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Abstract. Since the 1920s until today it was assumed that rotors in
Enigma cipher machines do not have a particular weakness or structure. A
curious situation compared to hundreds of papers about S-boxes and weak
setup in block ciphers. In this paper we reflect on what is normal and what
is not normal for a cipher machine rotor, with a reference point being a
truly random permutation. Our research shows that most original wartime
Enigma rotors ever made are not at all random permutations and conceal
strong differential properties invariant by rotor rotation. We also exhibit
linear/algebraic properties pertaining to the ring of integers modulo 26.
Some rotors are imitating a certain construction of a perfect quasigroup
which however only works when N is odd. Most other rotors are simply
trying to approximate the ideal situation. To the best of our knowledge
these facts are new and were not studied before 2020.

1. Introduction

In modern cryptography we study block ciphers such as DES or AES,
and we have almost forgotten about how cryptography has developed before,
during and after the World War 2. There are essentially two major periods
in encryption. We have rotor machines in 1920s-1960s and the development
of code breaking machines and methods to cryptanalyse ciphers with ever
increasing complexity. Then we have block ciphers in 1970s-now and the de-
velopment of academic crypto research. In our work we emphasise the strong
connections between these two worlds: rotor machines and block ciphers are
not completely different worlds and they produce similar sorts of key depen-
dent permutations with several layers of encryption. When the AES cipher
was standardized in 2000, many researchers studied the AES S-box, which
is a peculiar permutation with a very strong algebraic structure, and many
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unusual properties, cf. [11,15]. Previously for DES, researchers studied linear
differential and more general attacks carefully [16, 22, 23]. However for many
other ciphers, in particular old ciphers, similar questions were never studied
until now. Rotors are just considered to be some permutations, presumably
random permutations. In fact as it seems no one suspected that these permu-
tation building blocks would have any unusual properties whatsoever. Our
research shows that they have very strong properties.

This paper is organised as follows. In Section 2 we review the history
and main significant weak points of Enigma cipher machines. In Sections
2.5 and 2.7 we will briefly summarize the new properties which we study in
this paper. In Section 3 we study the Enigma rotors and how the secret key
acts on the rotors. In Section 4 we look at the question of how a table of
permuted alphabets for one rotor can be weak or special in general, and we
study one particularly weak rotor from 1930. In Section 5 we present our
general possibility and impossibility result for any N . In Section 6 we study
differential properties of Enigma rotors which are very special for almost all
real-life rotors. In Section 7 we look at the probability that what we observe
would happen for a random permutation. Then we have a conclusion.

2. Encryption with military Enigma machines

Military Enigma cipher machine was used primarily by Germany, in 1930-
1960s. It is a complex cipher machine which generates a different permutation
for each consecutive character of the plaintext. It should not be confused with
the so called commercial Enigma which was sold on open market since approx.
1925 and was substantially less secure.

The main difference between the two machines is the presence of stecker,
or a plugboard, which adds an excessively complex permutation which was
an involution swapping some 6 to 10 letters, not all, and which was changed
every day. The number of possible settings for the stecker varied in different
historical periods but was always vastly superior than the number of distinct
setting for the rotors. It was 247 typically with 10 pairs being swapped.
Military Enigma was essentially the most secure Enigma machine in wide
deployment in 1930s and until 1945 and the stecker was the most complex
component of it.

2.1. On security of commercial Enigma. The commercial Enigma was very
weak and it was broken in 1920s by the so called “rodding” attack which con-
sists of guessing the position of the fast rotor given some probable plaintext,
it allows simply to “peel off” the external layer of encryption. Then the at-
tacker can confirm if we obtain consistent pairs which belong to a permutation
which is also going to be an involution. Examples of how this works can be
found in [9, 18]. With high probability the slower rotors are not moving at
all, otherwise the attack will not work correctly.
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Figure 1. A commercial Enigma without a stecker and rod-
ding attacks

Officially this attack is attributed to Dilly Knox, who has become the
chief cryptographer at Bletchley Park when the WW2 started. In fact this
attack is substantially older. According to Mavies Batey [4] who worked
on this under direction of Dilly, “everybody who tried cryptanalysis of the
commercial Enigma machine arrived at the rod solution”. This was known in
France and probably in the US by Friedman and Driscoll. It actually had a
French name: Les Bâtons. Since 1935 French and British intelligence services
had collaborated on monitoring and decryption of Italian Enigma traffic in the
Spanish Civil War. Another name for this attack is the Method of Isomorphs
and it was made public in 1946 by Rosario Candela, cf. page 281 in [5]. In
contrast, the attack was not known to Rejewski in Poland in 1939, cf. [37,38].
We are also told that this attack was known in Germany. According to page
281 in [5] knowing this attack was the MAIN reason for the introduction as
early as in the late 1920s, of the stecker in military Enigma machines.

2.2. On weakness of Enigma machines. In this paper when we talk about
Enigma or a weakness of Enigma, we always mean the military Enigma WITH
a stecker.

Enigma had several very important structural weak points which made
cryptanalysis easier than expected. The most famous ones are:

1. Every permutation they produce is an involution.
2. A letter cannot be encrypted to itself.

These weak points are discussed every day if you visit a museum such as in
Bletchley Park, Buckinghamshire, United Kingdom. However Enigma has
other important points of tremendous weakness, which are less frequently
mentioned. For example, we have:

3. The stecker (plugboard) is an involution.
4. The stecker (plugboard) is semi-transparent, and with probability at

least 6/26 the output is equal to the input.
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5. The stecker (plugboard) is situated in the last (outside) layer of en-
cryption, it is connected directly to ciphertext and the plaintext letters.

The property 3. was essential in the design of the so called diagonal board,
which was an enhancement invented by Gordon Welchman and added to the
bombe code breaking machines initially developed by Turing [41]. The prop-
erty 4. was sometimes exploited just before WW2 started and is somewhat
essential in the working principle of the so called Polish bombe, which was de-
veloped in 1938-1939, [37,38]. However later it was not exploited a lot until...
1995 when modern ciphertext-only attacks on Enigma were first developed
[29]. This was apparently never done before 1995, wartime code breaking
relied initially on the initialisation procedures until May 1940, [37]. Then
with Turing-Welchman bombes cf. [9] relied on cribs, i.e. highly probable
plaintexts making it a Known Plaintext Attack.

In addition, there is another well-known weakness of wartime Enigma,
which is rarely discussed as it is usually silently assumed and taken for granted:

6. Enigma rotors move in an odometer-like simple way (a.k.a. cyclometric
method) where fast rotor moves all the time, and other rotors almost
never move.

It turns out that this property is rather completely accidental, and we
are very lucky it is this way, and we are wrong never to discuss it because
it could have been otherwise. According to various sources combined at
cryptomuseum.com and [5] German Reichsmarine started experimenting with
Enigma C around 1925 and these machines did not have a stecker. Then it
seems that Germany decided to make these machines more complex and more
secure. In the Reichswehr another model, Enigma G, was introduced in July
1928 by Major Rudolf Schmidt. It had a relatively complex rotor movement
for that time (with multiple rotor turn-overs) but it did not have a stecker. It
is an incredible accident, that later in 1930 the German army introduced an-
other different Enigma machine, with simpler odometer-like rotor movement
(a.k.a. cyclometric method), and with a stecker.

Figure 2. A military Enigma with a stecker.
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The development of this exact version is attributed to a German crypto
engineer and serial inventor Willi Korn from Berlin, cf. page 114 in [5]. This
machine was later adopted by all German armed forces [5]. As a result,
machines with complex rotor movements were far less popular until 1945,
with exceptions such as with the Abwehr Enigma and Japanese Enigma T
known as Tirpitz.

In addition there is a major asymmetry here:
7. The fast rotor is situated in outer layers of encryption, i.e. closer to

ciphertext and closer to the plaintext (but deeper than the stecker).
This again could be otherwise, this property was probably inherited from

commercial Enigmas from 1920s and never changed, except that the stecker
now became the outer layer (see however weakness 3. and 4. above). For
example, the British TypeX cipher machines do exactly the opposite.

2.3. Comparison to block ciphers. This property also makes that Enigma is
very much like a block cipher with a small block size. For sure the permuta-
tion is different for each encrypted character. However, as the change occurs
in outer layers of encryption, which are largely those accessible to the at-
tacker through partial guesses, or his knowledge (or choice) of plaintext and
ciphertext, this remains a mild complication. Potentially the attacker can
tolerate this. As it turns out the majority of attacks on block ciphers such
as linear and differential cryptanalysis and many other do already work by
guessing some parts of the key embedded in these outer layers of encryptions
while in both block ciphers and Enigma, the key inside the inner permutation
which is the hard part for the attacker, does not change. If the attacker in
a block cipher context is actually able to partially predict or what the outer
layers is doing, it does not really matter if technically these outer layers are
constant or not in every encryption.

In all cases, with Enigma and block ciphers alike, the attacker can be seen
as seeking to gain some statistical advantage to distinguish one SINGLE fixed
inner permutation which does not change, from a random permutation. Or
he can directly try to determine or confirm the key inside.

2.4. Cryptanalysis and long term key question. This paper is not about crypt-
analysis though everything we do is motivated by cryptanalysis. It is rather
about reverse engineering, which would still be called code breaking or just
cryptanalysis in 1930s. This is also sometimes known as the Long-Term Key
question, Langzeitschlüssel in German, which means a long-term key [17]. In
1932-33 Rejewski has recovered the 3 rotors of Enigma by solving a system
of simultaneous non-commutative equations involving 3 unknown permuta-
tions [38]. There are 26! ≈ 288 possible wirings for one rotor therefore this
is harder than any other part of Enigma cryptanalysis. The daily key of
Enigma is simply substantially shorter. Recovering these rotors was much
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later called by David Kahn “the greatest breakthrough in cryptanalysis in a
thousand years”. In [32] he wrote: “only mathematics could make it possible”.
Later in Britain this was never done except incrementally, to recover one new
rotor at a time.

Alan Turing has also studied the question of recovering the rotors of
Enigma. It is covered in [40] starting from page 16. Alan Turing uses the so
called “boxes” which are a method of encoding the cyclical structure when
composing two involutions without cycles. On page 17, Turing says that both
involutions can be recovered from this. In fact it is a well-known and earlier
theorem of Rejewski, cf. Section 13.8 in [10], Section 3 in [37], and pages 9-10
in [35]. Turing also writes on page 18 that this does not work for a product of
3 involutions, which shows that Turing took these questions very seriously and
tried to look beyond what was already known. He would be very surprised to
hear that this type of questions can and need to be asked again from scratch,
because most Enigma rotors are very special.

2.5. A new type of weakness. Another tremendous weakness of Enigma cipher
machines have remained unknown to the public until 2020, cf. [8] and this
paper.

8. The great majority of rotors and their wirings used in real-life Enigma
applications are NOT chosen at random and have extremely strong
properties in terms of differential properties, linear properties, and in
general approximations mixing both group operations + and × in the
ring of integers modulo 26.

In this article we do take reverse engineering to a new level. Instead
of just saying what the secret permutations are, which is sufficient for the
purpose of routine code-breaking, like recovery the short term (daily) secret
keys, we look at HOW these permutations were created in the first place.
We are going to discover that these permutations have some, more or less
hidden, quite unusual properties. These questions were not studied before
2020, because no one thought such things could actually happen. We naively
assumed that rotors in Enigma cipher machines are random permutations.

2.6. Historical background. The story goes back to Hebern, a US inventor and
businessman, who has in 1920s filed a series of patent on rotor machines with
increasing complexity. Many initial designs of Hebern are quite simplistic and
did not have large complexity or a large period. This changes in 1929: the
ultimate design of Hebern was US Patent 1683072A of 1929 with five moving
rotors. Compared to Enigma in Hebern cipher machines, the current was
flowing just once and in one direction through the rotors (so it did not share
the weakness 1. and 2. of Enigma!). Inside this patent, Hebern makes numer-
ous claims about randomness and security of his machine. Then he explicitly
proposes that “each code wheel is wired at random and differently”. For an
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unknown reason, this is not quite what actually happened later when cipher
machines achieved wider adoption. It comes as a shock, but almost no Enigma
rotors ever used in real-life wartime encryption were random permutations.
On the contrary.

2.7. Strong linear and differential properties. Something unusual happens
with most real-life Enigma components ever made.
Example of a Linear Property. We consider rotor RIII from 1930 and we
assume that output letter is odd y =B,D,F,H,.., and rotor position i is even,
then:

y = ρ−i(RIII(ρi(x))) = i+ 2x+ 1 with Pr = 10
13 .

Example of a Differential Property. We consider invariant differential
properties of type k → k. Can input difference be equal to the output differ-
ence for any k ∈ 0 . . . 25? With rotor V in Zagreb Enigma 16081 from 1943
it turns out that only k = 9 can happen. This contrasts very strongly with
what we observe for a random permutation: most values of k will be possible.
Probability. For each of rotors we study, the probability of what we see
happening by accident is as small as winning in a lottery cf. Section 7 and
Table 2.
Prevalence. All this is true for each single rotor already. Moreover this
happens more or less for all rotors ever made, or for almost all rotors, and
rotors from the same source behave in the same way, cf. our later Table 3.

2.8. A short explanation. We can in fact provide a plausible explanation why
we observe these extremely strong properties. The explanation is the same for
both linear and differential properties. It turns out that cipher designers were
influenced by hundreds of years where cryptography have developed slowly,
but already noticed that some ciphers are weaker than other, cf. de Viaris
Attack in Section 14 in [5] later studied and improved by Friedman. Here the
ideal properties require something which was called latin squares since Euler,
and in fact older, see Section 4.1. Therefore cryptologists should in principle
design a rotor such that this table is a latin square. This property is in fact
very hard to achieve, see an imperfect latin square by Mauborgne in Table 3
page 137 in [5]. This is actually the same as the notion of a quasigroup in
modern abstract algebra.

In addition, there are some simple prescriptive ways of making sure that
a rotor gives a latin square, using simple modular arithmetic see our later
Thm. 5.1. Even though these do not work for N = 26 as we will see later,
these methods have apparently been used to obtain an imperfect solution.

2.9. Implications for security of encryption with Enigma. In general the de-
signers of Enigma machine did not do a good job. All these properties do
NOT necessarily make ciphers stronger. Our properties are such that they
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are invariant w.r.t. the rotor rotation. As such they partially work the same
way for any key, thus potentially making attacks on Enigma easier, and also
making reverse engineering attacks easier (we can hypothesise a lot about an
unknown rotor). We do not claim that our observations do not necessarily
lead to many new attacks or it is too early to make such claims.

Rather, they can be used to improve almost any already known attack on
Enigma, at least slightly, this including reverse engineering attack by Rejewski
mentioned above, the Turing-Welchman bombe attack, and many others. We
need to revisit almost all cryptanalysis research since 1930s, knowing that in
addition rotors have extra unexpected properties. If rotors are not random
permutations, their combinations are potentially also distinguishable from
random permutations. This leads to at least small improvements in some
known attacks such as faster variants of Welchman-Turing attack.

What is even more surprising is that permutations inside ciphers have
deep structural properties involving differences and both operations in the
ring Z26. This is very much like in modern cryptanalysis of block ciphers
where algebraic modelling is extremely common. In Enigma nobody have
noticed these undeniable facts for more than 80 years.
Example of Attack 1. We can design many statistical attacks combining
Friedman’s Index of Coincidence with our biases.
Example of Attack 2. Another way is to speed up the best WW2 Turing-
Welchman attack by simulating a 2 rotor Enigma combined with reflector
CHEAPER with less entropy to guess. For example we get 15/26 with either
i+2x+1 or −3i−2x+13−1 which cases are disjoint. A further optimization
would be to see that it can be profitable to discard some ciphertext letters
where approximations don’t work, and rather break another message with the
same stecker. If we implement Rotor III rotated by i steps by y = i+ 2x+ b
with a variable b, then the entropy of b is only 2.9� 4.7, hence faster guessing
step in known attacks.

3. On rotor permutations

Our conventions and notation are consistent with all major Enigma
simulators such as https://cryptii.com/pipes/enigma-machine and with
100 % of modern works on Enigma, cf. cryptomuseum.com, various wikipedia
pages, [28], etc. We recall the Enigma the fast rotor is on the right side and it
rotates anti-clockwise when we look from the right side. When we press a key
on a keyboard, it rotates by one position anti-clockwise, and only then the
first ciphertext letter is produced. This means that if an Enigma simulator
shows AAZ in the window, and if the hidden ringstellung setting is a neutral
position which is AAA, then the actual position of rotors which will be used
to encrypt the first character will be AAA. We recommend our set of student
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exercises about Enigma which are fully compliant with Enigma simulator and
also show how major attacks on Enigma [9] work.

We order the letters in alphabetic order. This is however very different
than what we find in old work of Turing, cf. page 6 of [40] where letters are
ordered starting from Q to Z etc following the ordering on a German keyboard.
Here is how the Enigma rotor is typically described in modern sources. For
example the third rotor RIII will be described by:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
BDFHJLCPRTXVZNYEIWGAKMUSQO

3.1. Enigma vs. block ciphers. We recall that we aim at developing a unified
theory of block ciphers and Enigma alike, and that due to the weak points
6.) and 7.) above, the differences are not as large as it seems. In contrast,
there are huge differences in how the (short term) secret key is applied. In
block ciphers the algebraic structure on which cryptographers work is relative
to the vector space structure of Fn2 and in most ciphers the key is XORed
to some internal value. Thus the key will transform one affine space into
another. This situation makes that differential cryptanalysis will essentially
ignore the key and this is one of the root causes why differential cryptanalysis
is so important and popular in crypto research. There are however cases
where the propagation probability for one differential depend on the key, for
example in DES, for some differentials the differential propagation probability
is a constant such as 1/256 for 2 rounds and for any key, and sometimes will
take two different values such as say 1/146 or 1/585 depending on the key,
see [23].

3.2. Notation and permuted rotor alphabets. We will use the symbol ◦, which
we apply from right to left, to denote a composition of functions. Let ρ be
the +1 translation modulo 26. Then ρi is the same as +i modulo 26 and
corresponds to rotating the rotor physically inside the cipher machine. In
rotor machines the key is applied by rotation of the rotor, which corresponds
to +1 mod 26 without a multi-dimensional vector space structure. Then the
rotation is applied back at the exit.

Overall the permutation we obtain for a rotor permutation R at position
i is defined as:

ρ−i ◦R ◦ ρi.
We can also write

ρ−i ◦R ◦ ρi(x)
where again the rightmost function ρi is the one which is applied first to x.

Remarks. Contrary to block ciphers, in Enigma machines the secret key
is in fact applied twice from our point of view or with our notations. This
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particular method of conjugation ρi implies that invariant differentials of type
k → k will play an important role in Enigma, as we will see later in Section 6.

3.3. On permutation cycle structure. Our rotor which rotates operates a con-
jugated permutation transformation. A conjugation preserves the cycle struc-
ture of the initial permutation. This basic theorem formulated and used by
Rejewski had played an important role in early WW2 cryptanalysis [30]. In
particular it was used in the so called Netz attack with perforated sheets,
invented by Zygalski and implemented at Bletchley Park in 1939-1940, which
was the main and only method of decrypting Germany Army Enigma used
until May 1940 [37, 38]. This moment corresponds to the invasion of France,
when Germany have upgraded their cipher initialisation methods.

For example we consider rotor RIII introduced in Germany around 1930.
It is easy to see that RIII has the following cycle lengths with multiplicity:
{1: 1, 8: 1, 17: 1}
A=>B=>D=>H=>P=>E=>J=>T=>A
C=>F=>L=>V=>M=>Z=>O=>Y=>Q=>I=>R=>W=>U=>K=>X=>S=>G=>C
N=>N
Does it look normal? Various statistics on random permutations are studied in
block cipher cryptanalysis using generating series cf. [3,27] and some specific
statistics will be needed later in this paper. For example in [39] we learn a
basic and well-known result that:

Theorem 3.1 (Cycle Structure). A random permutation of length at least
m contains on average 1/m cycles of length m, then 0 for larger sizes. The
expected number of cycles of length at most m is about ln(m).

We see that having one fixed point seems perfectly normal, we expect 1
fixed point on average. Then, given that ln(17) = 2.8, and we have 3 cycles
of length up to 17, we do not think that Rotor III has an abnormal cycle
structure. We have not yet found any abnormalities when looking at cycle
structure for this Enigma rotor. However what is interesting is that in this
paper we study many other properties which are also invariant by the rotation
of the rotor.

4. What is wrong with German Army Rotor III

A classical approach to encryption in the first half the 20th century, was
to study multiple “permuted alphabets” jointly cf. Section 7.1. in [5] and
[26]. We make a table 26×26 of how the same rotor III will encrypt the same
letter of plaintext say A (first column) for different keys (in different lines).
This is shown in Figure 3.

Interestingly, there are some collisions if you do so. For example K appears
3 times in the first column. The situation as it turns out is that we always get
collisions and never obtain a perfect latin square. For all known rotors, this
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Figure 3. Table of permuted Alphabets for German Army
rotor III.

was already observed in pp. 138–139 in [5]. Here below we will show what
happen in general for any rotor of any size.

4.1. On Latin squares. The ideal situation would be of course that letters do
not repeat, a property known as a latin square, or a quasigroup in mathemat-
ics. In post-war French cryptography this was known as “alphabets réellement
non-parallèles”, cf. [26]. According to [5], latin squares were studied in cryp-
tography since the 18th century. They play a certain role in optimizing the
diffusion P-box in DES, cf. page 58 in [6]. Latin squares are fun and have
been a popular recreational mathematics topic ever since Euler. Moreover,
the study or latin squares predates Euler, in the form of recreational puzzles
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with cards, for example a 4×4 pair of orthogonal latin squares was published
by Jacques Ozanam in 1725. This is not yet the latest reference we found.
In fact, a Korean mathematician Seok-Jeong Choi published in year 1700 a
work known as Gusuryak where he studied magic squares and presents an
orthogonal Latin square of order 9, see [36].

Returning to our Figure 3 we see that we study a special problem: alpha-
bets in each line cannot be arbitrary like in the Mauborgne square page 137 in
[5]. They must all be derived from one single rotor by changing the position of
this rotor. In this article we show that it is NOT possible to find a permuta-
tion of 26 characters, such that we obtain a latin square (or in mathematical
terms, a quasigroup). In other terms collisions are guaranteed to occur each
time when the number of contacts is even. We will also show that the number
of collisions will be the same in each column, cf. Thm. 4.2 below. In contrast,
the problem is perfectly solvable when N is odd, where N is the number of
contacts. This is shown in our key Thm. 5.1 in Section 5.2. Collisions are
however inevitable for an even N and we never obtain a perfect latin square.
In later Thm. 6.3 page 69 we will also see that this implies vulnerability to
invariant differentials.

4.2. The question of contact ordering and hidden permutations. We recall our
table of permuted alphabets and zoom at the left upper corner. We see a lot
of consecutive letters. A strange order reigns in our table for old wartime
Rotor III, in particular if we look at the first two lines and only at the first
13 inputs:

Figure 4. A highly regular pattern observed in various po-
sitions i = 0, 1, 2, 3 with old wartime Rotor III from 1930,
cf. [8]

This brings a question of ordering contacts in different ways. When Tur-
ing studied Enigma rotors during WW2 and similar tables found inside his
book [40], he would order columns in order QWERTZ etc.. If we do this, we
would probably not notice at all that there is something wrong here. It is
important to see that in pre-war Britain, the specification of Military Enigma
was not known, and in particular the initial permutation, literally, in which
order the keyboard was connected to the first rotor. The number of possi-
bilities is of course enormous, again 26! ≈ 288. Following [4], Denniston and
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Batey has recalled that a certain “Mrs. BB”, presumably a lady code breaker
working closely with Dilly Knox at Bletchley Park has actually suggested this
possibility (alphabetic ordering). However apparently this possibility was dis-
carded and not studied at the time, as everyone “thought the Germans were
not stupid enough to make it that easy!”, cf. [4], page 116.

Now, if we order the contacts alphabetically, in the same way as all mod-
ern sources [5,42], a strong pattern emerges. In addition, this faulty rotor was
used since 1930 and never withdrawn from circulation and continuously used
until 1945, and in some cases until 1956 (in post-war Eastern Germany).

Open Problem. If renaming letters conceals our property, could we
have a hidden permutation such that a very weak rotor is disguised as a
strong rotor, which does not have any apparent weakness?

Another Open Problem. Another interesting question is to see if a
rotor could behave in a consistent way modulo 13. On the face value, this
problem does not exist and we have PrRIII (∆ = 13→ ∆ = 13) = 2/26 which
is very small. However there could be a backdoor property: a secret 2-to-1
mapping from 26 contacts to 13, and a hidden structure involving a complete
quasigroup modulo 13, which as we see here exists, cf. Thm. 5.1. A related
question is studied in Section 7.1.

On Backdoors. There exists countless academic works about backdoors
in modern ciphers, cf. for example [1,7,13,24,33] and many researchers believe
that there are no real backdoors, in the sense that if some properties weaken
the cipher and lead to an attack, they will be “sooner or later” discovered, cf.
for example Section 6.2 in [25] and Section 3.4. in [34]. In this article we show
that the question of backdooring also occurs for relatively small permutations
and that “sooner or later” could be 80 years, and possibly the space to research
to uncover a hidden special subset of say 13 out of 26, could be quite large,
at least 223. This is very large, knowing that the designers of Enigma did
not have the ability to do experiments with today’s powerful computers, and
powerful computer algebra and maths software packages such as Sage Maths.

4.3. A linear algebraic approximation. We are looking here at an eminently
algebraic law. It seems that the ONLY plausible way to get something which
works for a substantial fraction of 262 cases is to use the full power of arith-
metic of the ring of integers modulo 26 with both + and × where distributivity
of multiplication over addition helps. It might appear very strange, but we
can in fact mix both group operations modulo 26, and it turns out that we
always have:

ρ−i ◦RIII ◦ ρi(j)
?= i+ 2 · j + 1 with A=0, B=1, etc. with Pr = 10

26
Nothing else than a strong linear approximation of an old Enigma rotor

from 1930. Who says that Linear Cryptanalysis was invented only in 1990s?
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Or maybe in 1970s, cf. [19]? Here we have a rotor from 1930 which has an
extremely strong1 algebraic linear approximation.

4.4. On polynomial invariants and invariant theory. In mathematics, and in
applied mathematics such as cryptography, there are countless examples of
invariants of different type. The classical end of 19-th century Hilbertian
invariant theory deals with actions of groups on commutative rings. Invariants
are the typically multivariate polynomials or/and use both operations in the
ring, are the ones which are the most frequently studied. This is also exactly
what we have here (!). In cryptography, invariant properties do not need to
be exact, they can be true in approximation. Many known attacks on block
ciphers such as linear and differential cryptanalysis amount to the study of
periodic invariants which propagate with a certain probability.

A lot of work in mathematics deals with invariants w.r.t linear transfor-
mations, while in cryptography we always want our transformations to be
highly non-linear and avoid any invariants whatsoever. However the space of
possible invariants is typically so large, that invariants are typically neverthe-
less found. A well-known polynomial invariant with applications in symmetric
cryptography is the cross-ratio, which is typically not perfect but degrades if
we have many encryption steps, cf. Section 4 in [15]. This is related to the
notion of the so called Carlitz rank which is a method of classifying all permu-
tations on a finite set, and the so called “whitening paradox”, cf. Appendix
B in the extended version of [15].

In all cases in cryptography we study very complex groups, which are
finite, yet so large and complex that they can hardly be understood fully.
In contrast, we try to keep invariant properties as simple as possible for in-
dividual cipher components (they become more complex for several rounds
of encryption). In block ciphers we work a lot with multivariate polynomial
invariants over GF (2), see Section 2.4 in [12] and Section 2.2. in [21]. Here
we have invariants exploiting a small ring Z26 which is not a field, which is
yet different than studied before.

Remark. It is easy to see with 1 variable, linearity w.r.t. multiplication
modulo 26 is a substantially stronger property than a linear approximation
modulo 2 exploited in great majority of cryptanalytic attacks. This is be-
cause a point satisfies such an approximation with smaller probability of 1/26
instead of 1/2. Binary linear approximations are simply more likely to work
purely by accident which is far from being the case here, as we show more
precisely in Section 7.

4.5. Basic invariance results. It is easy to see linear approximation for our
table will behave in a way which is a bit counter-intuitive: Indeed it holds

1Strong in the sense of unlikely to occur accidentally, cf. Remark at the end of Section
4.4 and Section 7.
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for a large proportion of 262 values not 26, for any i, j. How this is possible?
Should not the probability be negligible for so many values? We have the
following result:

Theorem 4.1 (Conjugation Property). Let a, b be two fixed integers. We
fix i and we consider the probability (over all x ∈ Z26) that we have:

ρ−i ◦RIII ◦ ρi(x) ?= (a− 1)i+ ax+ b.

This probability is the same for every i, and for every j. Consequently,
the number of coloured letters is the same in every line in our square, and
also in every column, cf. Fig 3. This probability is also the same for every
letter y where y = ρ−i ◦RIII ◦ ρi(x) is the letter displayed. Consequently, the
number of coloured letters is the same for every letter.

Proof. We prove the first result by induction on i, modulo 26 we can
start from any point. We assume that ρ−i ◦ RIII ◦ ρi(x) ?= (a− 1)i + ax + b
for some i. We apply ρ on both sides and we replace x by z − 1 = ρ−1(z)
modulo 26, which is a bijective transformation:

ρ−i+1 ◦RIII ◦ ρi(ρ−1(z)) ?= (a− 1)i+ a(z− 1) + b+ 1 = (a− 1)(i− 1) + az+ b

which gives us the same probability over z ∈ Z26 for i− 1:
ρ−(i−1) ◦RIII ◦ ρ(i−1)(z) ?= (a− 1)(i− 1) + az + b.

We see that if we have k solutions x for one i, we can produce also k
solutions z for i−1. Moreover after 26 steps we can back to the same place so
the number of solutions in this process cannot increase, it must stay constant
for every i.

For the second column-wise invariance result we fix i and vary x. It is easy
to see that ρ−i ◦RIII ◦ρi(x) = y is equivalent to ρ−(i−1) ◦RIII ◦ρi−1(x+1) =
y + 1. In each case where y = (a − 1)i + ax + b = ρ(a−1)i+b(ax) we have
also y + 1 = (a − 1)i + ax + b + 1 = (a − 1)i + a(x + 1) − a + b + 1 =
(a− 1)(i− 1) + a(x+ 1) + b which is exactly what we expect. Finally the last
result, is due y rotating though all possible values in 2nd result, letter y being
in coloured in column x was transformed into y + 1 also in colour in column
x+ 1.

4.6. On invariance of collisions.

Theorem 4.2 (Rotor Collision Invariance). We consider a rotor such that
a collision occurs in one column in our table of rotated alphabets, i.e. there
exist two integers (or two lines) i 6= i′ and one input letter (column) x such
that

ρ−i ◦RIII ◦ ρi(x) = ρ−i
′
◦RIII ◦ ρi

′
(x).

Then for each column in our table x we obtain the same number of colli-
sions.
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Proof. We can simply translate our property by c steps for every c, and
these translations are one to one:

ρ−(i−c) ◦RIII ◦ ρi−c(x+ c) = ρ−(i′−c) ◦RIII ◦ ρi
′−c(x+ c).

Example: For example in Fig 3, in each column we have four letters con-
cerned by events of this type, with K repeated 3 times at i = 9, 11, 14, N
repeated twice for i = 10, 12, P repeated twice with i = 15, 25 and S repeated
twice for i = 16, 24. Then in fact in each column we also have four letters
concerned by events of this type which are L,O,Q,T in the next column and
so on.

5. A key theorem on permuted rotor alphabets

Until now, it was an open problem if we can get a latin square, cf. pp. 138–139
in [5].

5.1. Can Enigma rotor give a Latin square? We will first estimate the prob-
ability that we obtain a latin square for a rotor chosen at random to be
approximately equal to the probability that there is no repeated characters
in the first column, then we compute the first line, and again if we are lucky,
there should be no repeated characters. This probability will be about:

(26!/2626)2 ≈ 2−67.6.

This argument does not provide an efficient algorithm for generating a suitable
rotor and we have little hope to find it by brute force - this probability is too
small. We have used a smarter tool, a SAT solver, able to make deductions
and capable of backtracking. With this tool this problem could be solved and
impossibility was shown for N = 26. The good point about this tool is that it
allows to generate solutions with arbitrary additional features, if they exist,
and to formulate conjectures for many different N . Finally we found a direct
mathematical theorem with a proof which solves this problem completely for
any N .
5.2. A key result on Latin squares generated by a single rotor.

Theorem 5.1 (On Existence of Quasi-groups Derived From a Single Per-
mutation). There exists no quasi group for even N such that our table is
exactly the one obtained from a single actual bijective rotor rotated in all pos-
sible N positions. For any odd N ≥ 1 a solution exists. For an even N the
solution never exists.

Proof. For an odd N it is easy to check that the rotor R(x) = 2×x+ 1
mod N always works for any odd N ≥ 1. In line i we have then x 7→
i + 2 × x + 1 mod N which is always a permutation, and each column x we
have i 7→ i+ 2× x+ 1 mod N which is also always a permutation.
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For even N the situation is more difficult and we will show that collisions
always exist and they exist for any column x. Let R be a permutation on
{0, . . . , N − 1} and ρ(x) = x+ 1 mod N . We need to show that:

Lemma 5.2. If N is even, then for every x ∈ {0, . . . , N − 1} there exist
i1 6= i2 modulo N such that ρ−i1Rρi1(x) = ρ−i2Rρi2(x) modulo N .

Proof of Lemma 5.2: The statement follows from two claims:
Claim 1: For every x ∈ {0, . . . , N − 1} we have

N−1∑
i=0

(
ρ−iRρi(x)− x

)
= 0 mod N.

Indeed,
ρ−iRρi(x)− x = ρ−iRρi(x)− ρ−iρi(x) = R(yi(x))− yi(x)

for yi(x) = ρi(x). When we take all possible values of i, also yi takes all
possible values once. Thus,

N−1∑
i=0

(ρ−iRρi(x)− x) =
∑

y∈{0,...,N−1}

(R(y)− y)

and the last sum is obviously equal to 0 because R is a permutation.
Claim 2: If N is even, then for every x ∈ {0, . . . , N − 1} we have∑

y∈{0,...,N−1}(y − x) = N/2 mod N . Indeed, our sum is:∑
y∈{0,...,N−1}

(y − x) = (N − 1)N/2−Nx

and for even N we have (N − 1)N/2 = N/2 mod N .
We now prove the assertion of Lemma 5.2 that collisions always exist and

for any x. If for some special x it is true that ρ−i1Rρi1(x) 6= ρ−i2Rρi2(x)
for every i1, i2, then {ρ−iRρi(x)} must be equal to {0, . . . , N − 1}. Thus, by
Claim 2,

N−1∑
i=0

(ρ−iRρi(x)− x) =
∑

y∈{0,...,N−1}

(y − x) = N/2 mod N.

However, this would contradict Claim 1 which says this sum must be 0 modulo
N .

5.3. Discussion and examples. Initially we have done a computer proof of this
result with a SAT solver. If there is no solution the system outputs UNSAT
which is a logical contradiction which guarantees there is no solution, and
some SAT solvers can actually output a full rigorous mathematical proof.
Such proofs are however not human readable, this is why finally we present
a simpler proof above. Otherwise, if the solution exists, our software can
actually generate such solutions on demand and on particular one which are
non-linear and more complex than the simple linear solution proposed in our
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proof. For example a valid solution for N = 5 is ACEBD and a valid solution
for N = 9 is IHFBEGCAD. For N = 13 we have for example MLJBKGI-
HEAFDC. There is no solution for N = 26. We see that the ideal objective
of the designers of Enigma rotors is not at all possible to achieve.

Connecting the Dots. In fact as we will see, with rotor RIII from 1930
we also have x 7→ i+2×x+1 with probability 10

26 . This strongly suggests that
the Thm. 5.1 above or at least our method to construct a solution for an oddN
was known to the designers of Enigma in 1930. The same closed formula was
applied, even though it simply cannot work perfectly for when N is even. This
sort of magic formula approximation, together with the associated feasibility
result of Thm. 5.1, come together and tell us a story. The circumstantial
evidence we observe is the cryptographic engineering equivalent of a message
hidden in a bottle and thrown to the sea, cf. [8].

6. Differential properties of Enigma rotors

Amajor question is the study of differential properties of rotors. In theory,
one rotor has 262 differential properties. For example for Rotor III the input
difference 2 gives output difference 1 with very high probability 8/26, which is
extremely high, which happens twice and is the highest ever seen differential
probability for any known rotor. We write

PrRIII (∆i = 2→ ∆o = 1) = 8/26.
Here ∆i is the input difference, and ∆o is the output difference. If there

is no ambiguity we will omit i and o and sometimes we will also omit ∆ and
just write k → l. Now we recall that in Enigma, and unlike what we see in
block ciphers, the key translation ρi is applied twice. This leads to focus on
invariant differential properties of type k → k.

It turns out that invariant properties k → k are extremely rare, not
only with Zagreb Enigma, but almost always for most actual historical cipher
machines, cf. later Table 3, and almost never for random permutations cf.
Table 1 below.

We have the following definition.

Definition 6.1 (Imk). We call Imk the number of horizontal offsets k
which are impossible in any column of our table or rotated alphabets (such as
in Fig. 3) when we have a collision in this column. In other terms we look at
values of k = k1 − k2 such that for no value x we have:

ρ−k1 ◦R ◦ ρk1(x) = ρ−k2 ◦R ◦ ρk2(x).

It also easy to see that the number Imk is equal to the number of impos-
sible invariant differentials for this rotor R of type k → k where k = k1 − k2.
It is also easy to see that this set of impossible offsets k is in fact the same in
every column in Fig. 3 and in general.
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The maximum value of Imk is 25 because 0 → 0 is always possible and
we have 25 if and only if we have a latin square.
Example. For example we have:

PrRIII (∆ = 2→ ∆ = 2) = 2/26.
and when we look at one column of Fig. 3, when a collision happens, the
difference in horizontal positions can be 2 = k1 − k2.

Most values of k are however impossible, and extremely few are actually
possible for real-life rotors. For example there are no collisions in consecutive
lines which is equivalent to saying that for k = 1 we have:

PrRIII (∆ = 1→ ∆ = 1) = 0/26.
In contrast for a random permutation most values of k are actually pos-

sible, see Table 1 below which was obtained by a computer simulation.

Table 1. Probability distribution of Imk for random permutations

0 2 4 8 12 16 18 19 20 21 22 23 24 25
2−7.8 2−5.8 2−4.5 2−3.6 2−4.2 2−7.0 2−9.5 2−9.7 2−13.2 2−13.9 2−19 2−20 2−26 0

6.1. How Imk relates to Latin squares. We have the following result:
Theorem 6.2 (Imk Latin Equivalence). For any rotor, the following three

statements are equivalent:
(1) Imk = 25.
(2) All invariant differentials of type k → k are impossible for every k 6= 0.
(3) The Figure 3 of rotated alphabets is a latin square.

Proof. By definition of Imk it is about collisions in one column of our
table, and (1) and (2) are the same. First we show that (2) ⇒ (3) by contra-
diction. If for some k → k it is actually possible to have R(x) = ρ−kR◦ρk(x),
then the letters in line i = 0 and i = k in our column would be the same
and it would not be a latin square. Now we show that (3) ⇒ (2), if all
ρ−kR ◦ ρk(x) are distinct in one column for a fixed x and variable k, then
R(x) = ρ−kR ◦ ρk(x) cannot happen and no differential k → k can occur.

Now we recall that for even N we cannot have a latin square at all, and
we also have the following theorem about differential cryptanalysis in general:

Theorem 6.3 (Invariant differentials are inevitable for even N). For any
permutation R on {0, . . . , N − 1} there exist an invariant differential k 6= 0
which works with a probability > 0.
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Proof. This is due to our earlier Lemma 5.2. For every x ∈ {0, . . . , N −
1} there exist i1 6= i2 modulo N such that ρ−i1Rρi1(x) = ρ−i2Rρi2(x) modulo
N . We then just put k = i2 − i1 modulo N .

7. Could this happen by accident?

We recall our linear approximation:

ρ−i ◦RIII ◦ ρi(x) = i+ 2 · x+ 1 with Pr = 10
26 .

What is the probability that this type of property happens by accident
for a random permutation? We estimate that it is extremely low, less than
winning a lottery.

We recall that ρ−i ◦ RIII ◦ ρi(x) = y is equivalent to ρ−(i−1) ◦ RIII ◦
ρi−1(x + 1) = y + 1. Therefore our property works if and only if it works
inside the first column. We consider a union of disjoint events where we
select 10 random lines out of 26, and for each of these lines the letter is
determined by our linear formula, which also guarantees that these 10 letters
are distinct, and then we have to select one letter from the remaining not
16 but 15 possibilities. We have basically 16! possibilities, but we need to
exclude one choice for each remaining number, the one which is indicated by
our linear formula. In approximation, there are 15! ways of doing it. We get
about: (

26
10

)
· 15!

possible ways of filling the first column in Fig. 3. Therefore for a fixed linear
approximation, we get roughly(

26
10

)
15!
26! ≈ 2−25

probability for what we observe. Rotor III was certainly not chosen at random.

7.1. Improving the success probability. We are not quite happy with the prob-
ability 10/26. Can we do better? YES. We have 26 = 13 · 2 and a good way
to do a partial key guess for an Engima rotor is for the attacker to guess i
mod 2, this only 1 bit of information which will hold for one whole Enigma
ciphertext (which could be 200 or 500 characters). It is easy to see that we
have:

Proposition 7.1 (Linear approximation parity result). For any letter
y =A,B,.. this letter occurs in our table exactly the same number of times in
colour, i.e. when our linear approximation y = i+ 2x+ 1 holds. Moreover, if
this letter is odd y =B,D,F,H,.., inside these 10 cases in colour, all of these
or 100 %, are such that i is even, i.e. i = 0, 2, 4, . . . 24. In other terms when
y is odd, or equivalently when i even,
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y = ρ−i ◦RIII ◦ ρi(x) ?= i+ 2x+ 1 with Pr = 10
13 .

where we check the equality y ?= i+ 2x+ 1 in 13 cases when i is even, which
is also exactly the same 13 cases where y is odd, and this equality holds in
as many as 10 cases out of 13. Moreover, a sort of saturation or reciprocal
property holds. For any even letter y =A,C,E,etc.., 100 % of 10 coloured
occurrences of this letter in our table (i.e. those where y = i + 2x + 1) are
such that i is odd.

Proof. This result is quite obvious. We interpret our key property to
the more general framework of Thm. 4.1, we have a = 2. The fact that each
letter has the same frequency when coloured was already shown in Thm. 4.1.
We are lucky because this a is even, and so if parity of i is known, the parity
of the output letter y is determined, and all 10 cases for which our property
holds are odd.

7.2. Application: Combined attacks with Enigma reflector UKW-A. An im-
portant feature of all Enigma machines was the reflector, where 13 pairs of
characters are connected, and the current returns back to flow in the opposite
direction. The reflector was invented in 1926 by Willy Korn, known from
numerous patents on Enigma cryptography, cf. page 114 in [5].

We recall that when output letter is odd y =B,D,F,H,.., and rotor position
i is even, then:

y = ρ−i ◦RIII ◦ ρi(x) ?= i+ 2x+ 1 with Pr = 10
13 .

Similarly, for any even letter y =A,C,E,.., 100 % and i odd, we have also
10/13. This opens many possibilities where attacker focuses on half of the
letters and guesses the position of rotor i mod 2, just one bit of information
and the attacker can infer a lot of things without knowing this part of the
key.

This is remarkable knowing that in the oldest historical Enigma UKW-A
reflector even letters are mapped to even letters with probability 11/13. For
example A=0 is mapped to E=4 and both numbers are even.

Later in 1937 the reflector becomes stronger: the probability of mapping
even to even letters becomes 8/13 for UKW-B. To the best of our knowledge
we are the first to show, in 90 years of history of Enigma ciphers, that a
reflector can sometimes be weak.

7.3. Related facts: A study of Ims. In our research on this topic we also
studied a closely related definition is Ims:

Definition 7.2 (Ims). We call Ims the number of distinct letters in one
column of our table or rotated alphabets (cf. Fig. 3).
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We observe that for most Enigma rotors not only Ims is large but Imk
is also typically quite large and both are closely related: if one is close to
maximum, the other is also close to maximum. This does not hold for smaller
values.

Table 2. Probability distribution of Ims for random permutations
7 8 10 12 14 16 18 20 22 23 24 25 26

2−27.1 2−22.4 2−13.6 2−7.4 2−3.7 2−2.1 2−2.7 2−5.6 2−11.1 2−14.8 2−20.0 2−26.4 0

Open problems. It would be interesting to propose a closed formula
and a theorem which allows to derive these results by theory for any N , in
the spirit of [3, 27].

8. Comparison of selected real-life rotors

A natural way to evaluate the quality of the probability distribution in
one column in Figure 3 is to report the entropy of this probability distribution
denoted by Ent. The result is the same in every column, due to Thm. 4.2.
The entropy observed for different rotors is shown in Table 3.

In total we have examined 63 different rotors and we observed that these
values are very consistent for rotors coming from the same origin. We also
observe that rotors from the same source (e.g. the same country) and the
same year (e.g. 1941) have very similar parameters.

On average, for all 63 rotors, the entropy Ent is 4.39 which is extremely
high. The maximum possible would be log2(26) = 4.7 bits which however
cannot happen due to Thm. 5.1. In contrast, Ent is 3.87 on average for
random permutations.

We omitted Norwegian rotor IV, which was not rewired towards the end
of the war like others, instead the original German rotor IV was kept.

In fact only Swiss and Norwegian rotors behave as rotors generated at
random with Ims = 15 − 17 typically. All other rotors don’t. For example,
in all 3 Enigma KD Mil Apt, which was used by the successor of Abwehr, we
have Ims = 24. This is 3 events the probability of which is 2−20 happening
in a row, similar to wining in a lottery 3 times in a row.

9. Conclusion

Our research indicates that most historical Enigma rotors are weaker
than expected. We have examined 63 known rotors in Enigma machines:
German, Swiss, Italian, Hungarian, Spanish, Norvegian, Japanese etc. Rotors
coming from the same origin behave consistently. We exhibit both linear
and differential properties. Differential properties are more prevalent, they
are present for almost all rotors, and invariant differentials are particularly
relevant due to how the key is applied.
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Table 3. Entropy Ent of one column with Ims and Imk
for selected historical rotors used in Engima cipher machines

rotor name Nb. code dates Ims Ent Imk possible k

Army I 1 EKM 1930 17 3.95 10 2,3,6,7,9,11,12,13
Army II 2 AJD 1930 19 4.16 17 8,9,10,11
Army III 3 BDF 1930 20 4.21 14 2,3,5,8,10,13
Army IV 4 ESO 1938 23 4.47 19 5,8,12
Army V 5 VZB 1938 24 4.55 23 5
Army VI 6 JPG 1938 24 4.55 22 6,13
Army VII 7 NZJ 1938 23 4.47 19 3,5,8
Army VIII 8 FKQ 1939 24 4.55 21 4,7
Railway I 12 JGD 1941 24 4.55 22 2,13
Railway II 13 NTZ 1941 24 4.55 21 6,7
Railway III 14 JVI 1941 23 4.47 21 1,12

G-312 Abwehr I 9 DMT 19YY 21 4.32 17 5,6,7,8
G-312 Abwehr II 9 HQZ 19YY 24 4.55 22 8,13
G-312 Abwehr III 9 UQN 19YY 24 4.55 21 5,10
KD Mil Amt I 34 VEZ 1944 24 4.55 21 9,10
KD Mil Amt II 35 HGR 1944 24 4.55 21 5,8
KD Mil Amt III 36 NWL 1944 24 4.55 21 6,9
Zagreb 16081 I 62 CVF 1943 24 4.55 21 4,12
Zagreb 16081 II 63 XJG 1943 22 4.36 17 5,6,9,11
Zagreb 16081 III 64 SYI 1943 24 4.55 21 4,8
Zagreb 16081 IV 65 HKT 1943 24 4.55 21 4,6
Zagreb 16081 V 66 WMG 1943 25 4.62 23 9
Hungary G-111 I 12 JGD 193X 24 4.55 22 2,13
Hungary G-111 II 13 NTZ 193X 24 4.55 21 6,7
Hungary G-111 III 14 JVI 193X 23 4.47 21 1,12

Norway I 20 WTO 1945 13 3.46 5 1,3,4,6,7,8,9,10,11,12
Norway II 21 GJL 1945 16 3.80 6 2,3,4,5,7,8,9,10,12,13
Norway III 22 JWF 1945 15 3.66 6 2,3,5,6,7,9,10,11,12,13
Norway V 24 HEJ 1945 15 3.80 8 2,4,5,6,7,9,10,12,13

In this article we look at how such results can be justified in theory by
mathematical theorems. All the properties we observed can be explained
by the fact that the table of permuted alphabets corresponding to all possi-
ble rotor positions can be a quasigroup for odd N and cannot be a perfect
quasigroup for an even N . However it can behave as a quasigroup in approx-
imation, imitating the latin square and minimizing the number of collisions
in each column. We show that this requirement is equivalent to the fact that
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extremely few invariant differentials k → k are allowed to happen. We also
show that invariant differentials are inevitable for an even N , cf. Thm. 6.3.

For real-life rotors withN = 26, what we actually observe is quite unusual.
We show that the probability of what we observe happening for a random
permutation is of the order of 2−20 for just one rotor. This shows that these
choices were deliberately made by the designers. They are the consequences
of the state of the art of cryptographic science and the beginning of the 20-
th century which focused on the study of polyalphabetic substitutions. The
designers of Enigma have imitated an ideal latin square property the best they
could. Our Thm. 5.1 implies that the ideal property the designers have tried
to achieve in so many cases, is however not achievable perfectly for N = 26.

It is interesting that for more than 80 years rotors in cipher machines
have been selected in a certain very special way, and nobody have noticed.
This demonstrates the fallacy of the so called open source: even if we know
the specification of a cipher, important facts can remain hidden for more than
80 years. The same applies to DES cf. [22] and other historical block ciphers
[12,14,21]. We see that it is very difficult to assess what are the implications of
just one particular component used inside any given cipher. Our observations
can be used to improve brute force part in many major attacks on Enigma
or/and in reverse engineering and statistical attacks. They are also here to
show that the study of quality of cryptographic components and careful design
and selection of quasi-optimal components (similar as with the AES S-box cf.
[15, 20]) is a lot older than it is typically assumed.
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O slabim rotorima, latinskim kvadratima, linearnim algebarskim
prikazima, invarijantnim diferencijalima i kriptoanalizi Enigme

Nicolas T. Courtois, Marek Grajek i Michał Rams

Sažetak. Od 1920-ih do danas, pretpostavljalo se da rotori
u stroju za šifriranje Enigma nemaju odredenu slabost ili struk-
turu. To je zanimljiva situacija u usporedbi sa stotinama radova
o S-kutijama i slabim postavljanjem blokovnih šifri. U ovom radu
razmatramo što je normalno, a što nije normalno za rotor stroja za
šifriranje, s referentnom točkom doista slučajnom permutacijom.
Naše istraživanje pokazuje da većina originalnih Enigma rotora
napravljenih u ratno vrijeme uopće nisu slučajne permutacije i
skrivaju jaka diferencijalna svojstava nepromjenjiva pri rotaciji
rotora. Takoder pokazujemo linearna / algebarska svojstva koja
se odnose na prsten cijelih brojeva modulo 26. Neki rotori opona-
šaju odredenu konstrukciju savršenih kvazigrupa, koja medutim
funkcionira samo kad je N neparan. Većina ostalih rotora jednos-
tavno pokušavaju aproksimirati idealnu situaciju. Prema našim
saznanjima, ove činjenice su nove i nisu proučavane prije 2020.
godine.
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