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A NOTE ON LOW ORDER ASSUMPTIONS IN RSA
GROUPS

István András Seres and Péter Burcsi

Abstract. In this short note, we show that substantially weaker
Low Order assumptions are sufficient to prove the soundness of Pietrzak’s
protocol for proof of exponentiation in groups of unknown order. This con-
stitutes the first step to a better understanding of the asymptotic computa-
tional complexity of breaking the soundness of the protocol. Furthermore,
we prove the equivalence of the (weaker) Low Order assumption(s) and
the Factoring assumption in RSA groups for a non-negligible portion of
moduli. We argue that in practice our reduction applies for a considerable
amount of deployed moduli. Our results have cryptographic applications,
most importantly in the theory of recently proposed verifiable delay func-
tion constructions. Finally, we describe how to certify RSA moduli free of
low order elements.

1. Introduction

Verifiable delay functions (VDF) are powerful cryptographic tools [BBBF18]
that opened up a plethora of applications, such as non-interactive timestamp-
ing [LSS19], proof of replication [FBGB19] or randomness beacons [BGB17].
A VDF is a function whose evaluation takes Ω(T ) sequential steps and cannot
be sped up by parallelism. Additionally, a prover, or evaluator, can produce
publicly verifiable and succinct proofs that the function evaluation was cor-
rect. A crucial requirement for a VDF that there needs to be an exponential
gap between function evaluation and proof verification time, more precisely
verification time should be in O(log T ). Naturally, we require correctness
and soundness from the applied proof systems. Specifically, an honest prover
should always be able to convince the verifier, while a malicious prover should
only be able to produce correct proofs with negligible probability.

Recent VDF constructions [Pie18, Wes19] proposed by Pietrzak and
Wesolowski instantiate VDFs in groups of unknown order, i.e. groups for
which the order cannot be computed efficiently [RSA78]. The existence of
verifiable delay functions in the random oracle model is ruled out [MSW19],
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moreover, groups of unknown order are shown to be mandatory for generic
group delay functions [RSS20]. Both constructions [Pie18, Wes19] rely on
novel, non-standard cryptographic assumptions. The soundness of these con-
structions can be proved by assuming the Low Order (LO) or Adaptive Root
(AR) assumptions in groups of unknown order. Therefore there is an emerging
need to understand better these new, non-standard cryptographic assump-
tions. In this note, we turn our attention to the LO assumption as it is a
potentially weaker assumption than the AR assumption [BBF18].
Our contributions. In this note, we provide the following contributions.

• We observe that for the soundness of Pietrzak’s proof of exponentiation
succinct argument, one can assume substantially weaker LO assump-
tions than as previously defined in [BBF18]. In other words, we show
that potentially it is harder to break soundness of Pietrzak’s argument
than as it was argued in [BBF18].

• We prove the equivalence of the LO and Factoring assumptions in RSA
groups for a non-negligible portion of moduli. We argue that this result
has practical consequences and that in practice one can deem the LO
assumption to be equivalent to Factoring for the majority of used RSA
moduli.

• We show how one could certify RSA moduli being free of low order
elements using a non-interactive honest-verifier zero-knowledge proof
system by Goldberg et al. [GRSB19].

The rest of this note is organized as follows. In Section 2 we provide
background on the recently introduced LO and AR assumptions. We show the
sufficiency of weaker LO assumptions in Section 3. In Section 4 we provide our
reduction from Factoring to LO assumption for non-negligible RSA moduli.
We describe a method to certify RSA moduli free of low order elements in
Section 5. Finally, we point out open problems in Section 6.

2. Preliminaries

2.1. Notations. Let G be a group of unknown order. As usual, λ denotes
the security parameter. Integers denoted as p, q are always primes, while N
is a semiprime, i.e. N = pq, sometimes referred to as RSA-modulus. All
logarithms have two as their base, unless stated otherwise. The φ(·) denotes
Euler’s totient function. Let ordm(a) denote the order of element a in Z×m. In
the following we assume that the size of the moduli is bounded by polynomial
of the security parameter s(λ), such that p, q, φ(N), N ≈ O(2s(λ)). We mean
by x $←− S, that x is uniformly at random sampled from set S.

2.2. Proof of exponentiation and Pietrzak’s succinct argument. In a proof of
exponentiation protocol in G the prover wants to convince the verifier that
h = g(2T ) holds in G. That is, the protocol is an argument system for the
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relation
(2.1) LEXP =

{(
G, g, h, T

)
: h = g(2T ) ∈ G

}
.

Pietrzak’s proof system works as follows [Pie18].

1. The verifier checks that g, h ∈ G and outputs reject if not.
2. If T = 1, the verifier checks that h = g2 in G, outputs accept or

reject, and stops.
3. If T > 1, the prover and verifier do:

(a) The prover computes v ← g(2T/2) ∈ G and sends v to the
verifier. The verifier checks that v ∈ G and outputs reject
and stops, if not.
Next, the prover needs to convince the verifier that h =
v(2T/2) and v = g(2T/2), which proves that h = g(2T/2). Since
the same exponent is used in both equalities, they can be
verified simultaneously by checking a random linear combi-
nation, namely that

vrh = (grv)(2T/2), where r
$←− {1, . . . , 2λ}.

The verifier and prover do so as follows.
(b) The verifier sends the prover a random r

$←− {1, . . . , 2λ}.
(c) Both the prover and verifier compute g1 ← grv and h1 ←

vrh ∈ G.
(d) The prover and verifier recursively engage in an interac-

tive proof that (G, g1, h1, T/2) ∈ LEXP, namely that h1 =
g

(2T/2)
1 ∈ G.

Figure 1. Pietrzak’s succinct argument for the proof of ex-
ponentiation language LEXP, verbatim from [BBF18]

For simplicity, we assume that T is a power of two in which case the
protocol takes log T rounds. The protocol can be adjusted to handle arbitrary
T , including a T that is not a power of two [Pie18].

Naturally, the protocol can be made non-interactive by using the Fiat-
Shamir heuristic. The prover generates the challenge r at every level of the
recursion by hashing the quantities (G, g, h, T, v) at that level, and appends
v to the overall proof π. Hence, the overall proof π contains log T elements
in G. Proof generation has a complexity of 2T

s
√
T

with s being the amount
of processors. At every level of the recursion, the verifier does two small
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exponentiations in G to compute gi and hi for the ith level of the recursion.
Therefore, verifying the proof takes O(log T ) small exponentiations in G.

An implementation study of Pietrzak’s and Wesolowski’s VDF construc-
tion showed that it is faster to verify Pietrzak’s VDF than that of Wesolowski.
However, Pietrzak’s VDF comes with larger proofs, hence demanding slightly
larger bandwidth [AVD20].

2.3. RSA assumptions. Informally, the LO assumption states that it is com-
putationally infeasible to find a low order element in a random RSA group.
Let us recall the formal definition of the LO assumption [BBF18].

Definition 2.1. The Low Order assumption holds for GGen if there is
no efficient adversary A finding any element of low order:

(2.2) Pr

 G $←− GGen(λ)
ul = 1, u /∈ {1,−1} : (u, l)←− A(G)

and l < 2poly(λ)

 ≤ negl(λ).

We remark that the LO assumption unconditionally holds in QRN , the
group of quadratic residues mod N , since it contains no elements of low order.
In case of RSA groups, we model GGen(λ) as uniformly randomly sampling
primes from an appropriate domain with respect to λ.

Definition 2.2. The Factoring assumption states that for random primes
p, q it is difficult to factor N = pq.

It is trivial to see, that if there was an adversary A breaking the Factoring
assumption, then one could easily calculate any roots mod N by applying the
Chinese Remainder Theorem. Computing arbitrary roots enables an adver-
sary finding low order elements. Note that it is also true that technically,
having a factoring algorithm that works for a non-negligible portion of RSA
moduli, does not imply that the LO assumption is broken. It could be the
case that factoring works if and only if the modulus is the product of two safe
primes. For these moduli, we do not have low order elements at all. Certainly,
what one implicitly understands by saying that the LO assumption is stronger
than the factoring assumption is that a reduction exists for GGen that only
outputs moduli with low order elements.

Even though we did not introduce Wesolowski’s succinct argument for
LEXP, for sake of self-containedness we introduce the assumption needed to
prove its soundness.

Definition 2.3. The Adaptive Root assumption holds for GGen if there
is no efficient adversary (A0,A1) that succeeds in the following task. First,
A0 outputs an element w ∈ G and some state st. Then, a random prime l
in Primes(λ) is chosen and A1(w, l, st) outputs w1/l ∈ G. For all efficient
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(A0,A1):

(2.3) Pr


G $←− GGen(λ)

(w, st)←− A0(G)
ul = w 6= 1 : l

$←− Πλ = Primes(λ)
u←− A1(w, l, st)

 ≤ negl(λ).

We note that the number of primes in Πλ should be exponential in λ: it
is possible to precompute w using 2|Πλ| exponentiations. Then, an adversary
with 2M memory can store intermediate exponents and compute adaptive
roots using 2|Πλ|−M exponentiations for each. Moreover, it was shown that
the Adaptive Root assumption holds in the generic group model [BBF19].

2.4. Number theoretic tools. We recall the following lemma without proof.

Lemma 2.4. The map x −→ xe mod N is a permutation of Z∗N if and only
if gcd(e, φ(N)) = 1.

Furthermore, let us define the language of RSA public keys (N, e), such
that the map x −→ xe mod N is a permutation over Z∗N :
(2.4) LpermZ∗

N
= {(N, e)|N, e > 0 ∧ gcd(e, φ(N)) = 1}.

For this particular language, Goldberg et al. devised a public-coin protocol
[GRSB19] with perfect completeness, perfect honest-verifier zero-knowledge,
and statistical soundness.

Later we will need to count the number of integers without factors from
an interval. Therefore we introduce the following function and notation.

Definition 2.5. Denote by Γ(x, y, z) the number of all positive integers
less than x which are free of prime divisors from the interval (z, y].

Theorem 2.6 (Weingartner [Wei01]). Let u = log x
log y and v = log x

log z . Then
uniformly for 3

2 ≤ z ≤ y, whenever x ≥ yz, we have the following asymptotic
relationship for Γ(x, y, z):

(2.5) Γ(x, y, z) = xη(u, v)
(

1 +O
( 1

log z

))
,

where 1 ≤ u ≤ v and η(u, v) ≥ u
2v .

We remark that a similar result and asymptotic was obtained by War-
limont [War90], however, he solely proved his results for fixed z. We will cru-
cially rely on the uniform convergence of the asymptotics in Equation (2.5).

In the following we apply theorems about the cycle structure of repeated
exponentiation in Zp.

Theorem 2.7 (Chou and Shparlinski [CS04]). The cycle length of the
map u 7→ ue mod p for a purely periodic element u is ordordpue.
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One can easily generalize the result in Theorem 2.7 for composite moduli
using the Chinese Remainder Theorem. Namely, for composite moduli the
cycle length of a purely periodic element u under the map u 7→ ue mod N = pq
is ordordNue [BG98].

3. Soundness of Pietrzak’s argument and weaker LO assumptions

Boneh et al. introduced the low order assumption as a sufficient and
necessary assumption to prove the soundness of Pietrzak’s argument [BBF18].
In this section, we show that the original definition of the LO assumption,
cf. Section 2.3, is not necessary for proving soundness. We will show that
one needs to assume almost exponentially weaker assumptions as a necessary
and sufficient assumption for soundness of Pietrzak’s proof of exponentiation
protocol.

3.1. (Non)-necessity of the LO assumption and weaker LO assumptions. Let
us assume that the LO assumption, cf. Definition 2.1, is broken. What is
the probability that such a potent adversary could break the soundness of
Pietrzak’s argument system? As it turns out, it can still be negligible.

The main observation in the soundness analysis is that whenever a ma-
licious prover finds (u, l), a low order element u, with order l < 2poly(λ) can
potentially break the soundness of the argument system. This is because if
(G, g, h, T ) ∈ LEXP, then (G, g, hu, T ) /∈ LEXP and will be incorrectly accepted
by the verifier with probability 1/l. Towards breaking soundness malicious
prover sends v ← g(2T/2)u ∈ G. Soundness of the argument system does not
hold whenever r + 1 ≡ 2T/2 (mod l), since (G, grv, vr(hu), T/2) ∈ LEXP.

However, there might be an adversaryA breaking the LO assumption with
non-negligible probability, even though their success probability in breaking
the soundness of the argument system is negligible. This can occur, if A is
only able to find low order elements with their order in 2Θ(poly(λ)). In this
case the probability that A breaks soundness is at most 1/2Θ(poly(λ)), hence
negligible.

After this discussion, one can see that the 2poly(λ) upper bound for the
order of the low order element needs to be decreased to get the weakest nec-
essary assumption for proving soundness of Pietrzak’s argument. Therefore,
in quest to define a sufficiently weak LO assumption with the lowest permis-
sible bound on the order of the low order element, we introduce the following
smallest subexponential LO assumption.

Definition 3.1. The Subexponential Low Order assumption. For any
probabilistic polynomial time adversary A, and for any 0 < ε, finding any
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element of subexponentially low order is hard:

(3.1) Pr

 G $←− GGen(λ)
ul = 1, u /∈ {1,−1} : (u, l)←− A(G)

and l < 2log1+ε(λ)

 ≤ negl(λ).

We note, that the 2log1+ε(λ) upper bound cannot be lowered to a
polynomial-bound as then the assumption would not be sufficient, see next
subsection. In a nutshell, for sufficiency to hold one needs to assume a super-
polynomial upper bound for the order of the low order element. Furthermore,
we remark that even the weaker LO assumption introduced in Definition 3.1
is not necessary, because there are non-negligible RSA-moduli with φ(N) hav-
ing divisors between any poly(λ) and 2log1+ε(λ) [BS13]. Again, there might be
adversaries who are only able to find low order elements with their order being
between poly(λ) and 2log1+ε(λ), therefore their success probability in breaking
soundness of Pietrzak’s argument would be negligible.

3.2. Sufficiency of weaker LO assumptions for soundness of Pietrzak’s ar-
gument. Let f(λ) denote the function limiting the maximal order of the
low order element in an LO assumption. We see that in Definition 2.1,
f(λ) = 2poly(λ), while in Definition 3.1, f(λ) = 2log1+ε(λ). We are interested in
finding the minimal f(λ) such that the LO assumption with that f(λ) is still
sufficient for proving the soundness of Pietrzak’s argument system for LEXP.

Theorem 3.2. If the soundness of Pietrzak’s succinct argument for proof
of exponentiation is broken, then so is the subexponential LO assumption, cf.
Definition 3.1.

Proof. Hereby we reuse the proof given by Boneh et al. [BBF18] with
modifications to our specific setting. Hence, we recall their proof for the
sufficiency of the LO assumption for breaking the soundness of Pietrzak’s
argument. Let A be an adversary who breaks the soundness of Pietrzak’s
argument with non-negligible probability ε. We use a forking argument to
construct an adversary B that breaks the low order assumption using A.

Recall that 2t is an upper bound on the value T output by A. Let
A(G, r0, . . . , rt−1;R) denote an execution of A with random tape R, where
r0, . . . , rt−1 are the verifier’s challenges at each level of the recursion. The
adversary A outputs (J, σ). The protocol transcript is denoted by σ which is a
sequence of t+ 1 tuples: σ = (P0, v0), . . . , (Pt, vt), where Pi = (G, gi, hi, T/2i)
is the input to the recursion at level i, and vi is the prover’s message at level
i. Adversary A also outputs the smallest index J for which PJ /∈ LEXP but
PJ+1 ∈ LEXP whenever P0 ∈ LEXP and Pt /∈ LEXP. Otherwise J = −1 if such



22 I. A. SERES AND P. BURCSI

an index does not exist1. Recall that gi ←− g
ri−1
i−1 vi−1 and hi ←− v

ri−1
i−1 hi−1 for

i = 1, . . . , t. Here we assume T = 2t, but if T < 2t then we replicate the last
pair (PlogT , vlogT ) to get a full transcript of t+ 1 tuples.

1. Let K = [1, 2log1+ε(λ)].
2. Input generator IG samples x = (x0, x1, . . . , xt−1) $←− [0, 2λ−2log1+ε(λ) ].
3. We define algorithm A′ on random tape R and ki ∈ K for all i,

as follows: A′(x, k0, k1, . . . , kt−1;R) invokes A(G, r0, . . . , rt−1;R) with
ri = xi · 2log1+ε(λ) + ki. Algorithm A′ returns the same output as A.
Note that whenever ki

$←− K and x $←− IG, then ri is also sampled uni-
formly at random from [1, 2λ]. Hence, the success probability of A′
equals that of A.

4. Next, define the following probabilistic experiment FA′(x): let P0 /∈
LEXP but Pt ∈ LEXP (i.e., the verifier incorrectly accepts P0) then:
• choose a random tape R for A′.
• Sample ki

$←− K for i ∈ [0, t− 1].
• We obtain (I, σ)←− A′(x, k0, k1, . . . , kt−1;R).
• If I = −1, output fail.
• If I ≥ 0, then sample new k′i

$←− K for i = (I + 1, . . . , t− 1).
• We obtain (I ′, σ′)←− A′(x, k0, . . . , kI , k

′
I+1, . . . , k

′
t−1;R)

• If I = I ′ ∧ kI+1 6= k′I+1, then return (I, σ, σ′) and success.
• Else return fail.

Let E be the event that FA′(x) outputs success. By applying the general
forking lemma by Bellare and Neven [BN06] we have that E happens with
probability (ε2/t)−(ε/2log1+ε(λ)). This probability is non-negligible, whenever
ε is non-negligible.

Now we establish why event E produces low order element for adversary
B. When E happens, we have PI /∈ LEXP and PI+1, P

′
I+1 ∈ LEXP. Therefore,

if FA′(x) outputs (I, σ, σ′), adversary B obtains the sextuple (g, h, T̂ , v, r, r′)
with the following properties.

(3.2) h 6= h(22T ) and (grv)(2T̂ ) = vrh and (gr
′
v)(2T̂ ) = vr

′
h.

Re-arranging terms of the two equalities on the right we get

(3.3) (g(2T̂ )/v)r = h/v(2T̂ ) and (g(2T̂ )/v)r
′

= h/v(2T̂ ).

1Outputting J
$←− [−1, t−1] only reduces adversary’s success probability with a factor

of t + 1.
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Dividing the left equality by the right we obtain

(3.4) (g(2T̂ )/v)r−r
′

= 1.

Let u := g(2T̂ )/v. Next we establish an upper bound on the order of
u ∈ G. It is guaranteed that r 6= r′, since kI+1 6= k′I+1. We observe that the
order of u can be bounded by:

|r − r′| = |(xI+1 · 2log1+ε(λ) + kI+1)− (xI+1 · 2log1+ε(λ) + k′I+1)|

= |kI+1 − k′I+1| ≤ 2log1+ε(λ)

Hence, we conclude that (u, r− r′) is a pair which breaks the subexponential
low order assumption in G.

We remark that one could replace f(λ) = 2log1+ε(λ) with any superpoly-
nomial function of λ in Theorem 3.2.

4. Partial reductions of Factoring to the LO assumption

In this section we provide two partial reductions, cf. Section 4.1 and 4.2,
of the Factoring assumption to the Low Order assumption. In Section 4.3
we show that for the vast majority of deployed moduli finding a low order
element is no easier than factoring.

4.1. Partial reduction for low order smooth integers. In this section we
prove the equivalence of the LO and the Factoring assumption for a notice-
able fraction of the moduli. We use the LO assumption introduced by Boneh
et al. [BBF18], cf. Section 2.3. However, the proof enclosed hereby would
equally work well for the weaker, subexponential variants of the LO assump-
tion. Specifically, in the following theorem we assume that the RSA-modulus
N is generated in a way such that φ(N) has no prime factor in (B, 2poly(λ)]
for a constant B. We call these moduli as low order smooth integers. We
note that the factor base B could be bounded by a polynomial of λ, instead
of a constant B. However, for ease of exposition we claim reduction only
with a constant B. Additionally, we assume that gcd(p − 1, q − 1) = 2. In
Section 4.3 we argue that in practice the majority of RSA moduli satisfy these
requirements in a typical parameter setting.

Theorem 4.1. Let B be a fixed integer. The Factoring assumption is
reducible in polynomial time to the Low Order assumption for RSA-moduli
when φ(N) has no prime factor between B and 2poly(λ) and gcd(p−1, q−1) =
2.

Proof. Let us assume there exists an efficient adversary A, who can
break the LO assumption with non-negligible probability. Express differently,
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there exists a polynomial q(λ), such that

(4.1) Pr[A breaks LO] ≥ 1
q(λ) .

We devise an efficient adversary B who can factor non-negligible fraction
of random RSA moduli by using A as a subroutine. Adversary B operates as
follows. Upon receiving a random semiprime N it invokes A on Z∗N . By our
assumption, adversary A with non-negligible probability outputs a pair (u, l)
such that ul ≡ 1 (mod N) and 2 ≤ l ≤ 2poly(λ)∧u 6= −1. Note that, the order
l of u ∈ (Z/pqZ)× ∼= (Z/pZ)× × (Z/qZ)× is the least common multiple of its
(multiplicative) orders modulo p and modulo q, i.e. l = lcm(ordp(u), ordq(u)).

Note that, whenever ordp(u) 6= ordq(u), adversary B could factor N = pq
if l was smooth enough. The reason being that, adversary B raises u to
the power of l

r for all prime factors r of l, until modulo one prime factor
of N , but not the other the order of u divides l

r . This can be detected
by 0 < gcd(u l

r − 1 mod N,N) < N , hence factoring the modulus N . In our
reduction adversary B tries to find all prime factors of l in order to find a non-
trivial factor of N as described above. This will be the technique employed
by adversary B. Hence, towards our goal one thing that we need to show is
that ordp(u) 6= ordq(u) with non-negligible probability.

First, let us assess the probability when ordp(u) = ordq(u) for ran-
domly chosen primes p, q. This probability needs to be established as in
this case one cannot factor N with the aforementioned technique. We show
that gcd(p−1

2 , q−1
2 ) = 1 with constant probability. Since p and q were chosen

uniformly random, also (p − 1)/2 and (q − 1)/2 behave almost like random
integers if we consider their divisibility by other primes (there is one excluded
residue class for each prime). The probability of coprimality of random inte-
gers is 1

ζ(2) = 6
π2 ≈ 0.61. In our case, we have to adjust this value because of

the excluded classes, but we still have that gcd(p−1, q−1) = 2 with constant
positive probability, therefore whenever ordp(u) = ordq(u), then this quantity
is either 1 or 2. We examine these two cases in more detail.

• ordp(u) = ordq(u) = 1. This is only possible if u = 1, which cannot
be the case by the definition of the LO assumption, see Definition 2.1.

• ordp(u) = ordq(u) = 2. In this case ordN (u) = lcm(ordp(u), ordq(u)) =
2. Since u /∈ {1,−1}, therefore u is another non-trivial square root of 1.
This also implies that one can factor N as pq = N |u2−1 = (u−1)(u+
1) ∧ u /∈ {1,−1}. Therefore gcd(N, u− 1) = p ∨ gcd(N, u+ 1) = p.

Hence, we can conclude that for randomly chosen primes p, q with con-
stant probability ordp(u) 6= ordq(u).

Second, the goal of adversary B is to obtain all the prime factors of l.
For that end, adversary chooses a constant bound B, say 210. Hence, the
adversary would like l to be a B-smooth integer in order to be able to factor



A NOTE ON LOW ORDER ASSUMPTIONS IN RSA GROUPS 25

it efficiently. Whenever adversary receives order l (1 ≤ l ≤ 2poly(λ)) of u,
then adversary would like to find all of its prime factors in a brute force-
manner, but still in polynomial-time in λ. Namely, adversary B wants to find
l’s smallest prime factor l1, which is smaller than B. Suppose a1 is the largest
integer such that la1

1 |l. Then, recursively we would like to find the smallest
prime factor of l

l
a1
1
, denoted l2 which is smaller than B and so on.

This approach succeeds whenever B receives a pair (u, l) from A, where
l is B-smooth. This can be guaranteed if φ(N) has no prime factors between
B and 2poly(λ). Therefore, we compute now the fraction of those primes up
to N , that do not have prime factors between B and 2poly(λ). We need to
establish the fraction of primes up to N = O(2s(λ)), that do not have prime
factors in (B, 2poly(λ)]. Let us call these integers as low order smooth integers,
additionally let Plos be the probability that a randomly chosen integer is low
order smooth. We obtain the following asymptotic by applying Equation (2.5):

Plos(λ) = Γ(2s(λ), 2poly(λ),B)
2s(λ) ≈ 2s(λ)η(s(λ)/poly(λ), s(λ)/B)

2s(λ)(4.2)

≥ s(λ)/poly(λ)
2s(λ)/B = B

2poly(λ) .

Hence, we established that Plos is non-negligible in λ. It follows that the
probability that the order of a random RSA-modulus does not have a prime
factor in (B, 2poly(λ)] is P2

los, i.e. non-negligible. We can establish now the
success probability of adversary B breaking the Factoring assumption:

(4.3) Pr[B breaks Factoring] ≥ 6
π2 q(λ)P2

los(λ).

Therefore, we conclude our proof that the success probability of the effi-
cient adversary B is non-negligible.

We remark that in the reduction we could have allowed φ(N) to have a
single prime factor in (B, 2poly(λ)]. Once B factors out all the prime factors
smaller than B from the low order l, adversary B can establish in probabilistic
polynomial time whether the resulting integer is a prime power. If yes, then
also in those cases B can factor efficiently the low order l.

4.2. Another partial reduction using the generalized cycling attack. In this
section, we give a different reduction for Theorem 4.1 (Note that Theorem 4.2
is an equivalent restatement of Theorem 4.1). The high-level idea is that an
efficient low order adversary would be able to efficiently launch the generalized
cycling attack [SN77, Ber82] to factor RSA moduli such that φ(N) has no
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prime factor between a constant B (or equivalently a polynomial of λ) and
2log1+ε(λ), for ε > 0 and gcd(p− 1, q − 1) = 2.

This result might suggest that these two aforementioned conditions about
the modulus (low order smoothness and coprimality of p−1

2 and q−1
2 ) are not

arbitrary or incidental. It might imply that here, there is a barrier in reducing
the Factoring assumption to the Low Order assumption. Therefore, in practice
it might be useful or even necessary to prove that a modulus is safe against
low order adversaries. For that end, in Section 5, we describe an application
of a zero-knowledge proof system to certify RSA moduli being free of low
order elements.

Theorem 4.2. Let t(·) be a polynomial. The Factoring assumption is
reducible in polynomial time to the Low Order assumption for RSA-moduli
when φ(N) has no prime factor in (t(λ), 2log1+ε(λ)], for ε > 0 and gcd(p −
1, q − 1) = 2.

Proof. Suppose, there exists an efficient low order adversary A that
outputs a pair (u, l) with non-negligible probability such that ul ≡ 1 (mod N)
and 2 ≤ l ≤ 2log1+ε(λ). Express differently, there exists a polynomial q(λ), such
that

(4.4) Pr[A breaks LO] ≥ 1
q(λ) .

We devise an efficient adversary B who can factor non-negligible fraction
of random RSA moduli by using A as a subroutine. Adversary B operates
as follows. Upon receiving a random semiprime N it invokes A on Z∗N . By
our assumption, adversary A with non-negligible probability outputs a pair
(u, l), i.e. a low order element u with order l. In the following, we will take
advantage of the generalized cycling attack on RSA groups [Ber82].

In the generalized cycling attack an adversary can factor the mod-
ulus by generating a sequence of “reencryptions” of the element u with
public exponent e. Namely adversary B generates the sequence X =
(ue mod N, ue2 mod N, . . . , uek ≡ u mod N) and hopes to find a factor of
N by computing 1 < gcd(uei − u,N) < N for all 1 ≤ i ≤ k. The generalized
cycling attack could succeed at latest when B finds a cycle, i.e. finds a k such
that uek ≡ u (mod N). The low order adversary B applies u in the general-
ized cycling attack, since Theorem 2.7 by Chou and Shparlinski ensures that
u will have a small cycle length if its order is low.

Now, let us analyze when the generalized cycling attack will not yield a
factorization. The sequence X is eventually periodic, but might contain in
the beginning an aperiodic part. The element u is said to be purely periodic if
X does not have tail elements. Let π{X},p denote the period of the sequence
X mod p. Furthermore let e = pn1

1 · · · · · pnss and p − 1 = pr1
1 · · · · · prss ρ,

where p1, . . . ps are distinct primes and gcd(p1, . . . , ps, ρ) = 1. The generalized
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cycling attack does not yield a factorization, whenever the periods of the
sequence X mod p and q are equal, i.e. π{X},p = π{X},q [GS99]. To analyze
this situation we make the following case distinction.

• u is purely periodic: Let us assume that every element of X is in the
purely periodic part of the cycle. Let d = ordp(u) and d′ = ordq(u). It
is known that π{X},p = ordd(e) [CS04]. Hence, not having equal cycle
lengths is equivalent to ordd(e) 6= ordd′(e). A necessary requirement
of this is that d = ordp(u) 6= ordq(u) = d′.

• u is a tail element: If u is not in the purely periodic part of the cy-
cle, then d = ordp(u) does not divide ρ [CS04]. The tail lengths of
X modulo p is a function of ordp(u) [VS04]. Therefore, whenever
ordp(u) = ordq(u), the tail lengths of X modulo p and q are equal.
But, this also signifies that the periodic parts will have the same length
size.

In both cases we saw, that the generalized cycling attack does not pro-
duce a factorization, if ordp(u) = ordq(u). This implies that the reduction is
successful for the same type of moduli as stated in Theorem 4.1 and 4.2. We
already showed that these moduli amount to a non-negligible portion of all
random moduli in the proof of Theorem 4.1.

Lastly, we discuss the running time of the reduction and the success prob-
ability of the low order adversary B.

The generalized cycling attack can be launched efficiently, if adversary B
can find a small cycle length. To that end, B will use the pair (u, l) received
from the low order adversary A. The cycle length k of u under the map
u 7→ ue mod N is k = ord l(e) [BG98]. However, k can still be large, i.e.
k ∈ Θ(l) ≈ 2log1+ε(λ). Since N does not have factors in (t(λ), 2log1+ε(λ)],
therefore B can factor l by sieving up to t(λ). Let m be one of the factors of l
smaller than t(λ). Then by setting u := ul/m we will have that k = ordm(e),
i.e. in the generalized cycling attack every choice of exponent e will produce a
cycle length k ≤ m, which is polynomial in λ. This implies that the generalized
cycling attack, hence the reduction runs in polynomial time in λ.

Finally, we note, that the success probability of adversary B is at least
that of the low order adversary A. Namely, whenever a low order element
is found, B can launch a generalized cycling attack with a polynomial cycle
length k.

4.3. Practical consequences of the reductions. Hereby, we give an estimate on
the portion of RSA moduli used in practice, for which the reductions presented
in Section 4.1 and 4.2 guarantee an equal level of security for the LO problem,
as for the classical Factoring problem. Let ε = 0.6 and λ = 80, consequently,
the size of the moduli should be 1024 bits to provide λ-bit security.

OpenSSL is an open-source cryptographic library, which is widely used
and the most popular on the internet [ŠNS+16]. OpenSSL generates primes



28 I. A. SERES AND P. BURCSI

in a way that it ensures that no prime from 3 to 17863 divides p − 1. Let
S denote the following set, S = {(p − 1)/2 | pi - p − 1, 2 ≤ i ≤ 2048}, where
pi is the ith prime. Hence, the probability of coprimality for two randomly
sampled integers from S is limn→∞

∏n
i≥2049(1 − 1/p2

i ) ≈ 0.7499. Hence we
let B = 17863. The portion of integers having no prime factor between B

and 2log1.6(80) amounts to log(B)
log1.6(80) = 0.7389 that can be obtained by using

Weingartner’s theorem, cf. Equation (2.5).
Let us consider the reductions presented in Section 4.1 and 4.2. Theo-

rem 4.1 and 4.2 require that φ(N) does not have factors in (B, 2log1+ε(λ)] and
additionally, that gcd(p − 1, q − 1) = 2. Hence, we have that the probability
that an RSA modulus randomly generated by OpenSSL provides the same se-
curity guarantees for the LO assumption as for the Factoring is approximately
0.7389 · 0.7499 = 0.5541.

In summary, for the majority of RSA moduli used in practice, if one could
find a low order element, then they would be also able to factor those moduli
using the reductions introduced in Section 4.1 and 4.2.

5. Certifying RSA moduli free of low order elements

In certain use cases, e.g. in a public key infrastructure setting or for a
VDF, it might be useful if users could prove that their RSA-modulus is free
of low order elements. To that end, one could certify RSA moduli applying
techniques developed by Goldberg et al. [GRSB19].

Specifically, we assume a user wants to prove in zero-knowledge that their
RSA modulus N is free of low order elements. Express differently, a user
wants to show that φ(N) has no divisors smaller than a certain bound B.
Let pn denote the largest prime smaller than B. Then let e =

∏n
i=1 pi, where

pi is odd prime, i.e. e is the nth primorial divided by two. Consequently,
there cannot be elements mod N with order smaller than B if and only if
gcd(e,N) = 1. Put differently, N has no low order elements if and only if
x −→ xe mod N is a permutation. Applying the zero-knowledge proof system
for the language LpermZ∗

N
this can be proved efficiently [GRSB19].

In a typical parameter setting (1024-bit RSA moduli, 2−80 soundness error
for the certification,B = 210) the low order RSA public key certification would
consist of 50 elements of ZN . Hence the size of the proof amounts to 6.4KB.
Generating the certification costs roughly 50 full-length RSA exponentiations
modulo N , hence it is also feasible to calculate the proof in a distributed
RSA key generation scenario. Meanwhile, each verifier pays the one-time
cost of verifying the certification, which is also roughly equal to 50 full-length
exponentiations. We note that the number of elements consisting of the proof
and number of exponentiations the verifier needs to compute depends only
on the admitted soundness error of the proof system and not the size of the
moduli. More precisely, both quantities are roughly ≈ λ/ log 3.
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6. Open Problems

It is a fascinating open problem to explore more connections between novel
and standard RSA assumptions2. For instance, it would be fruitful to estab-
lish the relation of the Adaptive Root assumption [BBF18] and the (Strong)
RSA assumption. The Adaptive Root assumption underpins the security of
Wesolowski’s VDF construction [Wes19] and several batching techniques pro-
posed for RSA accumulators [BBF19].
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O pretpostavkama niskog reda u RSA grupama

István András Seres i Péter Burcsi

Sažetak. U ovom članku pokazujemo da su bitno slabije
pretpostavke niskog reda dovoljne za dokazati ispravnost Pietrza-
kovog protokola za dokaz potenciranja u grupama nepoznatog
reda. Ovo čini prvi korak ka boljem razumijevanju asimptotskog
računanja složenosti razbijanja ispravnosti protokola. Nadalje,
dokazujemo ekvivalentnost (slabije) pretpostavke niskog reda i
pretpostavke faktorizacije u RSA grupama za nezanemariv dio
modula. Tvrdimo da se u praksi naša redukcija odnosi na znatan
broj rasporedenih modula. Naši rezultati imaju kriptografske
primjene, od kojih su najvažnije u teoriji nedavno predložene
konstrukcije provjerljive funkcije kašnjenja. Na kraju, opisujemo
kako certificirati RSA module koji nemaju elemente niskog reda.
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