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Abstract: In intelligent buildings, the power is distributed in the direct current (DC) mode, which is more energy-efficient than the traditional alternating current (AC) mode. 
However, the DC distribution system for intelligent buildings faces many problems, such as the stochasticity and intermittency of distributed generation, as well as the 
uncertain reliability of key supply and distribution devices. To solve these problems, this paper evaluates and predicts the reliability of the DC distribution system for intelligent 
buildings through big data analysis. Firstly, the authors identified the sources of the big data on DC distribution system for reliability analysis, and constructed a scientific 
evaluation index system. Then, association rules were mined from the original data on the evaluation indices with MapReduce, and a reliability evaluation model was 
established based on Bayesian network. Finally, the proposed model was proved valid through experiments. The research provides reference for reliability evaluation of the 
DC distribution system in various fields. 
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1 INTRODUCTION 
 

Recent years have witnessed the proliferation of the 
Internet of things (IoT) and the rapid development of the 
IoT technologies. This stimulates a growing demand for 
internal-external information exchange, safety, comfort, 
convenience, and energy conservation of buildings [1-4]. 
Focusing on user experience, intelligent buildings have set 
an energy-saving trend in the building industry. As long as 
the power supply is configured reasonably, intelligent 
buildings will achieve the energy-saving goal of green 
building design [5-7]. 

The energy efficiency of intelligent buildings can be 
magnified by direct current (DC) distribution. Compared 
with the traditional alternating current (AC) distribution 
mode, the DC distribution mode makes electric energy 
controllable, and facilitates the access of electronic 
devices, and distributed power sources, such as wind 
turbines and photovoltaic (PV) devices. The DC 
distribution system has great advantages in energy 
conservation and supply efficiency [8-10]. 

The domestic research on DC distribution system has 
just started. Most of the existing studies focus on 
topological design, key device control, and energy 
management, with inadequate research into system 
reliability [11-14]. By the minimum cut-set method, Shi et 
al. [15] qualitatively analyzed the reliability of DC 
distribution system, and proved through experiments that 
equipment-level redundancy design brings a better DC 
distribution reliability than component-level redundancy 
design. Li [16] compared DC and AC distribution systems, 
which contain PV power, under different strategies for 
energy coordination, evaluated the reliability of each 
system through failure mode and consequence analysis, as 
well as sequential Monte Carlo simulation, and drew an 
important conclusion: without considering the processing 
features of distributed generation and its impact on 
distribution system, the AC distribution system is more 
reliable than the DC distribution system. He et al. [17] 
simulated the power supply of four DC distribution modes 
on MATLAB, using the coordinated supply strategy for 
AC power source, distributed generation, and energy 
storage devices, and used the traditional reliability index to 
measure the reliability of the DC distribution systems with 
ring structure or the two-end structure. 

Thanks to the progress in information technology, big 
data technology has been widely adopted by many 
industries. The reliability of the distribution system could 
be effectively enhanced, if big data management is 
integrated with the distribution system operation to mine 
the massive data collected by power detectors and sensors 
[18-21]. Through association analysis and clustering 
optimization, Wang et al. [22] determined the relationship 
between historical states and fault features of devices, and 
established a multi-dimensional evaluation index system 
for reliability evaluation of the power system, based on the 
difference evaluation results of electronic devices. Relying 
on principal component analysis (PCA) and association 
analysis, Gerber et al. [23] extracted, examined, and 
evaluated the faults and defects of electronic devices, 
obtained the key characteristic parameters of the fault 
devices, combined them into a parameter set, and evaluated 
the reliability of the distribution system through parameter 
weighting and thresholding. To realize effective and 
accurate reliability evaluation of the distribution system, 
Emjedi et al. [24] combined big data algorithms like 
clustering and association analysis with simulation 
strategies like Monte Carlo method, Bayesian network, and 
Markov model, and incorporated highly repetitive fault 
features and fault factors into the reliability index. 
Moshkbar-Bakhshayesh et al. [25] coupled Monte Carlo 
method with neural network to collect decentralized and 
adaptive input data, and proved that this hybrid method 
supports faster evaluation than sampling a single form of 
input data. 

The DC distribution system for intelligent buildings 
faces many problems, such as the stochasticity and 
intermittency of distributed generation, as well as the 
uncertain reliability of key supply and distribution devices. 
To solve these problems, this paper designs a reliability 
evaluation algorithm of the DC distribution system for 
intelligent buildings, drawing on the merits of big data 
mining in data analysis and processing. After the big data 
analysis, a reliability evaluation model was established for 
the DC distribution system in intelligent buildings. 

The rest of this paper is organized as follows: Section 
2 enumerates the sources of the big data on the DC 
distribution system, defines technical route for reliability 
evaluation, constructs an evaluation index system from the 
level and degree dimensions, and determines the key 
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indices through the PCA; Section 3 mines the association 
rules from the original data on the evaluation indices with 
MapReduce; Section 4 sets up a reliability evaluation 
model established based on Bayesian network, and 
explains the workflow for evaluating the reliability of DC 
distribution system in intelligent buildings; Section 5 
demonstrates the effectiveness of our model through 
experiments; Section 6 summarizes the research findings. 

 
2 EVALUATION INDEX SYSTEM 
2.1 Big Data Sources  

 
Traditional buildings usually adopt the AC distribution 

mode, which has a low supply reliability and a poor power 
quality. Besides, power users are in desperate need of 

intelligent and high-quality power supply. Therefore, it is 
necessary to design the supply structure for intelligent 
buildings rationally by optimizing the relevant devices, 
while controlling the distribution cost. The DC distribution 
system for intelligent buildings can improve the supply 
reliability in two aspects: 

(1) From the angle of the large grid, the system ensures 
the supply stability in the large grid, laying the basis for 
long-term, centralized, and intelligent supply and 
distribution for AC/DC micro grids. 

(2) From the angle of users, the system enhances the 
quality and reliability of local power supply, and provides 
customized, decentralized, and intelligent supply and 
distribution for users. 

 

 
Figure 1 DC distribution system for intelligent buildings 

 

 
Figure 2 Sources of big data on system reliability 
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Figure 3 Technical route of reliability evaluation 

 
The DC distribution system for intelligent buildings is 

a DC bus-driven distributed supply and distribution 
system. Fig. 1 shows the structure of such a system with 
high power quality supply reliability. Specifically, the DC 
bus coordinates and control various distributed DC power 
sources, namely, PV generators, wind turbines, and 
batteries. Meanwhile, the bus transmits the rectified 
AC/DC power to users on demand. 

Focusing on the reliability of the DC distribution 
system for intelligent buildings, the massive amount of 
multi-source data on the system, which are collected by the 
scheduling and monitoring system, were divided into four 
categories: basic data, operation data, supply-demand data, 
and environmental data.  

The sources of the big data on system reliability are 
presented in Fig. 2. The above data comes from the 
operation monitoring platform of intelligent building 
power companies and the data processing unit of intelligent 
building distribution system. 

Fig. 3 shows the technical route of reliability 
evaluation for the DC distribution system in intelligent 
buildings in the context of big data. 

 
2.2 Construction of Evaluation Index System 

 
This paper aims to accurately evaluate the reliability of 

the DC distribution system for intelligent buildings in the 
context of big data. To realize this goal, it is important to 
assess the mean reliability of key components, devices, and 
the system under different load conditions on a monthly 
basis. Following the design principles of the system, this 
paper builds a comprehensive yet concise three-layer 
hierarchical system of both qualitative and quantitative 
indices. The indices belong to four levels: component level, 
node level, regional level, and system level. 

Goal layer: 
R = {Reliability of the DC distribution system for 

intelligent buildings}. 
Criteria layer: 
R = {R1, R2, R3, R4} = {component level, node level, 

regional level, system level}. 

Alternative layer: 
R1 = {R11, R12, R13, R14, R15, R16} = {safety 

probability of component current, safety margin of 
component current, out-of-limit probability of component 
current, out-of-limit expectation of component current, 
probability of load shedding induced by out-of-limit of 
component current, expectation of load shedding induced 
by out-of-limit of component current}. 

R2 = {R21, R22, R23, R24, R25, R26, R27, R28, R29, 
R210} = {safety probability of node voltage, upper limit of 
safety margin of node voltage, lower limit of safety margin 
of node voltage, out-of-limit probability of node voltage, 
expectation of node voltage violating upper limit, 
expectation of node voltage violating lower limit, 
probability of node load shedding, expectation of node 
power shortage, expectation of node power overload, 
availability of node power supply}. 

R3 = {R31, R32, R33, R34, R35, R36, R37, R38, R39, 
R310, R311, R312} = {safety margin of regional voltage, 
safety probability of regional voltage, safety margin of 
regional current, safety probability of regional current, out-
of-limit probability of regional current, out-of-limit 
expectation of regional current, out-of-limit probability of 
regional voltage, out-of-limit expectation of regional 
voltage, shedding probability of regional voltage, 
expectation of regional power shortage, expectation of 
regional power overload, availability of regional power 
supply}. 

R4 = {R41, R42, R43, R44, R45, R46, R47, R48, R49, 
R410, R411, R412} = {safety margin of system voltage, 
safety probability of system voltage, safety margin of 
system current, safety probability of system current, out-
of-limit probability of system current, out-of-limit 
expectation of system current, out-of-limit probability of 
system voltage, out-of-limit expectation of system voltage, 
shedding probability of system voltage, expectation of 
system power shortage, expectation of system power 
overload, availability of system power supply}. 

Based on the degree dimension, the above indices were 
divided into three groups: the margin indices reflecting the 
health or critical state of the system (R11, R12, R21, R22, 
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R23, R31, R32, R33, R34, R41, R42, R43, and R44); out-
of-limit indices (R13, R14, R24, R25, R26, R34, R35, R36, 
R35, R36, R37, and R38); load shedding indices (R15, R16, 
R27, R28, R29, R210, R39, R310, R311, R312, R49, R410, 
R411, and R412). The latter two groups jointly represent 
the risk state of the system.  

The above indices were selected through overall 
consideration of the safety and energy efficiency of DC 
distribution system for intelligent buildings. The 
processing of index data is detailed in subsection 2.3. 

Fig. 4 explains the evaluation process for system 
reliability.The output data of each sensor were extracted 
online and subjected to overrun detection. In this way, the 
operating state of intelligent building distribution system 
was recognized, and then the switching load was detected. 
Based on the historical operating data of massive elements, 
the margin indices were predicted according to the 
estimated operating state of the system. 

 

 
Figure 4 Quantitative evaluation of system reliability 

 
2.3 PCA 

 
To eliminate the various redundant information, the 

PCA was performed on the above evaluation index system 
to remove the repetitive or strongly correlated indices: 

Step 1. Normalization 
To solve the multidimensionality of the indices, the 

data on every index was normalized by: 
 

   N R R /             (1) 

 
where, R and ε are the mean and standard deviation of the 
tertiary index, respectively. 

Step 2. Construction of correlation matrix 
Let cov(Ri, Rj) be the covariance between two tertiary 

indices. Then, the strength of the linear relationship 
between the two indices was measured by Pearson 
correlation coefficient: 
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The correlation matrix P of m tertiary indices was 

established as: 
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Then, the eigenvalues λ1, λ2, …, λn and eigenvectors v1, 

v2, …, vm were sorted in descending order by: 
 

0A P              (4) 

 
Step 3. Determination of principal components 
The percentage of variance explained (PVE) of the k-

th index, denoted as PVEk, was calculated by:  
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Then, the cumulative percentage of variance explained 

(CPVE), denoted as σ, was calculated by: 
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The minimum of σ was determined according to the 

structural complexity of the DC distribution system 
structure for intelligent buildings. If the σ value is greater 
than the minimum, sp will be determined as a principal 
component. Thus, the σ value and its minimum jointly 
determine the number of principal components P: S = {s1, 
s1, …, sP}. The P principal components carry most of the 
information in the m tertiary indices. 

Step 4. Determination of key indices 
Let L = [ρ(sp, Ri)] be the load matrix of principal 

components, where ρ(si, Ri)∈[−1, 1] is the correlation 
coefficient between the p-th principal component sp and the 
i-th index Ri . The closer the ρ(si, Ri) value is to −1, the more 
negative is the correlation; the closer the value is to 1, the 
more positive is the correlation.  

During the evaluation of system reliability, there is no 
need to process all the data on the 40 tertiary indices. 
Referring to the load matrix L, the index Ri corresponding 
to the maximum of |ρ(sp, Ri)| was selected as a key index. 

 
3 MAPREDUCE-BASED ASSOCIATION RULE MINING 

 
The operation reliability of the DC distribution system 

for intelligent buildings is affected by various factors. To 
build an accurate and fast reliability evaluation model, this 
paper introduces the improved Apriori algorithm in 
MapReduce under Hadoop framework. The operating 
mode and anomaly treatment are detailed as follows: 

Firstly, the global frequent itemsets were mined from 
the original data on the indices of system reliability, the 
association rules were generated, and the support and 
confidence were calculated (See subsection 3.1 for details 
on this step). Next, the minimum support threshold and the 
minimum confidence threshold were defined according to 
the power and demand of the system, and the energy 
management strategy. Then, the association rules with 
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support and confidence greater than or equal to the 
minimum thresholds were searched for, completing the 
parallel mining of association rules for the indices in the 
context of big data (See subsection 3.2 for details on this 
step). 

 
3.1 Traditional Apriori Algorithm 

 
Global frequent itemsets are prepared by joining and 

pruning frequent itemsets. The frequent itemset of t − 1 can 
be expressed as Ft−1 = (f1, f2, …, fP). The two itemsets 
contained in Ft−1 can be defined as: 
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The two itemsets could be automatically connected 

under the following condition: 
 

   1 1 2 2 2 2i j i j i t j tf f f f f f       
               (8) 

 
The connection between the two itemsets generates the 

t-th candidate set Ct. If the t-1-th item subset of any sub 
itemset is not in the t − 1-th frequent itemset Ft−1, then Ct 
is not a frequent itemset, and should be deleted to reduce 
the computing load. 

 
3.2 Association Rule Mining based on Supply and Demand 

 
To simplify the traversal of historical data on the 

indices and mine the association rules out of the multi-
source big data, this paper regards the influence of user 
supply and demand on system reliability as the impact on 
the historical data,and improved the Apriori algorithm. 
Below are the details about the association rule mining 
algorithm for reliability evaluation. 

Firstly, association mining was carried out on the 
influence characteristics. Let characteristics ICt−1 = (IC1, 
IC2, …, ICP) be the t − 1-th frequent itemset of the 
influence characteristics; ICi = (ICi1, ICi2, ..., ICiB) be the 
influence characteristic set of the i-th index; support and 
Confidence be the support threshold and confidence 
threshold, respectively. The hypothetical parameters were 
calculated as follows: 

After traversing the dataset on the indices, the 
correlation matrix of the set User of A users on the 
influence characteristic set ICi was constructed as:  
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During the traversal of the dataset, if the supply and 

demand of the a-th user appears in the data on the b-th 
index, then the value in row a and column b of the 
correlation matrix equals 1; otherwise, it equals 0. The 
support of the b-th influence characteristic, ICib, was 
calculated by adding up column b of matrix REL(i): 
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where, ΣNumb is the sum of the support of ICib. Then, the 
columns smaller than support were removed from the 
matrix, producing a frequent itemset F1. The candidate 
itemset C2 could be automatically connected by F1. The 
corresponding support was calculated by: 
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where, ° is the operator of the number of associations 
between ICib and ICic. Next, the columns smaller than 
support were removed from the candidate itemset C2 to 
obtain the frequent itemset F2 of the two itemsets. If t > 3, 
the frequent itemset Ft−1 is self-connected to the candidate 
itemset Ct . The corresponding support was calculated by: 
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Through iterative updating, the t-item frequent itemset 

ICt was obtained by: 
 

  1 support supportt tIC C |            (13) 

 
Through the self-connection by ICt, the candidate 

itemset Ct+1 could be obtained. If Ct+1 is not an empty set, 
the frequent itemsets ICt-1 should be reconnected; if Ct+1 is 
an empty set, it is necessary to judge the confidence matrix 
Confidence(i), which stores the confidence between the 
characteristics in the influence characteristic set ICt.  

After initializing Confidence(i), the confidence of each 
frequent attribute of the t-item frequent itemset ICt was 
calculated by:  
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If it is greater than the confidence threshold, 

Confidence(i) was updated, and the corresponding 
association rules were outputted. 

According to the association rules and confidence 
matrix, the correlations of uncorrelated indices were 
predicted and rated by the following steps: 

Step 1. By traversing the data on the indices, the 
authors set up the user supply-demand matrix PM(i), index 
score matrix TSM(i), and influence characteristic score 
matrix ICM(i): 
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where, A is the number of user supply-demand items; B is 
the number of influence characteristics in ICi; ηi-ab is the 
influence characteristic ICib in ICi embodied in item a (if 
ηi−ab = 1, item a contains impact characteristic ICib; if ηi−ab 

= 0, item a does not contain impact characteristic ICib). The 
index scores on multiple supply-demand items were 
summarized to obtain the index score matrix TSM(i): 
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where, C is the number of indices; ξi−bc is the cumulative 
value of impact characteristic ICib on index c (if ξi−bc = 1, 
index c has the cumulative score of ICib; if ξi−bc = 0, index 
c does not have the cumulative score of ICib). The influence 
characteristic score matrix ICM(i) was established as: 
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where, each column vector is the cumulative score of 
impact characteristic ICib on index c; each row vector is the 
cumulative score of all supply-demand items on ICib. 

Step 2. Based on TSM(i) and Confidence(i), the score 
of index c on impact characteristic ICib was predicted by: 

 

     max Confidencei bcps i i           (18) 

 
All the predicted scores PS(i) were combined into a 

predicted score matrix ps(i). By traversing PS(i) and 
replacing the zeros with the corresponding values of 
TSM(i), the final predicted score matrix PS*(i) was 
established for the influence characteristics of reliability 
evaluation. 

Step 3. Let μi be the coefficient of a supply-demand 
item. Then, a predicted score matrix PR(i) was established 
for the influence of related items on reliability evaluation:  
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The final predicted score matrix PR*(i) was obtained 

by traversing PR(i) and replacing the zeros with the 
corresponding values of ISM(i). 

 
 
 

4 CONSTRUCTION OF RELIABILITY EVALUATION 
MODEL  

4.1 Logical Relationship in Bayesian Network 
 
According to the technical route in Section 2, the nodes 

of Bayesian network for reliability evaluation were divided 
into five categories: (1) component level nodes for 
distribution components like transformers, converters, 
power lines, and disconnectors; (2) joint nodes about the 
effect of disconnectors and power lines; (3) virtual nodes 
(indirect nodes) that simplifies the calculation; (4) regional 
level nodes reflecting user load; (5) a system level node 
representing the DC distribution system. The joint and 
virtual nodes were both regarded as elements on the node 
layer. Thus, the network nodes correspond to the four 
levels of the indices: component level, node level, regional 
level, and system level. 

Referring to the association rules of the influence of 
supply-demand items on reliability characteristics, the 
relationship between network nodes on adjacent levels was 
categorized into four classes: and, or, joint, and causal. As 
shown in Tab. 1, the logical relationship between 
component node and virtual node is and / or; that between 
joint nodes is joint; that between joint node, virtual node, 
and regional node is and / or; that between regional node 
and system node is causal. Note that p stands for the failure 
probability of joint nodes X and Y (its value equals the ratio 
of the opening time of disconnector to line repair time, in 
the event of line fault); nX and nY are the number of users 
corresponding to nodes X and Y2, respectively. The failure 
probability of the distribution system could be one of the 
four values: 0, nY/(nX + nY), nX/(nX + nY) and 1. 

 
Table 1 Logical relationship between nodes in Bayesian network 

Logical relationship A B Failure probability 

and 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

or 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

joint 
0 0 0 
1 0 p 

causal 

0 0 0 
0 1 nY/(nX + nY) 
1 0 nX/(nX + nY) 
1 1 1 

 
4.2  Reliability Modeling of Key Devices 

 
(1) Modular multilevel high-frequency DC 

transformer (MDCT) 
To control the stress on low-voltage components, the 

MDCT is widely adopted in the DC distribution system for 
intelligent buildings, which reduces the number of power 
modules. The MDCT mainly consists of four modular 
multi-level converter (MMC) bridge arms, an internal and 
external valve cooling system, an AC/DC module, a high-
frequency transformer, and a protection and control 
system. The reliability of the MDCT can be calculated by: 
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where, RMMC(t), RVCS(t), RAC/DC(t), RHFT(t), and RC&P(t) are 
the reliabilities of the MMC bridge arm, valve cooling 
system, AC//DC conversion module, high-frequency 
transformer, and protection and control system, 
respectively; RHBM(t), and RL(t) are the reliabilities of half-
bridge module (HBM) and reactor L of the MMC bridge 
arm, respectively; RVICS(t) and RVOCS(t) are the reliabilities 
of internal and external cooling systems, respectively; 
RIGBT(t) and RC(t) are the reliabilities of the insulated-gate 
bipolar transistor (IGBT) and filter capacitor C in the 
AC/DC module, respectively. Considering the active 
standby design, the failure rate of the MDCT can be 
expressed as: 
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where, fMMC(t), fVCS(t), fAC/DC(t), fHFT(t), fC&P(t), fVICS(t), and 
fVOCS(t) are the failure rates of the MMC bridge arm, valve 
cooling system, AC//DC conversion module, high-
frequency transformer, and protection and control system, 
respectively; fIGBT(t) and fC(t) are the failure rates of the 
IGBT module and filter capacitor C in the HBM or AC/DC 
module, respectively; fPSF(t) is the failure rate of power 
supply. Tab. 2 shows the failure rate of each component in 
the MDCT. 

(2) DC circuit breaker 
So far, there is no engineering application of DC 

circuit breaker in medium voltage DC distribution systems. 
This paper selects the hybrid DC circuit breaker (HDCB), 
which combines the strengths of mechanical and all solid 
state DC circuit breakers, for reliability modeling. The 
failure rate of active standby design can be described by: 
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where, fR and fVD are the failure rates of resistors and 
diodes, respectively; fLA  nLA is the failure rate of nLA 
arresters; fMS is the failure rate of mechanical switches. 

Tab. 3 shows the failure rate of each component in the 
HDCB. 

 
Table 2 Failure rate of each component in the MDCT 

Components 
Failure rate  

(times / year) 
Element 
factor 

HBM 
IGBT 0.001546 2 

C 0.001271 1 
L 0.008416 1 

Valve cooling 
system 

Internal cooling 
system 

0.02109 1 

External cooling 
system 

0.008812 1 

AC/DC module 
IGBT 0.009473 4 

C 0.000512 1 
High-frequency transformer 0.002412 1 

Protection and control system 0.412568 1 

 
Table 3 Failure rate of each component in the HDCB 

Components 
Failure rate  

(times / year) 
Element factor 

IGBT 0.004125 1 
C 0.005218 1 
R 0.000623 1 

Diode 0.001458 1 
Arrester 0.001873 nLA 

Mechanical switch 0.004711 1 
Protection and control system 0.126477 1 

 
(3) Converter station 
The reliability parameters of the conventional line 

commutate converter (LCC) can be obtained from the 
statistics of International Council on Large Electric 
Systems (CIGRE). In this paper, the emerging voltage 
source converter (VSC) is selected for reliability modeling. 
The converter station is mainly composed of an AC system 
and auxiliary devices, a converter valve, a DC device, and 
a protection and control system. The failure rate of the 
converter station with active standby design can be 
calculated by: 
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For the AC system and auxiliary devices, DC device, 

and protection and control system, the corresponding 
reliability parameters can be determined by quantifying the 
difference between LCC and VSC converters: 

 

VSC
VSC LCC

1 LCC
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V

i

i i

f f





 





               (24) 

 
where, fLCC and fVSC are the failure rates of the 
corresponding components of LCC and VSC converter 
stations, respectively; λLCC−i and λVSC−i are the influence 
degree of the i-th element in the reliability model of the 
corresponding component on the failure rate of the 
component. Tab. 4 shows the failure rate of each 
component in the VSC converter station. 
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Table 4 Failure rate of each component in the VSC converter station 

Component 
Failure rate   

(times / year) 
Failure duration / h 

AC system and auxiliary devices 0.3216 8.8566 
Converter valve 2.5411 18.451 

DC device 0.9470 1.9841 
Protection and control system 1.2433 2.5936 

 
(4) Wind generation system and PV system 
Distributed generation systems generally have a 

complex structure of multiple components. The failure rate 
of any component could affect the failure rate of the entire 
system. This paper models the reliability of a wind 
generation system, which can be connected to the low-
voltage DC bus of intelligent buildings. The system 
encompasses wind turbine, AC/DC module, rack cable, 
DC circuit breaker, and DC bus. Based on the two system 
states (fault shutdown vs. normal operation), the system 
was split into two subsystems: generator-rack cable-
AC/DC circuit breaker, and DC bus. The former represents 
the fault of generator outage, and the latter, the fault of 
system outage. Then, the system failure rate can be 
expressed by: 

 

   
WP WPS1 WPS2

WT AC/DC RC HDCB CB

f f f

f f f f f
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where, fWPS1 and fWPS2 are the failure rates of the two 
subsystems, respectively; fWT, fRC, and fCB are the failure 
rates of wind turbine, rack cable, and DC bus, respectively. 
Let tWT, tAC/DC, tRC, tHDCB, and tCB be the mean outage 
durations of wind turbine, DC/DC module, rack cable, DC 
circuit breaker, and DC bus, respectively. Then, the annual 
mean failure duration of the wind generation system can be 
expressed by: 
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Similarly, the PV system was divided into four 

subsystems: PV module-DC bus-anti-counter current 
diode, DC output circuit breaker-DC input circuit breaker-
anti-counter current diode, AC/DC module-DC circuit 
breaker, and DC bus. The four subsystems characterize the 
failure rates of one PV module, a group of PV modules, 
several groups of PV modules, and the PV system, 
respectively. Then, the system reliability can be expressed 
by: 
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where, fPPS1, fPPS2, fPPS3, and fPPS4 are the failure rates of the 
four subsystems, respectively; fPM, fDF, and fDC/DC are the 
failure rates of the PV module, DC bus, and DC/DC 

module, respectively; nPM is the number of PV panels in a 
PV module. Let tPM, tDF, tVD, and tDC/DC be the mean outage 
time of PV module, DC bus, anti-counter current diode, 
and DC/DC module, respectively. Then, the annual mean 
failure duration of the PV system can be expressed by: 
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(5) Energy storage 
The energy produced by distributed generation 

systems is highly intermittent, stochastic, and volatile. The 
DC distribution system for intelligent buildings covers 
wind power generation system, PV system, and energy 
storage. Among them, the energy storage system is critical 
to the smoothing of voltage and current. Here, the 
reliability of the large capacity, durable lithium titanate 
battery is denoted by fSOC. 

 
4.3 System Reliability Evaluation based on Bayesian 

Network 
 
The supply-demand curve of the DC distribution 

system for intelligent buildings changes constantly from 
time to time. Considering the failure series of the system, 
the system operation in a year was divided into Q periods. 
It was assumed that the state of each component remains 
constant in each period, and the durations of failure state 
and normal state of each component obey exponential 
distribution. The mean failure duration and mean normal 
duration of each component were taken as the minimum 
durations of the two states, TF-min and TO-min, respectively. 
Within TF-min and TO-min, whether a node on a level of the 
distribution system fails or works normally depends on its 
logical relationship with other associated nodes, that is, the 
association rules about the influence of user supply-
demand on reliability. On this basis, the parallel operation 
of distributed generation and AC grid was adopted to 
evaluate the reliability of the distribution network with 
distributed generation: 

Step 1. Initialize the reliability parameters, energy 
storage parameters, historical wind speed, historical 
radiation intensity, building load, and other data of the DC 
distribution system. Set the simulation interval to 1h, the 
system confidence probability to 0.95, and the calculation 
accuracy to 10−6. 

Step 2. Compute the power outputted by wind 
generation system (PWP) and PV system (PPP), according to 
the historical data on wind speed and radiation intensity, 
and calculate the total power produced by distributed 
generation: ∑P = PWP + PPP. Then, simulate the time series 
of distributed generation, and deduce the ratio of 
distributed generation in annual power generation from the 
grid supply. After that, sample the data from all 
components of the system, and establish a time series of 
long-year operation state. 
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Figure 5 Bayesian network of the DC distribution system for intelligent buildings 

 

 
Figure 6 Flow chart of system reliability evaluation based on Bayesian network 

 
Step 3. Perform time series simulation to analyze each 

load node, according to the association rules reflecting the 
influence of user supply-demand on reliability, i.e., and, or, 
joint, and causal, within TF-min and TO-min, thereby 
determining the minimum TF-min and TO-min for each 
component. 

Step 4. Analyze the system state based on the fault rate 
of each component, and calculate the load shedding 
coefficient θ of the corresponding component under each 
system state. The θ value falls in [0, 1]. If θ = 1 or 0, the 
system is normal or failed; if 0 < θ < 1, the θ value reflects 
the load shedding induced by the failure of different 
components in the system. 

Step 5. Judge whether there is island operation in the 
DC distribution system for intelligent buildings, i.e., the 
load node is connected with the distributed generation or 
energy storage, rather than the AC grid. If the island 
operation does not exist, classify all user loads under each 
system state based on their supply-demand situation:  

Class I: a load that operates normally, without being 
affected by fault component or device. 

Class II: a load whose supply can be restored via power 
transmission. 

Class III: a load whose supply cannot be restored. 
Next, count the power grain/loss states of various 

loads, and adds up the duration and times of outages within 
TF-min and TO-min. 

If the island operation exists, divide all user loads into 
four types: Classes I-III are the same as above; Class IV 
refers to any load only powered by distributed generation. 
Then, analyze Class IV loads by the following strategies of 
energy storage and load shedding: 

(a) If the total power produced by distributed 
generation surpasses the power demand of the users, judge 
whether the energy storage is saturated in the current 
period. If yes, do not charge the energy storage system; 
otherwise, charge the system. 

(b) If the total power produced by distributed 
generation falls short of the power demand of the users, 
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judge whether energy storage reaches the minimum in the 
current period. If yes, do not discharge the system; 
otherwise, discharge the system.  

Since the discharge power of energy storage system 
cannot exceed the maximum discharge power, if the 
discharge power exceeds the maximum level, control it to 
the maximum level. In addition, the discharge of 
distributed generation and energy storage is not enough to 
meet the power demand of all users. Therefore, implement 
the load shedding strategy. If the discharge power lies 
below the maximum level, analyze the power gain/loss 
states of various loads according to the logical relationship, 
provided that the discharge time of energy storage is 
greater than 2 min; implement load shedding, provided that 
the discharge time is not greater than 2min. 

Step 6. Using the Bayesian network in Fig. 5, 
determine the state and duration of each load node in TF-min 

and TO-min. 
Step 7. Judge whether the number of cycles reaches the 

preset value. If not, return to Step 3. Add up the parameters, 
such as failure duration of the system and the number of 
outage users, to obtain the reliability of the system during 
the simulation, i.e., the ratio of the failure duration to the 
simulation period. 

Step 8. Judge whether the convergence criterion is 
satisfied. If yes, update the period to evaluate the reliability 
of the distribution system in the new period. Otherwise, 
return to Step 3. 

Fig. 6 provides the chart of system reliability 
evaluation based on Bayesian network. 

 
5 EXPERIMENTS AND RESULTS ANALYSIS 

 
To verify the effectiveness of our model, this paper 

selects the DC distribution system for intelligent buildings 
in an industrial park, Shenzhen, southern China, as an 
example. The original data on the evaluation indices were 
sampled at an interval of 15 min. In total, the collected data 
amounted to 1.23 G. Overall, there were 40 indices, 
including 6 on the component level, 10 on the node level, 
12 on the regional level, and 12 on the system level. To 
obtain the difference between index data, the CPVEs of 
core indices were counted. By Eqs. (5) and (6), the PVE 
and CPVE of each index were calculated. The calculation 
results are partly presented in Tab. 5. 

Table 5 The PVEs and CPVEs of key indices 
Component Eigen value PVE / % CPVE / % 

Principal component 1 7.5429 0.2662 64.241 
Principal component 2 5.4381 0.1819 76.456 
Principal component 3 3.9164 0.1382 87.287 
Principal component 4 2.1772 0.0758 96.473 
Principal component 5 1.9618 0.0682 97.480 
Principal component 6 1.9426 0.0685 98.633 
Principal component 7 1.8056 0.0624 98.996 
Principal component 8 1.5414 0.0532 99.933 
 Principal component 9 1.0045 0.0354 99.996 
Principal component 10 1.0013 0.0353 100.00 

 
The 40 indices were ranked by their PVEs. The CPVE 

of the top 10 principal components reached 98.51%.The 
indices corresponding to the ten principal components 
were treated as the key indices, and sorted in descending 
order as: shedding probability of system voltage, out-of-
limit probability of system voltage, expectation of system 
power shortage, availability of system power supply, safety 
margin of regional current, safety probability of regional 
current, lower limit of safety margin of node voltage, upper 
limit of safety margin of node voltage, safety probability of 
component voltage safety probability, and safety margin of 
component voltage. 

To disclose the correlation between the support 
threshold and the number of association rules. Different 
thresholds and threshold intervals were configured to 
compute the F1-score of the final recommendation. The 
support interval was set to 0.01, and the confidence interval 
was set to 0.1. 

As shown in Fig. 7a, the F1 value increased with the 
support threshold, peaking at the threshold of 0.026. As the 
threshold grew, the number of indies for association rules 
was reduced, but the evaluation quality and efficiency were 
on the rise. The optimal mining effect was achieved at the 
threshold of 0.026, which was taken as the support 
threshold for the following analysis. 

Next, different confidence thresholds were set to verify 
the quality of association rules with the number of indices. 
As shown in Fig. 7b, the F1 value slightly increased with 
the growing confidence threshold. The largest F1 was 
observed at the threshold of 0.122. Thus, the quality of 
association rule mining improves with the increase of the 
confidence threshold, and reaches the optimal state at the 
threshold of 0.122. 

 

 
           (a) Support threhsold                                                                                       (b) Confidence threhsold 

Figure 7 Relationship between support threhsold, confidence threshold, and F1 value 
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  (a) Minimum support threshold                                                                                (b) Number of indices 

Figure 8 Relationship between minimum support threshold, number of indices, and generation time of frequent itemsets 
 

Table 6 Reliability parameters of system components 

Component 
Failure rate   

(times / year) 
Failure duration / 

h 
DC bus 0.0016 km 2.5 

DC cable 0.055 km 28 
DC/AC module 0.0065 24 
DC transformer 0.4518 15 
AC transformer 0.0094 240 
DC/DC module 0.0088 18 

DC circuit breaker 0.4775 14 
Converter station 3.4179 9 

Energy storage system 0.2172 24 
Wind power generation system 2.4078 600 

PV system 0.0081 38 

 
To validate the proposed association rule mining 

algorithm, comparative experiments were conducted 
against traditional Apriori algorithm [9, 10], double 
threshold optimization [12], and orthogonal linked list 
optimization [14]. As shown in Fig. 8, the generation time 
of frequent itemsets decreased with the increase of support 
threshold, when the number of indices was fixed. Our 
algorithm consumed the shortest time among all 
contrastive algorithms. When the support threshold was 
fixed, the generation time of frequent itemsets decreased 
with the growing number of indies. Our algorithm still 
consumed shorter time than the other algorithms. The 
comparison fully demonstrates the effectiveness and 
efficiency of our algorithm. 

 
Table 7 User load parameters 

Load 
point  

Number of 
users 

Mean load / 
MW 

Load type 
Load shedding 

priority 
U1 12 12.128 Class Ⅳ Level 1 
U2 10 21.941 Class Ⅳ Level 2 
U3 12 15.644 Class Ⅳ Level 3 
U4 13 14.593 Class Ⅲ  
U5 11 12.478 Class Ⅰ  
U6 9 11.647 Class Ⅰ  
U7 14 22.433 Class Ⅱ  
U8 12 24.452 Class Ⅲ  

 
The selected DC distribution system mainly includes a 

wind power generation system, a PV system, an energy 
storage, 8 load points, 93 users, and several other 
components. Tabs. 6 and 7 provide the reliability 
parameters of system components and user loads, 
respectively. 

Tab. 8 lists the evaluated supply reliabilities of user 
loads. It can be seen that our model can clearly obtain the 
correlations of failure rate and duration at each load node 

with the mean failure duration, an indicator of system 
reliability, through Bayesian network simulation. 

Under the assumption that the system fails, the 
conditional probabilities of device failure and user load 
failure were computed with the aid of Bayesian network 
(Fig. 5). Fig. 9 shows the evaluated values of some 
distribution areas. It can be seen that, in the distribution 
areas, the supply reliabilities of load points U1, U2, U4, 
U7, U8, U9, and U12 were significantly affected by 
devices E1, E2, E3, E4, E5, E11, and E14. When the 
distribution system failed, E1 and E11 were the most likely 
to fail, that is, the user loads powered by the two devices 
had the highest failure probabilities. It is necessary to 
adjust the demand management to reduce the number of 
failures, making the system more reliable. 

 
Table 8 Evaluated supply reliabilities of user loads 

Load point Failure rate / times/year 
Mean 
outage 

duration / h 

Mean fault 
duration / 

h/time 

U1 1.398 6.475 4.5 

U2 1.345 7.548 5 
U3 1.473 5.492 6 
U4 1.279 4.744 6 
U5 1.376 11.471 8.5 
U6 1.687 5.479 3.5 
U7 1.437 8.924 6.5 
U8 1.491 9.472 8 

 
In the selected distribution system, there is a high 

presence of distributed generation. The greater the 
proportion of distributed generation, the key metrics of 
system reliability, such as mean outage frequency and 
mean failure duration, will both decline. Tab. 9 presents the 
predicted system reliability before and after the operation 
of distributed generation. Obviously, the grid-access of 
distributed generation greatly enhanced the supply 
reliability of the distribution system. 
 

Table 9 System reliabilities before and after the grid-access of distributed 
generation 

Item 
Before grid-

access 
After grid-

access 
Mean outage frequency of the system / 

times/(householdꞏyear) 
5.5126 1.4215 

Mean duration of system outages / 
times/(householdsꞏyear) 

14.6658 9.4228 

Mean outage duration / H/time 12.8684 7.1487 
Mean availability of power supply 0.9642 0.9845 

Low battery expectation / MWh/ year 80.5479 84.2721 
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Figure 9 Predicted failure probabilities of some devices and user loads 

 
6 CONCLUSIONS 

 
The DC distribution mode could significantly promote 

the energy conservation and supply efficiency of the 
distribution system in intelligent buildings. But the 
stochastic and intermittent power produced by distributed 
generation, and the instability of key supply and 
distribution devices in the system pose many problems to 
the system operation. Therefore, this paper proposes an 
evaluation model for the reliability of the distribution 
system for intelligent buildings, by virtue of the advantage 
of big data mining in data analysis and processing. After 
setting up an evaluation index system from the level 
dimension and the degree dimension, the authors identified 
the key indices through the PCA, and mined the association 
rules from the original data on system reliability based on 
MapReduce. Next, the reliabilities of key components in 
the system were modeled, followed by a time series 
simulation of the system with Bayesian network. In 
addition, the flow of our system reliability evaluation 
algorithm was explained in details. After that, our 
algorithm was compared with traditional Apriori algorithm, 
double threshold algorithm, and orthogonal linked list 
algorithm through experiments. The results show that our 
approach can ideally evaluate system reliability. 
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