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1. Introduction and motivation

Suppose that {pk(x)}k≥0 constitutes a basis for the polynomial space. Then for a
polynomial Q(x), it can be expanded uniquely in terms of {pk(x)}k≥0. Denote the
connection coefficient corresponding to pk(x) bypk(x);Q(x)

, such that Q(x) =
∑
k≥0

pk(x)
pk(x);Q(x)

. (1)

In accordance with Knuth [7], the unsigned Stirling number of the first kind

and the Stirling number of the second kind will be denoted here by
[n
k

]
and

{n

k

}
,

respectively. Define the rising and falling factorials by (x)0 = ⟨x⟩0 = 1 and

(x)n = x(x+ 1) · · · (x+ n− 1) for n ∈ N,
⟨x⟩n = x(x− 1) · · · (x− n+ 1) for n ∈ N.

Then for the three polynomial bases {xk}k≥0, {(x)k}k≥0 and {⟨x⟩k}k≥0, the Stirling
numbers are connection coefficients among them via

(x)n =

n∑
k=0

[n
k

]
xk and xn =

n∑
k=0

{n

k

}
⟨x⟩k,

where the first relation is equivalent, under x → −x, to the following one:

⟨x⟩n =

n∑
k=0

(−1)n−k
[n
k

]
xk.
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There exist numerous identities involving Stirling numbers of both kinds (see
e.g. [3, Chapter V], [5, §6.1] and [1, 2, 4, 6, 8, 10]). One well–known formula is the
convolution

n∑
k=m

[n
k

]{ k

m

}
=

(
n

m

)
(n− 1)!

(m− 1)!
.

As a warm-up, we reproduce its proof here as follows. Consider the expansions

(x)n =

n∑
k=0

[n
k

]
xk =

n∑
k=0

[n
k

] k∑
m=0

{
k

m

}
⟨x⟩m

=

n∑
m=0

⟨x⟩m
n∑

k=m

[n
k

]{ k

m

}
.

Then the convolution sum in question results in the connection coefficient⟨x⟩m; (x)n

, which is known as the Lah number

L(n,m) =

(
n

m

)
(n− 1)!

(m− 1)!
=

(
n− 1

m− 1

)
n!

m!
. (2)

As remarked by an anonymous referee, the above formula can also be proved by
making use of the calculus of finite differences. Denote by ∆y the forward differ-
ence operator of unit increment with respect to y. Then the Newton interpolating
polynomial at the points {0, 1, 2, . . . , n} yields the equality(

y + n− 1

n

)
=

n∑
m=0

(
y

m

)
∆m

y

(
y + n− 1

n

)∣∣∣
y=0

.

Evaluating the differences

∆m
y

(
y + n− 1

n

)
=

(
y + n− 1

n−m

)
for 0 ≤ m ≤ n,

we can see that the polynomial equality is equivalent to

(y)n =

n∑
m=0

n!

m!

(
n− 1

n−m

)
⟨y⟩m,

which leads us to the same formula as in (2).

Another well-known result is the orthogonal relation

n∑
k=m

(−1)n−k
[n
k

]{ k

m

}
= χ(m = n),
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where the logical function χ is defined by χ(true) = 1 and χ(false) = 0. This can
analogously be justified by making use of the expansions

⟨x⟩n =

n∑
k=0

(−1)n−k
[n
k

]
xk =

n∑
k=0

(−1)n−k
[n
k

] k∑
m=0

{
k

m

}
⟨x⟩m

=

n∑
m=0

⟨x⟩m
n∑

k=m

(−1)n−k
[n
k

]{ k

m

}

and then determining the connection coefficient⟨x⟩m; ⟨x⟩n
 = χ(m = n).

Motivated by these two identities, for an arbitrary integer parameter λ we shall
examine the following two classes of convolution sums:

Φm,n(λ) =

n−λ∑
k=m

[
n

k + λ

]{
k

m

}
, (3)

Ψm,n(λ) =

n−λ∑
k=m

[
n

k + λ

]{
k

m

}
(−1)n−k.

These convolutions of Stirling numbers are called “joint” for λ = 0 and “disjoint”
otherwise when λ ̸= 0. In the next section, two general summation theorems will
be established for Φm,n(λ) in accordance with λ > 0 and λ < 0. Then in Section 3,
two analytic formulae will be shown for the alternating convolution sums Ψm,n(λ).
Several remarkable identities will be deduced as consequences. The first four are
anticipated as follows:

Φm,n(1) =

(
n− 1

m

)
(n− 1)!

m!
,

Φm,n(−1) =

(
n

m− 1

)
n!

(m− 1)!
,

Ψm,n(1) = (−1)n−m (n− 1)!

m!
,

Ψm,n(−1) =


0, 1 ≤ m < n

−n, m = n

−1, m = n+ 1.

It should be remarked that the formula above for Ψm,n(1) is equivalent to [5, Identity
6.25]. Finally, the paper concludes with a brief discussion about similar convolution
sums of Lah numbers, where a few examples will be provided.
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2. Evaluation of positive sums Φm,n(λ)

In this section, we are going to derive two summation formulae for Φm,n(λ) according
to λ > 0 and λ < 0. Starting with the Stirling expansions in succession

(x)n =

λ−1∑
k=0

[n
k

]
xk +

n−λ∑
k=0

[
n

k + λ

]
xk+λ

=

λ−1∑
k=0

[n
k

]
xk + xλ

n−λ∑
k=0

[
n

k + λ

] k∑
m=0

{
k

m

}
⟨x⟩m

=

λ−1∑
k=0

[n
k

]
xk + xλ

n−λ∑
m=0

⟨x⟩m
n−λ∑
k=m

[
n

k + λ

]{
k

m

}
,

we derive the following equality:

n−λ∑
m=0

⟨x⟩m
n−λ∑
k=m

[
n

k + λ

]{
k

m

}
=

(x)n
xλ

−
λ−1∑
k=0

[n
k

]
xk−λ. (4)

The above expression on the right is a polynomial. In order to determine it
explicitly, we recall that for n ∈ N, there is a binomial identity(

x+ n− 1

n

)
=

x

n

n−1∑
j=0

(
x+ j − 1

j

)
,

which is equivalent to

(x)n = x

n−1∑
j=0

(n− 1)!

j!
(x)j , where n ∈ N. (5)

By pulling out the initial term, we can proceed further with

(x)n = x(n− 1)! + x

n−1∑
j1=1

(n− 1)!

j1!
(x)j1

= x(n− 1)! + x2
∑

n>j1>j2≥0

(n− 1)!

j1 · j2!
(x)j2

= x(n− 1)! + x2
n−1∑
j1=1

(n− 1)!

j1
+ x3

∑
n>j1>j2>j3≥0

(n− 1)!

j1j2 · j3!
(x)j3 .

For n, λ ∈ N with n ≥ λ, we can show by induction that

(x)n =

λ−1∑
k=1

xk
∑

n>j1>j2>···>jk−1≥1

(n− 1)!

j1j2 · · · jk−1

+ xλ
∑

n>j1>j2>···>jλ≥0

(n− 1)!

j1j2 · · · jλ−1 · jλ!
(x)jλ .
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Then we can state (4) equivalently as

n−λ∑
m=0

⟨x⟩m
n−λ∑
k=m

[
n

k + λ

]{
k

m

}
=

∑
n>j1>j2>···>jλ≥0

(n− 1)!

j1j2 · · · jλ−1 · jλ!
(x)jλ .

By reversing the summation indices, we can now evaluate the connection coefficient

Φm,n(λ) =

⟨x⟩m;
∑

0≤i1<i2<···<iλ<n

(n− 1)!

i1! · i2 · · · iλ
(x)i1


=

∑
0≤i1<i2<···<iλ<n

(n− 1)!

i1! · i2 · · · iλ

⟨x⟩m; (x)i1


=

∑
m≤i1<i2<···<iλ<n

(n− 1)!

i1! · i2 · · · iλ
L(i1,m).

Observing further that

Φm,n(λ) =

n−1∑
iλ=λ+m−1

(n− 1)!

iλ!

∑
m≤i1<i2<···<iλ−1<iλ

(iλ − 1)!

i1! · i2 · · · iλ−1
L(i1,m),

we find the following interesting property.

Proposition 1 (λ > 0: Recurrence relation).

Φm,n(λ) =

n−1∑
i=λ+m−1

(n− 1)!

i!
Φm,i(λ− 1).

The same referee pointed out that this proposition can also be proved by com-
bining (3) with the following known recurrence relation (specified by ℓ = k + λ):

[n
ℓ

]
=

n−1∑
i=ℓ−1

(n− 1)!

i!

[
i

ℓ− 1

]
.

This identity can be found in [7, Identity 6.21] and can be shown by classifying
the permutations of {1, 2, . . . , n} with ℓ cycles according to the length n − i of the
(specific) cycle that contains the largest element ‘n’.

Define the multiple harmonic numbers by the elementary symmetric function

σ0(m;n) ≡ 1 and σλ(m;n) =
∑

m≤i1<i2<···<iλ≤n

λ∏
j=1

1

ij
.

Then for n, λ ∈ N with n ≥ λ, we can write

(x)n =

λ−1∑
k=1

xk(n− 1)!σk−1(1;n− 1) + xλ
n−λ∑
j=0

(x)j
(n− 1)!

j!
σλ−1(j + 1;n− 1).
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From this, we can see that (4) is also equivalent to

n−λ∑
m=0

⟨x⟩m
n−λ∑
k=m

[
n

k + λ

]{
k

m

}
=

n−λ∑
j=0

(x)j
(n− 1)!

j!
σλ−1(j + 1;n− 1).

Therefore, the connection coefficient can be evaluated by

Φm,n(λ) =

⟨x⟩m;

n−λ∑
j=0

(x)j
(n− 1)!

j!
σλ−1(j + 1;n− 1)


=

n−λ∑
j=m

(n− 1)!

j!
σλ−1(j + 1;n− 1)

⟨x⟩m; (x)j


=

n−λ∑
j=m

(n− 1)!

j!
σλ−1(j + 1;n− 1)L(j,m).

After some simplification, this is highlighted as the following theorem.

Theorem 1 (λ > 0).

Φm,n(λ) =

n−λ∑
j=m

(n− 1)!

m!

(
j − 1

m− 1

)
σλ−1(j + 1;n− 1).

The first two formulae corresponding to λ = 1, 2 are recorded below.

Corollary 1.

(a) Φm,n(1) =

(
n− 1

m

)
(n− 1)!

m!
;

(b) Φm,n(2) =

n−1∑
i=m+1

(
i− 1

m

)
(n− 1)!

i ·m!
.

Proof. The first formula (a) follows directly by letting λ = 1 in Theorem 1 and
then evaluating the binomial sum

Φm,n(1) =
n−1∑
j=m

(n− 1)!

m!

(
j − 1

m− 1

)
=

(n− 1)!

m!

(
n− 1

m

)
.

Formula (b) follows from (a) and Proposition 1 and can also be done analogously
by letting λ = 2 in Theorem 1:

Φm,n(2) =

n−2∑
j=m

n−1∑
i=j+1

(
j − 1

m− 1

)
(n− 1)!

i ·m!

=

n−1∑
i=m+1

(n− 1)!

i ·m!

i−1∑
j=m

(
j − 1

m− 1

)
=

n−1∑
i=m+1

(n− 1)!

i ·m!

(
i− 1

m

)
.
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For λ < 0, we have another explicit formula, where ∆y is the difference operator
introduced in the introduction.

Theorem 2 (λ < 0).

Φm,n(λ) =

−λ∑
i=0

i∑
j=0

(−1)λ+j

nλ+i

(
−λ

i

){
i

j

}
L(j + n,m)

=

−λ∑
j=0

(−1)λ+j L(j + n,m)

j!
∆j

y(n+ y)−λ
∣∣∣
y=0

.

Proof. Analogously, we have the expansions

(x)n =

n−λ∑
k=−λ

[
n

k + λ

]
xk+λ

= xλ
n−λ∑
k=−λ

[
n

k + λ

] k∑
m=0

{
k

m

}
⟨x⟩m

= xλ
n−λ∑
m=0

⟨x⟩m
n−λ∑
k=m

[
n

k + λ

]{
k

m

}
.

Multiplying across by x−λ, we derive the expression

Φm,n(λ) =
⟨x⟩m;x−λ(x)n

. (6)

Observing that

x−λ =
{
(x+ n)− n

}−λ
=

−λ∑
i=0

(
−λ

i

)
(x+ n)i

(−n)λ+i

=

−λ∑
i=0

(
−λ

i

) i∑
j=0

(−1)λ+j

nλ+i

{
i

j

}
(x+ n)j ,

we deduce further from (6)

Φm,n(λ) =

−λ∑
i=0

(
−λ

i

) i∑
j=0

(−1)λ+j

nλ+i

{
i

j

}⟨x⟩m; (x)n+j


=

−λ∑
i=0

(
−λ

i

) i∑
j=0

(−1)λ+j

nλ+i

{
i

j

}
L(j + n,m),

which gives the double sum expression in the theorem.
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By interchanging the summation order, we can rewrite

Φm,n(λ) =

−λ∑
j=0

L(j + n,m)

−λ∑
i=0

(−1)λ+j

nλ+i

(
−λ

i

){
i

j

}

=

−λ∑
j=0

L(j + n,m)

j!

−λ∑
i=0

(−1)λ+j

nλ+i

(
−λ

i

) j∑
k=0

(−1)j−k

(
j

k

)
ki

=

−λ∑
j=0

L(j + n,m)

j!

j∑
k=0

(
j

k

)
(−1)λ−k

nλ

−λ∑
i=0

(
−λ

i

)(k
n

)i

=

−λ∑
j=0

(−1)λ
L(j + n,m)

j!

j∑
k=0

(−1)k
(
j

k

)
(n+ k)−λ.

Expressing the rightmost sum in terms of ∆y, we obtain the second formula stated
in Theorem 2.

When λ is a small negative integer, the sums displayed in Theorem 2 contain
only a few terms and can be computed without difficulty. In particular, we have the
following three elegant formulae for λ = −1,−2,−3.

Corollary 2 (m ≥ −λ).

(a) Φm,n(−1) =

(
n

m− 1

)
n!

(m− 1)!
;

(b) Φm,n(−2) =

(
n+ 1

m− 1

)
(1 +mn)n!

(n+ 1)(m− 1)!
;

(c) Φm,n(−3) =

(
n+ 2

m− 1

)
(1 +m− n+ 4mn+m2n2)n!

(n+ 1)(n+ 2)(m− 1)!
.

3. Evaluation of alternating sums Ψm,n(λ)

For the alternating convolution sums Ψm,n(λ), two companion formulae will similarly
be shown in this section. Again, we first consider the case λ > 0. In view of the
Stirling expansions

⟨x⟩n =

λ−1∑
k=0

(−1)n−k
[n
k

]
xk +

n−λ∑
k=0

(−1)n−k−λ

[
n

k + λ

]
xk+λ

=

λ−1∑
k=0

(−1)n−k
[n
k

]
xk + (−x)λ

n−λ∑
k=0

(−1)n−k

[
n

k + λ

] k∑
m=0

{
k

m

}
⟨x⟩m

=

λ−1∑
k=0

(−1)n−k
[n
k

]
xk + (−x)λ

n−λ∑
m=0

⟨x⟩m
n−λ∑
k=m

(−1)n−k

[
n

k + λ

]{
k

m

}
,
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we have the following expression:

n−λ∑
m=0

⟨x⟩mΨm,n(λ) =
⟨x⟩n
(−x)λ

−
λ−1∑
k=0

(−1)n−k−λ
[n
k

]
xk−λ. (7)

The above expression on the right is again a polynomial. In order to have an
explicit polynomial expression, we must rewrite (5) by making the replacement x →
−x:

⟨x⟩n = (−x)

n−1∑
j=0

(−1)n−j (n− 1)!

j!
⟨x⟩j , where n ∈ N.

By iterating this relation, we can proceed further with

⟨x⟩n = (−x)(n− 1)!(−1)n + (−x)

n−1∑
j1=1

(−1)n−j1
(n− 1)!

j1!
⟨x⟩j1

= (−x)(n− 1)!(−1)n + (−x)2
∑

n>j1>j2≥0

(−1)n−j2
(n− 1)!

j1 · j2!
⟨x⟩j2

= (−x)(n− 1)!(−1)n + (−x)2(−1)n
n−1∑
j1=1

(n− 1)!

j1

+ (−x)3
∑

n>j1>j2>j3≥0

(−1)n−j3
(n− 1)!

j1j2 · j3!
⟨x⟩j3 .

In general, for n, λ ∈ N with n ≥ λ, we can prove by induction that

⟨x⟩n =

λ−1∑
k=1

(−x)k
∑

n>j1>j2>···>jk−1≥1

(−1)n(n− 1)!

j1j2 · · · jk−1

+ (−x)λ
∑

n>j1>j2>···>jλ≥0

(−1)n−jλ(n− 1)!

j1j2 · · · jλ−1 · jλ!
⟨x⟩jλ .

By combining this with (7), we get the expression

n−λ∑
m=0

⟨x⟩mΨm,n(λ) =
∑

n>j1>j2>···>jλ≥0

(−1)n−jλ(n− 1)!

j1j2 · · · jλ−1 · jλ!
⟨x⟩jλ .
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After reversing the summation indices, we can manipulate the sum

Ψm,n(λ) =

⟨x⟩m;
∑

0≤i1<i2<···<iλ<n

(−1)n−i1(n− 1)!

i1! · i2 · · · iλ
⟨x⟩i1


=

∑
0≤i1<i2<···<iλ<n

(−1)n−i1(n− 1)!

i1! · i2 · · · iλ

⟨x⟩m; ⟨x⟩i1


=
∑

0≤i1<i2<···<iλ<n

(−1)n−i1(n− 1)!

i1! · i2 · · · iλ
χ(i1 = m)

=
∑

m<i2<···<iλ<n

(−1)n−m(n− 1)!

m! · i2 · · · iλ
.

By reformulating the last multiple sum in two different manners

n−λ+1∑
i2=m+1

(−1)i2−m (i2 − 1)!

m!

∑
i2<i3<···<iλ<n

(−1)n−i2(n− 1)!

i2! · i3 · · · iλ

and
n−1∑

iλ=m+λ−1

(−1)n−iλ
(n− 1)!

iλ!

∑
m<i2<i3<···<iλ

(−1)iλ−m(iλ − 1)!

m! · i2 · · · iλ−1
,

we find the following two remarkable equalities for Ψm,n(λ) when λ > 1, which can
be seen to hold also in the case λ = 1.

Proposition 2 (λ > 0: Recurrence relations).

Ψm,n(λ) =

n−λ+1∑
i=m+1

(−1)i−m (i− 1)!

m!
Ψi,n(λ− 1)

=

n−1∑
i=m+λ−1

(−1)n−i (n− 1)!

i!
Ψm,i(λ− 1).

By making use of the σ-symbol, we also have a compact expression

⟨x⟩n = (−1)n(n− 1)!

λ−1∑
k=1

(−x)kσk−1(1;n− 1)

+ (−x)λ
n−λ∑
j=0

(−1)n−j⟨x⟩j
(n− 1)!

j!
σλ−1(j + 1;n− 1).

Then we get the following equality equivalent to (7):

n−λ∑
m=0

⟨x⟩mΨm,n(λ) =

n−λ∑
j=0

(−1)n−j⟨x⟩j
(n− 1)!

j!
σλ−1(j + 1;n− 1).
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Hence the connection coefficient can alternatively be evaluated by

Ψm,n(λ) =

⟨x⟩m;

n−λ∑
j=0

(−1)n−j⟨x⟩j
(n− 1)!

j!
σλ−1(j + 1;n− 1)


=

n−λ∑
j=m

(−1)n−j (n− 1)!

j!
σλ−1(j + 1;n− 1)

⟨x⟩m; ⟨x⟩j


=

n−λ∑
j=m

(−1)n−j (n− 1)!

j!
σλ−1(j + 1;n− 1)χ(m = j),

which becomes the formula stated in the following theorem.

Theorem 3 (λ > 0).

Ψm,n(λ) = (−1)n−m (n− 1)!

m!
σλ−1(m+ 1;n− 1).

As a consequence, we have the following formulae corresponding to λ = 1, 2, 3.

Corollary 3.

(a) Ψm,n(1) = (−1)n−m (n− 1)!

m!
;

(b) Ψm,n(2) = (−1)n−m (n− 1)!

m!
σ1(m+ 1;n− 1);

(c) Ψm,n(3) = (−1)n−m (n− 1)!

m!
σ2(m+ 1;n− 1).

When λ < 0, the corresponding formula is as follows.

Theorem 4 (λ < 0).

Ψm,n(λ) =

−λ∑
i=0

(
−λ

i

){
i

m− n

}
(−1)λ

nλ+i
.

Proof. Alternatively, we have the expansions

⟨x⟩n =

n−λ∑
k=−λ

(−1)n−k−λ

[
n

k + λ

]
xk+λ

= (−x)λ
n−λ∑
k=−λ

(−1)n−k

[
n

k + λ

] k∑
m=0

{
k

m

}
⟨x⟩m

= (−x)λ
n−λ∑
m=0

⟨x⟩m
n−λ∑
k=m

(−1)n−k

[
n

k + λ

]{
k

m

}
.
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Multiplying across by (−x)−λ, we derive the expression

Ψm,n(λ) =
⟨x⟩m; (−x)−λ⟨x⟩n

. (8)

Observing that

x−λ =
{
(x− n) + n

}−λ
=

−λ∑
i=0

(
−λ

i

)
(x− n)i

nλ+i

=

−λ∑
i=0

(
−λ

i

) i∑
j=0

⟨x− n⟩j
nλ+i

{
i

j

}
,

we deduce from (8) the double sum expression

Ψm,n(λ) =

−λ∑
i=0

(−1)λ

nλ+i

(
−λ

i

) i∑
j=0

{
i

j

}⟨x⟩m; ⟨x⟩n+j


=

−λ∑
i=0

(−1)λ

nλ+i

(
−λ

i

) i∑
j=0

{
i

j

}
χ(m = n+ j),

which becomes the formula displayed in Theorem 4.

When λ is a small negative integer, we can easily compute Ψm,n(λ) by means of
Theorem 4. Here are the first two examples.

Corollary 4.

(a) Ψm,n(−1) =


0, 1 < m < n

−n, m = n

−1, m = n+ 1;

(b) Ψm,n(−2) =


0, 1 ≤ m < n

n2, m = n

2n+ 1, m = n+ 1

1, m = n+ 2.

4. Convolution sums of Lah numbers

By employing the approach of connection coefficients, convolution sums of Lah num-
bers can also be examined. However, the resulting expressions are quite involved.
Here we give five initial formulae as examples, which can be confirmed by using
the Chu–Vandermonde convolution formula. The informed reader will notice that
among these five identities recorded below, (9) is well-known and equivalent to the
equation appearing in [9, p. 44].
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n∑
k=m

L(n, k)L(k,m) = 2n−mL(n,m),

n+1∑
k=m

L(n, k − 1)L(k,m) = 2n−m (m+ n)2 −m+ n

2n(n+ 1)
L(n+ 1,m),

n∑
k=m

(−1)k−mL(n, k)L(k,m) = χ(m = n), (9)

n−1∑
k=m

(−1)k−mL(n, k + 1)L(k,m) =
(n−m)(n− 1)!

m!
,

n+1∑
k=m

(−1)k−mL(n, k − 1)L(k,m) =


0, 1 ≤ m < n− 1

n(n− 1), m = n− 1

−2n, m = n

1, m = n+ 1.
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