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Nonlinear system identification (NSI) is of great sig-
nificance to modern scientific engineering and con-
trol engineering. Despite their identification ability, 
the existing analysis methods for nonlinear systems 
have several limitations. The neural network (NN) can 
overcome some of these limitations in NSI, but fail to 
achieve desirable accuracy or training speed. This pa-
per puts forward an NSI method based on adaptive NN, 
with the aim to further improve the convergence speed 
and accuracy of NN-based NSI. Specifically, a generic 
model-based nonlinear system identifier was construct-
ed, which integrates the error feedback and correction 
of predictive control with the generic model theory. 
Next, the radial basis function (RBF) NN was opti-
mized by adaptive particle swarm optimization (PSO), 
and used to build an NSI model. The effectiveness and 
speed of our model were verified through experiments. 
The research results provide a reference for applying 
the adaptive PSO-optimized RBFNN in other fields.
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1. Introduction

Since most of real-world physical systems are 
nonlinear in nature, it is of great significance for 
researchers of modern engineering and control 
engineering to evaluate and analyze nonlinear 
systems. As an important branch of nonlinear 
system research, nonlinear system identifica-
tion (NSI) has made great research progress in 
recent years [1‒6]. 

Despite their ability to describe system fea-
tures, the iterative method, Hammerstein-Wie-
ner model, and differential geometry cannot 
achieve desirable accuracy in system identifica-
tion [7‒9]. Artificial neural network (ANN) has 
attracted much attention at home and abroad, 
thanks to its powerful self-learning function 
and the ability to quickly find optimal solutions. 
With the aid of the ANN, it is possible to iden-
tify nonlinear systems accurately, and optimize 
the identification parameters [10‒20].
With the development of intelligent control and 
optimization theory, various kinds of NSI meth-
ods have emerged based on neural networks 
(NNs) [21‒23]. Kohler et al. [24] designed a 
three-layer deep convolutional neural network 
(D-CNN), and achieved good local optimal ef-
fects by identifying multivariable nonlinear sys-
tems with the D-CNN. Ang et al. [25] handled 
nonlinear systems with proportional-integral-de-
rivative (PID) NN, and experimentally proved 
the excellence of PIDNN in approximating the 
objective function. Malhotra and Khanna [26] 
constructed a wavelet neural network (WNN), 
which adjusts the network weight adaptively 
online through least squares (LS) method. Based 
on multi-particle swarm genetic neural network, 
Poempool et al. [27] proposed an NSI method 
that enhances the learning ability of the model 
by increasing the number of hidden layer nodes.
The traditional ANN can effectively solve some 
NSI problems, but fail to realize ideal accuracy 
or training speed [28, 29]. Inspired by the forag-
ing behavior of bird flocks, the particle swarm 
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represented by formula (1) is controllable. Un-
der the input signal I(t), the nonlinear system 
will output signal O(t). If t approaches ∞, then 
O(t) will infinitely approximate O'(t). Suppose 
μ is a constant. Then, the nonlinear system (1) 
must satisfy the following condition at any 
time t:

|O(t) - O(t - 1)| ≤ μ|I(t) - I(t - 1)|.      (4)

If I(t) ≠ I(t - 1), there must exist a time-varying 
characteristic parameter function φ(t) that sat-
isfies |φ(k)| < μ. Then, the nonlinear system (1) 
can be linearized as:

 O(t) = O(t - 1) + 
 + φ(t - 1)[I(t - 1) - I(t - 2)] +        (5)
 + λb(t - 1),

where b(t - 1) is the output error O'(t - 1) - O(t - 1) 
of the model at time t; λ is the error correction 
coefficient. Then, the time-varying pseudo-gra-
dient vector φ(t) was regressed by k-order au-
toregressive (AR) model:

φ̂(t) = ρ0 + ρ1φ̂(t - 1) + ρ2φ̂(t - 2) + ... +
+ ρkφ̂(t - k) + e(t)                       (6)

where, ρ0 is a constant term; ρ1, ..., ρk are the 
model parameters to be determined; e(t) is the 
white noise. The predicted output of the system 
at time t can be expressed as:

 Ô(t) = Ô(t - 1) +
 + φ̂(t - 1)[I(t - 1) - I(t - 2)]           (7)
 + λb(t - 1).

As shown in formula (7), when the difference 
between I(t - 1) and I(t - 2), and the ideal out-
put signal O'(t) are known, the NSI can be con-
verted into a regression problem, with the aim 
to rationalize the error correction coefficient λ 
and the pseudo gradient vector φ(t).
Figure 3 provides the structure of generic mod-
el-based nonlinear system identifier. To make 
the system output as shown in formula (7), the 
MSE function must be minimized as follows in 
the identification process:
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By the type of feedback signal in the identifica-
tion process, the NN-based NSI can be divided 
into the parallel structure in Figure 1 and the 
series-parallel structure in Figure 2. In the lat-
ter structure, the NN is trained with the input 
and output signals of the nonlinear system as 
the identification bases. The network training 
enhances the stability and convergence of the 
model. Therefore, the latter structure has been 
applied more widely than the former structure.

3. Construction of Generic Model for 
Nonlinear System

To solve the overdependence of NSI on adap-
tive control strategy, the error feedback and 
correction in predictive control were combined 
with the generic model theory to realize the 
centralized design of nonlinear modeling and 
control with error correction. The single-in-
put-single-output nonlinear system with a time 
delay of 1 can be expressed as:

O(t) = f [O(t - 1), ..., O(t - n),         (1) I(t - 1), ..., I(t - m)]

where I(t - 1) and O(t) are a set of observation 
data inputted to and outputted by system S at 
time t, respectively; f (*) is the functional repre-
sentation of the nonlinear system.
Let Ī be the set of all possible values of the set 
of observation data inputted to system S, and 
Ō be the set of all possible values of the set of 
observation data outputted by system S based 
on the input dataset I(t - 1). Then, Ī and Ō can 
be viewed as the change domains of input and 
output of system S, respectively. Assuming that 
Ī ≠ Ō, the characteristic parameter function φ(t), 
the pseudo gradient vector of output O(t) with 
respect to input I(t - 1), must satisfy:

( ) ( 1) , ( 1) ( 2)( 1) ( 2)( )
Constant , ( 1) ( 2)

O t O t u t u tI t I tt
c u t u t

φ
− − − ≠ − − − −= 

 − ≠ −
. (2)

For most nonlinear systems, the input and out-
put obey the following equivalent transform:

O(t) = O(t - 1) + φ(t - 1)[I(t - 1) - I(t - 2)].  (3)

Therefore, it can be proved that, for the bound-
ed ideal output signal O'(t), the input signal I(t) 

optimization (PSO) has been developing rapidly 
in recent years, owing to its advantages in com-
plex NSI (e.g. global search ability, simple im-
plementation, and good performance). Phuchan 
et al. [30] introduced the PSO algorithm to 
optimize the design of backpropagation neural 
network (BPNN), and managed to improve the 
training and convergence speeds of the BPNN 
model. Based on the PSO, Adsawinnawanawa 
et al. [31] carried out linear regression in the 
weight adjustment of multilayer feedforward 
network, and realized the objective of solving 
the global optimal weights online. 
This paper puts forward an NSI method based 
on adaptive NN, aiming to further improve the 
convergence speed and accuracy of the NN in 
NSI. Firstly, the basic ideas of NN-based NSI 
were sorted out. Then, the error feedback and 
correction of predictive control was combined 
with the generic model theory to create a non-
linear system identifier based on generic mod-
el. After that, an NSI model was designed by 
optimizing the radial basis function (RBF) NN 
through PSO, and the identification workflow 
was illustrated in a block diagram. Finally, the 
proposed model was proved effective and swift 
through experiments.

2. Principle of NN-Based NSI

The NN-based NSI is implemented by the fol-
lowing principle: First, a suitable NN model 
was selected as the forward model Ŝ or inverse 
model Ŝ 

-1 of the target nonlinear system S. 
Then, the weights of the connection matrix are 
continuously adjusted, making the error func-
tion approximating the minimum at a random 
precision. With self-learning and adaptation 
abilities, the NN was adopted to fit the dynamic 
or static system features, which are reflected in 
the input and output data of the system. In this 
way, the change trend of the identified system 
can be tracked adaptively.
The NN-based NSI needs to go through three 
stages: determining model structure, predict-
ing the unknown parameters of the model, and 
verifying the model. The model structure is de-
termined by selecting the number of network 
layers, identifying the number of nodes in each 
layer, and choosing suitable transfer functions 
and connection forms for the nodes. The mod-

el parameters are predicted to minimize the er-
ror function, while continuously adjusting the 
NN parameters. Here, the mean squared error 
(MSE) function is taken as the error function. 
In addition, model verification mainly verifies 
the generalization ability of the NN.
By the nature of identification, the NN-based 
NSI falls into two categories, namely, online 
identification and offline identification. In on-
line identification, learning and training take 
place concurrently with the identification pro-
cess; in offline identification, these operations 
are completed prior to identification. Online 
identification is characterized by the real-time-
liness of the identification process. By contrast, 
the input and output of offline identification 
cannot cover the working range of the nonlin-
ear system; any parameter change will cause a 
large error in identification, and even produce 
an erroneous model. To solve the problem, the 
two identification strategies need to be com-
bined. That is, the offline identification should 
be implemented during online identification to 
acquire the weights of the connection matrix of 
the NN, and to make the acquired weights as 
the initial weights. This hybrid approach can 
greatly improve the online learning rate.

Figure 1. The model of the parallel structure.

Figure 2. The model of the series-parallel structure.
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where Φ+ is the pseudo-inverse of matrix Φ, 
that is, the set {φj} of output vectors of hidden 
layer nodes.

4.2. Adaptive PSO Optimization of 
Connection Weights

As part of the LS-optimization of matrix W, 
the calculation of the inverse matrix may affect 
the identification speed and accuracy. To speed 
up the convergence of the RBFNN, this paper 
chooses to optimize the connection weights 
with the adaptive PSO algorithm.
Suppose there is a particle swarm in a D-dimen-
sional search space. The current positions of 
the M particles in the swarm can be expressed 
as Xi = (xi1, xi2, …, xiD). The velocity of the 
i-th particle can be expressed as Vi = (vi1, vi2, 
..., viD), where i = 1, 2, ..., M. Moreover, the 
best-known positions of the i-th particles and 
the swarm can be respectively expressed as 
Pi = (pi1, pi2, ..., piD) and Pg = (pg1, pg2, ..., pgD). 

Then, the i-th particle will iteratively update its 
velocity and position in the d-dimensional sub-
space by:
 vid (t + 1) = ωvid(t) + c1r1[pid - xid(t)] + 

+ c2r2 pgd - xid(t) ,             
   (16)

xid (t + 1) = xid (t) + vid (t + 1),        (17)
where c1 and c2 are nonnegative acceleration 
factors; r1 and r2 are random numbers in (0, 1); 
ω is the inertia weight.
To make particle search more pertinent, the 
vid value was limited by the following criteria: 
If vid is greater than the maximum value vmax, 
make it equal to vmax; if vid is smaller than the 
minimum value vmin, make it equal to vmin. 
During the PSO-optimization of RBFNN, it is 
necessary to determine the dimensionality of 
the search space based on the total number of 
weights and thresholds of the network, and then 
establish the relationship between particle fit-
ness and MSE:

Figure 3. The structure of generic model-based 
nonlinear system identifier.

4. Adaptive NN Algorithm

4.1. RBFNN Identifier

The RBFNN boasts a simple structure and a fast 
convergence speed. Compared with other NNs, 
the RBFNN is powerful in function approxima-
tion, and excellent in identifying the dynamic 
features of nonlinear systems. Since the nonlin-
ear system (1) can be identified with two struc-
tures (Figures 1 and 2), the RBFNN-based par-
allel and series-parallel models (Figures 4 and 
5) can be respectively expressed as:
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As shown in Figures 4 and 5, the greatest dif-
ference between the RBFNN-based parallel 
and series-parallel models lies in whether the 
output signal enters the system as input signal. 
In the parallel model, the RBFNN is indepen-
dent from the target system. Meanwhile, in the 
series-parallel model, the RBFNN operation is 
affected by the target system.
The basic structure of RBFNN consists of 
an input layer of n nodes, a hidden layer of 
p nodes, and an output layer of m nodes. Let 
I = (I1, I2, ..., In) be the input vector. Then, the 

activation function of the j-th hidden node can 
be expressed as:

2
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σ
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          (11)

where σ = (σ1, σ2, ..., σp) is the variance matrix; 
C = (c1, c2, ..., cp) is the matrix of cluster centers 
selected for k-means clustering (KMC). Let ωjk 
be the connection weight between the j-th hid-
den layer node and the k-th output layer node. 
Then, the k-th predicted output of RBFNN can 
be expressed as:
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The parameters that RBFNN needs to solve in-
clude the center of the activation function, the 
variance, and the weights from the hidden layer 
to the output layer. Here, the center is selected 
through self-organized learning. Firstly, p clus-
ter centers are selected for KMC. Suppose there 
are N training samples in which the vector of 
the l-th sample is Il. As the vector is inputted to 
the network and judged whether it belongs to 
the j-th cluster center Mj, the j-th center in the 
matrix of cluster center C can be adjusted and 
updated by formula (13) after the t-th iteration:
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where 0 < γ < 1 is the step length of the iterative 
process. Let cmax be the maximum distance be-
tween the selected centers. Then, the j-th vari-
ance can be solved by:

max

2j
c

p
σ =

                    
   (14)

The matrix of connection weights W was di-
rectly derived through the LS method, that is, 
the partial derivative of the loss function was 
solved and equated to zero. Suppose the net-
work output vector equals the expected vector 
d. Then, the matrix of connection weights W 
can be simplified as:

W = Φ+d                         (15)

Figure 4. The RBFNN-based parallel structure. Figure 5. The RBFNN-based series-parallel structure.
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where Φ+ is the pseudo-inverse of matrix Φ, 
that is, the set {φj} of output vectors of hidden 
layer nodes.
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the swarm can be respectively expressed as 
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are N training samples in which the vector of 
the l-th sample is Il. As the vector is inputted to 
the network and judged whether it belongs to 
the j-th cluster center Mj, the j-th center in the 
matrix of cluster center C can be adjusted and 
updated by formula (13) after the t-th iteration:
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where 0 < γ < 1 is the step length of the iterative 
process. Let cmax be the maximum distance be-
tween the selected centers. Then, the j-th vari-
ance can be solved by:
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2j
c

p
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The matrix of connection weights W was di-
rectly derived through the LS method, that is, 
the partial derivative of the loss function was 
solved and equated to zero. Suppose the net-
work output vector equals the expected vector 
d. Then, the matrix of connection weights W 
can be simplified as:

W = Φ+d                         (15)

Figure 4. The RBFNN-based parallel structure. Figure 5. The RBFNN-based series-parallel structure.
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Step 7: Input the test samples into the NN, an-
alyze the output result, and verify the 
NSI performance of our model.

5. Experiments and Results Analysis 

The experiments were carried out on a comput-
er (CPU: Intel Core i8; memory: 16G; OS; Win-
dows 10), using the simulation software Matlab 
2013b. The structure of the target nonlinear sys-
tem was illustrated by the generic model (5). 
The adaptive PSO algorithm was adopted to 
obtain the global optimal solution and the opti-
mal values of unknown parameters through 200 
iterations, before outputting the identification 
results of the NSI. Three different nonlinear 

systems were identified, producing 1,400 data 
pairs for each system. The first 1,000 pairs were 
taken as the training set to train the NN, and 
the last 400 pairs were taken as the test set to 
verify the identification result. The differential 
equations of the three nonlinear systems are re-
spectively as follows:
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O t I t I t
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Figure 6. The workflow of the NSI based on adaptive PSO-optimized RBFNN.
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To balance the local and global search abilities, 
the inertia weight should be relatively large in 
the early phase of optimization to ensure the 
global search ability, and relatively small in 
the later phase to accelerate the convergence. 
In addition, the inertia weights of particles with 
small fitness should be increased, and those of 
particles with large fitness should be decreased, 
making the particles with small fitness more 
active in the search for the optimal solution. 
To realize these goals, the inertia weight ω was 
adaptively adjusted by formula (19), such that 
the inertia weight gradually decreases in the op-
timization process and adaptively changes for 
particles with different fitness:

where t is the number of iterations; tmax is the 
maximum number of iterations; ωmax is the 
maximum inertia weight; ωmin is the minimum 
inertia weight; fitnessavg is the mean fitness of 
the swarm.
Furthermore, the acceleration factors must be 
adjusted to further speed up convergence and 
prevent the local minimum trap. In the early 
phase, the global search ability should be en-
hanced, using a large c1 and a small c2. In the 
later phase, the convergence should be acceler-
ated, using a small c1 and a large c2. Therefore, 
the c1 value was adaptively adjusted in a non-
linear manner by:

1 max min
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1 t tc c ct t
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Meanwhile, the c2 value was changed by the 
nonlinear relationship with the c1 value:

1
2

cc x y−= +                        (21)

where cmax is the maximum acceleration factor; 
cmin is the minimum acceleration factor; x and y 
are constants.

4.3. The Workflow of the NSI Based on 
Adaptive PSO-Optimized RBFNN

As shown in Figure 6, the NSI based on adap-
tive PSO-optimized RBFNN consists of seven 
steps:

Step 1: Initialize the model parameters, ran-
domly set constant terms x and y, and 
determine the following parameters 
of the particle swarm: velocity range 
[vmin, vmax]; total number of particles 
M; the maximum and minimum in-
ertia weights ωmax and ωmin; and the 
maximum and minimum acceleration 
factors cmax and cmin.

Step 2: According to the identification needs, 
construct the RBFNN model based on 
generic model, and determine the cor-
responding dimensionality D of the 
search space of the particle swarm.

Step 3: Establish the mapping from the initial 
position matrix Xi and the matrix of 
connection weights of the RBFNN W, 
and calculate the fitness of each par-
ticle.

Step 4: Update the best-known positions of 
each particle and the swarm Pi and Pg.

Step 5: According to the adjustment rules for 
adaptive inertia weights and accelera-
tion factors, recalculate the ω, c1, and 
c2 values of each particle, and, on this 
basis, compute and update the veloci-
ty vid and position xid of each particle.

Step 6: Judge if the termination condition is 
satisfied and map the global optimal 
position Pg of the swarm to the matrix 
of connection weights of the RBFNN 
W.
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Figure 8. The MSE of the identification of the first nonlinear systems.

Figure 9. The identification results on the second nonlinear systems.

The identification results of our model and the 
traditional RBFNN, which is not optimized by 
adaptive PSO algorithm, on the first, second, 
and third nonlinear systems are displayed in 
Figures 7, 9, and 11, respectively. The MSEs of 
the identification of the first, second, and third 
NSIs are presented in Figures 8, 10, and 12, re-
spectively.
As shown in Figures 8, 10, and 12, the MSEs 
exhibited a declining trend with the growing 
number of iterations. After 200 iterations, the 
MSE of the first nonlinear system dropped to 
and stabilized at 0.4525; the MSE of the second 
nonlinear system dropped to and stabilized at 
0.3342. Therefore, the PSO-optimized RBFNN 
can control the number of iterations within 200 
and achieve a fast convergence. 
Comparing the identification performances of 
our model and the traditional RBFNN (Figures 
7, 9, and 11), it can be seen that the output of 
our model deviated from the expected output by 
3%, while that of the traditional RBFNN deviat-
ed from the expected output by 6%. Therefore, 

our model achieved much better NSI effect than 
the traditional RBFNN.

6. Conclusion

This paper mainly designs an NSI method based 
on adaptive NN. After sorting out the basic 
ideas of NN-based NSI, a generic model-based 
nonlinear system identifier was created, which 
couples the error feedback and correction in pre-
dictive control with generic model theory. Next, 
the basic structures of the RBFNN for NSI were 
clarified, and the connection weights were opti-
mized through adaptive PSO. After that, an NSI 
model was developed based on the adaptive 
PSO-optimized RBFNN, and the NSI workflow 
was detailed. Finally, the NSI results and MSEs 
of our model on three nonlinear systems were 
obtained through experiments. The results show 
that the proposed PSO-optimized RBFNN can 
control the number of iterations within 200, and 
achieve smaller identification error and better 
performance than the traditional RBFNN.

Figure 7. The identification results on the first nonlinear systems.
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