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Executive Summary

The Pilot Watershed Study contains five jobs: 101.1 Effects of Best Management
Practices (BMPs) on physical/chemical indicators of stream quality, 101.2 Effects of
BMPs on fish community structure, fish abundance, and population size structure, 101.3
Effects of BMPs on fish growth rates, 101.4 Effects of BMPs on benthic
macroinvertebrate community structure and crayfish abundance, and 101.5 Analysis and
reporting.

These jobs were completed for each sampling site. Four basins were selected for
this study: the Embarras, Spoon, Cache, and the Kaskaskia (Figurel, Table 1). In each of
the four basins in this study, we monitored four sites: two in the Pilot Watershed (treated
with BMPs) and two in the Reference Watershed (control stream with minimum BMPs).
In the Pilot Watershed, one site is located downstream to assess watershed-scale effects
of BMP implementation at a larger drainage area and a second site is sampled upstream
in the watershed. In the Reference Watershed, two sites were sampled at positions
similar to those in the Pilot Watershed. The length of each site was defined as 20 times
the mean bankfull width (W) at the site (see also Lyons 1992, Simonson et al. 1994,
Gough 1997). All basins were sampled in 1998-2000 except the Kaskaskia basin in
which only downstream sites were first sampled in 1999 due to problems with locating a
suitable reference watershed in 1998 and low water levels at upstream sites in 1999.

In Job 101.1, physical and chemical habitat data were collected from the pilot
(treated) and reference (control) streams. Habitat consisted of site-scale and transect —
scale variables. Site-scale parameters are habitat characteristics which change very little
over the reach of stream (e.g. temperature, discharge, etc.) and, thus, were collected at
one location in the site. Transect-scale variables are those attributes expected to vary
considerably within a site (e.g. substrate, channel width, etc.) and were measured along
10 transects within the site. Data analysis of pre-BMP site-scale and transect-scale
habitat characteristics is ongoing and baseline data from 1998-2000 are presented in this
report.

In Jobs 101.2 and 101.3, fish were collected in late summer or early autumn of

1998-2000 with an AC electric seine. Structures for aging were taken from all fish caught



in 1998 and from selected species in 1999 and 2000. All fish were measured (total length)
and weighed except when numbers of a species were high, then, the first 100 were
measured and the remaining fish were counted. Fish greater than 100 mm in total length
were measured in the field, while smaller fish were preserved in formalin, identified and
measured in the laboratory. In general, fish community structure in pilot and reference
streams was similar and consistent across years with a few exceptions in certain basins
and years. Number of species collected in pilots were comparable to their respective
reference sites with the exception of the Hurricane Upper (pilot) site and Big Lower
(pilot) site in 1998 and 1999 and Lake Branch Lower (pilot) in 2000 which showed lower
species richness than their references. Similarity indices showed fish composition was
also comparable between pilot and reference streams with most sites having relatively
high similarity in fish assemblage structure across years. Analysis of catch per unit effort
(CPUE) detected little difference between relative fish abundance between upper and
lower sites of pilot and reference watersheds before implementation of BMPs with the
exception of the upper Embarras sites in 1998 and 1999. To examine the quality of the
aquatic resource before BMPs, Index of Biotic Integrity (IBI) scores were computed and
found to be relatively high at most pilot and reference sites, indicating good stream
quality with the exception of the Kaskaskia basin. Age structure of selected species was
examined and differences in mean ages analyzed. Determination of fish growth rates is
ongoing and preliminary age data from selected fish species indicated that growth of was
similar among pilot and reference watersheds with no apparent differences in population
age structure for any species examined across basins.

In Job 101.4, benthic macroinvertebrates samples were collected in autumn of
1998 and spring, summer, and autumn of 1999 and 2000 to evaluate pre-BMP
community structure and abundance in pilot and reference streams. A stratified random
sampling design was used where riffle, run, and glide/pool habitats were sampled in
proportion to their occurrence at the sites. A core sampler was used to collect
macroinvertebrates from glide/pool areas with soft sediments while a Hess sampler was
used in riffle or run habitats with hard substrates (i.e. larger gravel and cobble). In the
laboratory, samples were elutriated through various sizes of sieves to separate the

sediment from the organisms. When possible, most macroinvertebrates are being
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identified to the family taxonomic level with the more sensitive families (Ephemeroptera,
Plecoptera, Trichoptera) being identified to genus. Identification of samples from 1998
and 1999 are ongoing, but baseline data from glide/pool habitats of most sites sampled in
1998 and 1999 are presented in this report. Taxa richness was relatively high in
glide/pool habitats with similar numbers of taxa between pilot and reference sites within
a season. Catch per area (CPA) was computed to examine baseline differences in relative
abundance of all taxa at a site and date. Across basins, there was no clear trend in CPA,
although within basins some trends were apparent. Percentage of individuals in
Ephemeroptera, Plecoptera, and Trichoptera (%EPT) families was low in most glide/pool
habitats at the study sites. To assess stream quality, Hilsenhoff’s Family Biotic Index
(FBI) was calculated for each site, date, and habitat type (i.e. glide/pool, run, or riffle)
(Hilsenhoff 1987, Hilsenhoff 1988). Although fish IBI scores indicated relatively good
stream quality at most sites, FBI scores showed poor to very poor stream quality in pool
habitats at these sites. However, most riffle and run habitats in these sites have not been
analyzed and FBI scores are likely to change with further invertebrate identification in

these habitats.
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Job 101.1 Effects of BMPs on physical/chemical indicators of stream quality.

OBJECTIVE

To determine local and watershed-wide responses of physical/chemical factors to the

implementation of watershed management practices.

INTRODUCTION

Despite the success of the Clean Water Act in reducing the impacts of point
source pollution on freshwater ecosystems, many lotic systems in the United States
remain in a degraded condition, largely as a result of non-point sources of pollution
(USEPA 1990). Sources of non-point pollution include runoff from agricultural fields,
logging activities, and urban areas. In predominately agricultural systems, the most
significant types of pollution include excessive inputs of sediment, nutrients (from
fertilizers, livestock, etc.), and pesticides. Nonpoint source pollution from agricultural
practices is regarded as the dominant form of pollution currently impacting rivers and
lakes in the country (USEPA 1995). As a result of heavy agricultural land use in Illinois,
non-point source pollution is a major problem for Illinois watersheds.

In agricultural landscapes, on-field and off-field techniques, termed best
management practices (BMPs), for reducing non-point source pollution are well known
(see Gale et al. 1993). Also, in-stream practices for stabilizing stream banks, increasing
habitat diversity, etc., for improving water quality and enhancing fish production have
received considerable study, especially in coldwater streams (NRC 1992, Hunt 1993).
However, the majority of these studies on BMPs were conducted at the plot or field scale,
over relatively short time frames (e.g., Magette et al. 1989). Very few studies have
addressed the impacts of BMPs at the watershed scale (Muscutt et al. 1993, Tim et al.
1995) or on a large temporal scale (Muscutt et al. 1993, Osborne and Kovacic 1993).

The Illinois Pilot Watershed Study is designed to examine physical and chemical water

quality as well as biotic indicators at the watershed level across a long temporal scale.



PROCEDURES

Physical/chemical habitat data were collected using two levels of sampling: site-
scale and transect-scale. Site-scale parameters (Table 2) were collected at one location in
the site (e.g., water temperature, discharge) or are based on maps of the entire site (e.g.,
drainage area, stream order) and are assumed to be representative of the entire site. Some
variables are assumed to be constant over the duration of the study and were measured
only once (Table 2).

Transect-scale variables are those which are expected to vary considerably within
a site (Table 3). These variables, which pertain to stream channel morphology, bottom
substrate, cover for fish, macrophyte abundance, condition of stream banks, and riparian
land use/vegetation, were measured on ten, equally spaced transects perpendicular to the
flow. The Stream Assessment Protocol for Ontario (Stanfield et al. 1998) was used to
sample these habitat variables. Detailed methods for each parameter are given in Table 3.
All transect-scale parameters were measured in autumn of 1998 and late summer 1999
and 2000 after fish sampling had been conducted with the exception of the Kaskaskia
basin which was only sampled in 1999 and 2000 due to lack of a suitable reference
watershed in 1998. We will continue to sample transect-scale characteristics once/year
during the study.

Responsibility for site-scale habitat sampling has been divided among the Illinois
Natural History Survey (INHS) and the Illinois State Water Survey (ISWS). INHS is
responsible for measuring site scale parameters 1- 4 (Table 2). Drainage area, stream
order, and site length were measured in 1998. Temperature loggers were installed in
spring of 1999 at all sites except in the Kaskaskia Basin which were installed in autumn
of 1999. ISWS is responsible for measuring and analyzing site-scale parameters 5-9
(Table 2). Gauging stations were installed in 1999 to measure these habitat variables
except at lower Kickapoo. Beginning in summer 2001, point samples of these site scale

parameters are being collected to coincide with macroinvertebrate and fish sampling.



FINDINGS

Site-scale characteristics

Pilot and reference sampling sites in each basin were located according to their
position in the watershed based on drainage area. In two of the basins, upstream sites
were located at a drainage area approximately 10 sq. mi., and downstream sites were
placed at approximately 20 sq. mi (Tablel). Upstream and downstream sites in the
remaining two basins were located at about 25 sq. mi. and 60 sq. mi., respectively. For
upstream sites, stream order ranged from 3-4 while downstream sites ranged from 4-5.

In general, average monthly temperature was similar between pilot and reference
watersheds with highest average temperatures in July-August. Due to failure or loss of
temperature data loggers, temperature data are unavailable from Lower Kickapoo and
Upper Big sites; therefore, temperature data for the lower Embarras and the upper Cache
sites are omitted from this report. In the upper sites of the Embarras, the pilot site
(Hurricane) was slightly cooler on average than the reference in summer 1999 but was
slightly warmer in spring and early summer of 2000 with the largest difference in
temperature of 3 °C in August 1999 (Figure 2). The warmer summer temperatures at the
upper reference site (Kickapoo Upper) may be due to either less canopy cover in that
reach allowing sunlight to penetrate and increase temperature or due to effluent from a
waste water treatment plant located upstream. In the Spoon basin, pilot and reference
sites were similar in average monthly temperature (Figure 3). Summer temperatures
were highest in August with the upper site of the pilot (Court) being slightly cooler than
the reference (Haw Creek), whereas lower Court was warmer than the reference. At the
lower sites in the Cache basin, we see a similar pattern with the lower pilot site (Big)
having a slightly higher average temperature than the reference site (Cypress) in late
summer months (Figure 4). As with the other basins, average temperatures between the
lower sites in the Kaskaskia basin were also similar with August having the highest
temperatures in both the pilot (Lake Branch) and reference (Lost) (Figure 5). In addition
to our temperature loggers, the ISWS is also collecting temperature at gaging stations.
Temperature data reported here were collected from both temperature loggers and gaging
stations. Data on other site-scale parameters (e.g. discharge, nutrient and sediment data)

are being collected by the ISWS. Due to dry conditions, ISWS were unable to collect



data for the first 1.5 years. As they collect additional data, we will incorporate their
water quality findings with the analysis of our data on fish and macroinvertebrates.

Transect-scale characteristics

Channel Morphology

At each site, in-stream channel morphology measurements were taken to assess
differences between pilot and reference watersheds prior to intensive implementation of
BMPs through IDNR funded grants. Evaluation of stream channel morphological
characteristics were based upon the differences between the pilot and its respective
reference station. Differences were calculated by subtracting the reference site from the
pilot where a positive difference indicates the pilot is greater than the reference and a
negative difference indicates the pilot is less than the reference.

In the Embarras, upper sites were similar in average width and velocity (with the
exception of 1999) showing consistency across years. Average depth was greater in
Kickapoo Upper (reference) for all three years, and was consistently different in 1999 and
2000 (Figure 6). Average point particle sizes were much larger in Hurricane Upper in
1998 and slightly larger in 2000 but was similar in 1999. Mean maximum particle sizes
were larger in the upper pilot sites all three years but were consistent from 1999 to 2000
(Figure 7). This large difference in both point and maximum particle sizes in 1998 can
be explained by the large amount of bedrock at the upper site on Hurricane. However, in
1999 we observed an increase in sand deposition over the bedrock, thus, changing the
streambed composition from mostly bedrock in 1998 to mostly sandy sediment in 2000.
Lower sites of the Embarras were less similar and less consistent in their mean width,
depth, and velocity across years than the upper sites, but lower sites were more similar
and consistent in particle sizes (Figure 6 and 7). Hurricane Lower (pilot) was narrower
and shallower than Kickapoo (with the exception of 1999) with slower flow in all years.
However, there is some stability of these differences with average depth and velocity
being different between pilot and reference in 1998 and 2000. Average point and
maximum particle sizes were similar between the lower Embarras sites and differences
were stable across all years.

Although the Spoon basin generally showed similar channel characteristics

between the two upper and two lower sites and between years within a site (Figure 6,



Figure 7), the upper sites tended to be less similar than the two lower sites for all channel
morphology characteristics we measured. On average, Court Upper (pilot) was wider
than Haw Upper in all three years, but differences in average width were fairly consistent
in 1998 and 2000 (Figure 6). Average depth, velocity, and point and maximum particle
sizes were similar between the upper Spoon sites and were stable across years. For the
lower sites, all channel morphology characteristics were similar between sites and stable
across years with average depth the most variable across years and showing a trend of
from slightly shallower in the pilot in 1998 to deeper in the pilot in 2000. As BMPs are
put into practice in this basin in 2001, we will continue to monitor depth to determine if
this trend will continue during the implementation phase.

As in the Spoon, most channel morphology characteristics of the Cache basin
were similar between the upper and lower sites with the lower sites more similar and less
variable across years. Big Upper (pilot) was wider and shallower on average than the
reference, but has similar average velocity and substrate size for all years. For the lower
sites of the Cache, average depth was the most dissimilar between the two sites with the
pilot deeper than the reference for all years.

For the Kaskaskia basin, the upper sites tended to be more similar and consistent
in channel morphology than lower sites (Figure 6 and 7). However, since only one year
of data has been collected on the upper sites, this will need additional monitoring. Most
morphological characteristics were very similar between the upper sites with the
exception of mean depth (Figure 6). For the lower sites in the Kaskaskia, Lake Branch
(pilot) was narrower and shallower than Lost Creek, but was similar in average velocity
and substrate sizes across all years (Figure 6, Figure 7).

In general, average depth and width were the habitat variables most dissimilar
between pilot and reference sites and the least consistent across years. Because we are
concerned with detecting changes in habitat after BMP implementation, it is necessary to
know with-in site variability and how accurately we are measuring the habitat within a
stream reach. It is also important to understand how this within site variability affects our
variability from year to year. Because our study design combines data across years in the
pre- and the post-implementation phases for comparison, the more variability in our pre-

BMP data the more difficult is will be to detect a change after BMPs.



In order to estimate our within site accuracy, we intensively sampled (40 transects
per site) habitat and are performing a bootstrap and power analysis on two of our study
reaches: a stream reach with diverse habitat (Kickapoo Upper) and one with uniform
habitat (Lost Lower). Presented in this report are the bootstrap analysis results for the
channel morphology measurements for both stream reaches. For each channel
morphology characteristic at the Kickapoo site, we ran two bootstrap methods: a
bootstrap based on all transects randomly selected and a bootstrap where the first transect
was randomly selected and the others were then equally spaced throughout the site. For
all five channel morphology characteristics, equally spacing the transects provides greater
accuracy than randomly selected transects (Figures 8-11). For mean width, we would
need to measure habitat at 3 transects for 20% standard error (SE) of the true mean (mean
based on 40 transects), 12 transects for 10% SE, and 40 transects for 5% SE if we
randomly selected transects (Figure 8), but if we use equal spacing, then we only need 15
transects to get 5% SE of the true mean (Figure 9). Because our protocol uses 10 equally
spaced transects per site, we will focus our examination on the bootstraping of the
equally spaced transects for both the diverse and uniform site. Based on the standard
errors for upper Kickapoo in Figures 9 and 11, our protocol of 10 transects gets us within
at least 20% SE of the true mean for average depth, width, and maximum particle size
(within 10% SE for the latter two) and close to 20% SE for mean hydraulic head
(measure of velocity). In our more uniform site, we found that most of our channel
morphology characteristics were less variable and more close to our true mean of 40
transects (Figures 12 and 13). For average width and depth, 10 transects gave us less
than 10% SE of the true mean. Hydraulic head was constant throughout the lower Lost
Creek site giving us no with-in site variability which would allow us to detect small
amounts of change. Accuracy of mean point particle size was the same for both the
diverse and the uniform site (27 transects to reach 20% SE) while average maximum
particle size for the uniform site was less accurate (27 transects at Lost and 10 transects at
Kickapoo). From this bootstrap analysis, we believe that with our 10 equally spaced
transects we are accurately describing a majority of our stream channel morphology
characteristics. Substrate is our most variable channel morphology characteristic in both

diverse and uniform sites. Although adding additional transects would give more



accuracy, there are tradeoffs between time spent collecting the data and the increase in
accuracy. One approach which may decrease variability in average substrate size but not
cost a great amount of time would be collection of point and maximum particle sizes
between transects along the thalweg in addition to those along the transects.

We are also interested in annual variability and our ability to detect changes in
channel morphology across time. To determine how annual variability affects our ability
to detect changes in stream quality after BMPs, we performed a power analysis on
channel morphology characteristics for all study reaches. For this analysis, we assumed
that our annual variability would be similar between the pre- and post-BMP time period.
Therefore, we used the standard deviation of the mean from our 3 years of baseline data
and used a range of years of post-BMP collection to obtain differences we could detect
post-BMP. As the number of years of post-BMP collection increase, the detectable
difference for each habitat variable decreases (Table 4-7). By increasing the number of
years sampled after BMP implementation from 1 to 4 years, we can detect a change half
as small. Similar relationships exist for increases in number of years of sampling from 4
to 10 years post-BMP. For stream width, four years of data collection will allow us to
detect a change of 1m or less for most sites and 0.5m or less after 10 years (Table 4).
Differences in average depth that can be detected post-BMP was also small for most sites
(Table 4). With 4 years of post-BMP data collection, we can detect a change in average
depth of 100mm (approximately 4 inches) in nine out of the twelve sites and a difference
of 70mm after 10 years.

Substrate sizes were found to be the most variable channel morphology
characteristics within both uniform and diverse sites (Figures 11 and 13). Annual
variability for point and maximum particle size was high at some sites, such as upper
Hurricane, making it difficult to detect a small change in substrate. However, this large
detectable difference at Hurricane upper is due to the shift in predominately bedrock in
1998 to mostly sand/small gravel in 1999 and 2000. Although we are unable to detect
small changes at a few sites, we can detect a difference of 15 mm or less in point particle
sizes at a majority (8 of 12) of the sites. This degree of detection would allow us to
separate out fines (clay, silt and sand) from courser substrate (medium gravel).

Hydraulic head (a measure of velocity) was less variable within both diverse and



uniform habitat sites (Figures 9 and 12) as well as across years for most of our sampling
sites, thus, allowing us to detect small changes in velocity after BMPs (Table 6). With 1
year of post-BMP collection, we can detect a difference in hydraulic head of 5 mm or less
(approximately 1 m/s) in 10 of 12 sites (Table 6). If we sample an additional 3 years
post-BMP, we can detect a change in hydraulic head of 2 mm or less (about 0.04 m/s) in
three fourths of the sites and about 1 mm after 10 years of post-BMP sampling.

From this power analysis on channel morphology characteristics, it appears that |
with a moderate amount of post-BMP data collection (4 or 5 years), it is possible to
detect small changes in habitat as a result of improved stream quality. We will continue
to look at other habitat measurements in addition to channel morphology characteristics
as well as examine how alternative methods for collecting point-transect data (i.e. taking

points only in the thalweg) will affect the accuracy of our habitat measurements.

In-stream habitat

With flooding a common event in these flashy systems resulting in inputs of
upland sediment and shifting streambed substrate, channel structure can often change in
these watersheds. We examined differences in habitat types between pilot and reference
watershed sites and examined annual variability. In the ’Embarras basin, the upper sites
were similar in percent habitat types (i.e. pool, riffle, run). Upper sites were dominated
by pool area (73% in Hurricane Upper, 62% in Kickapoo Upper) with 13% run habitat
and similar amounts of slow riffles (Figure 14). Both upper sites changed across years.
In 1999, Hurricane Upper was less diverse than in 2000 with 22% islands and 78% pool
while Kickapoo Upper was more diverse with larger amounts of slow (17%) and fast
riffles (17%) (See Figure 4 in Dodd et al. 2000, Annual Progress Report). In 2000, lower
sites of the Embarras were less similar to each other than upper sites. Kickapoo Lower
had far less pool habitat (30%) than Hurricane (67%), almost twice a much run habitat,
and three times as much slow riffles (Figure 14). Kickapoo Lower is also more
consistent in percent habitat composition over time than Hurricane Lower which had 95%
of it habitat as pool in 1999 (See Figure 4 in Dodd et al. 2000, Annual Progress Report).

In the Spoon basin, differences in habitat composition between upper sites and

between years within upper sites were less evident than for lower sites (Figure 14). In the



upper sites, percentage of pools were similar between Court Upper (81%) and Haw

Upper (72%) in 2000 although Haw Upper had twice the percent run habitat as Court
Upper. From 1998 to 2000, percent pool habitat slightly decreased for both upper sites
while percent run increased (See Figure 5 in Dodd et al. 2000). Lower sites of the Spoon
basin were dissimilar in habitat composition in 2000. Court Lower had 22% less pool
and twice as much run and fast riffle habitat than Haw Lower. Court Lower was more
variable across years, shifting from predominantly pool habitat (73% in 1998) to less pool
habitat and more run habitat (40% and 37% in 2000) (See Figure 5 in Dodd et al. 2000).
Haw Lower was more consistent across years, but also showed a shift from pool to more
run and fast riffle habitat.

Habitat in the Cache basin was dominated by pool areas in both upper and lower
sites in 2000 (Figure 15). However, Big Upper did have 7% percent island and 3% run
habitat. Lower sites were also dominated by pools with a very small amount of run
habitat in both sites. Across years, upper and lower sites were consistent in habitat
composition (See Figure 6 in Dodd et al. 2000). Like the Cache basin, the upper and
lower sites in the Kaskaskia basin were completely dominated by slow flowing deeper
pool areas (Figure 15) and did not change habitat composition over time (See Figure 7 in
Dodd et al. 2000). Overall, habitat types were found to be similar between the pilot and
reference watersheds with the lower Embarras and lower Spoon showing the most
variability between sites and the Kaskaskia showing the least variability.

Since depth and hydraulic head within a site determines the type of habitat (i.e.
riffle, run, pool), we also examined how annual variability of these two characteristics
combined affect the amount of change we can detect in types of habitat post-BMP. We
can detect a change of 20% in pool habitat in 10 of 12 sites based on four years of post-
BMP data collection (Table 6) whereas a 20% change in riffle and run habitat can be
detected in all sites (Table 7). For riffle and run habitat, we can detect a change as small
as 10% in 11 and 9 of thel2 sites if we sample at least 4 years after BMP implementation
(Table 7). If we sample for 10 years post-BMP, we can detect this same amount of
change (10%) in all sites for riffle habitat and 11 of 12 sites for run habitat. Although the
two habitat parameters in which we derive percent habitat types showed some annual

variability, we are confident that we can combine depth and hydraulic head to get an



accurate estimate of percent habitat type and detect small amounts of change after BMPs.

As part of our baseline in-stream survey, we measured the amount of in-stream
cover and vegetation. All basins showed little in-stream cover and vegetation (Figures
16-19). In the Embarras, most in-stream cover was unembedded and consisted mostly of
wood. In the upper sites, Hurricane had no in-stream cover, while Kickapoo contained
wood (5%) and flat rock (2%) cover in 2000 (Figure 16). At lower sites, both Hurricane
and Kickapoo had 5% unembedded wood cover, but Kickapoo also had 3% unembedded
round rock and unembedded and embedded flat rock. Cover in the Spoon basin consisted
of unembedded and embedded cover as well as a small amount of macrophytes (Figure
17). Upper sites were similar in overall percent cover with Haw Upper having more
woody cover (4% unembedded, 2% embedded). As with the upper sites, lower sites of
the Spoon had very little in-stream cover, but the types of cover in each of the lower sites
were different, with Court having unembedded wood (2%) and flat rock (2%) and Haw
Lower having macrophyte cover (2%).

Sites in the Cache and Kaskaskia basins had the most in-stream cover. In the
Cache basin, cover in upper and lower sites were dominated by unembedded wood and
unembedded flat and round rock cover (Figure 18). Upper sites were comparable in
cover, but Cypress Upper contained about 5% more unembedded wood. At lower sites,
unemebbed wood cover was higher in Big Creek with a small amount of unembedded flat
rock cover. Like the Cache, the Kaskaskia basin was also dominated by wood (Figure
19). In the upper sites, Lake Branch had 6% more unembedded wood cover than Lost and
a small amount of unembedded flat rock (3%). For the lower sites, percent cover
composition was similar between pilot and reference, but Lake Branch (pilot) had more
wood cover. Overall, there were low amounts of in-stream cover in all basins. Within
basins, categories of cover varied slightly between pilot and reference sites, but overall
percent cover was generally comparable between pilot and reference watersheds.

Bank Conditions

In these watersheds bank erosion has been identified as a major concern.
Consequently, it is anticipated that in-stream and on-field BMPs will be used to reduce
erosion. Therefore we examined pre-BMP bank conditions (bank vegetation, overstory

cover, and bank height) to assess changes in bank stability and shading of the stream as
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BMPs are implemented in the pilot watersheds. Land from water’s edge to 2m on either
side of the stream (0-2m) was usually dominated by herbaceous vegetation or was bare in
all basins (Figures 20-23). Moving out to 100 m, we found a general progression from
herbaceous to mature trees to cultivated fields. Most sites had a very narrow buffer strip
of grasses and/or trees, but agricultural land use was usually within 100m of the stream.
This pattern was evident in the Embarras (Figure 20). For both upper and lower sites, the
reference stream (Kickapoo) tended to have more herbaceous vegetation near the water
and more quickly became dominated by cultivated fields in the 10 to 100m buffers, while
the pilot had a wider buffer of trees. In the upper sites, overstory cover was higher in the
pilot indicating more tree cover near the stream, while in the lower sites, the reference
had a greater percent cover indicating higher number of trees along the stream edge
(Figure 24). This pattern is also true for the upper sites of the Spoon (Figure 21) with the
pilot (Court) predominantly herbaceous at water’s edge and becoming dominated by trees
throughout most of the 100m buffer, while the upper site of the reference is mostly
herbaceous and becomes predominately cultivated after 30m due to a cattle pasture
located adjacent to both sides of the stream. This is also reflected in the percent overstory
cover of the upper sites, whereby the pilot site has a slightly higher percent overstory
cover (Figure 24). Lower sites were much more similar in riparian vegetation, although
the reference stream tends to have more trees in its 30-100m buffer area and a higher
percent overstory cover for all years.

For the Cache, all sites follow the pattern from herbaceous to trees to cultivated
riparian area. However, in the upper sites, Big has trees closer to the stream (2-10m
buffer) more often than Cypress (Figure 22) although this is not evident in the overstory
cover which suggests more tree cover near the stream in Cypress (Figure 24). In the
lower sites, the opposite pattern for riparian vegetation and overstory cover is true where
the reference tends to have more trees in the riparian buffer but less overstory cover
(Figures 22 and 24). For upper sites of the Kaskaskia, latitudinal trends in riparian areas
are more dissimilar than those in the lower sites (Figure 23). The upper site of the pilot
(Lake Branch) is mostly herbaceous near water’s edge with a very narrow buffer of trees
(Figure 23), while the reference site has a wider buffer of trees and higher percent

overstory cover (Figure 24). For the lower sites, the opposite is true where the pilot has a
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larger riparian area of trees (Figure 23) although overstory cover near the stream was
similar between the pilot and the reference (Figure 24).

Bank height measurements were collected as a measure of bank stability where a
high bank stability rating indicates more stable banks. The Embarras had similar bank
stability ratings between both upper and lower sites with similarity of upper sites more
consistent across all years (Figure 24). Lower sites were less similar in 1998 with
increased similarity in bank stability from 1998-2000. However, we should note that
bank height was estimated in 1998 and not directly measured as in 1999 and ZOOO, thus,
bank stability rating may not be as accurate in 1998. Like the Embarras, the lower site of
the pilot (Court) in the Spoon basin was found to have slightly less stable banks than the
reference with a trend of increasing similarity across time (Figure 24). In 1998, bank
stability in the upper sites was much lower in the pilot (Court) than corresponding
reference site (Haw), while in 1999 and 2000 bank stability tended to be more similar
between Court and Haw. Again, these differences may be due to a categorization of bank
angle in 1998, therefore, these may not be an accurate representation of the apparently
large changes in stability.

In both the Cache and Kaskaskia, the pilot sites showed higher stability than their
corresponding reference sites with the exception of the lower sites of the Kaskaskia in
2000 (Figure 24). Between the upper sites of the Cache in 1998, we found a large
difference in bank stability with Big Upper (pilot) having more stable banks; but in 1999
and 2000 there was very little difference in bank stability. In the lower sites of the Cache,
the difference in stability between Big and Cypress was fairly consistent across years

with Big Lower having higher bank stability.
RECOMMENDATIONS

From our baseline data collected in 1998-2000, differences in channel
morphology between pilot and reference streams was somewhat variable in terms of
average width and depth, but substrate and velocity was similar between pilot and
reference watersheds. Channel structure was generally similar within basins with the
exception of the lower Embarras and lower Spoon basins where habitat diversity was

high and varied between sites more so than in other basins. In-stream cover was low in all
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basins and latitudinal trends in bank vegetation was comparable between sites and across
basins. In general, our baseline data indicates that the majority of in-stream habitat
characteristics and bank vegetation conditions were similar between pilot and reference
watersheds. Bootstrap analysis indicated that most of our channel morphology
parameters were consistent within diverse and uniform habitat sites, with substrate size
the most variable component. In general, 10 transects were sufficient to assess site
characteristics, although characterization of substrate in a stream reach may need
additional substrate points taken between transects. Power analysis on all sites with at
least 3 years of baseline data showed that with 4 to 10 years of post-BMP sampling, we
can detect increasingly small changes in our in-stream habitat parameters. At most sites,
detectable changes increase from moderate to very small over these time scales. For our
power analysis, we assumed that our annual variability after BMPs would be similar to
pre-BMP variability, therefore, our estimates of detectable change after BMPs is
dependent on the number of baseline samples. The best assessments of annual variation
in habitat between pilot and reference watersheds will be obtained with additional
collection of pre-BMP habitat data. Additional baseline data will provide a better
assessment of annual variability in these systems allowing us to better assess the potential
to detect changes after BMPs. In the next segments of the study, we will examine
additional in-stream, bank, and riparian habitat measurements and compare our estimates
of detectable change in habitat characteristics to those in the literature to determine if our
ability to detect changes in habitat are within a reasonable range of change that we may
expect due to BMP implementation. As part of our analysis, we will also investigate how
habitat variability within both diverse and uniform sites changes with slightly different
collection methods (i.e. taking measurements at points within the thalweg only or with
two points on either side of the thalweg) and how these methods affect our ability to

detect changes after BMPs.

To help assess annual variability in stream habitat and how this will affect our
ability to detect changes after BMPs, additional baseline data will be collected during late
summer 2001 in all basins except the Spoon. In this basin, BMPs are being implemented

in the pilot and we will begin collecting data during the implementation phase this year.
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Gaging stations were installed in or near both upstream and downstream sites in the pilots
and in or near the downstream site in the reference watersheds. Two exceptions are the
Kaskaskia basin where the pilot has only one gaging station and the Embarras where the
reference station is located at the upstream site. Data from gaging stations will be
analyzed by ISWS to assess changes in chemical parameters following implementation of
BMPs and INHS will incorporate the chemical parameters with biotic variables to help

define mechanisms of impacts these BMPs have on the biota.

14



Job 101.2 Effects of BMPs on fish assemblage structure, fish abundance, and
population size structure.

OBJECTIVE

To determine the watershed-wide responses of the stream fish assemblage and fish

populations of select species to the implementation of watershed management practices.

INTRODUCTION

Most studies on the effects of BMPs have been implemented on small spatial (e.g.
reach-scale) and temporal scales (e.g., Magette et al. 1989). In the few studies that were
performed at larger spatial (e.g., watershed) and temporal scales, the emphasis has been
on effects of BMP implementation on physical parameters (e.g., nutrient concentration,
sediment yield) (see Trimble and Lund 1982, Gale et al. 1993, Walker and Graczyk 1993,
Park et al. 1994, Cook et al. 1996, Edwards et al. 1996, Meals 1996, Bolda and Meyers
1997). Responses of the biota to watershed-wide implementation of BMPs have been
considered much less frequently. A number of observational, correlative studies suggest
that fish and invertebrates should respond strongly to changes in land use practices within
watersheds through changes in nutrient and sediment loading, hydrology, and in-stream
shading and cover (Lenat and Crawford 1994, Rabeni and Smale 1995, Richards et al.
1996, Roth et al. 1996, Allan et al. 1997, Barton and Farmer 1997, Wang et al. 1997).

Currently, there is a lack of understanding on how ecological processes operating
at large spatial and temporal scales affect stream fish populations (Schlosser 1995). Most
studies of stream fish have been conducted at relatively small spatial scales, but it is clear
that processes operating at large scales (e.g., land use in a catchment) can strongly affect
the integrity of stream fish communities (Roth et al. 1996).

Implementation of BMPs in watersheds should minimize the impacts of nonpoint
source pollution on surface waters. Accomplishing this will require a much greater
understanding of the large-scale effects of BMPs on biotic as well as the more

traditionally used physical attributes of aquatic systems.
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PROCEDURES
At each site, fish were collected with a single pass using a standard AC electric

seine (Bayley et al. 1989; Bayley and Dowling 1990). The length of each site was
approximately 20 times the mean bank full width (Lyons 1992, Gough 1997). Block nets
were placed at locations upstream and downstream of the site to increase the
effectiveness of the sampling. A single pass was used instead of a triple pass depletion
method due to the extensive time and labor required for the latter method. Simonson and
Lyons (1995) found that CPUE provided the same values for species richness and percent
species composition as depletion sampling and took only one quarter the time required
for depletion sampling. Fish samples were collected in late summer of 2000 from August
to September. Captured fish were identified to species, counted, and lengths and weights
were recorded. When the number of fish caught of a particular species was high, the first
100 fish were measured and the remaining fish were counted. For selected species, age
structures (e.g. scales, fin rays, etc.) for age and growth analysis were collected (see Job
101.3). Fish larger than 100mm were processed and released whereas smaller fish were
fixed in 10% formalin and preserved in 70% ethanol in the laboratory for processing.

For assessment of fish assemblage structure and differences in structure between
pilot and reference streams, species richness data and two separate similarity indices were
used. The Jaccard Similarity Index (J), based on presence/absence data, was calculated
using the formula:

I=C/(A+B-C)

where A is the number of species in site A, B is the number of species in site B, and C is
the number of species in common. A second similarity index was the Similarity Ratio
(SR;;) which takes into account the abundance of each species within the two sites being
compared and was calculated using the formula:

SR = Tk ViiVii/ (Tk Yiio + Tk Y5 - 2k Yii Vi)
where i and j are two sites, yy; is the relative abundance of the k-th species at site i, and
¥k is the relative abundance of the k-th species at site j. For both similarity indices, a
value of one indicates the species composition are exactly the same in both sites and a
value of zero indicates no similarity in fish assemblages between the two sites being

compared.
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To analyze differences in overall fish abundance in pilot and reference sites, catch
per unit effort (CPUE) was computed. Evaluating fish size structure, average weight and
biomass for each species was computed and compared between corresponding pilot and
reference sites. Using fish community data, we calculated the Index of Biotic Integrity

(IBI) to estimate the overall health of the aquatic ecosystem at each study site.

FINDINGS
Fish Assemblages

Species Richness

In 2000, a total of 21,350 fish encompassing 65 species were caught among all
basins. The Embarras basin made up 60% (56% in 1999 and 52% in 1998) of the total
catch and included 37 (36 in 1999 and 32 in 1998) species (Table 8). All sites in the
Embarras basin were fairly similar in species richness ranging from 23 to 31 species. The
largest difference in species richness was between the upper sites with Kickapoo Upper
yielding five more species than Hurricane Upper (Table 8, Figure 25). Both upper and
lower sites on Hurricane held higher numbers of individuals in 2000 (Table 8), but the
difference in total catch was not consistent across years for both upper or lower sites of
the Embarras (Figure 25). The Spoon basin contained 17% (15% in 1999 and 35% in
1998) of the total fish catch and included 30 species (36 in 1999 and 32 in 1998) (Table
9). Species richness was similar between the lower sites of the Spoon basin but less
consistent across years than the upper sites, while the upper sites were less similar with
the pilot containing 6 more species than the reference (Figure 25). Differences in
numbers of fish were also more consistent across time in the upper sites, while the lower
sites show a decrease across years.

The Cache basin contained 20% (25% in 1999 and 12% in 1998) of the total catch
and included 31 species (32 in 1999 and 29 in 1998) (Table 10). In 2000, species
richness was extremely similar between upper and lower sites in the Cache. Examining
species richness across years, differences between the upper sites were more similar
across all years, whereas the lower sites had large differences in species richness in 1998

and 1999 (Figure 25). Numbers of individuals were not comparable between upper or
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lower sites in 2000, but lower sites were more similar across years than upper sites. The
Kaskaskia basin had the lowest number of individuals making up only 3% of the total
catch (3% in 1999) (Table 11). Both upper and lower sites of the Kaskaskia basin were
comparable in numbers of fish caught, but species richness was lower in Lake Branch for
both upper and lower sites.

Assemblage Composition

To assess similarity in species composition between pilot and reference sites,
Jaccard’s Similarity Index and Similarity Ratios were calculated with a value of one
indicating complete similarity between sites (Table 12, Figure 26). Based on Jaccard’s
index, the species composition between upper and lower sites of the Embarras was
similar with a value of 0.76 and 0.69, respectively. Lower sites in the Embarras remained
consistent across years, but fish communities in upper sites increased in similarity in
2000. The Spoon basin had higher similarity between the lower sites (0.54) in 2000 than
the upper sites (0.48) (Table 12), but similarity between upper sites are more consistent
across years (Figure 26). The Cache basin had moderate similarity in assemblage
composition between upper and lower sites with a similarity of 0.50 for both sites (Table
12). Across years, Jaccard’s similarity index between the lower sites of the Cache
increased from that in 1998, while the assemblage similarity index for the upper site
remained comparable to 1998 and 1999 (Figure 26). In the Kaskaskia, both the upper and
lower sites had poor community similarity due to the low number of species caught in the
pilot in 2000.

Similarity Ratios, which take into account abundances of each species, were
lower overall but showed similar trends to Jaccard’s similarity index (Table 12, Figure
26). The two exceptions were the upper sites in the Embarras in 2000 and the lower sites
in the Cache in 1999 (Figure 26). As with Jaccard’s index, the upper sites of the
Embarras showed an increase in Similarity Ratio across years, but the magnitude of the
increase in 2000 was much greater for Similarity Ratios than for Jaccard’s index. For the
Cache, we found a high Similarity Ratio for lower sites in 1999 compared to 1998 and
2000, but the Jaccard’s index was similar between 1999 and 2000 (Table 12, Figure 26).
Overall, sites were fairly similar in assemblage composition and consistent across years

but were less similar when taking into account relative abundances (Similarity Ratio).

18



Fish Abundance

To analyze the pre-BMP conditions in overall fish abundance in pilot and

reference streams, catch per hour of electroshocking time was calculated for each site
(Table 13, Figure 27). In the pilot watersheds, a pattern of higher CPUE in both upper
and lower sites was observed with the exception of the lower sites in the Spoon and the
upper and lower sites of the Kaskaskia (Table 13). The Kaskaskia basin showed the
lowest CPUE at all sites, while the Embarras showed the highest CPUE at all sites except
in the lower reference (Table 13). Similarity in CPUE between upper and lower sites was
not consistent across all years within any particular basin (Figure 27). The upper
Embarras sites were dissimilar in their CPUE but consistent across 1998 and 1999, while
the lower sites show an upward trend of increasing dissimilarity (Figure 27). For the
lower sites of the Spoon, we found an increase in similarity of CPUE across time, while
the upper sites remained relatively stable across years. In the Cache, upper sites of the
pilot tended to have consistently higher CPUE than the reference for all years, but the
lower site showed a fluctuation from lower CPUE in the pilot in 1998 and 1999 to higher
CPUE in 2000. Although the Kaskaskia had the lowest CPUE of all basins and was the

most dissimilar in terms of species richness, CPUE was similar between the upper and

lower sites.

Fish Size Structure

Weights of each species caught were averaged for each site and comparisons of
biomass and percent composition of biomass were made between upper and lower sites
within each basin to determine differences in size structure between pilot and reference
streams. Comparing the upper sites of the Embarras, the reference site (Kickapoo) has
eight times greater fish biomass per area than the pilot and is dominated by steelcolor
(25.9%) and spotfin shiners (29.5 %), while the pilot is dominated by central stonerollers
(28.3%)(Table 14). In the lower sites, total biomass was similar with both sites achieving
about 14% of their biomass from longear sunfish (Table 15). In the Spoon basin, the
upper sites were more similar in total biomass, although the reference (Haw Upper) did
have almost twice the biomass (9.7 g/m?) as the pilot (5.1 g/m?) (Table 16). Biomass in
Court Upper was dominated by carp, while Haw Upper contained high biomass of white
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suckers. Lower sites of the Spoon were more dissimilar in total biomass than upper sites
with the pilot having almost five times as much biomass (Table 17). Court Lower was
dominated by central stoneroller (34.1%) while Haw Lower was dominated by red shiner
(41.4%) with both sites obtaining a high percentage of their biomass from golden
redhorse (21.8% in Court, 26.9% in Haw).

In the Cache basin, creek chubsucker comprised 34.4% of the biomass in the pilot
(Big) and 18% in the reference (Cypress) (Table 18). Lower sites were not as similar as
the upper sites in total biomass. The pilot had three times more fish biomass than the
reference (Table 19), but both lower sites had high percent of their biomass from
bluntnose minnow (30% in Big, and 18.6% in Cypress). White sucker also make up about
30% of the biomass in Big Lower while creek chubsucker made up 21.6% in Cypress
Lower. Like the Cache, the upper sites of the Kaskaskia were similar in total biomass,
but the composition was different between the two sites. Brown bullhead, green sunfish,
and gizzard shad made up most of the biomass in Lake Branch while bluegill made up
most of the biomass in Lost (Table 20). By comparison, at the lower sites, total biomass
was four times greater in the reference but composition was fairly similar with common

carp making up most of the biomass in both sites (Table 21).

Fish Community

To assess the quality of the fish community, the Index of Biotic Integrity (IBI)
was computed for each site. Of the 16 sites sampled in 2000, two sites attained a score
greater than 51 of a possible 60 (Table 22). Seven sites showed scores ranging from 41
to 50, five sites had scores between 31 and 40, and two ranged from 21 to 30. Overall,
the sites in the Embarras basin had high IBI scores with scores ranging from 50 to 52.
Differences in IBI scores between upper and lower sites of the Embarras were variable
across years with a decreasing trend in the lower sites (Figure 28). Court and Haw
Creeks in the Spoon basin had scores ranging from 36 to 50. Upper sites in this basin
were found to be more similar (difference of 4) in quality than the lower sites, although
lower sites had better quality. The lowest score in the Spoon basin occurred in the Haw
upper site, due to cattle having access to the stream increasing bank erosion, nutrient

loading and turbidity. However, the quality of this site was still found to be relatively
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high. As with the Embarras, differences in IBI scores were not consistent across years.
Sites in the Cache basin were also found to be relatively high in community quality with
three of the four sites having scores greater than 41. Big Lower contained the lowest
quality with a score of 40. Examining differences in IBI scores for the Cache, we found a
increased similarity in both upper and lower sites across years. Of all four basins, the
Kaskaskia had the lowest stream quality with scores ranging from 26 to 40. The upper
sites of the Kaskaskia were found to be the most dissimilar in IBI scores of all basins.

In general, most sites showed good stream quality. However, 3 of the 8
comparisons in IBI scores between upper and lower sites revealed a difference in scores
greater than 4 points. Currently IBI metrics used in Illinois streams are being reevaluated
and a new IBI scoring criteria will be established. This improved scoring criteria may
cause scores to change slightly for some study streams.

As with in-stream habitat, we were also interested in the ability to detect changes
in fish assemblage composition, abundance, and quality of the fish community after BMP
implementation. Species richness is a good indicator of stream with higher species
richness usually meaning better stream habitat conditions. Most sites showed low annual
variability in number of species caught resulting in the ability to detect a change in five
species or less for three fourths of our sites based on sampling four years post-BMP
(Table 23). After 10 years, changes of three species or less could be detected. Lower Big
and upper Hurricane had the most annual variability of the 12 sites and, thus, we can only
detect changes of eight and seven species after four years. These two sites also had high
fluctuations in catch per unit effort (CPUE) between years resulting in a larger difference
needed between pre- and post-BMP years in order for us to detect a change in abundance
(Table 23). Our ability to detect only large changes at the upstream site of Hurricane
Creek is probably linked to the shift in substrate from bedrock in 1998 to sand/gravel in
2000. In 2000, we caught species such as sunfish and suckers that were more adapted to
finer substrates and were not previously found at this site in 1998 and 1999 (Table 8). At
the lower site of Big Creek we also see an increase in both species richness and CPUE
from 1998 to 2000 (Tables 10 and 13; see previous Annual Reports for 1998 and 1999
data). At this time, it is not clear what is driving this increase in species richness and

CPUE; changes in in-stream habitat have been consistent across years at this site. By
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incorporating water quality data from ISWS with our fish data, we may find a
relationship between the amount or type of nutrients coming into the system and the fish
assemblage. CPUE was the most variable fish assemblage characteristic we measured
which indicates that this parameter may not be a good measure of change as stream
conditions improve.

In a comparison of fish assemblages between pilot and reference watersheds, we
were able to detect a change in similarity of 20% between upper and lower sites with
Jaccard’s index which is based on presence/absence (Table 24). When taking into
account abundance as well as species richness (Similarity Ratio (SR)), we found that a
larger difference is needed in the upper Embarras and lower Cache in order to detect a
change in assemblage similarity (Table 24). This is due to the annual fluctuations in
CPUE in upper Hurricane and lower Big Creek (Table 13; see previous Annual reports
for 1998 and 1999 data). However, similarity comparisons between upper and lower
sites in the remaining watersheds had low annual variability; thus, we are able to detect
changes of 20% or less in assemblage similarity using SR.

For IBI scores which indicate overall quality of the fish community, we can detect
a change in score of five or less in eight of the 12 sites based on four years of post-BMP
collection and three or less after 10 years (Table 25). With the current modification of IBI
metrics for Illinois streams, reevaluation of these sites with the new IBI scoring criteria

may stabilize scores across years allowing for improved detection of changes in fish

assemblages.

RECOMMENDATIONS

The analysis of species richness, community composition and CPUE between
pilot sites and their corresponding reference sites indicates that most of our pilot and
reference watersheds are similar, but not necessarily consistent across years. With the
exception of the upper sites in the Embarras basin where most species were larger in the
reference and lower sites of the Spoon where most species were larger in the pilot, size
structure of most fish species was comparable between pilot and corresponding reference
watersheds. Although the quality of the fish community was different in three of the eight

comparisons between upper and lower sites, most sites were comparable in IBI scores.
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From our analysis of composition, abundance, and size structure we found that there is
.variability among years especially in CPUE, but that our pairings are well matched for
examining differences in fish assemblage composition and size after BMP
implementation.

To assess the changes in fish assemblage in these pilot watersheds, further pre-
BMP data will need to be collected and analyzed. Baseline data are key to the Before-
After-Control-Impact-Pairs study design (BACIP) because the ability of the design to
detect effects of a treatment depends strongly on the number of sampling dates before and
after the treatment is initiated, the size of the treatment effect (defined as the difference
between the average before and after differences between the treatment and control sites),
and the variability in the treatment and control sites in each period (Osenberg et al. 1994).
As with our habitat data, additional baseline fish data is needed to improve our
predictions on the amount of changes we can detect in fish assemblages after BMPs. In
the next segments of the study, we will attempt to compare our estimates of detectable
change against studies that have monitored stream restoration at small scales in other
regions to determine if our ability to detect changes in fish assemblages is within an
adequate range. Obtaining sufficient numbers of pre-treatment samples is critical,
because additional before samples cannot be obtained after the treatment is implemented.
This is especially important in the Kaskaskia where we have been unable to sample the
upstream reaches the past two years of this study. In late summer 2001, additional
baseline fish data will be collected at all basins except the Spoon where BMPs will be
implemented beginning in summer of 2001.

In the Spoon basin, we are monitoring changes in fish assemblages during the
implementation phase through watershed-scale monitoring and site-scale monitoring at
locations where individual BMPs are being implemented. We are currently monitoring a
Newbury weir site in the Court Creek watershed where we have two pre-BMP sampling
dates (one in mid-Oct. 2000 and one in late May 2001) and one post-BMP date (late
August). We will continue to monitor this site as well as additional BMP sites. In Big
Creek, monitoring began in 2000 at a location also designated for Newbury weir

construction, however, it is not clear when these weirs will be constructed.
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Job 101.3. Effects of BMPs on fish growth rates.

OBJECTIVE

To determine the local and watershed-wide responses of fish growth rates of selected

species to the implementation of watershed management practices.

INTRODUCTION

Only a small number of large-scale studies have addressed watershed
management practices on fish populations and, thus, a greater understanding of how
processes operating at large spatial and temporal scales affect stream fish is necessary
(Schlosser 1995). Our study will further examine the impacts of BMPs on fish
populations by evaluating differences in growth rates before and after BMP
implementation. Growth is a useful metric for evaluating habitat suitability, prey
availability, fish health, and management practices because it results from the effects of
both endogenous and exogenous conditions (DeVries and Frie 1996). Species
composition, abundance, and size structure have historically been used to describe the
population dynamics of stream fish communities, but the results of these metrics offer
little insight into the factors regulating them. A species appearing in the population only
means that the habitat falls into a range of conditions that allows the species to exist. It
does not give an indication of how well the habitat meets the needs of the species. For
example, high abundance may indicate that reproductive potential and survival are not
limited by the habitat, but abundance fails to account for the health and sustainability of
the existing population. Size structure alone is not an adequate indicator of how well the
habitat meets a species needs because it does not provide information about the time it
took for the individuals in a population to reach their current size. Growth rates will also
likely respond more quickly to changes in habitat and invertebrate populations, providing
a more sensitive response variable to BMPs than fish community variables. By
examining growth rates, our understanding of the mechanisms regulating stream fish
communities (Schlosser 1987) and traditional evaluation metrics will be improved

because growth plays an important role in regulating population dynamics of fishes

24



(Werner and Gilliam 1984). Therefore, we will determine the growth rates of individual
species in addition to species composition, abundance, and size structure of stream fish in
an effort to detect changes in stream quality. As we observed from our 1998-2000 data,
species composition, abundance, and size structure may change from year to year within
a site, but growth rates can be tracked for the life of a fish providing us with a history of
the stream conditions before the study began. Thus, growth rates may be a more
effective measure of improvements in stream quality than species composition and
abundances as well as help us to understand the factors regulating species composition,

abundance, and size structure.

PROCEDURES

Changes in growth rate will be evaluated for selected fish species associated with
the implementation of watershed management practices at each of the sites. Based on the
1998 fish data, the most common species that were abundant across sites were chosen for
analysis. These were: largemouth bass, smallmouth bass, bluegill, longear sunfish, green
sunfish, creek chub, white sucker, golden redhorse, central stoneroller, and yellow
bullhead. In 1998, various aging structures (i.e. scales, spines, and otoliths) were
collected from all fish to determine which bony structure was most suitable for aging a
particular species. Scales were used for aging Micropterus spp., Lepomis spp., creek
chub, central stoneroller, and golden redhorse collected in 1998 and 1999. For fish
collected in 2000, scales were used to age Micropterus spp., Lepomis spp. < 150 mm,
creek chub, central stoneroller, and golden redhorse. Otoliths were used for aging
Lepomis spp. > 150 mm collected in 2000. Pectoral fin rays/spines will be used for aging
white sucker and yellow bullhead. Fish larger than 100 mm were identified to species,
weighed, measured for total length, and released after the proper aging structures were
removed. Lepomis spp. > 150 mm were returned to the lab and frozen for otolith
extraction. Other fish species smaller than 100 mm were preserved in 10% formalin and
returned to the lab. Preserved samples were processed in the lab using the same protocol
as those in the field. We hope to obtain a minimum of 30 individuals per species and site

for age and growth analysis. Scales will be impressed on acetate slides and spines
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sectioned. Radii and interannular distances will be recorded with a digitizing tablet
connected to a computer. A subsamble will be aged by a second person to verify age
estimates. Lengths at each previous year will be backcalculated from the averaged scale
measurements using the Fraser-Lee method. Using backcalculated values, age-specific
growth rates will be compared before and after implementation of the watershed
management practices at both the pilot and reference sites. In addition, annual size-
specific growth will be determined for two sizes for each selected species (Putnam et al.
1995). Sizes chosen will encompass the range in which known ontogenetic diet and
habitat shifts occur with a small size approximating growth of age-1 fish and large size
approximating growth at the onset of maturity. These size-specific growth rates often
provide more ecologically meaningful comparisons than age-specific growth rates
(Putnam et al. 1995). These estimates will also be used to assess effects of watershed

management practices on stream fish growth.

FINDINGS

Scales and otoliths collected from centrarchids and golden redhorse in 1998,
1999, and 2000 have been aged. Measurement of the interannular distances will be
conducted in future segments. Creek chub and central stoneroller scales, along with
white sucker and yellow bullhead fin rays/spines, will be processed, aged, and measured
as well. An assessment of population age structure and growth trends of the species that
have been aged from pilot and reference watersheds will be given in this report.

The average age of largemouth bass showed the most variation of all species
between pilot and reference sites within each basin (Table 26). The Embarras and
Kaskaskia basins particularly displayed a difference between pilot and reference sites,
while largemouth bass in the upper and lower sites of pilot and reference streams in the
Cache and Spoon basins were similar in average age. For all basins, growth of
largemouth bass between upper and lower pilot and reference sites in streams were
similar. However, the relationships were slightly less similar in the Cache and Kaskaskia
basins than in the Embarras with differences in average length between sites for each age

class possibly caused by small sample sizes from the reference streams (Figure 29).
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Smallmouth bass were collected in frequent numbers only from the pilot stream of the
Spoon basin (Figure 30). Average age of bluegill differed very little between pilot and
reference sites in each basin with the exception of the lower pilot site of the Embarras
(Table 26). Bluegill growth was similar between the pilot and reference sites of each
basin although some variation began to occur with the older age classes likely due to low
numbers of older individuals being collected (Figure 31). Within each basin, the average
age and growth of longear sunfish were similar between upper and lower pilot and
reference sites of watersheds. Longear sunfish from the lower pilot site of the Cache had
a smaller average length than the lower reference site despite averaging one year older
(Table 26, Figure 32). No longear sunfish were collected from the Spoon basin or the
pilot stream of the Kaskaskia basin. As with the other sunfish species we examined,
green sunfish had similar average ages for most pilot and reference sites within a basin
(Table 26). In the Embarras basin, individuals collected from the reference sites were
slightly older than those collected from the pilot sites. One exception is the Spoon basin
where difference in average age between upper and lower sites was at least one year,
however, this is probably attributable to small sample size for the pilot sites (N=1).
Growth was also similar for green sunfish within each basin (Figure 33). We found
similar average age and growth for golden redhorse between upper and lower pilot and
reference sites in streams within each basin (Table 26, Figure 34). Golden redhorse were

collected from only one site of the Embarras and Cache basins and no sites of the

Kaskaskia basin.

RECOMMENDATIONS

From our preliminary analysis, population age structure and growth of largemouth
bass, smallmouth bass, bluegill, longear sunfish, green sunfish, and golden redhorse
appeared similar for upper and lower pilot and reference sites within each basin. As bony
structures are aged for the remaining species and radii and interannular distances are
measured for all species, we will be able to better assess pre-BMP population age
structure and growth rates. In the 2001 field season, additional structures were taken for
more pre-BMP growth analysis in the Embarras, Cache, and Kaskaskia basins. Once

these data are collected and analyzed, we will conduct power analysis to determine the
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magnitude of changes in growth rates that we can detect as a result of BMP
implementation. Implementations of BMP’s have begun in the Spoon basin and changes

in growth during this phase will begin to be analyzed.
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Job 101.4. Effects of BMPs on benthic macroinvertebrate community structure and
crayfish abundance.

OBJECTIVE

To determine the local and watershed-wide responses of benthic macroinvertebrates,

including crayfish, to the implementation of watershed management practices.

INTRODUCTION

Most studies of stream biota have been conducted at relatively small spatial
scales, but it is clear that processes operating at large scales (e.g., land use in a
catchment) can strongly affect the integrity of stream fish (Roth et al. 1996) and
invertebrate (Richards et al. 1996) assemblages. To further assess the effects of BMPs on
stream quality in these Pilot watersheds, benthic macroinvertebrates are being monitored.
There are a number of reasons to include benthic invertebrates in a monitoring program.
First, because of short generation times and high intrinsic population growth rates,
invertebrates should respond more quickly to improvements in water quality than fish.
Second, as discussed above, the power of the BACIP design to detect treatment effects
strongly depends on the number of sampling dates before and after implementation of
BMPs. Because serial correlation associated with frequent sampling should be less of a
concern with short-lived invertebrates than with fish (Stewart-Oaten et al. 1992,
Osenberg et al. 1994), invertebrates can be sampled seasonally to increase the power of
the BACIP design. Third, because most stream fish ultimately depend on benthic
invertebrates as a food source, invertebrate monitoring will provide a mechanistic

understanding of improvements observed in fish assemblage structure (Job 101.2) and

growth (Job 101.3).

PROCEDURES

Benthic macroinvertebrates were sampled at each site from riffle, glide/pool, and
run habitats in fall (September — November) of 1998 and spring (May — early June),
summer (July), and fall (October) 1999 and 2000. At most sites large gravel — cobble
substrates (riffle or run habitats) were sampled using a Surber sampler in 1998 (with

exception of Kickapoo Creek) and a Hess sampler in 1999 and 2000 equipped with a 300
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um mesh net. Fine gravel — sand/silt substrates (run or glide/pool habitats) were sampled
with a coring device. Each habitat type was sampled in proportion to its relative
availability in the site with a maximum of fifteen samples (cores and hess/surber samples
combined) collected at a site. In 1999 and 2000, depth and hydraulic head was also
recorded at the location of each sample to help categorize habitat types. Samples were
preserved in the field in their entirety with 4% formalin.

Procedures recommended by Wrona et al. (1982) and Thrush et al.(1994) were
used in laboratory processing of the samples. All samples collected within the same
habitat type (i.e. riffle, run, glide) at a site/date will be pooled. Samples were elutriated
using various size sieves and sorted from organic debris using a dissecting microscope at
10X magnification. Samples with a large number of organisms were sub-sampled and
macroinvertebrates identified to the family level with more sensitive taxa
(Ephemeroptera, Plecoptera, and Trichoptera) identified to genus using various
taxonomic keys (Wiederholm 1983; Thorp and Covich 1991; Merritt and Cummins 1996)

All samples from 1998 and 1999 have been processed and are currently being
identified. Data presented in this report are from glide/pool habitats. In addition, few
riffle samples from 1999 have been identified and are included in this report. To analyze
the community structure in glide/pool habitats we examined trends in taxa richness,
%EPT, and macroinvertebrate abundance. We also assessed stream quality through

Hilsenhoff’s Family Biotic Index (Hilsenhoff, 1988).

FINDINGS

In general, glide/pool habitats were dominated by chironomids and oligocheates
in all basins (Tables 27-30). In the Embarras basin, taxa richness was similar in both
upper and lower sites of fall 1998 and spring 1999. Total catch per area (CPA) differed
among upper and lower sites with the pilot sites having greater CPA than reference
(Table 27). For the Spoon basin, upper and lower sites in all years and seasons were
similar in taxa richness with the exception of the upper sites in fall 1998 (Table 28). In
the fall samples, catch per area was higher in both upper and lower sites of Court, while
Haw had higher CPA in the spring 1999 samples.

Taxa richness and relative abundance for the Cache differed between the upper
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sites in fall 1998 and spring 1999 with Big Upper yielding higher taxa richness but lower
CPA than Cypress Upper (Table 29). Lower sites were similar in taxa richness for fall
1998 and spring 1999, although CPA greatly differed between the sites in fall 1998

(Table 29). Spring and Fall riffle samples at the upper pilot site (Big) did not have higher
species richness than the glide/pool habitats, but did have higher numbers of
Ephemeroptera, Trichoptera, and Amphipoda taxa (Table 31). In the Kaskaskia, only one
site in one season has been identified and analyzed. However, comparing the lower site of
Lake Branch with those of other basins suggests that taxa richness is relatively high
(Table 30). ,

To further assess community structure as well as water quality, we computed FBI
(Hilenshoff 1988; Lenat 1993) and %EPT scores. In general, FBI scores were high and
%EPT was low for glide/pool habitat in all basins and seasons, indicating poor water
quality (Table 32). In the Embarras, upper sites were similar in FBI and %EPT in fall
1998, while in the lower sites, the macroinvertebrate community was very poor in the
reference but only fairly poor in the pilot. In the Kickapoo Lower site in spring 1999,
%EPT was high compared to Hurricane although FBI scores indicated both sites were
poor quality. In the Spoon basin, the upper and lower reference sites had higher FBI and
lower %EPT scores (except Haw Lower in fall 1998) than the pilot in both fall and spring
samples, indicating lower water quality in the reference. Sites in the Cache were very
poor quality in all seasons, with the upper and lower pilot sites having slightly better
quality than their respective reference sites. Examining the riffle samples in the upper site
of the pilot (Big) in spring and fall 1999 shows good quality and higher %EPT taxa then
glide habitats in that basin. Percent similarity, which compares FBI scores between
upper and lower sites, was high in all basins, indicating that pilot watersheds were very
similar in FBI scores to their corresponding reference watershed (Table 33).

As with habitat and fish assemblages, we are also interested in understanding the
sensitivity of our sampling methods to detect changes in macroinvertebrate assemblages
using our current sampling methods. In order to examine accuracy of our samples in
describing the benthic community for a stream reach, we performed a bootstrap analysis
on number of core samples needed to obtain 20% SE of the mean in spring and summer

samples. From our analysis, we found that for most sites, we are collecting adequate
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number of core samples in both spring and summer to reach 20% SE (Figures 35-38). All
but one site in which the standard errors did not reach 20% of the mean had only one
season where this was the case. Court Upper was the only site where both spring and
summer samples did not reach 20% SE. From this preliminary analysis, we feel we are
accurately characterizing benthic invertebrates in the glide/pool habitat in our study
reaches. We intend to analyze samples from glide/pool habitats from the fall as well as
samples taken in riffles in order to determine if our sampling methods are accurate

enough to detect changes in benthic communities for various seasons and habitat types.

RECOMMENDATIONS

Baseline data from 1998 and 1999 revealed similar macroinvertebrate
composition between pilot and reference watersheds with most glide/pool habitats
dominated by chironomids and oligocheates. FBI scores were high and % EPT was low
for glide/pool habitats at all sites suggesting poor water quality and opportunities for
improved stream quality after BMP implementation.

Our preliminary bootstrap analysis in pool/glide habitats indicate that our
sampling protocol gives us a sufficient estimate of total numbers of benthic
macroinvertebrates within a stream reach. Ongoing processing of 2000 samples and
identification of 1998 and 1999 samples will continue in subsequent segments. From this
additional data, we will examine within site variability in macroinvertebrate abundance
and richness for different seasons and types of habitat. We will examine our annual
variability in benthic invertebrate communities and our ability to detect changes in
benthic macroinvertebrate communities after BMPs.

In order to improve our ability to detect a change following BMP implementation,
collection of additional benthos samples will be necessary to quantify pre-BMP
conditions in macroinvertebrate communities in pilot and reference watersheds. We will
continue to monitor pre-BMP conditions in the Embarras, Cache, and Kaskaskia basins.
In the Spoon basin, we have begun monitoring changes in macroinvertebrate assemblages
as BMPs are implemented in the pilot watershed at both the watershed-scale and at
specific sites were BMPs are being installed. We are monitoring changes in

macroinvertebrate communities at the same Newbury weir site in Court Creek where we
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are monitoring changes in fish assemblages and habitat. For macroinvertebrates, we have
two pre-BMP sampling dates (corresponding to fish sampling) and one post-BMP
sampling date (early Oct. 2001). As additional site specific BMPs are identified, we will
collect pre- and post-BMP data to assess the effects of specific types of BMPs on the

macroinvertebrate community.
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Job 101.5. Analysis and reporting.

OBJECTIVE

To prepare annual and final reports that summarize work accomplished and evaluate the

effectiveness of watershed management practices for improving water quality.

Data were analyzed and reported within individual jobs of this report (see Job 101.1-

101.4).
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Table 2. Summary of site-scale habitat variables. Each site is approximately 20 times
the mean bankfull width (Wys) in length (Gough 1997).

Variable

Sample
Frequency

Method

1) Drainage area (km”)

2) Stream order

3) Site length (m)

4) Water temperature
(°C)

5) Discharge (m>/s)

6) Total P and soluble
reactive PO, — P

7) Total N and
NO;-N

8) NH; - N

9) Suspended
sediments

1 time only
1 time only
Annual

Continuous

Continuous

Once/week;
Hourly during
spates
Once/week;
Hourly during
spates
Once/week;
Hourly during
spates
Once/week;
hourly during
spates

1:24,000 topographic maps; GIS
1:24,000 topographic maps
Site length = 20Wy¢ ; see method for Wy (Table 3)

Optic Stowaway temperature logger; Gaging
Stations (ISWS)
Gaging Stations (ISWS)

Ascorbic acid method (APHA 1995);
automatic pumping sampler at Gaging Stations
(ISWS)

Cadmium reduction method (APHA 1995);
automatic pumping sampler at Gaging Stations
(ISWS)

Phenate method (APHA 1995);

automatic pumping sampler at Gaging Stations
(ISWS)

Depth-integrating DH-48 sampler (Gordon et al.
1992); automatic pumping sampler at Gaging
Stations (ISWS)




Table 3. Summary of transect-scale habitat variables. Ten transects were sampled at
each site. All variables will be sampled once/year when fish sampling is conducted.

Variable

Description

Bankfull width (m)

Stream width (m)
Depth (mm)

Hydraulic Head (mm)

Bottom substrate type

Cover (%)

Shading (%)

Bank vegetation cover (%)

Undercut bank (mm)

Bank height

Riparian land use
(left and right bank)

Horizontal distance along transect, measured perpendicular to
stream flow, from top of low bank to a point of equal height on
opposite bank (Gough 1997). Measured one time only for site
length
Horizontal distance along transect, measured perpendicular to
stream flow from bank to bank at existing water surface
Vertical distance from water surface to stream bottom, measured at
6 equally spaced points along transect
Measurement of stream velocity at each point along transect.
Taken as difference between water height on ruler facing upstream
and water height on ruler facing downstream (Stanfield et al. 1998)
Composition of stream bed measured at each point and in a 30 cm
circle around each point where stream depth is measured; particle
diameters in each category are:

Clay: <0.004 mm

Silt: 0.004 - 0.062 mm

Sand: >0.062 — 2 mm

Gravel: >2 — 64 mm

Cobble: >64 - 256 mm

Small boulder: >256 — 512 mm

Large boulder: >512 mm
Object(s) that are 10 cm wide along median axis and blocks greater
than 75% of sunlight; the largest object which is partially or
wholly within a 30 cm circle around each point along the transect
are measured.
Proportion of densiometer grid squares covered at the center of
each transect.
Proportion of bank which is covered with live vegetation; based on
number of 5 X 6.25cm grids out of 16 grids that contain live
vegetation.
Distance at each side of transect between maximum extent that
streamside overhangs channel to furthest point under the bank, to
nearest millimeter.
Height from water’s edge to top of bank; indicates amount of
incision.
Composition of riparian zone at distances of 1.5-10 m, 10-30 m,
and 30-100 m along each transect: largest land use category is
recorded and is estimated visually; categories are: Cultivated,
Herbaceous, Woody, Mature Trees, Tree roots.
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Table 8. List of fish species and numbers collected in upper and lower sites of the Embarras Basin in 2000.

Hurricane Kickapoo Hurricane Kickapo

Species Scientific Name Upper Upper Lower Lower!
Catostomidae

Creek chubsucker Erimyzon oblongus 0 0 0 1
Golden redhorse Moxostoma erythrurum 0 0 4 0
Highfin carpsucker Carpiodes velifer 0 0 12 1
Northern hogsucker Hypentelium nigricans 1 15 25 21
Quillback Carpiodes cyprinus 0 0 4 0
River carpsucker Carpiodes carpio 0 4 12 3
White sucker Catostomus commersoni 4 21 3 6
Centrarchidae

Bluegill Lepomis macrochirus 27 109 10 11
Green sunfish Lepomis cyanellus 5 16 4 3
Largemouth bass Micropterus salmoides 0 5 17 4
Longear sunfish Lepomis megalotis 3 60 215 63
Longear sunfish x Green sunfish Lepomis megalotis x L. cyanellus 0 2 0 0
Spotted bass Micropterus punctulatus 1 3 2 3
Clupeidae

Gizzard shad Dorosoma cepedianum 0 0 3 0
Cyprinidae

Biuntnose minnow Pimephales notatus 250 334 1344 287
Bullhead minnow Pimephales vigilax 0 9 0 0
Central stonerolier Campostoma anomaium 466 422 291 60
Creek chub Semotilus atromaculatus 223 200 67 36
Pugnose shiner Notropis anogenus 0 0 1 0
Redfin shiner Lythrurus umbratilus 5 7 49 1
Sand shiner Notropis ludibundus 652 518 1356 364
Silverjaw minnow Notropis buccatus 534 381 243 92
Silvery minnow Hybognathus nuchalis 19 29 97 7
Spotfin shiner Cyprinella spiloptera 691 411 539 269
Steelcolor shiner Cyprinella whipplei 221 336 241 355
Striped shiner Luxilus chrysocephalus 1 13 34 0
Suckermouth minnow Phenacobius mirabilis 71 1 4 8
Cypriodontidae

Blackstripe topminnow Fundulus notatus 0 0 5 0
Esocidae

Grass pickerel Esox americanus 0 1 0 3
Ictaluridae

Brindled madtom Noturus miurus 11 18 0 30
Channel catfish Ictalurus punctatus 0 0 0 1
Yellow bullhead Ameiurus natalis 0 4 8 4
Percidae

Dusky darter Percina sciera 1 3 2 6
Greenside darter Etheostoma blennioides 3 3 10 14
Johnny darter Etheostoma nigrum 136 14 39 0
Orangethroat darter Etheostoma spectabile 91 34 21 3
Rainbow darter Etheostoma caeruleum 114 0 19 4
Total Catch 3530 2973 4681 1660

23 28 31 28

Species Richness



Table 9. List of fish species and numbers collected in upper and lower sites of the Spoon Basin in 2000.

Court Haw Court Haw

Species Scientific Name Upper Upper Lower Lower
Catostomidae

Golden redhorse Moxostoma erythrurum 8 10 16 2
Northern hogsucker Hypentelium nigricans 1 0 2 1
Quiliback Carpiodes cyprinus 0 0 9 0
River carpsucker Carpiodes carpio 0 0 2 0
Silver redhorse Moxostoma anisurum 0 0 4 0
White sucker Catostomus commersoni 7 53 1 0
Centrarchidae

Bluegill Lepomis macrochirus 0 3 7 2
Green sunfish Lepomis cyanellus 0 1 0 4
Largemouth bass Micropterus salmoides 4 5 2 2
Smalimouth bass Micropterus dolomieu 6 0 5 0

~vprinid

Bigmouth shiner Notropis dorsalis 51 0 29 0
Blacknose dace Rhinichthys atratulus 8 0 4 2
Bluntnose minnow Pimephales notatus 617 35 199 50
Carp Cyprinus carpio 2 0 1 0
Central stoneroller Campostoma anomalum 98 2 24 10
Creek chub Semotilus atromaculatus 28 19 10 6
Hornyhead chub Nocomis biguttatus 0 5 0 1
Red shiner Cyprinella lutrensis 184 41 403 850
Redfin shiner Lythrurus umbratilus 5 1 0 0
Sand shiner Notropis ludibundus 295 7 195 105
Striped shiner Luxilus chrysocephalus 1 3 0 0
Suckermouth minnow Phenacobius mirabilis 0 0 0 3
Actaluridae

Channel catfish Ictalurus punctatus 0 0 3 6
Stonecat Noturus flavus 3 1 1 0
Yellow bullhead Ameiurus natalis 2 0 2 1
_Percidae
Johnny darter Etheostoma nigrum 34 0 7 7
Orangethroat darter Etheostoma spectabile 14 0 0 0
Rainbow darter Etheostoma caeruleum 4 0 0 0
Slenderhead darter Percina phoxocephala 0 0 3 3
Total Catch 1372 186 928 1055
20 14 22 17

Species Richness



Table 10. List of fish species and numbers collected in upper and lower sites of the Cache Basin in 2000.

Big Cypress Big Cypress

Species Scientific Name Upper Upper Lower Lower
_Catostomidae

Biack redhorse Moxostoma duquesnei 0 0 1 0
Creek chubsucker Erimyzon oblongus 2 38 7 16
Goiden redhorse Moxostoma erythrurum 0 0 6 0
Spotted sucker Minytrema melanops 0 1 0 1
White sucker Catostomus commersoni 12 16 41 2
LCentrarchidae

Bluegill Lepomis macrochirus 37 22 10 3
Green sunfish Lepomis cyanellus 16 6 3 0
Largemouth bass Micropterus salmoides 8 1 8 8
Longear sunfish Lepomis megalotis 18 91 152 18
Redear sunfish Lepomis microlophus 5 0 0 0
Redear sunfish x Green sunfish Lepomis microlophus x L. cyanellus 2 0 0 0
Warmouth Lepomis gulosus 0 2 0 0
White crappie Pomoxis annularis 0 0 0 1
Lottidae

Banded sculpin Cottus carolinae 405 0 15 0

~yorini

Biuntnose minnow Pimephales notatus 291 43 1072 188
Central stonerolier Campostoma anomalum 376 24 4 27
Creek chub Semotilus atromaculatus 229 48 10 9
Golden shiner Notemigonus crysoleucas 0 0 0 25
Red shiner Cyprinella lutrensis 0 1 22 0
Redfin shiner Lythrurus umbratilus 97 28 226 71

~voriodontid

Blackspotted topminnow Fundulus olivaceus 13 44 58 33
_Esocidae

Grass pickerel Esox americanus 0 0 0 7
Jctaluridae

Tadpole madtom Noturus gyrinus 2 0 8 7
Yeliow bullhead Ameiurus natalis 1 3 1 19
Percidae

Blackside darter Percina maculata 0 6 0 10
Bluntnose darter Etheostoma chlorosomum 0 0 0 15
Fantail darter Etheostoma flabellare 46 0 1 0
Fringed darter Etheostoma crossopterum 15 0 2 0
Slough darter Etheostoma gracile 0 2 0 30
Percopsidae

Pirate perch Aphredoderus sayanus 0 40 3 105
Mosquitofish Gambusia affinis 0 0 6 6
Total Catch 1575 416 1656 601
18 18 21 21

Species Richness



Table 11. List of fish species and numbers collected in upper and lower sites of the Kaskaskia Basin in 2000.

Lake Branch Lost Lake Branch  Lost

Species Scientific Name Upper Upper Lower Lower
Catostomidae

Creek chubsucker Erimyzon oblongus 0 0 0 1
White sucker Catostomus commersoni 0 0 0 4
Centrarchidae

Bluegill Lepomis macrochirus 13 47 12 13
Flier Centrarchus macropterus 0 0 1 0
Green sunfish Lepomis cyanellus 67 4 37 60
Largemouth bass Micropterus salmoides 8 21 4 8
Longear sunfish Lepomis megalotis 0 3 0 11
Longear sunfish x Green sunfish Lepomis megalotis x L. cyanellus 0 0 0 1
LClupeidae

Gizzard shad Dorosoma cepedianum 7 1 8 30

~vorinid

Bluntnose minnow Pimephales notatus 0 2 0 2
Carp Cyprinus carpio 1 0 27 3
Creek chub Semotilus atromaculatus 0 4 0 2
Golden shiner Notemigonus crysoleucas 16 0 1 18
Redfin shiner Lythrurus umbratilus 0 6 0 15
Sand shiner Notropis ludibundus 0 2 0 0
Silverjaw minnow Notropis buccatus 0 2 0 0

~vpriodontid

Blackstripe topminnow Fundulus notatus 41 83 0 16
Actaluridae

Brown bullhead Ameiurus nebulosus 3 0 0 0
Tadpole madtom Noturus gyrinus 0 1 0 1
Yellow bullhead Ameiurus natalis 0 12 2 8
Percidae

Blackside darter Percina maculata 0 0 0 1
Slough darter Etheostoma gracile 0 2 0 3
Percopsidae

Pirate perch Aphredoderus sayanus 0 6 0 50
Mosquitofish Gambusia affinis 9 0 17 0
Total Catch 165 196 109 247
9 15 9 19

Species Richness



Table 12. Jaccard's similarity index and similarity ratio between upper and lower sites of each
basin from 1998 to 2000.

Jaccard's Index

Embarras Spoon Cache Kaskaskia
Upper 98 0.52 0.60 0.57
Upper 99 0.56 0.60 0.50
Upper 00 0.76 0.48 0.50 0.26
Lower 98 0.72 0.75 0.25
Lower 99 0.66 0.43 0.50 0.47
Lower 00 0.69 0.54 0.50 0.33
Similarity Ratio

Embarras Spoon Cache Kaskaskia
Upper 98 0.29 0.45 0.13
Upper 99 0.35 0.33 0.17
Upper 00 0.90 0.16 0.18 0.35
Lower 98 0.38 0.32 0.10
Lower 99 0.24 0.17 0.89 0.31

Lower 00 0.25 0.41 0.25 0.42




Table 13. Catch per hour of electroshocking time (CPUE) for upper and lower sites
in each basin sampled in 2000.

Upper Lower
Basin Pilot Reference Pilot Reference
Embarras 3069.6 1644.4 2530.3 930.8
Spoon 1779.9 253.4 868.1 1184.3
Cache 1011.8 308.1 1483.0 735.9
Kaskaskia 202.0 379.4 186.9 269.5
Mean 1515.8 646.3 12671 780.1

Std. Error 609.9 333.7 497 4 193.4



Table 14. Average weight, biomass per area, and percent composition for each species in the upper sites of the

Embarras in 2000.

Hurricane Upper

Kickapoo Upper

]
Ave. Biomass/Area % Comp. Ave. Biomass/Area % Comp

Species W (g) (g/m?) Wt (g) (g/m?’)
Catostomidae

Northern hogsucker 7.0 0.003 0.1 118.1 0.989 6.6
River carpsucker 49.0 0.161 1.1
White sucker 33 0.005 02 71.9 0.028 0.2
Centrarchidae

Bluegill 0.5 0.005 0.2 24 0.143 1.0
Green sunfish 34 0.007 0.2 15.6 0.140 0.9
Largemouth bass 0.000 351.3 0.981 6.6
Longear sunfish 26 0.003 0.1 14.7 0.493 3.3
Longear x Green sunfish 0.000 216 0.024 0.2
Spotted bass 1.4 0.001 0.0 224 0.003 0.0
~vprinid

Bluntnose minnow 22 0.222 8.0 20 0.371 25
Bullhead minnow

Centrat stoneroller 4.1 0.785 28.3 5.8 1.378 9.3
Creek chub 36 0.329 11.9 8.7 0.968 6.5
Redfin shiner 1.2 0.003 0.1 1.3 0.004 0.0
Sand shiner 1.1 0.288 10.4 1.1 0.378 2.5
Silverjaw minnow 1.5 0.334 12.1 1.3 2.398 16.1
Silvery minnow 7.3 0.056 2.0 11.3 0.013 0.1
Spotfin shiner 1.2 0.349 12.6 0.8 0.339 2.3
Steelcolor shiner 1.5 0.134 4.8 1.5 5.862 39.3
Striped shiner 11.6 0.005 0.2 31.2 0.031 0.2
Suckermouth minnow 3.5 0.101 3.6 4.3 0.019 0.1
Esocidae

Grass pickerel 0.000 34.0 0.019 0.1
Jctaluridae

Brindled madtom 3.9 0.018 0.6 5.0 0.051 0.3
Yeltow bullhead 17.7 0.076 0.5
Percidae

Dusky darter 24 0.001 0.0 34.0

Greenside darter 4.3 0.005 0.2 3.0 0.005 0.0
Johnny darter 1.0 0.053 1.9 0.9 0.007 0.0
Orangethroat darter 0.7 0.027 1.0 0.9 0.017 0.1
Rainbow darter 0.8 0.036 1.3
Total Biomass/Area (g/m?) 2.770 14.898



Table 15. Average weight, biomass per area, and percent composition for each species in the lower sites of the

Embarras in 2000.

Hurricane Lower

Kickapoo Lower

Ave. Biomass/Area % Comp. Ave. Biomass/Area % Comp
Wt (g) (g/m?) Wt (g) (g/m?)

Catostomidae

Creek chubsucker 1.0 0.000 0.0
Golden redhorse 50.0 0.068 1.9

Highfin carpsucker 16.4 0.067 1.8 18.0 0.005 04
Northern hogsucker 37.4 0.319 8.7 28.5 0.147 13.3
Quiltback 33.8 0.046 1.3

River carpsucker 223 0.091 25 23.7 0.019 1.7
White sucker 39.9 0.041 1.1 248 0.040 3.6
_Centrarchidae

Bluegill 24 0.008 0.2 1.2 0.003 0.3
Green sunfish 9.1 0.012 0.3 13.0 0.010 0.9
Largemouth bass 52.8 0.307 8.4 1.8 0.002 0.2
Longear sunfish 7.2 0.525 14.4 9.2 0.154 13.9
Spotted bass 109.0 0.074 2.0 58.0 0.046 4.2
Clupeidae

Gizzard shad 37.3 0.038 1.0

~vorinid

Bluntnose minnow 1.3 0.587 16.1 1.6 0.124 11.2
Central stoneroller 1.9 0.193 5.3 2.4 0.039 3.5
Creek chub 1.2 0.028 0.8 3.8 0.037 3.3
Pugnose shiner 0.6 0.000 0.0

Redfin shiner 0.7 0.012 0.3 1.3 0.000 0.0
Sand shiner 0.6 0.287 7.9 1.2 0.116 10.5
Silverjaw minnow 1.1 0.094 26 1.9 0.046 4.1
Silvery minnow 8.3 0.276 7.6 10.3 0.019 1.7
Spotfin shiner 0.6 0.110 3.0 0.8 0.057 5.1

- Steelcolor shiner 1.2 0.096 26 1.6 0.147 13.2

Striped shiner 19.1 0.222 6.1

Suckermouth minnow 2.0 0.003 0.1 7.9 0.017 1.5
_Cypriodontidae

Blackstripe topminnow 1.3 0.002 0.1
_Esocidae

Grass pickerel 24.3 0.019 1.7
Actaluridae

Brindied madtom 55 0.044 4.0
Channel catfish 2.3 0.001 0.1
Yellow bulihead 41.5 0.113 3.1 24 0.002 0.2
Percidae

Dusky darter 22 0.001 0.0 2.8 0.004 0.4
Greenside darter 3.3 0.011 0.3 3.2 0.012 1.1
Johnny darter 0.8 0.010 0.3

Orangethroat darter 0.5 0.004 0.1 0.7 0.001 0.1
Rainbow darter 06 0.004 0.1 0.8 0.001 0.1
Total Biomass/Area (g/m?) 3.654 1.112



Table 16. Average weight, biomass per area, and percent composition for each species in the upper sites
of the Spoon in 2000.

Court Upper Haw Upper
Ave. Biomass/Area % Comp. Ave. Biomass/Area % Comp

Species Wt (9) (g/m?) Wt (9) (g/m®)
_Catostomidae

Golden redhorse 211.8 0.664 13.0 317.3 2.859 42.0
Northern hogsucker 35.0 0.014 0.3

White sucker 171.0 0.470 9.2 125.7 6.000 88.2
Centrarchidae

Bluegill 8.7 0.024 0.3
Green sunfish 36.0 0.032 Q.5
Largemouth bass 3.3 0.005 0.1 3.4 0.015 0.2
Smallmouth bass 308.2 0.725 14.2

Syprinid

Bigmouth shiner 1.5 0.031 06

Blacknose dace 1.9 0.006 0.1

Bluntnose minnow 23 0.546 10.7 2.2 0.069 1.0
Carp 2700.0 2.118 41.4

Central stoneroller 45 0.175 3.4 1.9 0.003 0.1
Creek chub 5.1 0.056 1.1 23.5 0.402 5.8
Hornyhead chub 18.8 0.085 1.2
Red shiner 1.6 0.115 2.2 1.8 0.068 1.0
Redfin shiner 1.0 0.002 0.0 8.7 0.008 0.1
Sand shiner 1.1 0.130 2.5 17 0.011 0.2
Striped shiner 70.0 0.027 0.5 327 0.088 1.3
Jctaluridae

Stonecat 11.4 0.013 0.3 0.6 0.001 0.0
Yeliow bulihead 3.7 0.003 0.1
Percidae

Johnny darter 0.9 0.012 0.2

Orangethroat darter 1.0 0.005 0.1

Rainbow darter 1.0 0.002 0.0

Total Biomass/Area (g/mz) 5119 6.806



Table 17. Average weight, biomass per area, and percent composition for each species in the lower sites
of the Spoon in 2000.

Court Lower Haw Lower
Ave. Biomass/Area % Comp. Ave. Biomass/Area % Comp

Species Wt (g) (g/m?) Wt (g) (g/m?)
Catostomidae

Golden redhorse 223.3 1.113 21.8 3245 0.328 36.9
Northern hogsucker 151.1 0.100 2.0 279.0 0.141 15.8
Quillback 227.0 0.679 ; 13.3

River carpsucker 12.8 0.009 0.2

Silver redhorse 225.0 0.299 59

White sucker 2.6 0.001 0.0
Centrarchidae

Bluegill 6.1 0.014 0.3 4.5 0.004 0.5
Green sunfish 10.3 0.021 2.3
Largemouth bass 26 0.002 0.0 2.8 0.003 0.3
Smallmouth bass 120.4 0.200 3.9 0.000 0.0
Cyprinidae

Bigmouth shiner 08 0.008 0.2

Blacknose dace 24 0.003 0.1 09 0.001 0.1
Bluntnose minnow 14 0.092 1.8 1.6 0.041 4.6
Carp 1750.0 0.581 11.4

Central stoneroller 218.8 1.744 34.1 2.4 0.012 1.3
Creek chub 5.8 0.019 0.4 1.6 0.005 0.5
Hornyhead chub 16.0 0.008 0.9
Red shiner 1.1 0.145 2.8 1.2 0.504 56.7
Sand shiner 1.0 0.066 1.3 14 0.074 8.3
Suckermouth minnow 1.4 0.002 0.2
Jctaluridae

Channel catfish 2.3 0.002 0.0 18.4 0.056 6.3
Stonecat 13.1 0.004 0.1

Yellow bulthead 37.5 0.025 0.5 14.6 0.007 0.8
Percidae

Johnny darter 0.7 0.002 0.0 1.3 0.005 0.5
Slenderhead darter 1.5 0.001 0.0 3.9 0.006 0.7

Total Biomass/Area (g/m°) 5.111 0.889



Table 18. Average weight, biomass per area, and percent composition for each species in the upper sites

of the Cache in 2000.

Big Upper Cypress Upper
Ave. Biomass/Area % Comp. Ave. Biomass/Area % Comg.

Species Wt (g) (g/m’) Wt (g) (g/m?)
Catostomidae

Creek chubsucker 14.5 0.016 0.5 7.4 0.348 16.3
Spotted sucker 10.2 0.013 0.6
White sucker 11.2 0.077 2.1 217 0.129 5.7
LCentrarchidae

Bluegill 9.6 0.201 5.6 6.5 0.177 7.8
Green sunfish 8.4 0.076 2.1 3.5 0.026 1.1
Largemouth bass 4.7 0.021 0.6 25 0.003 0.1
Longear sunfish 12.9 0.132 3.7 58 0.653 28.8
Redear sunfish 6.7 0.019 0.5

Redear x Green sunfish 75.9 0.086 24

Warmouth 3.9 0.010 0.4
Coftidae

Banded sculpin 1.5 0.336 9.4
LCyprinidae

Bluntnose minnow 1.9 0.319 8.9 2.9 0.155 6.8
Central stonerolier 4.2 0.899 251 5.6 0.165 7.3
Creek chub 9.5 1.231 34.4 8.0 0.472 20.8
Red shiner 2.1 0.003 0.1
Redfin shiner 1.8 0.097 27 1.7 0.058 25
Cypriodontidae

Blackspotted topminnow 3.2 0.024 0.7 2.8 0.153 6.7
Ictaluridae

Tadpole madtom 54 0.006 0.2

Yellow bullhead 16.2 0.009 0.3 6.7 0.025 1.1
Percidae

Blackside darter 3.2 0.023 1.0
Fantail darter 0.8 0.020 0.6

Fringed darter 1.5 0.013 04

Slough darter 0.7 0.002 0.1
Percopsidae

Pirate perch 4.2 0.206 9.1
Total Biomass/Area (g/m?) 3.582 2.272 Bl



Table 19. Average weight, biomass per area, and percent composition for each species in the lower sites
of the Cache in 2000.

Big Lower Cypress Lower
Ave. Biomass/Area % Comp. Ave. Biomass/Area % Comp

Species Wt (g) (gim®) Wt (g) (g/m?)
Catostomidae

Black redhorse 64.0 0.069 1.0

Creek chubsucker 301 0.228 3.2 31.7 0.641 216
Golden redhorse 50.7 0.329 4.6

Spotted sucker 193.0 0.244 82
White sucker 48.3 2.142 29.7 105.1 0.266 8.9
Centrarchidae

Bluegill 5.5 0.060 0.8 4.0 0.015 0.5
Green sunfish 5.5 0.018 0.2

Largemouth bass 317 0.274 3.8 5.9 0.060 2.0
Longear sunfish 6.9 1.135 15.7 0.7 0.016 0.5
White crappie 71 0.009 0.3
Cottidae

Banded sculpin 1.9 0.030 04
Cyprinidae

Bluntnose minnow 1.9 2.183 30.0 2.3 0.553 18.6
Central stonerolier 8.0 0.034 0.5 2.0 0.068 2.3
Creek chub 17.7 0.191 2.6 5.6 0.063 2.1
Golden shiner 3.0 0.095 3.2
Red shiner 1.3 0.032 0.4

Redfin shiner 0.7 0.170 24 1.2 0.111 3.7
Cypriodontidae

Blackspotted topminnow 22 0.138 1.9 1.9 0.079 27
Esocidae

Grass pickerel 21.0 0.186 6.3
Jctaluridae

Tadpole madtom 6.5 0.056 0.8 3.7 0.032 1.1
Yeliow bulihead 90.0 0.097 1.3 47 0.113 3.8
Blackside darter 2.2 0.028 0.9
Bluntnose darter 0.5 0.009 0.3
Fantail darter 0.5 0.001 0.0

Fringed darter 0.7 0.002 0.0

Slough darter 0.5 0.020 0.7
Percopsidae

Pirate perch 13.6 0.044 0.6 27 0.360 12.1

ilii
Mosquitofish 0.4 0.003 0.0 0.4 0.003 0.1

Total Biomass/Area (g/m?) 7.216 2.972



Table 20. Average weight, biomass per area, and percent composition for each species in upper sites

of the Kaskaskia in 2000.

|.ake Branch Upper Lost Upper
Ave. Biomass/Area % Comp. Ave. Biomass/Area % Comp

Species Wi (g) (g/m?) Wt (g) (g/m?)
Centrarchidae

Bluegill 11.8 0.123 11.0 9.9 0.424 72.9
Green sunfish 4.0 0.216 19.4 11.2 0.041 7.0
Largemouth bass 9.3 0.059 5.3 6.0 0.114 19.5
Longear sunfish 30.0 0.082 14.1
LClupeidae

Gizzard shad 39.7 0.222 19.9 23.0 0.021 3.6
Cyprinid

Bluntnose minnow 0.5 0.001 0.1
Carp 54.0 0.043 3.9

Creek chub 1.9 0.007 1.2
Golden shiner 11.6 0.148 13.3

Redfin shiner 2.4 0.013 2.3
Sand shiner 0.6 0.001 0.2
Silverjaw minnow 0.5 0.001 0.2

cypriodontid

Blackstripe topminnow 0.8 0.025 2.3 2.0 0.152 26.1
\ctalurid

Brown bullhead 166.0 0.398 357

Tadpole madtom 9.4 0.009 1.5
Yellow bullhead 11.4 0.124 214
Percidae

Slough darter 0.5 0.001 0.2
Percopsidae

Pirate perch 3.0 0.016 2.8
Poecilii

Mosquitofish 0.4 0.003 0.3

Total Biomass/Area (g/m?) 1.116 0.581



Table 21. Average weight, biomass per area, and percent composition for each species in lower sites
of the Kaskaskia in 2000.

Lake Branch Lower Lost Lower
Ave. Biomass/Area % Comp. Ave. Biomass/Area % Comp

Species Wt (g) (g/m?) Wt (9) (g/im®)
Catostomidae

Creek chubsucker 5.6 0.004 0.1
White sucker 89.6 0.231 4.9
Centrarchidae

Bluegill 4.4 0.054 6.3 56 0.047 1.0
Flier 5.9 0.006 0.7

Green sunfish 5.0 0.190 221 10.8 0.420 8.9
Largemouth bass 44.0 0.179 20.8 26.4 0.136 29
Longear sunfish 15.9 0.113 24
Longear x Green sunfish 35.0 0.023 0.5
LClupeidae

Gizzard shad 18.3 0.149 17.3 41.3 0.800 17.0
Cyprinidae

Bluntnose minnow 2.6 0.003 0.1
Carp 9.4 0.259 30.2 1190.0 2.303 48.9
Creek chub 33.0 0.043 0.9
Golden shiner 7.0 0.007 0.8 9.2 0.107 2.3
Redfin shiner 14 0.014 0.3
_Cypriodontidae _

Blackstripe topminnow 1.8 0.019 0.4
Jctaluridae

Tadpole madtom 5.4 0.003 0.1
Yellow bullhead 25 0.005 0.6 62.7 0.324 6.9
Percidae

Blackside darter 0.4 0.000 0.0
Slough darter 0.5 0.001 0.0
Percopsidae

Pirate perch 38 0.124 2.6
Poecilidae

Mosquitofish 0.6 0.010 1.2

Total Biomass/Area (g/m?) 0.859 4.714
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Table 30. List of taxa collected in glide/pool habitats in the lower site of Lake Branch in the Kaskaskia Basin in 19
Numbers of each taxa are in numbers per square meter.

Fall 99
Lake Branch
Taxa Lower
Bivalvia 421.0
Coleoptera Scirtidae 46.8
Cyclopoida 280.7
Diptera Ceratopogonidae 1730.9
Diptera Chaoboridae 187.1
Diptera Chironomidae 935.6
Megaloptera 46.8
Megaloptera Sialidae 46.8
Nematoda Mermithidae 46.8
Odonata Anisoptera 46.8
Odonata Corduliidae 46.8
Oligocheata 18103.8
Ostracoda 5239.4
Total CPA (no./m?) 27179.2

Taxa Richness 13
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Figure 1. Location of Pilot and Reference watersheds. *Map produced by IDNR
Watershed Management Section.
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Figure 2. Average monthly temperature (+- one standard deviation) for upper sites of the Embarras
Basin. The pilot site is the striped bar and the reference is the solid bar.
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Figure 3. Average monthly temperature (+- one standard deviation) for upper and lower sites
of the Spoon Basin.
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Figure 4. Average monthly temperature (+- one standard deviation) for lower sites of the Cache Basin.
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Figure 5. Average monthly temperature (+- one standard deviation) for upper and lower sites
of the Kaskaskia Basin.
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Figure 6. Difference in average width, depth, and velocity between the Pilot and Reference sites
in each study basin. Difference = Pilot - Reference.
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Figure 7. Diffference in average point particle and maximum substrate size between Pilot and
Reference sites in each study basin. Difference = Pilot - Reference.
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Figure 8. Bootstrap analysis of randomly selected transects for mean width,
mean depth, and mean velocity in upper Kickapoo (diverse site).
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Figure 9. Bootstrap analysis of equally spaced transects for mean width, depth, and
velocity (hydraulic head) in upper Kickapoo (diverse site).
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Figure 10. Bootstrap analysis of randomly selected transects for mean point particle and
mean maximum particle sizes in upper Kickapoo (diverse site).
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Figure 11. Bootstrap analysis of equally spaced transects for mean point particle and
mean maximum particle sizes in upper Kickapoo (diverse site).
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Figure 12. Bootstrap analysis of equally spaced transects for mean width, depth,
and velocity (hydraulic head) in lower Lost (uniform site).
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Figure 13. Bootstrap analysis of equally spaced transects for point particle and
mean maximum patrticle sizes in lower Lost (uniform site).
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Figure 20. Occurrence of riparian vegetation categories in the Embarras Basin from water's edge to 100m.
A observation is made at the left and right bank of each transect for a total of 20 observations per site.
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Figure 21. Occurrence of riparian vegetation categories in the Spoon Basin from water's edge to 100m.
An observation is made at the left and right bank of each transect for a total of 20 observations per site.
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Figure 22. Occurrence of riparian vegetation categories in the Cache Basin from water's edge to 100m.
An observation is made at the left and right bank of each transect for a total of 20 observations per site.
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Figure 23. Occurrence of riparian vegetation categories in the Kaskaskia Basin from water's edge to 100m.
An observation is made at the left and right bank of each transect for a total of 20 observations per site.
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Figure 24. Difference in average bank stability and overstory cover between Pilot and Reference
sites in each study basin. Difference = Pilot - Reference.
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Figure 25. Difference in species richness and total catch between Pilot and Reference sites in each

study basin from 1998 to 2000. Difference = Pilot - Reference.
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Figure 26. Jaccard's similarity index and Similarity Ratio between Pilot and Reference sites in each
study basin from 1998 to 2000. Difference = Pilot - Reference.
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Figure 27. Difference in catch per hour of electroshocking time (CPUE) between Pilot and Reference
sites in each basin from 1998 to 2000. Difference = Pilot - Reference.
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Figure 28. Difference in IBl scores between Pilot and Reference sites in each basin from 1998 to 2000.
Difference = Pilot - Reference.
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Figure 29. Growth curves for largemouth bass collected from the Embarras, Cache, Spoon, and
Kaskaskia basins in 1998, 1999, and 2000 combined. No largemouth bass were collected from the
upper site of Hurricane Creek.
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Figure 30. Growth curve for smallmouth bass collected from the Spoon basin in 1998, 1999, and 2000
combined. No smallmouth bass were collected from the upper site of Haw Creek or the Embarras,
Cache, and Kaskaskia basins.
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Figure 31. Growth curves for bluegill collected from the Embarras, Cache, Spoon, and Kaskaskia basins
in 1998, 1999, and 2000 combined.
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Figure 32. Growth curves for longear sunfish collected from the Embarras and Cache basins in 1998,
1999, and 2000 combined. No longear sunfish were collected from the Spoon basin or Lake Branch

Creek.
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Figure 33. Growth curves for green sunfish collected from the Embarras, Cache, and Kaskaskia basins
in 1998, 1999, and 2000 combined.
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Figure 34. Growth curve for golden redhorse collected from the Spoon basin in 1998, 1999, and 2000
combined. None were collected from the Kaskaskia basin or three sites in each of the Embarras and

Cache basins.
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Figure 35. Bootstrap analysis of number of individuals in core samples taken in glide/pool habitats
at the upper and lower sites of the Embarras.Hurricane Upper is not included due to this site being

sampled entirely with the hess sampler.
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Figure 36. Bootstrap analysis of number of individuals in core samples taken in glide/pool habitats
at the upper sites of the Spoon.

Court Upper

25 -
o —e— Spring 99
5 20 o
wi .
° e - - @& - -Summer 99
) "- .
T 15 - Al
(7] SRR
- R E b
@
k; 5"——"\0——\
<] . o .
om hdl @ V- . 4 o— o

0 T T T L T - 1

2 4 6 8 10 12
Number of Cores
Haw Upper
w 30
g 5 —e— Spring 99
"_'; > X - - 4 - -Summer 99
s 201 m
o <.
g LI
5 15" ‘.-__~'-~~~'.“ .
& 10 4 e
= .
3 51
0o
m 0 T T T T T 1
2 4 : 6 8 10 12

Number of Cores



Figure 37. Bootstrap analysis of number of individuals in core samples taken in glide/pool habitats
at the lower sites of the Spoon.

Bootstrap Standard Error

Bootstrap Standard Error

Court Lower
35; —— Spring 99
30
-m - - @ - -Summer 99
25 - .
. .2
20 4 ‘-' N .
I g
15 - | -m
10 A
5 |
*r——o— o o —& o o o &
0 : ; > v T
2 4 6 8 10
Number of Cores
Haw Lower
10 1 —— Spring 99
g | - - % - -Summer 99
\i._
6 oM.
. | RIS - Y— S L .
i\ .
2 - v\"\o—o——o——o\,
O T T T T ]
2 4 6 8 10

Number of Cores



Figure 38. Bootstrap analysis of number of individuals in core samples taken in glide/pool habitats
at the upper and lower sites of the Cache. Big Upper is not included due to this site being
sampled entirely with the hess sampler.
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