects the 
action with the highest prediction, and executes that action 
in the env. This is also known as the simulation phase. 
After the simulation is complete, the rp returns reward ρ. 
Using the ρ, updating of [A] occurs (with the possibility of 
deleting in [P]). Lastly, GA is called upon an [A] 
(considering σ inserting in [P]). 

XCS differs from all other LCS's variants in its rule 
fitness for GA. Rule fitness is not based on the amount of 
reward received, but purely upon the accuracy of 
predictions of reward [25]. Another important difference is 
that GA takes place in the [A] (implicit niching) and not in 
the [P]. In XCS, each classifier also keeps certain 
additional parameters (alongside condition, action and 
prediction estimates) needed for functioning. Those 
parameters are: Prediction error ε (a value which reflects 
the deviation of prediction from the actual reward), fitness 
f (the accuracy of the prediction of the classifier), 
experience exp (it represents the number of times the 
classifier has belonged to an [A]), time stamp ts (it denotes 
the last occurrence of a GA in an [A] to which this classifier 
belonged), action set size as (it estimates the average size 
of the action sets this classifier has belonged to), and 
numerosity num (the number of micro-classifiers [ordinary 
classifiers] this classifier-which is technically called a 
macro-classifier-represents) [10, 19]. 
 
4 REINFORCEMENT AND ENVIRONMENT 

PROGRAMMES 
 

The Reinforcement and Environment programmes are 
important interfaces that help XCS with its operations (Fig. 
4) [19]. They provide the XCS algorithm with information 
on an as-needed basis. With these two interfaces the raw 

information from the RTS domain is processed to the input 
format requirements of an XCS algorithm. 
 

 
Figure 4 Interaction between XCS, environment, game policy and both 

programmes 
 
4.1 Reinforcement Programme 
 

The main objective of the reinforcement programme is 
to return the reward to the XCS algorithm for the specific 
unit that has executed an action. XCS uses this reward to 
update its [A]. Reward is calculated over the game state 
that was provided using the evaluation function that the 
game policy holds. Evaluation function is usually 
implemented as a subtraction of max and min player scores 
of the current game state. 

To help with evaluation of the game state, we first tried 
evaluation policies that were already part of the micro RTS 
package, but initial testing did not return the results we 
anticipated. This was because those policies were made to 
fit better with other kinds of algorithms, e.g. Puppet Search 
[26]. So, we decided to create a specific interface, which 
uses domain knowledge and extracts relevant features from 
the environment to be used for evaluation of state. The 
group of features that we selected as relevant includes: 
Number of friendly and enemy units by categories (worker, 
light, heavy and ranged), flags which signal if a friendly or 
an enemy base is under threat or if it was already damaged, 
number of friendly and enemy bases / hit points / units / 
stockpiled resources. These relevant features were selected 
by hand from the group of features during initial pre-testing 
(for selection of some of the features we found inspiration 
in the works of Tspanos et al. [8] and Lujan [12]). The final 
selection was done through simple matching of which 
feature was showing better reward results regarding a given 
game policy. We also took advice from [27], which said: 
"… reward can be configured using a range of flags, but 
we strongly discourage disingenuous engineering of the 
reward function…". This advice was reflected in pre-
testing by not applying the simple tactics (e.g. 2 vs. 2 light 
units), but on playing the bigger scenarios (e.g. full game 
starting with one base and one worker) while making 
observations as to which reward feature made a difference 
in overall performance. 
 
4.2 Environment Programme 
 

The main operations that are covered by the 
Environment programme are: Executing the combined 
player-actions for a given unit on the game state; receiving 
all the available unit actions for all the units on the 
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playfield; filtering the unit actions based on the specific 
game policy; getting sensory information (used by XCS 
during [M]`s creation); getting purified (higher 
abstraction) data from the game state (XCS uses it for 
initial creation or covering of classifiers and while 
executing GA over [A]). The Environment programme is 
also responsible for two very important methods of 
syntactic and semantic validations of the classifier and of 
the action in play. 
 
5 USE OF XCS FOR THE FULL-BLOWN RTS GAMEPLAY 
 

In this Section, we connect the domain of Machine 
Learning (XCS algorithm) with the RTS game domain by 
presenting the components further required for creation of 
the full-blown RTS game agent (Fig. 1). In the first part of 
the Section, we are presenting five policies. One game 
policy is associated with exactly one XCS algorithm. These 
policies provide the units with a specific behaviour (e.g. 
production management), and cover all aspects of the RTS 
game play (including strategic command, because one 
game policy is specially dedicated to such a purpose). 
Second, we describe how each unit's actions, present on the 
game map, are combined to form the Player Actions with 
the strategy module's help. The XCS algorithm selects a 
unit's actions by following game policy agenda. In the third 
part, we present the map coding representation, which 
allows the XCS algorithm to compare the condition of its 
classifiers to the environment sensory information (the 
sensory input is provided by the environment programme). 
 
5.1 Game Policy 
 

Each XCS algorithm`s behaviour is defined by its 
game policy. Connection to the game policy is established 
at the start of the XCS creation and initialisation. We used 
two groups of policies: Tactical and strategic. Tactical 
policies operate with direct calls to the game engine with 
the commands for the specific units. Strategic policies use 
commands which are of higher abstraction and are not 
directly related to the game engine calls (e.g. more workers 
must go harvesting). 

Tactical policies are set to an XCS that is associated 
with a single unit, while strategic policies oversee general 
gameplay, so they influence multiple units. We created five 
policies that cover all the actions that can be executed in 
the micro RTS game environment. The first one is the 
production policy, responsible for creating new units, and 
for constructing base and barrack buildings. The second is 
the tactical military policy, which defines if the unit 
movement command is needed, if it must retreat, or the unit 
has to attack a specific location. The third game policy is 
similar to the second one, with the difference that the move 
command has specific direction (up, down, left and right). 
The third game policy replaces the second one, when there 
are nearby enemy units. The range threshold of how far 
away the enemy is positioned can be set in advance. The 
fourth is a tactical harvest policy, specifying if a worker 
will wait, or if it will go harvesting. The fifth is a strategic 
military policy, updating two weights that determine the 
global behaviour of the game agent either towards the 
attack or the harvest. The weights can go up, down, or they 

can stay the same. Weights values are transferred (kept) 
between the game states. 

Complete game agent behaviour is formed when each 
unit has at least one XCS algorithm set and connected to 
the game policy. The strategic policy is an on/off choice. It 
is turned on by default. A game agent can operate using 
only the tactical policies. 

Each game policy contains a common set of 
parameters used by XCS during its running time: 
 size of set [P],  
 number of actions,  
 learning rate values,  
 bit size of condition,  
 GA probabilities, etc. 

The game policy also includes the following important 
variables: 
 exact number and list of actions that it is associated 
with (e.g. production of a worker),  
 a flag to signal if the game policy is tactical or 
strategic, and  
 a flag that signals if for condition presentation the XCS 
uses the detailed game map representation with all the 
elements included (used by default), or if it uses aggregated 
environment information (e.g. the number of enemy 
workers). 

Actual values of constants used by an agent and its 
XCS algorithms are presented in Section 7. 
 
5.2 Player-Actions and Their Use by Strategy Module 
 

When a player makes a decision and issues an action 
to a single unit, we call it unit-action. The game field can 
contain many units, and each is capable of executing 
several actions; a unit can always execute a wait action. A 
set of all unit-actions issued by a player in each decision 
cycle is called player-actions (for that purpose, micro RTS 
implements a class PlayerAction [28]). 

The player-actions may contain commands for 
multiple units at the same time. Many game related 
algorithms already have the capability to use player-actions 
operations directly (e.g. game trees [29]). On the other 
hand, XCS is not capable to use PlayerActions directly, and 
can only return a single (the best) unit-action. Our solution 
to deal with the problem was to cover every single unit that 
is under our command with one (or more) XCS, and then 
keeping the best action from each unit in an object called 
combined. 

Some units can be under the control of more than just 
one XCS algorithm, because they have different types of 
modus operandi, and, thus, can be covered by more than 
one game policy (e.g. a worker can be used for harvesting 
or for attacking). The decision, which XCS should be used 
at specific time, is made according to the weights from the 
strategic module. E.g. workers can switch between 
harvesting and attacking modes, based on which weight is 
of higher value. 
 
5.3 Representation of Classifier and Sensory Input for 

Usage in microRTS 
 

To match condition of classifier and environment input 
σ, they must have the same length and the same 
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representation. They are both built upon the representation 
of the environment (map). To create the representation of 
the map, we decided to take a different approach than those 
seen in the work of Tspanos et al. [8]. We opted to use full 
map representation to create a binary vector instead of 
purified information retrieved and abstracted from the map 
(e.g. the number of friendly workers). This way we do not 
need crafting of abstraction by hand. Additionally, we also 
preserve more spatial information presented on the map. 

The two-dimensional structure of the map cells was 
transformed into a one-dimensional vector. The content of 
each cell is encoded with four bits.The encoding is shown 
in Tab. 1. For example, if the map contains 8 × 8 cells, a 
one-dimensional condition of 256 bits - [map] × [4 bits per 
cell] = 8 × 8 × 4, is created. 
 

Table 1 Map coding table 

Name of the environmental element 
Representation in bits (4 

bits needed) 
Base (Friendly) 0 0 0 0 
Barracks (Friendly) 0 0 0 1 
Worker (Friendly) 0 0 1 0 
Light (Friendly) 0 0 1 1 
Ranged (Friendly) 0 1 0 0 
Heavy (Friendly) 0 1 0 1 
Base (Enemy) 0 1 1 0 
Barracks (Enemy) 0 1 1 1 
Worker (Enemy) 1 0 0 0 
Light (Enemy) 1 0 0 1 
Ranged (Enemy) 1 0 1 0 
Heavy (Enemy) 1 0 1 1 
Resource 1 1 0 0 
Wall 1 1 0 1 
Empty 1 1 1 0 
Hidden (for future research, dealing with 
partial observability) 

1 1 1 1 

 
6 CLASSIFIER CORRECTNESS 
6.1 Syntactic and Semantic Validations of Classifiers 
 

To make sure that results from classifiers during all 
phases of XCS operation are valid, and that the XCS cycle 
would not stop unintentionally, syntactic and semantic 
validation of classifiers during XCS processing is 
implemented. Syntactic validation checks if the action can 
be executed for a specific condition. If the action and 
condition are not compatible, the classifier is disregarded 
for future use. Semantic validation is made directly on the 
active game state. The basic XCS algorithm does not 
include the points of reference where exactly the syntactic 
and semantic checking should be performed. For this, we 
considered the work of Vasilyev [30]. He suggests that the 
syntactic validity is checked at the stage of classifier 
formation, and the semantic one is checked directly during 
the game playtime. 

In our implementation, syntactic validations must be 
made at population set creation, at match set creation 
(whenever covering operations occur) and at the crossover 
operations of the GA algorithm. In contrast, the semantic 
validation is made before the combined object is executed 
on the active game state. The purpose of syntactic 
validation is to make a basic check if a single unit-action is 
being legal against the environment. For this we must first 
create the synthetic game state from the classifier 
conditions. This state only holds the information about 
units and structures on their rightful positions, but without 

the details of what actions they are all presently executing. 
Second, we check the legality of execution of each 
classifier's unit-actions by utilising the micro RTS method 
isUnitActionAllowed. For example, the syntax validation 
will fail if the map contains a unit that wants to move left, 
but there is a wall present. 

Semantic validation checks if the set of unit-actions 
(player-actions present in the combined object) passes 
execution (through utilisation of microRTS game state API 
methods) on the deep copy of the game playing game state. 
Creation of the deep copy is needed so that the original 
game play state does not become corrupted. Unit-actions 
that are not allowed are filtered out from the player-actions 
set that holds them. If there are not enough resources to 
complete the specific action request (violation of resource 
usage), the action is also not allowed. 
 
6.2 Managing Classifiers in the RTS Environment 
 

Managing the condition and action of a classifier in the 
RTS environment is not a trivial procedure. When XCS 
initialises, it starts with fixed number of classifiers in its set 
[P]. The condition and action for those classifiers are 
chosen randomly. The choosing of an action is straight 
forward. The action is chosen randomly from the list of 
currently available actions considering the game. On the 
other hand, the condition of a classifier cannot be created 
completely at random. The opposite would frequently 
produce conditions that are not feasible, e.g. a condition 
where the whole map is made just of the resources. 
Consequently, classifiers with non-feasible conditions 
would be constantly removed from the initial [P]. 

To cope with this problem, we designed our own 
solution in three steps. First, we made a copy of the original 
game state. Second, on that copy, we executed a random 
player-actions set for both players. We must consider 
actions from both players; otherwise the reward received 
just by one player would not be correct (i.e. enemy units 
holding still while our friendly units are performing actions 
is not realistic). Third, we create the condition of the 
classifier from the copy of the game state by using the 
encoding presented in Tab. 1. The result is a set [P] of 
randomly created classifiers, which are syntactically 
correct. 

In this scenario, there is a possibility that several 
classifiers with the same condition and action are created 
in the process. This could lead to stopping of learning due 
to premature convergence at local optima [31]. This topic 
will be investigated further in our future work. 
 
7 EXPERIMENT AND RESULTS 
 

The experiment was designed to test our game agent's 
performance against the other game agents. The 
experiment was executed using two cases. First, we used a 
simple battle scenario: A map with the size of 4 × 4 cells 
with only military units (2 vs. 2 light units). Battles 
constitute a significant part of the RTS games, and a good 
performance is desired in such localised matches. Second, 
we used a full-blown RTS game: A map of the size 8 × 8 
cells, comprising the full game configuration. This will 
help us evaluate our agent better against dynamic 
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opponents during operations in runtime-only game mode 
(i.e. without prior pre-learning of classifiers). 
 
7.1 Experimental Set-Up 
 

The experiment was carried out on an i7-3770k CPU 
computer @ 3.50 (turbo: 3.9) GHz, 4 cores (only one core 
was used for experimentation), 16 GB RAM, OS Windows 
10 Pro and Java version 1.8.0. The experiment was set in 
the latest version of microRTS environment at the time of 
preparing this article [32]. We set up our experiment 
following the guidelines from the article [11], where each 
player starts with one base and one worker. The experiment 
was executed in a perfect information environment (fully 
observable and deterministic). Maps used for both 
scenarios are included inside the microRTS package under 
the names "melee 4 × 4 light2" and "basesWorkers 8 × 8". 

The experiment was executed by using the class 
CompareAllAIsObservable, which is part of the micro RTS 
tests package. We made three changes to that class 
regarding our experiment: Tests were limited to the two 
before mentioned maps; game agents PuppetSearchMCTS 
(utt) and our AIXCS agent were added to the list of the 
agents to test; the experiment was run only to test our agent 
against the others. Each experiment was designed to run 
with AIXCS first for 10 matches against every other agent. 
Then, we switched the sides for another 10 matches. When 
players switch their sides, their starting position on the map 
also changes. Everything else inside the experiment class 
was left unchanged. There was no transfer learning from 
one match to another. 

The parameters of the experiment were pre-set as 
follows: Each match was limited to 3000 cycles/frames 
(with max. inactive cycles set to 300), continuing = true, 
time = 100, max_actions = 100, max_playouts = −1, 
playout_time = 100, max_depth = 10 and 
randomised_ab_repeats = 10. 

XCS constants (internal working parameters) were set 
as follows: N = 83 ([P] size number), α = 0.05 (learning 
rate for updating ρ), β = 0.01 (learning rate for p, ε and f), 
δ = 0.1 (specifies the fraction of the mean fitness in [P], 
below which the fitness of a classifier may be considered 
in its probability of deletion), θGA = 25 (GA threshold), ε0 
= 10 (error below which classifiers are considered to have 
equal accuracy), θdel = 20 (deletion threshold), ν = 5 
(power parameter), χ = 0.5 (crossover probabilities), μ = 
0.01 (mutation probability), θsub = 20 (subsumption 
threshold), P# = 0.33 (probability of using a # in one 
attribute in condition when covering), pI = εI = fI = 0 (used 
as initial values in new classifiers), pexp = 0.045 
(exploration probability), [A] subsumption and GA 
subsumption are set to false, and for condition presentation 
the whole game map was used with all the information 
included. γ (discount factor) is currently not set and not 
used, because our XCS algorithm, at this point, does not 
execute multi-step problems. 
 
7.2 Game Agents in Testing 
 

In the experiment we included the following game 
agents which were all part of the microRTS package [5, 11, 
33]: 

 RandomAI: The game agent makes a completely 
random selection of actions. 
 RandomBiasedAI: Based on RandomAI, but the 
probability of choosing to attack or harvest action is five 
times higher than that of selecting any other actions. 
 LightRush: The agent uses only one worker to mine 
resources. Gathered resources are then first spent to build 
one barracks structure. All the rest of the resources are 
forwarded towards Light combat units' production, which 
are sent immediately to attack the nearest target. 
 RangedRush: Similar to LightRush, except it builds a 
Ranged combat unit instead of Light combat units. 
 WorkerRush: Similar to LightRush and RangeRush, 
except that the barracks are not needed (the workers are 
built directly from the base structure). 
 PortfolioAI: Uses a collection of four predefined AI's 
(RandomBiasedAI, LightRush, RangedRush, and 
WorkerRush) to create combinations of two game agents 
for a single match. It keeps scores (by utilisation of the 
evaluation function) of the matches and counts how many 
times matches occurred with the same set up of two game 
agents. It returns the action from the AI that obtained the 
best results (Minimax). 
 IDRTMinimax: The game agent uses the Minimax 
algorithm, but not its standard version. The algorithm that 
the game agent is using, is not defined by the game agent`s 
moves, but rather the time. Here, acronym RT stands for 
Real-Time. The ID acronym represents Iterative-
Deepening, because the algorithm uses up all the available 
time to search in a tree as deeply as possible. 
 IDRTMinimaxRandomized: Similar to the previous 
game agent, but with the special mechanics of the 
randomised alpha-beta algorithm (the algorithm has better 
assessment for situations where players execute moves 
simultaneously). 
 IDABCD: Alpha-Beta Considering Duration is similar 
to RTMinimax, but with modifications that allow for 
operations like durative moves (more info can be found in 
the work of Churchill et al. [34]). 
 MonteCarlo: A standard Monte Carlo search algorithm. 
 MonteCarlo (with max_actions): A standard Monte 
Carlo search algorithm, but with the limit of only 
considering a subset of all the possible actions that can be 
executed in each game state which is of the size 
max_actions. 
 NaiveMCTS (four versions [11]): Standard Monte 
Carlo search but using Naïve sampling. Four variations 
(which differ in their initial parameter settings) were used 
in the experiment (all versions` parameters were set by the 
game agents` author and were not changed in any way): 
NaiveMCTS#1 (max_depth = 1, εl = 0.33, ε0 = 0.75), 
NaiveMCTS#2 (max_depth = 1, εl = 1.00, ε0 = 0.25), 
NaiveMCTS#3 (max_depth = 10, εl = 0.33, ε0 = 0.75) and 
NaiveMCTS#4 (max_depth = 10, εl = 1.00, ε0 = 0.25). Note: 
max_depth set to 1 transforms NaiveMCTS into NaiveMC. 
 UCT: A standard real-time UCT algorithm with Upper 
Confidence Bound 1 (UCB1) sampling policy. 
 DownSamplingUCT: Each node in the search tree can 
only go up to a maximum predefined number of actions, and 
is therefore not allowed to cover all the available actions at 
one time (note: Random choosing of actions stays the same 
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as in the standard UCT, but it only operates until the 
maximum allowed number of actions is met). 
 UCTUnitActions: This search tree speciality is in the 
fact that it is based on unit-actions rather than on player-
actions. 
 PuppetSearchMCTS: An adversarial search 
framework based on scripts that can expose choice points 
to a look-ahead procedure (for this experiment we used a 
basic configurable script with a unit type table (utt)). Here, 
Monte Carlo adversarial search tree was used to search 
over sequences of puppet moves (which gave the algorithm 
its name). 
 
7.3 Results 
 

Experiment results carried for the map "melee4 × 
4light2" are shown in Tab. 2. 
 
Table 2 Wins / ties / losses of AIXCS against other game agents in the "melee4 

× 4light2" map 
Column of game agents against which 

AIXCS plays 
AIXCS 

(Wins/ties/losses) 
RandomAI 20 / 0 / 0 
RandomBiasedAI 19 / 0 / 1 
LightRush 10 / 10 / 0 
RangedRush 7 / 11 / 2 
WorkerRush 6 / 14 / 0 
PortfolioAI 7 / 13 / 0 
IDRTMinimax 0 / 20 / 0 
IDRTMinimaxRandomized 0 / 18 / 2 
IDABCD 12 / 5 / 3 
MonteCarlo 20 / 0 / 0 
MonteCarlo (with max_actions) 20 / 0 / 0 
NaiveMCTS#1 0 / 13 / 7 
NaiveMCTS#2 1 / 12 / 7 
NaiveMCTS#3 3 / 6 / 11 
NaiveMCTS#4 5 / 6 / 9 
UCT 0 / 11 / 9 
DownSamplingUCT 2 / 5 / 13 
UCTUnitActions 3 / 4 / 13 
PuppetSearchMCTS (utt) 9 / 11 / 0 
AIXCS 0 / 20 / 0 

 
Simple scenario results show that, against game 

agents, RandomAI, RandomBiasedAI, MonteCarlo and 
MonteCarlo (with max actions), AIXCS show superior 
performance. Establishing the performance dominance 
against purely random oriented agents is always a good 
first step when testing (evolutionary) game agents (i.e. the 
performance of the tested game agent must be above the 
category of random methods. Otherwise, there would not 
be much confidence about the efficiency. 

Against game agents: LightRush, RangedRush, 
WorkerRush, PorfolioAI, IDABCD and basic 
PuppetSearchMCTS (utt), AIXCS delivers a strong 
performance, which results in either a win or a tie. This is 
a clear indication that AIXCS's internal logic of operation 
gets enough information from one game state for XCS 
algorithms to compute relevant classifiers, and to choose 
player-actions that are able to overturn a non-basic game 
agent. 

When battling against agents of IDRTMinimax and 
IDRTMinimaxRandomized, games end mostly in a tie. 
Against all variants of NaiveMCTS and UCT, there is a 
strong tilt towards a tie or a loss. With DownSamplingUCT 
and UCTUnitActions there is a very high chance of a loss. 
Ties and losses are most likely due to the XCS algorithms' 

lack of foresight (i.e. currently they only observe one game 
state in advance) when connected to the tactic policies. 

Experiment results carried for the map 
»basesWorkers8 × 8« are shown in Tab. 3. 
 

Table 3 Wins / ties / losses of AIXCS against other game agents in the 
"basesWorkers8 × 8" map 

Column of game agents against which 
AIXCS plays 

AIXCS 
(Wins/ties/losses) 

RandomAI 19 / 1 / 0 
RandomBiasedAI 16 / 3 / 1 
LightRush 0 / 0 / 20 
RangedRush 0 / 0 / 20 
WorkerRush 0 / 0 / 20 
PortfolioAI 1 / 1 / 18 
IDRTMinimax 4 / 16 / 0 
IDRTMinimaxRandomized 5 / 15 / 0 
IDABCD 7 / 8 / 5 
MonteCarlo 13 / 7 / 0 
MonteCarlo (with max_actions) 17 / 3 / 0 
NaiveMCTS#1 1 / 2 / 17 
NaiveMCTS#2 0 / 1 / 19 
NaiveMCTS#3 0 / 0 / 20 
NaiveMCTS#4 0 / 1 / 19 
UCT 0 / 6 / 14 
DownSamplingUCT 2 / 10 / 8 
UCTUnitActions 0 / 1 / 19 
PuppetSearchMCTS (utt) 1 / 0 / 19 
AIXCS 3 / 14 / 3 

 
In the second experiment, game agents played a full 

microRTS game, starting with one base and one worker. 
Matches against LightRush, RangedRush, WorkerRush 
and Portfolio (which is mostly a mix of rush AI's), 
therefore, end up with defeat. The defeat is also against 
NaiveMCTS variants, PuppetSearchMCTS, UCT and 
UCTUnitsActions. All of those are MCTS based AI's. 
Against a basic UCT game agent there are no wins, but it 
manages to get to a tie in six out of the twenty matches. 

Based on the data shown in Tab. 3, AIXCS clearly 
outperforms both variants of random, MonteCarlo and 
Minimax game agents. Wins and ties are also favoured 
towards AIXCS when dealing with IDABCD. We can 
establish that the good performance against randomly 
based agents has been preserved when switching from a 
simple scenario to the full-blown RTS game. The 
experiment data also show that, although Minimax and 
IDABCD are tree-based agents, which can traverse over 
multiple game states, they do not utilise their full potential 
(i.e the complexity of RTS games is probably too high for 
them). 

The second experiment established that, at this point, 
AIXCS does not do well when dealing with beginning rush 
tactics. This was somehow expected, because an 8x8 map 
is relatively small, and there is little time to counter hard-
coded and well-tuned rush tactics. So, without offline 
processing or deeper traversing through the game states, 
good enough countermeasures could not evolve that could 
deal with constant attacks on the nearby units. 
Consequently, the base is eventually destroyed by rushing 
units, and our game agent cannot produce new units 
anymore. We can establish that beginning rushes are at this 
stage too hard for our XCS algorithms. 

After the experiment was completed, we also made 
some visual observations to see why so many matches 
against MCTS game agents end up in defeat. We noticed 
that AIXCS plays the games in a defensive-like style, while 
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MCTS based AIs are very offensive-oriented. MCTS game 
agents are also slightly better at combat micromanagement, 
because AIXCS, from time to time, fails to execute attack 
action when it should do so. E.g. sometimes a friendly 
worker, when positioned next to a cell of an enemy worker, 
fails to attack, even if that is the only logical solution. We 
must note that AIXCS does not lose the game straight 
away, but the combination of constant pressure and better 
micromanagement of MCTS game agents, eventually leads 
to destruction of the friendly base. Some of the MCTS (e.g. 
NaiveMCTS#4) gameplay behaviour of pressure and 
micromanagement looks very similar to the rush tactics. 

The research challenge that we identified during the 
experiment is the need to make the XCS based game agent 
perform more offensively when facing a (strictly) offensive 
opponent. Additional experiments designed for 
performance evaluations against rushing opponents could 
reveal if a change of XCS parameters` values would 
change the overall evolutionary behaviour (e.g. switching 
towards higher exploration); changing strategic policies 
(e.g. for beginning, middle and end game); could provide 
enough countermeasures to get through the beginning of 
the game (if the rush tactic fails, the game agent that started 
it, is usually in an inferior position); and provide additional 
data (e.g. what kind of actions classifiers in population 
propagate when dealing with an attacking opponent) that 
could maybe offer clues on how to design an XCS 
algorithm that would cope with the RTS multi-game-state-
steps. 
 
8 DISCUSSION 
 

Results are encouraging for simple scenarios, and to 
some degree for the full RTS game. We anticipated that the 
results of the second experiment would not be on a par win 
wise with the first experiment, because of the large number 
of XCS algorithms that must be executed in parallel in a 
limited time. With even larger maps there would not be 
enough processing time for multiple XCS algorithms to 
converge towards the best game possible. So appropriate 
scalability analysis is one of our top priorities to investigate 
in the future (e.g. through parallelisation of operational 
load across multiple cores). This would provide us with the 
overall picture of how evolutionary algorithmic 
components behave when used in the runtime game 
environment regarding the changing search-space sizes. 

The groups of XCS's can operate in runtime mode, but 
the degree of establishing when and how exactly classifiers 
form good player-actions in current game state is not yet 
clear. More research is needed: Room for improvement lies 
in the optimisation of initial parameters; finding out which 
parameters have the biggest impact on the game play; 
analysis of what kind of classifiers formed in sets; 
establishing when generalisation towards good results 
starts forming; which new tactical or strategic policies are 
needed; are current game policies adding or subtracting 
from the expected behaviour; what kind of condition 
should classifiers use (full map representation or already 
extracted environment information); establishing a chain 
of game states that XCS traverses through; etc. 
 
 
 

9 CONCLUSION 
 

This paper has presented a game agent which uses a 
group of XCS algorithms that form a single player-actions` 
set as an output result and applied it to the RTS games 
domain. Five game policies and a strategy module were 
used to form an internal structure of operation. In its 
current form, three limitations are included in the design. 
Limitations imposed are that, currently, there is no 
chaining of game states while deciding the next best action 
through simulations (no computation done over multiple 
frames-also known as direct reward (environment)), the 
map coding Tab. 1 is currently only suitable for two 
players, and no algorithmic optimisation was used on many 
parameters. Because there is no chaining of states, an agent 
creates a new set of XCS algorithms with every new frame. 
We use the "One frame at a time" example seen in Monte-
Carlo Tree Search (MCTS) algorithms, which are 
implemented alongside a microRTS engine source code. 
Every agent gets an allocation of a time slice for every 
game frame computation, during which it must return the 
player-actions that it wants to play with. 

The reason to impose no chaining of states` limitation 
was to simplify the initial development of an agent and to 
better understand agents many dynamic parts: 
 each game policy impacts game agents` behaviour, 
 XCS uses many internal initialisation parameters and 
variables, 
 XCS algorithms are computationally heavy, 
 the rewarding scheme includes many score parameters 
which are set up through flags, 
 XCS cooperation with the Reinforcement and 
Environment programmes, etc. 

Experiments showed that, although a game agent at 
this stage does not defeat all of the game agents it plays 
against (e.g. Naïve based game agents), it delivers a good 
gameplay in full game scenario versus game agents based 
on random, Monte Carlo, Minimax techniques, and (with 
more than satisfactory results) also for Alpha-beta, 
considering duration. Therefore, learning classifier 
systems are worthy of further research and do show great 
promise for the game domain [6]. The stepping-stone for 
the further research was accomplished successfully. 

Future work will focus on delayed reward 
(environment). This will include dealing with a more 
sophisticated reward system, which would be capable of 
acquiring the relevant reward and then delivering it over a 
chain of states. To support such a chain reward system, 
simulation parts, etc., will need to be reworked. This will 
include XCS's need to use the parameter for discount factor 
(γ) of rewards. Here, additional research and testing is 
needed, because literature shows that temporal-oriented 
rewards are not suitable for XCS algorithms [35], and that 
spatial-oriented reward will need to be considered. Other 
research attention should be given to the XCS being able 
to operate with a dynamic and changing number of actions 
in each game state. We also believe that the XCS based 
game agent shows (great) possibility of operating in a 
partially observable environment, but additional research 
is needed in that direction as well. 
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