
Optimized Method for Locating the Source of
Voltage Sags
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Abstract—Short-Duration Voltage Variations (SDVVs) are the
power quality disturbances (PQD) that mainly affect industrial
systems, and are originated for various reasons, in particular
short circuits over large areas, even those originating in remote
points of the electrical system. The location problem aims to
indicate the area or region or distance from the substation that
is connected to the source causing the voltage sags, and is a
fundamental task to ensure good power quality. One of the strate-
gies used to determine the location of sources causing SDVVs
and for an implementation of machine learning algorithms in
modern distribution networks, called Smart Grids. Monitoring a
Smart Grid plays a key role, however mostly it generates a large
volume of data (Big Data) and as a result, multiple challenges
arise due to the properties of this data such as volume, variety
and velocity. This work presents an optimization through genetic
algorithm to select meters which already exist in the Smart
Grid, using a voltage sag location method in order to reduce
the data obtained and analyzed throughout the localization
process. Optimization was evaluated through a comparison with
a non-optimized localization method, this comparison showed a
difference between the hit rates of less than 1%.

Index Terms—Voltage sag, Clustering algorithm, Genetic Al-
gorithm, Disturbance location, Smart Grids, Big Data.

I. INTRODUCTION

SHort-Duration Voltage Variations (SDVVs) are the power
quality disturbances (PQD) that mainly affect industrial

systems, and are originated from the start-up of large motors,
capacitor failures and, in particular, short circuits over large
areas, even those originating at remote points of the electrical
system [1].

Among the various phenomena related to PQD, voltage
sags stand out due to their frequency of occurrence when
compared to voltage rise and voltage interruption events.
Voltage sinking is the momentary or temporary reduction of
the voltage amplitude in relation to the reference voltage.
Voltage sags are directly linked to the continued operation
of the electrical system and their presence can damage a large
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Filho are with the Federal University of Piauı́, Brazil (e-mails: {ricardoalr,
ivan,antoniooseas}@ufpi.edu.br).

Part of this work was presented at the 5th International Conference on
Smart and Sustainable Technologies (SplitTech20) 2020.

Digital Object Identifier (DOI): 10.24138/jcomss-2021-0070

amount of equipment if the protection systems do not work
properly [2], [3].

Location problem aims to indicate the area or region or
distance from the substation that is connected to the source
causing voltage sinking and consists of a fundamental task to
ensure good power quality, because once located it is possible
to take measures to minimize the effects, such as installation,
adjustment and coordination of the system protection devices
[4].

This causative source can be a short circuit, energizing large
loads, and transformer magnetization. Among these causal
sources, short circuit, also called system fault, is the most
common cause of this event. However, localization is not a
trivial task, since voltage sags occur in a short time interval
and propagate throughout the system [1], [5].

One of the strategies used to determine the location of the
sources causing SDVVs is the implementation of machine
learning algorithms. These methods are characterized by ana-
lyzing the characteristics of the distribution system during the
occurrence of the disturbance and automatically determining
the location of the event. These characteristics come from the
real-time monitoring system available in modern distribution
networks, called Smart Grids.

Monitoring plays a key role, but mostly generates a large
volume of data (Big Data) and as a result multiple challenges
arise due to the properties of this data such as volume, variety
and velocity [6]. Therefore, while machine learning methods
need to analyze a large volume of data, there is also a concern
about the volume of data generated by the system. For the
increase of data in the communication channels can cause
latency problems and packet errors, and requires a robust
communication architecture, whose data is collected by the
smart meters installed in the network and sent to an operation
control center.

The size of the message packet can vary greatly depending
on the type and amount of data the energy provider needs. For
simple functions, such as remote reading the consumption of
energy, a small message packet size may be sufficient, while
for sophisticated functions, such as deriving consumption
profiles and identifying the type of electrical devices that are
turned on at a given time, more data is needed [7]. According
to [8] a typical smart meter message size is about 100 bytes
and the traffic sent to the data concentrator can range from
1600 to 2400 bytes per reading interval.

Authors of paper [9], proposed a method that models the
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fault as a special load temporarily connected to the faulted
node and performs a forward and backward load flow to
calculate the fault current and also the voltage drops at the
nodes that have measurements. During the fault localization
process, the proposed algorithm massifies the fault at each
node one at a time, it performs a forward and backward load
flow updating the fault current in each iteration and calculates
an error index and for each bar.

The method proposed in [10], incorporates all measured
values into calculations through a state estimation-based al-
gorithm to improve accuracy and performance in the face of
uncertainties and imperfections. The algorithm first evaluates
the input data and eliminates gross measurement errors. It then
assumes the fault at each of the suspected nodes and performs
a set of state estimations to find the node closest to the fault
location. By incorporating all available measurement resources
into the calculations, the method significantly reduces the
impact of random measurement errors and load estimation
uncertainties and improves the accuracy and robustness of
the results. However, compared to previous load flow-based
methods, such as the method proposed in [9], the state
estimation-based method requires more computational time.

The method proposed in [11] presents two types of fault lo-
cation methods for radial and non-radial overhead distribution
systems that are based on solving a set of equations derived
from the elements of the bus impedance matrix, expressing the
substation voltage and current as a function of fault location
and fault resistance. The algorithm must be applied to each
line section, providing a list of possible fault locations and
requires some additional information, such as customer fault
reports or fault indication signs, in order to find the most likely
location.

As [12], based upon the voltage drop, the methods must esti-
mate the fault resistance or current during or before performing
the fault localization process. In addition, it is necessary to
examine all the nodes in the system to find out which is
defective.

In [13] the authors propose a fault localization algorithm
for distribution networks with Distributed Generation (DG),
which considers the fault localization process as an optimiza-
tion problem where the fault localization and resistance are
unknown variables. They developed a genetic algorithm-based
technique to obtain an optimal solution to this problem. The
proposed method ignores the fault estimation step and searches
a limited number of nodes to find out what is faulting.

Considering the techniques found in the literature, it is
pertinent to evaluate that there is no consent on an approach to
be used for the localization of SDVVs disturbances, besides, in
most of them, the method does not select the amount of meters
installed in the network in an optimized way, a fundamental
task, since the larger the amount of meters sending information
the higher the cost of implementing the method. Thus, it is
relevant to analyze a method that can be applied in a real-
time monitoring system.

To localize the disturbance, it is ideal to have meters at
all points, but this strategy leads to the generation of a large
volume of data both for traffic and for analysis. Thus, the
objective of this work is to analyze an optimization method

that selects the meters capable of detecting the effects of a fault
in the system and generate the necessary data for localization.
The optimization algorithm will be evaluated starting from a
localization algorithm that is proposed in the article [14]. The
method uses the data to group the meters through a clustering
algorithm generating a region, then classifies these regions as
either with or without fault.

In the optimization process a Genetic Algorithm (GA) is
applied to select the quantity and the optimal location of
meters belonging to the Smart Grid, reducing the quantity of
meters that will compose a region. With this, this work brings
contributed to a reduction in the cost and volume of collected
data without losing the quality of the method.

In the sequence this study is described using the following
division. We talk about the basic Genetic Algorithm in section
II. Then we present the methodology used in the optimization
process in section III. Section IV shows how the short circuit
simulations were implemented to obtain the database. In
section V performance comparisons and result discussions are
displayed. Finally in the section VI the work is concluded
presenting some perspectives.

II. GENETIC ALGORITHM

The Genetic Algorithm (GA) is one of the first population-
based stochastic algorithms proposed in history [15]. The main
operators of GA are selection, crossover and mutation (Figure
1).

Fig. 1. Basic structure of a genetic algorithm.

GA is a population-based algorithm. Each solution cor-
responds to a chromosome and each parameter represents
a gene. GA evaluates the fitness of each individual in the
population using a fitness function (objective) [16]. To improve
the poor solutions, the best solutions are chosen randomly with
a selection mechanism (e.g. roulette wheel). This operator is
more likely to choose the best solutions because the probability
is proportional to the fitness (objective value). What increases
the avoidance of great locations is the probability of choosing
bad solutions as well. This means that if good solutions get
stuck in a local solution, they can be extracted with other
solutions [17].

III. METHODOLOGY

The methodology used presents the task of selecting meters,
which consists of obtaining the smallest number of meters
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and the installation location in the electrical system, ensuring
the observability of the system and good effectiveness of the
proposed method of locating voltage sag events. This task is
fundamental, because it is intended reducing the volume of
data that will transit on the network and that will compose the
data of the Big Data analysis. To this end, a GA will be used
whose evaluation function is to set the balance between the
accuracy of the localization process and a weight referring to
the quantity of selected nodes.

The implemented algorithm considers the typical phases
of GA: Initialization (Population), Objective-Function or Fit-
ness, Selection, Crossover and Mutation, in this session the
Objective-Function phase will be detailed and briefly the Ini-
tialization phase. For the other phases the default configuration
of the library used will be used, where Selection uses the
tournament selection strategy. Concerning the crossover phase,
the SBX (simulated binary crossover operator) was used and
for mutation phase, a polynomial mutation operator was used
[18].

A. Initialization (Population)

During initialization the population creation is done ran-
domly where each individual is represented by a vector,
eachbar in the system is represented by a cell in this vector,
withvalues between 0 and 1, where 0 indicates that the bar
wasnot selected and 1 that the bar was selected as shown in
the Figure 2, the size of the vector will depend on the size of
thenetwork.

Fig. 2. Vector of the selected bars.

B. Objective-Function (Evaluate Fitness)

The objective function uses the localization strategy which
is divided into two phases. The first phase is responsible for
obtaining and analyzing the generated clusters, the clustering
algorithm is responsible for making inferences about the prop-
agation of the voltage sags event in the distribution network,
dividing the unlabeled input data into groups according to the
similarity between the disturbances evidenced in the network
and independent of the system topology. The second phase
corresponds to the application of the decision rule-based
system, which is responsible for analyzing the characteristics
of each of the generated clusters and identifying which of
them provides the region of location of the voltage sinking
disturbance (more detail of the phases is described in [14]),
With the following changes:

• Processed data is only from the selected bars
• At the end of the second phase you get the accuracy

subtracted by a weight (p):

p = bs

(
1

tb

)
(1)

where bs is the number of selected bars and tb is the total
number of bars, i.e. the size of the vector.

1) Weight of the Objective Function: The need to use the
weight in the objective function is tostrike a balance between
the number of bars and the location accuracy, eliminating
situations where two or more individualshave the best accuracy
found but with very different numbers of selected bars.

The whole process is repeated as shown in the Figure 3
until it reaches a certain number of generations (the stopping
condition of the algorithm used), ending with the indication
of how many and which bars are to be selected.

Fig. 3. Basic structure of a genetic algorithm with a function to evaluate
proposed fitness.

IV. SIMULATIONS

In this section, the simulations of how the database, the
method of locating the source of voltage sags, and finally the
optimization process were performed.

A. Simulation of Voltage Sags

In order to evaluate the proposed algorithm, it was necessary
to model and simulate the IEEE 34-Bus Test Feeder [19]
through the ATP (Alternative Transients Program) software.
Having modeled this system (Figure 4), simulations were
performed by changing the system’s behavior to generate
voltage sags with different durations and magnitudes. Thus,
it was possible to obtain a database to validate the proposed
algorithm.

It is worth mentioning that all voltage sags were generated
as a result of three-phase short-circuits with a fault duration
of 4 cycles, different fault impedances (10, 20, 30, 40 e 50
Ω), with an incidence angle of 0.
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Fig. 4. Indication of the selected bars in the IEEE 34 Node Test System
diagram, Adapted from [20]

The short circuit is simulated on each of the 23 three-
phase bars of the system, considering a sampling rate of 256
points/cycle. This gives a total of 115 simulations. After each
simulation the measured voltage values in each node of the
system are stored. Thus, an information bank necessary to test
the proposed algorithm is obtained. The process of building the
database is carried out by means of communication between
ATP® and MATLAB®.

B. Optimization by Genetic Algorithm

The optimization simulation was performed with each of
the 115 test scenarios, even if the error bar is not one of the
selected bars, Since any and every fault incident in the system
is propagated through the network, the chosen bars expressed
reflection values of this fault and this data from the chosen
bars will be analyzed.

The implementations of the programming routines were
developed in python language using the library Pymoo [18]
for GA with the following settings: population size 30, random
initialization, elimination of duplicate individuals and stopping
condition 50 generations. For the evaluation function, the
clustering algorithm used was the k-means with k equal to 3,
the choice of this configuration was based on the performance
of the method presented in [14], the library sklearn [21] was
used to perform the k-means algorithm and obtain the accuracy
value.

V. RESULTS OF THE PROPOSED METHODOLOGY

The following will discuss the results obtained using the
entire proposed approach for locating voltage sag disturbances
in the IEEE 34-Bus Test Feeder system. The efficiency of
this methodology is influenced by the clustering algorithm
used and the number of clusters. The fragmentation of the
distribution network into several clusters leads to a greater seg-
mentation of the search space and, consequently, can influence
the effectiveness of the rules-based system. On the other hand,
in a scenario where the distribution system is divided into a

small number of clusters, each cluster aggregates a significant
amount of bars. In this situation the output of the decision-
based algorithm will point to an extensive region of origin,
composed of several nodes.

A. Result of Optimization

At this point , the results obtained will be discussed using
the optimization proposal (GA) to select among all bars
existing in the system a reduced amount of bars and identifying
strategic locations of these bars in order to reduce the volume
of data that will be transmitted and analyzed. It is important to
highlight that the clustering algorithm executed in the objective
function is the k-means with k equal to 3 due to its better
performance displayed in [14].

The Table I shows the best results of each generation (best
individual) with emphasis on the generations 12, 27 and 45
that represent the best configurations in relation to the quantity
and positions of the bars chosen, as the choice criteria are
tied in the three generations having a result of 0.818 for
the objective function (evaluation), 99.17% of accuracy and
0.17391 of weight, GA produced the first result found in the
case of the 12 generation.

Still observing the Table I we can verify that the position
of the selected bars has influence in the result, as an example
the 5th generation despite having 4 bars selected the accuracy
value is 89.55% which is quite below the result produced by
GA which was 99.17% that also has 4 bars selected. To better
visualize the GA result the Figures 5, 6 and 7 are graphical
representations adapted to the IEEE 34-bus test feeder model
of satisfactory results.

Fig. 5. Graphical representation of the bars selected in the optimization
process 12th-generation

In the Table II it is possible to visualize the best performance
of the proposed non-optimized method K-means with k=3 and
PART presented in [14] with 99.42% of accuracy but with
use of the data of the 23 three-phase bars of the network.
The accuracy of the optimized methodology has a very small
decrease of only 0.26%, totaling 99.16% of accuracy, but with
the use of data from only 4 bars, which is advantageous since
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TABLE I
BEST RESULTS PER GENERATION

Generation Bars Return OF Accuracy (%) Weight

1 8 0,600 94,77% 0,34783
2 8 0,635 98,26% 0,34783
3 6 0,686 94,70% 0,26087
4 6 0,677 93,79% 0,26087
5 4 0,722 89,55% 0,17391
6 4 0,765 93,94% 0,17391
7 4 0,757 93,11% 0,17391
8 4 0,783 95,68% 0,17391
9 4 0,809 98,26% 0,17391
10 4 0,809 98,33% 0,17391
11 4 0,781 95,45% 0,17391
12 4 0,818 99,17% 0,17391
13 4 0,800 97,42% 0,17391
14 4 0,809 98,26% 0,17391
15 4 0,809 98,26% 0,17391
16 4 0,800 97,35% 0,17391
17 4 0,800 97,35% 0,17391
18 4 0,800 97,42% 0,17391
19 4 0,792 96,59% 0,17391
20 4 0,799 97,27% 0,17391
21 4 0,809 98,26% 0,17391
22 4 0,800 97,42% 0,17391
23 4 0,800 97,42% 0,17391
24 4 0,800 97,42% 0,17391
25 4 0,793 96,67% 0,17391
26 4 0,799 97,27% 0,17391
27 4 0,818 99,17% 0,17391
28 4 0,775 94,92% 0,17391
29 4 0,791 96,52% 0,17391
30 4 0,801 97,50% 0,17391
31 4 0,800 97,42% 0,17391
32 4 0,800 97,42% 0,17391
33 4 0,801 97,50% 0,17391
34 4 0,817 99,09% 0,17391
35 4 0,800 97,35% 0,17391
36 4 0,800 97,35% 0,17391
37 4 0,792 96,59% 0,17391
38 4 0,790 96,44% 0,17391
39 4 0,783 95,68% 0,17391
40 4 0,809 98,33% 0,17391
41 4 0,790 96,44% 0,17391
42 4 0,800 97,42% 0,17391
43 4 0,817 99,09% 0,17391
44 4 0,791 96,52% 0,17391
45 4 0,818 99,17% 0,17391
46 4 0,817 99,09% 0,17391
47 4 0,790 96,44% 0,17391
48 4 0,809 98,33% 0,17391
49 4 0,801 97,50% 0,17391
50 4 0,801 97,50% 0,17391

there is no need to send and analyze data from 19 bars of the
system.

TABLE II
ACCURACY OF THE NON-OPTIMIZED AND OPTIMIZED METHOD

Algorithm Hit Rate (%) Bus

K-means with k=3 and PART 99,42 23
Genetic Algorithm 99,16 4

As the voltage sags are short duration system failures,
the speed of data interpretation is an important factor to
be considered, the optimization process has a small loss of
accuracy but a much smaller volume of data to be analyzed,

Fig. 6. Graphical representation of the bars selected in the optimization
process 27th-generation

Fig. 7. Graphical representation of the bars selected in the optimization
process 45 th-generation

which gives credence to a greater speed in the analysis of
the information and consequently in the speed of finding the
location of the fault.

VI. CONCLUSION

In this work, an optimization algorithm (GA) was applied
to select the best measurement locations in order to decrease
the amount of data for both network traffic and analysis
and maximize the accuracy of the localization method. A
comparison between the optimized and the non-optimized
method was performed and the loss in accuracy was very
small with a difference of only 0.26%, which is considered
satisfactory taking into consideration that it was possible to
reduce the volume of data that will be transmitted and analyzed
by the methodology with the emission of data from only 4
bars, which was discarded from the localization process 19
bars of the system compared to the non-optimized method
that uses 23 three-phase bars. For future studies, it is intended
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to analyze the common method larger bar system and verify
the scalability of the optimized methodology.
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