
MATHEMATICAL COMMUNICATIONS 177
Math. Commun. 26(2021), 177–195

An alternating positive semidefinite splitting preconditioner
for the three-by-three block saddle point problems∗

Davod Khojasteh Salkuyeh1,2,†, Hamed Aslani3 and Zhao-Zheng Liang4

1 Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
2 Center of Excellence for Mathematical Modelling, Optimization and Combinational
Computing (MMOCC), University of Guilan, Rasht, Iran
3 Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
4 School of Mathematics and Statistics, Lanzhou University, Lanzhou, P. R. China

Received September 22, 2020; accepted January 8, 2021

Abstract. Using the idea of the dimensional splitting method, we present an iteration
method for solving three-by-three block saddle point problems which appear in linear pro-
gramming and finite element discretization of the Maxwell equation. We prove that the
method is unconditionally convergent. Then the induced preconditioner is used to acceler-
ate the convergence of the GMRES method for solving the system. Numerical results are
presented to compare the performance of the method with some existing ones.
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1. Introduction

We consider the block three-by-three saddle point problems of the form

Kx ≡

A BT 0
B 0 CT

0 C 0

xy
z

 =

fg
h

 , (1)

where A ∈ Rn×n, B ∈ Rm×n and C ∈ Rl×m. Here, f ∈ Rn, g ∈ Rm and h ∈ Rl.
In this case, the coefficient matrix of system (1) is of order n × n, where n =
n + m + l. Systems of the form (1) appear in many applications such as finite
element methods for solving time-dependent Maxwell equations with discontinuous
coefficients in general three-dimensional Lipschitz polyhedral domains [10], solving
quadratic programs [12] and the Picard iteration method for a class of mixed finite
element scheme for stationary magnetohydrodynamics models [13].
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System (1) can be equivalently rewritten in the following form:

Ax ≡

 A BT 0
−B 0 −CT
0 C 0

xy
z

 =

 f
−g
h

 = b. (2)

Unlike the coefficient matrix of system (1), the matrix A is nonsymmetric; however,
since the matrix A+AT is symmetric positive semidefinite, we see that the matrix
A has the following good properties:
1. A is semipositive real, that is, vTAv ≥ 0, for all v ∈ Rn;
2. A is positive semistable, which means that <(λ) ≥ 0 for all λ ∈ σ(A), where σ(A)
denotes the spectrum of A.
The above results are significant for Krylov subspace methods like GMRES (see [2,
p. 420] and [20, Theorem 6.30]).

Recently, some iteration methods and preconditioning techniques have been pre-
sented for system (2). In [15], Huang and Ma analyzed the spectral properties of
the preconditioned matrix P−1D A, where the preconditioner PD is of the form

PD =

A 0 0
0 S 0
0 0 CS−1CT

 , (3)

with S = BA−1BT . They proved that when A is symmetric positive definite (SPD)
and C and B are of full rank, then all the matrices A, S and CS−1CT are SPD and
the preconditioned matrix P−1D A has six different eigenvalues. Therefore, the GM-
RES method for the system P−1D Ax = P−1D b will converge in at most six iterations.
In the implementation of the preconditioner PD within a Krylov subspace iteration
method, at each iteration, a system of linear equations of the form PDw = r should
be solved. To do so, three systems with coefficient matrices A, S and CS−1CT

should be solved. Hence, these systems can be solved directly using the Cholesky
factorization, or inexactly using the conjugate gradient (CG) method. Obviously,
forming the matrices S and CS−1CT is too expensive. Moreover, these matrices
would be dense even if the matrices A, B and C are sparse. On the other hand, in
each matrix-vector multiplication of solving the system with the matrix S using the
CG method a system with the coefficient matrix A should be solved, which is very
costly. Furthermore, this would be even more complicated for the matrix CS−1CT .
Here, we should also note that if the matrix A is ill-conditioned, then the matrix S
as well as CS−1CT are often ill-conditioned, too. To overcome this problem, in [15],
the authors proposed to use Â and Ŝ as approximations of A and S, respectively.
However, they solved the obtained subsystems directly. In [23], Xie and Li presented
the following three preconditioners:

P1 =

A 0 0
B −S CT

0 0 −CS−1CT

 , P2 =

A 0 0
B −S CT

0 0 CS−1CT

 ,

P3 =

A BT 0
B −S 0
0 0 −CS−1CT

 .

(4)
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It was proved that (see [23])

T1 = σ(P−11 K) = {−1, 1}, T2 = σ(P−12 K) = {1}, T3 = σ(P−13 K) = {±1

2
, 1},

and that under the assumptions that A is SPD and C and B are of full rank, all
the preconditioned matrices Ti (i = 1, 2, 3) have a minimal polynomial of degree
3. Here, σ(.) denotes the spectrum of the matrix. Therefore, the GMRES method
for solving the corresponding preconditioned systems converges in at most three
iterations. Obviously, the implementation of the preconditioners is quite similar
to the preconditioner PD, and the one with P3 is even more complicated. In [8],
Cao presented the shift-splitting (SS) iteration method for solving system (2). Next
in [22], Wang and Zhang generalized the SS iteration method to solve system (2).
It has been proved that the SS iteration method and its generalized version are
unconditionally convergent (see [8, 22]). Huang [14] and Huang et al. [16] presented
the Uzawa-type methods for solving system (1).

In [5], Benzi and Guo proposed the dimensional splitting method and the corre-
sponding dimensional split preconditioner for saddle point problems. Then in [17],
Ke and Ma corrected an error in [5]. Next, a modified version of the dimensional
splitting method was presented by Cao et al. in [9] for solving generalized saddle
point problems. When the (2,2) block of the matrix A is symmetric positive defi-
nite, using the idea of the dimensional splitting method [5], Liang and Zhang [18]
proposed alternating positive semidefinite splitting (APSS) for solving the problem.
However, in our problem, the (2,2) block of the matrix A is zero. In this paper, we
apply the APSS iteration method for solving system (2) and investigate its conver-
gence properties. We prove that the method is unconditionally convergent. Then
we apply the induced preconditioner to accelerate the convergence of the GMRES
method for solving the system.

The rest of the paper is organized as follows. In Section 2, we give conditions
for the nonsingularity of the matrix A. Section 3 is devoted to the application of
the APSS method to solving system (2). Convergence of the method is presented in
Section 4. We present some implementation issues for the APSS preconditioner in
Section 5. Numerical results are presented in Section 6. Some concluding remarks
are presented in Section 7.

2. Existence of the solution

We state the following theorem for the existence of a solution to system (2).

Theorem 1. Assume that C has full row rank and A is symmetric positive semidef-
inite. If N (A) ∩ N (B) = {0}, N (BT ) ∩ N (C) = {0} and R(B) ∩ R(CT ) = {0},
then the matrix A defined in Eq. (2) is nonsingular.

Proof. Let x = (u; v; p) and Ax = 0. Therefore,

Au+BT v = 0, (5)

Bu+ CT p = 0, (6)

Cv = 0. (7)
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Pre-multiplying Eq. (5) by uT and by using Eq. (6) and Eq. (7) it follows

0 = uTAu+ uTBT v = uTAu+ (Bu)T v

= uTAu− pTCv
= uTAu.

Now, since the matrix A is symmetric positive semidefinite, we deduce that Au = 0.
Therefore, from Eq. (5) we get BT v = 0. This along with Eq. (7) shows that
v ∈ N (BT ) ∩ N (C). Thus, v = 0. On the other hand, from Eq. (6) we have Bu =
−CT p ∈ R(B)∩R(CT ). Hence, Bu = 0 and CT p = 0. So, p = 0, since C has full row
rank. Finally, from Bu = 0 and Au = 0, we conclude that u ∈ N (A)∩N (B), which
reveals that u = 0. Hereupon, x = (u; v; p) = 0, which completes the proof.

It is easy to prove that if R(B) ⊆ N (C), then R(B) ∩ R(CT ) = {0}. So in
Theorem 1, one may replace the condition R(B) ∩R(CT ) = {0} by R(B) ⊆ N (C).
The following corollaries can be easily deduced using Theorem 1 and its proof.

Corollary 1 (see [14, 16, 23]). Assume that A is symmetric positive definite and
the matrices B and C are of full row rank. Then the matrix A defined in Eq. (2) is
nonsingular.

Corollary 2 (see [23]).

(i) Assume that A is a symmetric positive semidefinite and the matrices B and C
are of full row rank. Then the matrix A defined in Eq. (2) is nonsingular if
and only if N (A) ∩N (B) = {0}.

(ii) Assume that A is a symmetric positive definite matrix and the matrix C has
full row rank. Then the matrix A defined in Eq. (2) is nonsingular if and only
if N (BT ) ∩N (C) = {0}.

3. The APSS method

We split the matrix A into A = A1 +A2, where

A1 =

 A BT 0
−B 0 0
0 0 0

 , A2 =

0 0 0
0 0 −CT
0 C 0

 .

Both matrices A1 and A2 are positive semidefinite. So, using the splittings

A = (αI +A1)− (αI − A2) = (αI +A2)− (αI − A1),

where α > 0 is a given real parameter and I is the identity matrix of order n, we
state the APSS iteration{

(αI +A1)x(k+ 1
2 ) = (αI − A2)x(k) + b,

(αI +A2)x(k+1) = (αI − A1)x(k+ 1
2 ) + b,

k = 0, 1, 2, . . . , (8)
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where x(0) ∈ Rn is a given parameter. It follows from Lemma 1 in [3] that both

matrices αI + A1 and αI + A2 are nonsingular. Computing x(k+ 1
2 ) from the first

equation in (8) and substituting in the second one results in the stationary iteration

x(k+1) = Tαx(k) + c, (9)

where
Tα = (αI +A2)

−1
(αI − A1) (αI +A1)

−1
(αI − A2) ,

and
c = 2α (αI +A2)

−1
(αI +A1)

−1
b.

Similarly to the Hermitian and skew-Hermitian splitting (HSS) iteration method [1],
if we set

Pα =
1

2α
(αI +A1)(αI +A2), Qα =

1

2α
(αI − A1)(αI − A2),

then A = Pα −Qα and
Tα = P−1α Qα = I − P−1α A. (10)

In each iteration of the APSS iteration method, two systems with the coefficient
matrices αI +A1 and αI +A2 should be solved. The first step of the kth iteration
of APSS can be written asαI +A BT 0

−B αI 0
0 0 αI

x(k+ 1
2 )

y(k+
1
2 )

z(k+
1
2 )

 =

 αx(k) + f
αy(k) + CT z(k) − g
−Cy(k) + αz(k) + h

 ≡
f (k)g(k)

h(k)

 . (11)

From Eq. (11), we immediately get z(k+
1
2 ) = h(k)/α and the reduced system(

αI +A BT

−B αI

)(
x(k+

1
2 )

y(k+
1
2 )

)
=

(
f (k)

g(k)

)
, (12)

From the second equation in (12), we obtain

y(k+
1
2 ) =

1

α
(g(k) +Bx(k+

1
2 )),

and substituting it into the first equation of (12) gives the system

(αI +A+
1

α
BTB)x(k+

1
2 ) = f (k) − 1

α
BT g(k),

for x(k+
1
2 ). Summarizing the above results gives the following algorithm for com-

puting x(k+ 1
2 ):

Algorithm 1. Computation of x(k+ 1
2 ):

1. Set z(k+
1
2 ) = h(k)/α.

2. Solve (αI +A+ 1
αB

TB)x(k+
1
2 ) = f (k) − 1

αB
T g(k) for x(k+

1
2 ).

3. Set y(k+
1
2 ) = 1

α (g(k) +Bx(k+
1
2 )).

4. Set x(k+ 1
2 ) = (x(k+

1
2 ); y(k+

1
2 ); z(k+

1
2 )).
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The second step of the kth iteration of APSS can be written asαI 0 0
0 αI −CT
0 C αI

x(k+1

y(k+1)

z(k+1)

 =

(αI −A)x(k+
1
2 ) −BT y(k+ 1

2 ) + f

Bx(k+
1
2 ) + αy(k+

1
2 ) − g

αz(k+
1
2 ) + h


≡

f (k+ 1
2 )

g(k+
1
2 )

h(k+
1
2 )

 .

From the first equation of the above system we get x(k+1 = f (k+
1
2 )/α. After elim-

inating the variable x(k+1) from the above system we find the following reduced
system (

αI −CT
C αI

)(
y(k+1)

z(k+1)

)
=

(
g(k+

1
2 )

h(k+
1
2 )

)
. (13)

From the first equation in (13) we deduce that

y(k+1) =
1

α
(g(k+

1
2 ) + CT z(k+1)),

and substituting y(k+1) in the second equation of (13) results in the following system
for z(k+1):

(αI +
1

α
CCT )z(k+1) = h(k+

1
2 ) − 1

α
Cg(k+

1
2 ).

Summarizing the above results gives the following algorithm for computing x(k+1).

Algorithm 2. Computation of x(k+1):
1. Set x(k+1) = f (k+

1
2 )/α.

2. Solve (αI + 1
αCC

T )z(k+1) = h(k+
1
2 ) − 1

αCg
(k+ 1

2 ) for z(k+1).

3. Set y(k+1) = 1
α (g(k+

1
2 ) + CT z(k+1)).

4. Set x(k+1) = (x(k+1); y(k+1); z(k+1)).

From algorithms 1 and 2 we see that two systems with the coefficient matrices
αI + A + 1

αB
TB and αI + 1

αCC
T should be solved. Both of these matrices are

symmetric positive definite. Therefore, the corresponding systems can be solved
exactly using the Cholesky factorization, or inexactly using the conjugate gradient
(CG) method.

4. Convergence of the APSS iteration method

It is well-known that the stationary iteration method (9) converges to the solution
of system (2) for any initial guess x(0) if and only if ρ(Tα) < 1. To prove the
convergence, we first state the next lemma.

Lemma 1 (Kellogg’s lemma, see [19]). If A ∈ Cn×n is positive semidefinite, then

‖(αI +A)−1(αI −A)‖2 ≤ 1,
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for all α > 0. Moreover, if A is positive definite, then

‖(αI +A)−1(αI −A)‖2 < 1,

for all α > 0.

Lemma 2. Let A be SPD and let matrices B and C be of full row rank. Then the
spectral radius of the iteration matrix Tα in (9) is less than or equal to unity, that
is, ρ(Tα) ≤ 1, in which ρ(.) denotes the spectral radius of the matrix.

Proof. Clearly, the matrix Tα is similar to

T̂α = (αI − A1) (αI +A1)
−1

(αI − A2) (αI +A2)
−1
.

So,

ρ(Tα) = ρ(T̂α) ≤
∥∥∥(αI − A1) (αI +A1)

−1
∥∥∥
2

∥∥∥(αI − A2) (αI +A2)
−1
∥∥∥
2
.

Since both matrices A1 and A2 are positive semidefinite, it follows from the Kellogg’s
lemma that∥∥∥(αI − A1) (αI +A1)

−1
∥∥∥
2
≤ 1,

∥∥∥(αI − A2) (αI +A2)
−1
∥∥∥
2
≤ 1.

Therefore, we conclude that ρ(Tα) = ρ(T̂α) ≤ 1.

It follows from Lemma 2 that for the convergence of the APSS iteration method
it is enough to prove that ρ(Tα) = 1 never happens. To do so, we state the following
lemma.

Lemma 3. Let A be SPD and matrices B and C be of full row rank. Then the
following are equivalent:

(i) The matrix

Gα =

 A BT + 1
α2B

TCTC 0
−B 0 −CT
0 C 0


does not have any purely imaginary eigenvalue.

(ii) The spectral radius of the iteration matrix Tα in (9) is strictly less than 1, that
is, ρ(Tα) < 1.

Proof. Similarly to the proof of Lemma 2 in [5], let λ be an eigenvalue of Tα. Then,
it follows from Eq. (10) that λ = 1 − µ, where µ is an eigenvalue of the matrix
P−1α A. Let (µ,x) be an eigenpair of P−1α A. Then, we have Ax = µPαx, which is
equivalent to

Ax =
µ

2α
(A1A2 + αA+ α2I)x,
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or (
1− 1

2
µ

)
Ax =

µα

2
(I +

1

α2
A1A2)x. (14)

Direct computation reveals that

Hα := I +
1

α2
A1A2 =

I 0 − 1
α2B

TCT

0 I 0
0 0 I

 ,

which is obviously nonsingular. Since both matrices A and Hα are nonsingular we
deduce that µ 6= 0 and µ 6= 2. Therefore, from (14) we have

H−1α Ax =
µα

2− µ
x.

This shows that
θ :=

µα

2− µ
(15)

is an eigenvalue of

H−1α A =

 A BT + 1
α2B

TCTC 0
−B 0 −CT
0 C 0

 = Gα. (16)

From (15) we see that

µ =
2θ

α+ θ
,

and as a result

λ = 1− µ = 1− 2θ

α+ θ
=
α− θ
α+ θ

.

Now from Lemma 2 we have

|λ| =
∣∣∣∣α− θα+ θ

∣∣∣∣ ≤ 1,

and |λ| = 1 if and only if |θ − α| = |θ + α|, which is itself equivalent to

(<(θ)− α)2 + =(θ)2 = (<(θ) + α)2 + =(θ)2.

The latter equation is equivalent to <(θ) = 0. Therefore, ρ(Tα) = 1 if and only if
Gα has at least one purely imaginary eigenvalue.

Theorem 2. Let A be SPD and matrices B and let C be of full row rank. Then the
spectral radius of the iteration matrix Tα in (9) is strictly less than 1, that is,

ρ(Tα) < 1, ∀α > 0,

which means that the APSS iteration method unconditionally converges to the solu-
tion of (2).
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Proof. According to Lemma 3, all we need is to prove that the matrix Gα defined
in (16) has no purely imaginary eigenvalue. Let (θ,x) be an eigenpair of the matrix
Gα with ‖x‖2 = 1. Clearly, the matrix Gα is nonsingular, therefore θ 6= 0. Letting
x = (u; v; p), it follows from Gαx = θx that

Au+BT (I +
1

α2
CTC)v = θu, (17)

−Bu− CT p = θv, (18)

Cv = θp. (19)

If u = 0, then it follows from BT (I+ 1
α2C

TC)v = 0 that v = 0, since BT is of full
column rank and the matrix I + 1

α2C
TC is SPD. Substituting v = 0 in (19) yields

p = 0. Therefore, x = (u; v; p) = 0, which is impossible since x is an eigenvector.
Therefore, u 6= 0.

If v = 0, then from Eq. (17) we obtain Au = θu. Thus,

θ =
1

‖u‖22
u∗Au > 0,

since u 6= 0 and A is SPD. This means that <(θ) = θ > 0.
If p = 0, then from Eq. (19) we get Cv = 0. Therefore, from eqs. (17) and (18)

we obtain the eigenvalue problem(
A BT

−B 0

)(
u
v

)
= θ

(
u
v

)
. (20)

Eq. (20) shows that θ is an eigenvalue of the saddle matrix

S :=

(
A BT

−B 0

)
.

Therefore, since A is SPD and B is of full rank, it follows from [3, Lemma 1.1 (iv)]
that <(θ) > 0.

According to the above results, here we assume that u 6= 0, v 6= 0 and p 6= 0.
From Gαx = θx and ‖x‖2 = 1, we get θ = x∗Gαx. Hence,

<(θ) =
1

2
x∗(Gα + GTα )x =

1

2

(
u∗ v∗ p∗

) 2A 1
α2B

TCTC 0
1
α2C

TCB 0 0
0 0 0

uv
p


= u∗Au+

1

2α2

(
u∗BTCTCv + v∗CTCBu

)
. (21)

On the other hand, from Eq. (17) we deduce

u∗Au+ u∗BT (I +
1

α2
CTC)v = θu∗u, (22)

and, taking the conjugate of both sides, the latter equation gives

u∗Au+ v∗(I +
1

α2
CTC)Bu = θ̄u∗u. (23)
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From eqs. (22) and (23) we get

u∗Au+
1

2
(u∗BT v + v∗Bu) +

1

2α2

(
u∗BTCTCv + v∗CTCBu

)
= <(θ)u∗u. (24)

From eqs. (24) and (21) we obtain

<(θ) +
1

2
(u∗BT v + v∗Bu) = <(θ)u∗u.

Now, by contradiction we assume that <(θ) = 0. In this case, from the above
equation we deduce that

u∗BT v + v∗Bu = 0. (25)

On the other hand, we have

<(θ) = u∗Au+
1

2α2

(
u∗BTCTCv + v∗CTCBu

)
= u∗Au+

1

2α2

(
θu∗BTCT p+ θ̄p∗CBu

)
(from Eq. (19))

= u∗Au+
1

2α2

(
θu∗BT (−Bu− θv) + θ̄(−Bu− θv)∗Bu

)
(from Eq. (18))

= u∗Au− 1

2α2

(
2<(θ)‖Bu‖22 + θ2u∗BT v + θ̄2v∗Bu

)
.

Now, if <(θ) = 0, then θ = iξ, where ξ 6= 0. Therefore, from the above equation we
see that

0 = u∗Au+
ξ2

2α2

(
u∗BT v + v∗Bu

)
= u∗Au, (from Eq. (25)),

which is a contraction since u 6= 0 and A is SPD. Therefore, the proof is completed.

5. APSS preconditioner and its implementation issues

In the previous section we have proved that under the conditions of Theorem 2 we
have ρ(Tα) < 1. Therefore, the eigenvalues of Tα are included in a circle centered at
the origin with radius 1. On the other hand, from (10) we have

P−1α A = I − Tα.

Hence, the eigenvalues of P−1α A are contained in a circle centered at (1, 0) with
radius 1. Therefore, Pα can be used as a preconditioner for the system Ax = b.
Since the pre-factor 1/(2α) in the matrix Pα has no effect on the preconditioned
system, we drop it. Hence, the matrix

Mα = (αI +A1)(αI +A2)
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can be used to accelerate the convergence of the Krylov subspace methods like
GMRES or its restarted version to solve the system Ax = b. In each iteration of
the GMRES method a linear system of the equations of the form Mαv = r should
be solved. This can be done in two steps. In the first step, the system

(αI +A1)w = r

is solved for w and then the system

(αI +A2)v = w

for v. These systems can be solved using algorithms 1 and 2.

Remark 1. According to part (i) of Lemma 2, if the matrix A is symmetric positive
semidefinite and the matrices B and C are of full row rank with N (A)∩N (B) = {0},
then the matrix A is nonsingular. In this case, the proposed iteration method is still
well-defined; however, convergence of the method is not guaranteed. Nevertheless,
from Lemma 2 we have ρ(Tα) ≤ 1 and the GMRES method can be applied to the
corresponding preconditioned system. On the other hand, using the idea of [3], one
may state a convergent iteration method using the extrapolation technique.

6. Numerical experiments

We present some numerical results to show the efficiency of the proposed precondi-
tioner. We present three examples and in all examples we first apply a symmetric
diagonal scaling for the matrix A. To do so, we replace the coefficient matrix A by
the matrix D− 1

2AD− 1
2 , where D = diag(‖A1‖2, . . . , ‖An‖2), in which Aj is the jth

column of the matrix A. The right-hand side vector of the system is set to b = Ae,
where e is a vector of all ones. We use the flexible version of the GMRES(50) [20, 21],
FGMRES(50), for solving the systems. The iteration is started from a zero vector
and terminated as soon as the residual 2-norm is reduced by a factor of 10−6. The
maximum number of iterations is set to be 20 000.

For the APSS preconditioner we use the implementation method presented in
Section 5. The subsystems are solved using the conjugate gradient (CG) method.
The CG method is started from a zero vector and the iteration is stopped as soon
as the residual 2-norm is reduced by a factor of 103. The maximum number of
CG iterations is set to be 200. We compare the numerical results of the APSS
preconditioner with those of the preconditioners PD and P2 defined in eqs. (3) and
(4), respectively. In the implementation of the preconditioners PD and P2 in the
FGMRES(50) method three systems with the coefficient matrices A, S = BA−1B
and M = CS−1CT should be solved, which are symmetric positive definite. The
system with the coefficient matrix A can be solved using the CG method; however,
there is no obvious implementation method to solve inexactly the systems with the
coefficient matrices S and CS−1CT . Hence, using the idea of [14], we set

Â = LLT ,
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where L is computed using the incomplete Cholesky factorization with dropping
tolerance 10−8. To do so, we use the Matlab command:

L=ichol(A, struct(’type’,’ict’,’droptol’,1e-8)).

We also set
Ŝ = diag(BÂ−1BT ).

Now, instead of using the preconditioners PD and P2, we use

P̂D =

Â 0 0

0 Ŝ 0

0 0 CŜ−1CT

 , P̂2 =

Â 0 0

B −Ŝ CT

0 0 CŜ−1CT

 ,

respectively. In the implementation of these preconditioners the matrix CŜ−1CT is
formed explicitly and the corresponding system is solved using the Cholesky factor-
ization. All runs are implemented in Matlab R2017, equipped with a laptop with
1.80 GHz central processing unit (Intel(R) Core(TM) i7-4500), 6 GB memory and
Windows 7 operating system.

Numerical results are presented in the tables. In the tables, “Iters” stands for
the number of iterations for the convergence. The elapsed CPU time (in seconds) is
denoted by “Time”. The value of Rk defined by

Rk =
‖b−Ax(k)‖2
‖b‖2

is also reported, where x(k) is the computed solution at iteration k. In the tables,
nnz stands for the number of nonzero entries of the matrix. A dagger (†) shows that
the method has not converged in the maximum number of iterations. Also, § shows
that the preconditioner has not been computed in 500 seconds. Finally, “NA” (for
not applicable) means that the coefficient matrix does not satisfy the assumptions
of Theorem 2. We now present the examples.

Example 1. We consider problem (2) with (see [14, 23])

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2 ,

B = (I ⊗ F, F ⊗ I) ∈ Rp
2×2p2 and C = E ⊗ F ∈ Rp

2×p2 ,

where

T =
1

h2
tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
tridiag(0, 1,−1) ∈ Rp×p,

and E = diag
(
1, p+ 1, . . . , p2 − p+ 1

)
in which ⊗ denotes the Kronecker product

and h = 1/(p+ 1) the discretization meshsize. We present the numerical results for
p = 16, 32, 64, 128, and 256. We may use the idea of [7] to estimate the optimal
value of the parameter α. However, for the APSS preconditioner the value of α is
set to be 0.005 for all dimensions in this example. We have experimentally found
that this choice often gives quite suitable results for this problem. It is necessary to
mention that α = 0.005 is not the optimal value of the parameter. Numerical results
are presented in Table 1.
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p,n, nnz No Prec. Mα P̂D P̂2

p = 16 Iters 425 15 29 22
n = 1024 Time 4.02 0.04 0.04 0.04
nnz = 5408 Rk 8.6e-7 3.1e-7 5.9e-7 8.8e-7
p = 32 Iters 949 13 32 25
n = 4096 Time 83.43 0.09 0.32 0.25
nnz = 22080 Rk 9.9e-7 5.3e-7 6.9e-7 7.5e-7
p = 64 Iters † 13 34 28
n = 16384 Time - 0.47 8.69 5.99
nnz = 89216 Rk - 9.1e-7 7.3e-7 5.7e-7
p = 128 Iters † 22 68 69
n = 65536 Time - 3.10 174.16 175.89
nnz = 358656 Rk - 6.4e-7 4.8e-7 5.6e-7
p = 256 Iters † 51 § §
n = 262144 Time - 37.47 - -
nnz = 1438208 Rk - 6.6e-7 - -

Table 1: Numerical results for FGMRES(50) to solve Example 1
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Figure 1: Eigenvalue distribution A , M−1
α A, P̂−1

D A and P̂−1
2 A with p = 8 for Example 1

Numerical results show that the three preconditioners significantly reduce the number
of iterations and the CPU time of FGMRES(50). However, the APSS preconditioner
outperforms the others from both the number of iterations and the CPU time point
of view. The main problem with the preconditioners P̂D and P̂2 is their need for a
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large amount of CPU time to set up.
Fig. 1 displays the eigenvalues of matrices A , M−1α A, P̂−1D A and P̂−12 A for

p = 8. In this case, the matrix A is of dimension n = 256. It is seen that the
eigenvalues of M−1α A are clustered in a circle centered at (1, 0) with radius 1. An-
other observation which can be posed here is that the eigenvalues ofM−1α A are more
clustered around the point (1, 0) than the others.

Example 2. We consider the three-by-three block saddle point problem (2), where
(see [14, 23])

A = diag
(
2WTW +D1, D2, D3

)
∈ Rn×n,

is a block-diagonal matrix,

B = [E,−I2p̃, I2p̃] ∈ Rm×n and C = ET ∈ Rl×m,

are both full row-rank matrices, where p̃ = p2, p̂ = p(p+ 1); W = (wij) ∈ Rp̂×p̂ with

wij = e−2((i/3)
2+(j/3)2); D1 = Ip̂ is an identity matrix; Di = diag(d

(i)
j ) ∈ R2p̃×2p̃,

i = 2, 3, are diagonal matrices, with

d
(2)
j =

{
1, for 1 ≤ j ≤ p̃,
10−5(j − p̃)2, for p̃+ 1 ≤ j ≤ 2p̃,

d
(3)
j = 10−5(j + p̃)2 for 1 ≤ j ≤ 2p̃,

and

E =

(
Ê ⊗ Ip
Ip ⊗ Ê

)
, Ê =


2 −1

2 −1
. . .

. . .

2 −1

 ∈ Rp×(p+1).

The numerical results are listed in Table 2 for different values of p (p = 16, 32, 64, 128,
256). In the APSS preconditioner, the value of α is set to be 0.4 for all dimensions.
We have experimentally found that this value often gives good results for this prob-
lem.

As the numerical results show, the APSS preconditioner improves significantly
the number of the iterations and the CPU time of the GMRES method. As we see,
the preconditioner P̂D improves neither the number of iterations nor the CPU time
of the GMRES for all sizes, except for p = 16. On the other hand, P̂2 improves
slightly the number of iterations; however, this is not the case for the CPU time.
Therefore, the APSS preconditioner is superior to the others from both the number
of iterations and the CPU time point of view.

Fig. 2 shows the eigenvalues of matrices A ,M−1α A, P̂−1D A and P̂−12 A for p = 8.
In this case, the matrix A is of dimension n = 256. It is seen that the eigenvalues
of M−1α A are clustered in a circle centered at (1, 0) with radius 1. We also see that
the eigenvalues of M−1α A are more clustered around the point (1, 0) than the others.
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p,n, nnz No Prec. Mα PD P2

p = 16 Iters 150 31 96 70
n = 2080 Time 0.08 0.04 0.07 0.06
nnz = 9972 Rk 9.4e-7 8.8e-7 1.0e-6 9.8e-7
p = 32 Iters 176 32 222 158
n = 4096 Time 0.36 0.14 0.58 0.47
nnz = 22080 Rk 1.0e-6 8.0e-7 9.3e-7 9.9e-7
p = 64 Iters 213 31 275 186
n = 16384 Time 1.53 0.42 3.16 2.59
nnz = 89216 Rk 9.8e-7 9.9e-7 1.0e-6 9.8e-7
p = 128 Iters 204 30 263 178
n = 65536 Time 7.59 1.67 26.22 21.94
nnz = 358656 Rk 9.7e-7 8.4e-7 9.9e-7 9.8e-7
p = 256 Iters 195 29 248 167
n = 262144 Time 32.01 8.41 853.62 832.01
nnz = 1438208 Rk 9.6e-7 7.5e-7 9.7e-7 9.6e-7

Table 2: Numerical results of FGMRES(50) to solve Example 2
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Figure 2: Eigenvalue distribution A , M−1
α A, P̂−1

D A and P̂−1
2 A with p = 8 for Example 2
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Example 3. In this example, we consider a quadratic program [12, 14]

min
x∈Rn,y∈Rl

1

2
xTAx+ rTx+ qT y (26)

s.t. : Bx+ CT y = b,

where r ∈ Rn and q ∈ Rl. To solve the above problem we define the Lagrange
function

L(x, y, λ) =
1

2
xTAx+ rTx+ qT y + λT (Bx+ CT y − b),

where the vector λ ∈ Rm is the Lagrange multiplier. Then the Karush-Kuhn-Tucker
necessary conditions of (26) are as follows (see [6]):

∇xL(x, y, λ) = 0, ∇yL(x, y, λ) = 0 and ∇λL(x, y, λ) = 0.

It is easy to see that these equations give a system of linear equations of the form (1).
In this example, we have chosen the matrices A, B and C from the CUTEr collection
[11]. Numerical results along with the generic properties of the test matrices are
presented in Table 3. For the test matrices MOSARQP1 and STCQP2, the matrix
C is not full rank. Hence, the matrix CŜ−1CT is symmetric positive semidefinite,
which shows that the preconditioners PD and P2 are singular. Therefore, they can
not be used for preconditioning the system. Similarly, for the test matrices UBH1,
AUG2D, CONT201 and CONT300, the matrix A is symmetric positive semidefinte.
Hence the matrix S as well as the matrices PD and P2 can not be formed. For all
test matrices in this example, the parameter α is the optimal one (the one with a
minimum number of iterations) which has been found experimentally.

The numerical results presented in Table 3 show that the APSS preconditioner
is very effective in reducing both the CPU time and the number of iterations for the
convergence. Moreover, for the matrices YAO and liswet12 we see that the APSS
preconditioner outperforms the two other preconditioners. It is necessary to mention
that, although in some cases the matrices A and C are not of full rank, the APSS
preconditioner works well.
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Matrix, n, nnz No Prec. Mα PD P2

YAO α - 0.5 - -
n = 6004 Iters 85 24 41 33
nnz = 18006 Time 0.17 0.07 0.08 0.07

Rk 7.7e-7 8.6e-7 7.6e-7 8.2e-7
MOSARQP1 α - 0.05 - -
n = 5700 Iters 115 6 NA NA
nnz = 14434 Time 0.32 0.03 - -

Rk 8.9e-7 5.2e-7 - -
STCQP2 α - 0.25 - -
n = 10246 Iters 316 45 NA NA
nnz = 83979 Time 1.30 0.48 - -

Rk 9.9e-7 7.1e-7 - -
liswet12 α - 0.5 - -
n = 30004 Iters 77 21 38 29
nnz = 90006 Time 0.82 0.22 1.28 1.04

Rk 9.9e-7 9.0e-7 9.1e-7 7.4e-7
UBH1 α - 0.095 - -
n = 48018 Iters 15969 1582 NA NA
nnz = 138021 Time 261.32 66.78 - -

Rk 1.0e-7 1.0e-6 - -
AUG2D α - 0.5 - -
n = 50400 Iters 77 25 NA NA
nnz = 140200 Time 1.03 0.43 - -

Rk 9.6e-7 8.3e-7 - -
CONT201 α - 0.25 - -
n = 120992 Iters 183 26 NA NA
nnz = 489592 Time 6.30 1.95 - -

Rk 9.4e-7 9.5e-7 - -
CONT300 α - 0.25 - -
n = 271492 Iters 143 19 NA NA
nnz = 1101892 Time 1542 3.22 - -

Rk 9.6e-7 7.7e-7 - -

Table 3: Numerical results for GMRES to solve Example 3

7. Conclusions

We have applied the APSS iteration method for solving three-by-three block saddle
point problems. Convergence of the method has been proved. The induced precon-
ditioner has been used to accelerate the convergence of the FGMRES method for
solving the system. Numerical results showed that the proposed preconditioner is
very effective. Moreover, we have seen that it outperforms two recently proposed
preconditioners.
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