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Abstract: Decomposition of molecular integrals into physically meaningful atomic contributions by means of the Becke integration scheme 
requires some care with respect to the choice of suitable atomic size adjustments. Using a simple illustrative example, it is shown that the 
adjustment of cell boundaries, as originally proposed by considering Bragg-Slater atomic radii, does not provide reliable results. Alternatively, 
the positions of the bond critical points of the electron density can be adopted to define heteronuclear cutoff profiles which allow for a more 
reasonable atomic partition of the molecular electron density. 
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INTRODUCTION 
HE theoretical resolution of molecular properties into 
atomic contributions is a long standing research field 

which dates back to the early days of quantum chemistry. 
Among all various methods presented so far, the most 
popular are surely those based on the integration of density 
functions connected to the properties of interest.[1] 
However, other approaches based on the atomic resolution 
of quantum mechanical operators might be recalled, as, for 
example, the breaking down of the molecular electric 
polarizability,[2] magnetizability,[3] and electric hyperpolar-
izability,[4] which have been obtained using force and 
torque gauges.  
 In the context of density functions, the quantum 
theory of atoms in molecules (QTAIM) has played a 
fundamental role,[5] see for example the atomic 
partitioning of polarizabilities[6] and magnetizabilities[7] 
presented by the Bader group. More recently, Hirshfeld-
based partitioning scheme for the intrinsic polarizability 
density[8] and origin-independent decomposition of the 
static polarizability[9] have been presented. 
 The breaking down of molecular integrals into 
atomic terms provided by the Becke numerical integration 

scheme[10] has come recently into play, see for example the 
numerical study on the partitioning of the molecular 
polarizability by Mei et al.[11] and the resolution into atomic 
contributions of the nuclear magnetic shielding constants 
proposed by the Sundholm group.[12] In this work we wish 
to examine some aspects of the Becke scheme, when 
applied to the determination of atomic contributions, 
which deserve a bit of attention not paid so far. 
 As it is very well known, Becke scheme[10] deals 
with the evaluation of three-dimensional integrals of the 
type 

 3( )I F d= ∫ r r  (1) 

and assumes that a relative weight function wA(r) can be 
assigned to each atom A in the molecule such that 

 A
A

( ) 1,w = ∀∑ r r  (2) 

and such that each wA(r) is equal to unity in the vicinity of 
its own nucleus and vanishes in a continuous and well-
behaved manner near any other nucleus. The molecular 
function F(r) is decomposed into single-center components 

 A A( ) = ( ) ( )F w Fr r r  (3) 
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since, as it can be easily proven, 

 A
A

( ) ( ) .F F= ∑r r  (4) 

Therefore (1) reduces to a sum of single-center integrations 
IA over each atom in the molecule: 

 A
A

,I I= ∑  (5) 

where 

 3
A A( )I F d= ∫ r r  (6) 

Evaluation of an atomic integral can be best performed 
adopting spherical polar coordinates with origin on the 
nucleus of atom A, even if other numerical techniques can 
be adopted. 
 A key step within the Becke scheme is the evaluation 
of the nuclear weights wA(r), which are obtained as 
normalized cell functions.[10] These can be determined 
assuming a homonuclear system or adopting some kind of 
atomic size adjustments. In the original formulation of the 
method, Bragg-Slater (BS) atomic radii[13] were used in the 
adjustment of cell boundaries and only recently a new 
alternative[14] has been presented which adopts the bond 
critical point (BCP) positions of the electron density.[5] 
However, it should be noted that the result of summation 
(5), i.e., the final value of the three-dimensional integral,  
is independent of the way the nuclear weights are 
determined. The reason to use atomic size adjustments is 
that they provide a faster convergence to the required 
accuracy. 
 Having said that, however, it can be observed that 
the integration of molecular density functions, carried out 
with or without atomic size adjustments, provides very 
different atomic partitions, as given in Eq. (6). For example, 
atomic contributions to the nuclear magnetic shielding 
constants in HF and H2O molecules, calculated via the 
Becke scheme for the homonuclear partition and atomic 
size adjustments (ASA) based on Bragg-Slater (BS) radii and 
bond critical points (BCP) of the electron density, are 
reported in Table 1 (for calculation details see later). 
 As can be observed, total values are invariant with 
respect to ASA, whilst atomic contributions undergo 
considerable variations. Remarkably, the contribution of 
hydrogen to its own shielding pass from being prevalent for 
the homonuclear partition and BS to be minor for BCP in 
both molecules. 
 This opens a question about the physical 
significance, if any, of the atomic breakdown obtained with 
the Becke partitioning scheme. To answer this question we 
require a term for comparison, i.e., some theoretical or 
experimental quantity to compare with, which is hard to 
devise for the magnetic shielding example given above, as 

well as for many other molecular properties. As we will see 
in the following, a much simpler example will permit to 
draw some conclusions. However, before introducing the 
subject, let us first argue that, as it concerns the democratic 
subdivision of the molecular space given by the homo-
nuclear partition, there is no reason to believe that it can 
provide meaningful atomic quantities, with the exception 
of highly symmetric cases. Instead, when atomic size 
adjustments are taken into account, some improvement in 
this regard is expected to occur. Using Bragg-Slater radii  
as guide in the adjustment of cell boundaries, neither the 
specific action that one atom has on the electron density 
nor the different substitutions that the same atom can have 
in different molecules seem properly taken into account. In 
this respect, the actual BCP positions of the electron 
density in each molecule under investigation can provide 
an optimal choice to guide the cell boundary adjustments. 
This can be easily implemented substituting the ratio of the 
Bragg-Slater radii χ = Ri/Rj (see Eq. (A4) and omitting the 
restriction imposed by Eq. (A3) of Ref. [10]) with the ratio 
ri/rj of the distances from nuclei i and j to the BCP located 
between them.[14] 
 

METHOD 

In order to illustrate all these aspects, we have devised a 
very simple example in which the molecular function F(r) is 
taken as the ground state electron density function ρ(r) 
which integrates to the electron number N in the molecule 
(see for example Ref. [15], chapter 5) 

Table 1. Atomic contributions to 1H, 17O, and 19F magnetic 
shielding constants in HF and H2O molecules in ppm, 
calculated via Becke scheme for three different atomic size 
adjustments (ASA): homonuclear (none), Bragg-Slater (BS), 
and bond critical point (BCP). 

 HF  H2O 

ASA Contrib. 1H 19F Contrib. 17O 1H1 1H2 

none 

H 16.51 13.94 O 306.53 8.76 8.76 

F 12.45 401.43 H1 12.41 18.46 3.72 

Tot 28.96 415.37 H2 12.41 3.72 18.46 

    Tot 331.35 30.94 30.94 

BS 

H 15.48 8.90 O 317.66 11.52 11.52 

F 13.48 406.47 H1 6.84 17.03 2.39 

Tot 28.96 415.37 H2 6.84 2.39 17.03 

    Tot 331.35 30.94 30.94 

BCP 

H 12.17 7.25 O 326.50 15.68 15.68 

F 16.79 408.12 H1 2.42 14.26 1.00 

Tot 28.96 415.37 H2 2.42 1.00 14.26 

    Tot 331.35 30.94 30.94 
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 3( ) .N ρ d= ∫ r r  (7) 

Then, atomic integrals IA would correspond to the partition 
of the electrons on each atom, i.e., 

 3
A A( ) ,N ρ d= ∫ r r  (8) 

where 

 A A( ) = ( ) ( ) .ρ w ρr r r  (9) 

Defining a net charge on each atom as 

 A A A ;q Z N= −  (10) 

where ZA is the atomic number, it is straightforward to 
consider each qA as the charge transferred among the 
atoms in the molecule, since 

 A
A

0q =∑  (11) 

for a neutral molecule. 
 The α component of the total electric dipole moment 
for the point charge distribution corresponding to the qA' s 
can be calculated as 

 A A
A

,α αμ q= ∑ R  (12) 

where AR  is the vector position of atom A (as can be easily 
verified, the dipole moment for the charge distribution 
does not depend on the origin of the coordinate system). 
 Comparing the calculated dipole moment for the 
charge distribution obtained via Eq. (12) with the expectation 
value of the dipole moment operator for the ground state 
electron density, will allow us to ascertain the physical 
significance of the different atomic partitions obtained by 
means of the Becke scheme. This has been done for a 
number of simple heteronuclear, polar molecules such as: 
HF, LiH, LiF, H2O, NH3. Owing to their modest size, very 
accurate computations have been carried out using the 
BHandHLYP functional,[16] adopting basis sets containing 
function types of high angular momentum taken from 
BSE.[17] In particular, on H and Li atoms we have adopted 
the aug-cc-pV5Z, which is a (6s5p4d3f2g) basis set on H and 
a (7s6p5d4f3g2h) basis set on Li. For N, O, and F atoms we 
have adopted the aug-cc-pV7Z, which corresponds to a 
(9s8p7d6f5g4h3i2j) basis set. Molecular geometries were 
optimized at BHandHLYP/aug-cc-pVTZ level using the 
Gaussian 16 program package.[18] Numerical integrations 
using the Becke scheme have been included within  
the SYSMOIC system of programs.[19] Nuclear magnetic 
shielding constants in Table 1 have been determined using 
the CSGT method. 
 

RESULTS AND DISCUSSION 
As it can be observed, the net atomic charges resulting from 
the partition of the electron density function via the Becke 
scheme, reported in columns 3 and 4 of Table 2, are in 
qualitative agreement with the electronegativity of the 
elements only for BCP based atomic size adjustments. For 
the Bragg-Slater based atomic size adjustments there is the 
notable exception of LiF, since the large χ = RLi/RF ratio 
provides a wrong direction of the charge transfer. The 
homonuclear partition provides counter-intuitive results for 
HF, H2O, and NH3 as well. At any rate, notable discrepancies 
can be observed comparing BCP and BS net charges, a fact 
which obviously depends on the different ratios of BS radii 
on the one hand, and distances between two joined nuclei, 
on the other hand. In this regard, we remark that in our calc-
ulations we followed exactly the Becke recipe,[10] which uses 
a modified radius for hydrogen atom of 0.35 Å. Adopting the 
original Bragg-Slater[13] radius of 0.25 Å, a choice made also in  
Ref. [11], the BS results move a little toward the BCP ones. 

Table 2. Net atomic charges calculated with the Becke 
scheme for some simple polar molecules LxR (Left, Right 
atom in the molecular formula) using atomic size 
adjustments, based on bond critical point (BCP) positions or 
Bragg-Slater (BS) radii, and the homonuclear (none) 
partition. In the last two columns dipole moments (in Debye) 
for the point charge distributions and expectation values of 
the dipole moment operator for the ground state electron 
densities, respectively. Molecular geometries in a.u. are 
(only symmetry unique atoms): H (0, 0, –1.550333) F(0, 0, 
0.172260); H(0, 0, −2.244817) Li (0, 0, 0.748273);  
Li (0, 0, −2.206945) F(0, 0, 0.735648); H(0, 1.431964, 
−0.866958) O(0, 0, 0.216739); H(0, 1.769470, −0.477213) 
N(0, 0, 0.204520). 1 Debye = 0.393456 a.u. 

Molecule ASA qL qR μ  μ  
HF BCP 

BS 

none 

0.3828 

0.0077 

–0.3945 

–0.3828 

–0.0077 

0.3945 

–1.6758 

–0.0336 

1.7272 

–1.8490 

HLi BCP 

BS 

none 

–0.7310 

–0.1841 

–0.6427 

0.7310 

0.1841 

0.6427 

5.5606 

1.4003 

4.8891 

5.8052 

LiF BCP 

BS 

none 

0.8328 

–0.5862 

0.5413 

–0.8328 

0.5862 

–0.5413 

–6.2285 

4.3843 

–4.0486 

–6.2719 

H2O BCP 

BS 

none 

0.5794 

0.0777 

–0.4293 

–1.1589 

–0.1554 

0.8586 

–3.1920 

–0.4281 

2.3648 

–1.8920 

H3N BCP 

BS 

none 

0.3238 

0.0619 

–0.4377 

–0.9713 

–0.1858 

1.3132 

–1.6830 

–0.3219 

2.2754 

–1.5132 
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 The comparison of the dipole moments obtained for 
the point charge distributions and the expectation values of 
the dipole moment operator permits an even clearer 
analysis. For the homonuclear partition the comparison is 
always rather poor and wrong in sign in three cases over 
five. The BS based electron partition provides dipole 
moments correct in sign (with the notable exception of LiF, 
as already remarked) but in large disagreement with the 
expectation value. On the contrary, the BCP based partition 
provides dipole moments which are in fairly nice 
agreement with μ  , with the only exception of water for 
which the comparison –3.2 vs. –1.9 Debye is not as good 
(even though net charges are in very good agreement with 
the QTAIM results, see Table 3.1 of Ref. [5]). It should also 
be considered that a dipole calculation in terms of point 
charges, can be a reasonable approximation only if the 
dipolar polarization of the atomic charge can be neglected, 
as exemplified by Bader for diatomic molecules.[5] 
 

CONCLUSION 
In conclusion, there is no doubt that the resolution of 
molecular properties into atomic contributions via the 
Becke scheme is sensitive to the atomic size adjustment, 
and this sensitivity can change the results even quali-
tatively. In the case of the electric dipole charges derived 
from cell boundaries either adjusted using Bragg-Slater 
radii or not at all adjusted, do not provide reliable results 
the former and lack of any solid physical ground the latter. 
The alternative way provided by the bond critical point 
positions to define heteronuclear cutoff profiles offers a 
promising solution for estimating atomic contributions to 
molecular properties. However, some care must be always 
paid by checking if the electron partition is reasonable on a 
physical ground, at least. 
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