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ABSTRACT
In this paper we estimate the pricing kernel from the Hong Kong
index option market and obtain the empirical probability weight-
ing functions based on the rank-dependent expected utility. The
empirical pricing kernel is estimated semi-parametrically as the
ratio of the risk-neutral and objective densities. We employ a two-
step estimation procedure to estimate the objective and risk-neu-
tral densities under a consistent parametric framework of the
non-affine generalised autoregressive conditional heteroskedastic-
ity (G.A.R.C.H.) diffusion model. In the first step, we develop a
continuous particle filters-based maximum likelihood estimation
method to estimate the objective parameters of the G.A.R.C.H. dif-
fusion model using the Hang Seng Index (H.S.I.) returns. In the
second step of our estimation, we depart from the usual pure
calibration approach and use the H.S.I. option prices to estimate
the risk-neutral parameters of the G.A.R.C.H. diffusion model by
constraining certain parameters to be consistent with the time-
series behaviour of H.S.I. returns. Based on the estimated object-
ive and risk-neutral parameters, the objective and risk-neutral
densities are obtained by inverting the corresponding characteris-
tic functions. Empirical results indicate that the empirical pricing
kernel estimated from the Hong Kong index option market is
non-monotonic and the estimated probability weighting functions
are S-shaped, which implies that investors underweight small
probability events and overweight large ones.
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1. Introduction

The behaviour of market investors has always been in focus in the literature on finan-
cial economics. Naturally, it involves the pricing kernel (Rosenberg & Engle, 2002) or
stochastic discount factor (Cochrane, 2001). In standard economic theory, the pricing
kernel is monotonically decreasing in investor wealth or market return and corre-
sponds to a positive risk aversion function. However, there has been a lot of
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discussion about the reliability of this theory. In the past decade, a large number of
empirical studies have provided evidence of a non-monotonically decreasing pricing
kernel, which has been referred to as the ‘pricing kernel puzzle’ or ‘risk aversion puz-
zle’ (Aït-Sahalia & Lo, 2000; Jackwerth, 2000; Rosenberg & Engle, 2002). Beare and
Schmidt (2016) and Golubev et al. (2014) provide further empirical evidence of a
non-monotonic pricing kernel by conducting formal statistical tests. Using data on an
exchange traded fund replicating the S&P 500 index, Figlewski and Malik (2014) also
confirm the pricing kernel puzzle. Recently, Cuesdeanu and Jackwerth (2016) use a
novel test and forward looking information only to confirm the presence of the pric-
ing kernel puzzle in the S&P 500 index option market.

Many researchers try to explain the pricing kernel puzzle with several approaches,
including investors’ heterogeneous beliefs (Detlefsen et al., 2007; Bakshi et al., 2010;
Ziegler, 2007), misspecification of the underlying state space (Chabi-Yo, 2012; Chabi-
Yo et al., 2008; Christoffersen et al., 2013), ambiguity aversion (Gollier, 2011), invest-
ors sentiment (Barone-Adesi et al., 2017), etc. In this paper we consider a pricing ker-
nel based on the rank-dependent expected utility of Quiggin (1993), one of the most
important generalisations of expected utility theory, with a probability weighting
function. We show that the rank-dependent expected utility with the probability
weighting function is able to explain the properties of the empirical pricing kernel
estimated from the Hong Kong index option market.

In the last decades, there has been a large amount of literature on the estimation
of the pricing kernel. A number of earlier papers estimate the pricing kernel using
aggregate consumption data (Chapman, 1997; Hansen & Jagannathan, 1991); prob-
lems with imprecise measurement of aggregate consumption can weaken the empir-
ical results of these papers. Thus, many authors have used the option prices to
estimate the pricing kernel. This approach avoids the use of aggregate consumption
data. Among others, Rosenberg and Engle (2002) emphasise the advantages of option
prices over consumption data. Based on the option prices, three types of estimation
approaches have been proposed, including the parametric approach (Audrino &
Meier, 2012; Rosenberg & Engle, 2002), nonparametric approach (Aït-Sahalia & Lo,
2000; Belomestny et al., 2017; H€ardle et al., 2015; Jackwerth, 2000; Song & Xiu, 2016)
and semiparametric approach (Chernov, 2003; Detlefsen et al., 2007). In this paper,
we follow a semiparametric approach to derive the pricing kernel and construct the
implied probability weighting function by estimating the ratio of the risk-neutral and
objective densities. The advantage of the semiparametric approach is that it avoids
the use of parametric pricing kernel specification, which imposes a strict structure on
the kernel so that it too restrictive to account for the dynamics of the risk preference,
and bandwidth selection, which influences the shape of the pricing kernel. The semi-
parametric approach for estimating the pricing kernel is flexible and simple
to implement.

Previous econometrics studies are concerned with deriving the empirical pricing
kernel by estimating the objective and risk-neutral densities separately, and mainly
relying on the discrete-time generalised autoregressive conditional heteroskedasticity
(G.A.R.C.H.) model of Bollerslev (1986, 1987) or/and affine stochastic volatility model
of Heston (1993). Our estimation procedure is based on the objective and risk-neutral
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densities and these distributions are derived with a consistent parametric stochastic
volatility framework of a non-affine G.A.R.C.H. diffusion model. From these densities
we construct the corresponding pricing kernel. The G.A.R.C.H. diffusion model is a
non-affine stochastic volatility model, which is a weak limit of discrete-time
G.A.R.C.H.(1,1) model and has been found to capture the dynamics of the financial
time series much better than the affine Heston stochastic volatility model. A number
of recent papers have provided strong evidence for the G.A.R.C.H. diffusion model,
not only for returns data but also for options data (Christoffersen et al., 2010; Kaeck
& Alexander, 2013; Wu et al., 2012, forthcoming). Thus, the model is well suited
for our estimation of the pricing kernel, and hence the probability weight-
ing function.

In this paper, the objective and risk-neutral densities are derived by estimating the
objective and risk-neutral parameters of the G.A.R.C.H. diffusion model in a way that
maintains the internal consistency of the objective and risk-neutral measures. To
achieve this goal, we employ a two-step estimation procedure. In the first step, we
develop a continuous particle filters-based maximum likelihood estimation method to
estimate the objective parameters of the G.A.R.C.H. diffusion model using the Hong
Kong Hang Seng Index (H.S.I.) returns over a long time span. The continuous par-
ticle filters-based maximum likelihood estimation method is easy to implement and
can be used to estimate the nonlinear models that include unobservable state varia-
bles efficiently (Christoffersen et al., 2010; Duan & Fulop, 2009; Malik & Pitt, 2011;
Pitt et al., 2014). In the second step of our estimation, we depart from the usual pure
calibration approach and use the H.S.I. option prices to estimate the risk-neutral
parameters of the G.A.R.C.H. diffusion model by constraining certain parameters to
be consistent with the time-series behaviour of H.S.I. returns. More precisely, the
volatility of variance and the leverage parameters should be equal under the objective
and risk-neutral measures (Broadie et al., 2007). We impose this constraint for both
pragmatic and theoretical reasons. First, there is little disagreement in the literature
over these parameter values. Second, joint estimation using both option and underly-
ing asset prices is a computationally demanding task. Based on the estimated object-
ive and risk-neutral parameters, the objective and risk-neutral densities can be
obtained by inverting the corresponding characteristic functions of the G.A.R.C.H.
diffusion model. The pricing kernel is finally obtained as the ratio of the risk-neutral
and objective densities.

The probability weighting functions have been studied extensively in the experi-
mental literature over the past decades (Barberis & Huang, 2008; Polkovnichenko,
2005; Prelec, 1998; Shefrin & Statman, 2000; Tversky & Kahneman, 1992). Empirical
papers investigating probability weighting functions include Chabi-Yo and Song
(2013), Dierkes (2009, 2013), Kliger and Levy (2009), Polkovnichenko and Zhao
(2013) and Wang (2017). In these papers, the authors obtain the probability weight-
ing functions mainly from option prices. The main difference between our paper and
theirs lies mainly in the use of a consistent parametric framework of the popular
non-affine G.A.R.C.H. diffusion model for estimation. To the best of our knowledge,
the G.A.R.C.H. diffusion model has not been used to estimate the probability weight-
ing functions. Also, different from previous empirical studies that investigate
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probability weighting functions mainly focus on the U.S. S&P 500 index option mar-
ket, this paper aims to investigate the probability weighting functions empirically for
the Hong Kong index option market. We estimate the pricing kernel from the H.S.I.
options and obtain the empirical probability weighting functions based on the rank-
dependent expected utility. We then employ the estimate of the probability weighting
functions to examine characteristic of investors’ decision weights in the Hong Kong
stock market.

This paper contributes to the existing literature in several ways. First, to ensure
consistency between the objective and risk-neutral measures which is crucial for
obtaining reasonable results, a two-step estimation procedure for the popular non-
affine G.A.R.C.H. diffusion model is developed. Second, the empirical non-monotonic
pricing kernel and S-shaped probability weighting functions are obtained from the
Hong Kong index option market. Third, it reveals that investors in the Hong Kong
stock market underweight small probability events (tail events) and overweight large
ones. Finally, the S-shaped probability weighting function with a utility function
exhibiting constant relative risk aversion (C.R.R.A.) based on the rand-dependent util-
ity explains the non-monotonicity of the pricing kernel.

The rest of the paper is organised as follows. In Section 2, we describe the the-
oretical link between the pricing kernel, probability weighting function and risk-
neutral and objective densities. In Section 3, we present under the objective meas-
ure the G.A.R.C.H. diffusion model and derive the corresponding system under
the risk-neutral measure, which serves as the basis for the estimation of the object-
ive and risk-neutral densities. We describe the two-step estimation procedure used
to estimate the objective and risk-neutral densities in Section 4. Section 5 discusses
the empirical results obtained from the H.S.I. option market, and Section
6 concludes.

2. Pricing kernel and probability weighting function

In this section, we present a theoretical link between the pricing kernel and probabil-
ity weighting function based on the rank-dependent expected utility. See
Polkovnichenko and Zhao (2013) for detailed discussion of the properties of the pric-
ing kernel with probability weighting function.

Consider an index as a proxy for all wealth in the economy, let ST be the future
price of the index, and St be the current price of the index. In the absence of arbi-
trage, there exists one positive random variable Mt;T that prices the index

St ¼ EP Mt;T STð ÞST jF t
� �

(1)

where EP½�jF t� is the expectation with respect to the objective measure P conditional
on the information set F t available at time t, and Mt;T is the projection of the pricing
kernel into ST, which has the same pricing implications as the original one
(Rosenberg & Engle, 2002).

According to the risk-neutral valuation principal, the price St of the index with
payoff ST can be equivalently represented as
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St ¼ EQ e�rsST jF t½ � (2)

where EQ½�jF t� is the expectation with respect to the risk-neutral measure Q condi-
tional on the information set F t available at time t, r is the risk-free interest rate,
and s ¼ T�t:

Assuming that pt;TðSTÞ is the objective density (the probability density function
under the objective measure P) of ST ; and qt;TðSTÞ is the risk-neutral density (the
probability density function under the risk-neutral measure Q) of ST : From Equation
(2), we have

St ¼
Ð
Rþe�rsxqt;T xð Þdx ¼ Ð

Rþe�rs qt;T xð Þ
pt;T xð Þ xpt;T xð Þdx

¼ EP e�rs qt;T STð Þ
pt;T STð Þ ST jF t

" # (3)

Comparing Equations (1) and (3), we get

Mt;T STð Þ ¼ e�rs qt;T STð Þ
pt;T STð Þ (4)

It is obvious from Equation (4) that we can obtain the empirical pricing kernel by
estimating the ratio of the risk-neutral and objective densities. Reasonable estimates
for the pricing kernel in Equation (4) should be non-increasing in ST ; thereby imply-
ing a risk-averse investor. However, many studies document a humpy pricing kernel
that it might be increasing in some range of the market returns (Bakshi et al., 2010;
Rosenberg & Engle, 2002). Under expected utility theory, it is difficult to understand
the reasons for the shape of the pricing kernel. In this paper, we relax the assumption
of expected utility theory, and attempt to explain the non-monotonic pricing kernel
(or pricing kernel puzzle) under the rank-dependent expected utility of Quiggin
(1993), one of the most important extensions of expected utility theory.

Under rank-dependent expected utility, instead of the true cumulative distribution
function, Pt;TðSTÞ; the representative investor uses the following distorted one to
make an investment decision

~Pt;T STð Þ ¼ w Pt;T STð Þ� �
(5)

where wð�Þ : ½ 0; 1 � ! ½ 0; 1 � is the probability weighting function, satisfies
wð0Þ ¼ 0 and wð1Þ ¼ 1: Moreover, w is nonlinear, differentiable, continuous, and
non-decreasing.

Given the distribution function Pt;T ; the rank-dependent expected utility is calcu-
lated as

U ¼
ð
u STð Þdw Pt;Tð Þ ¼ E u STð Þz Pt;Tð Þ� �

(6)

where zðPt;TÞ ¼ w0ðPt;TÞ:
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Following Polkovnichenko and Zhao (2013), under the assumption of complete
markets, we have

Mt;T STð Þ ¼ u0 STð Þz Pt;Tð Þ (7)

It is obvious from Equation (7) that the pricing kernel Mt;T is linked to the deriva-
tive of the probability weighting function zðPt;TÞ ¼ w0ðPt;TÞ via the marginal util-
ity u0ðSTÞ:

Considering the influence of the initial wealth, we use RT � ST=St as a proxy for
the gross return on the total investor wealth and assume that the initial wealth is one,
we can rewrite the Equations (4) and (7) as

Mt;T RTð Þ ¼ e�rs qt;T RTð Þ
pt;T RTð Þ (8)

and

Mt;T RTð Þ ¼ u0 RTð Þz Pt;Tð Þ (9)

where pt;T and qt;T now are the objective and risk-neutral densities of RT ; and Pt;T
now is the cumulative distribution function of RT and P0

t;T ¼ pt;T :
For any given return R0

T ; assume that Pt;TðR0
TÞ ¼ P0

t;T ; according to Equations (8) and
(9), we have

w P0
t;T

� �
¼ Ð P0t;T0 z Pt;Tð ÞdPt;T ¼ c

Ð R0
T

0

Mt;T RTð Þ
u0 RTð Þ pt;T RTð ÞdRT

¼ ce�rs
Ð R0

T
0

qt;T RTð Þ
u0 RTð Þ dRT

(10)

where c ¼ ersðÐ10 qt;TðRTÞ
u0ðRTÞ dRTÞ�1 is the normalising constant such that wð1Þ ¼ 1:

3. The model

We adopt the non-affine G.A.R.C.H. diffusion model to characterise the dynamics of
the underlying asset prices (H.S.I.), and form the basis for the estimation of the
objective and risk-neutral densities.

In the G.A.R.C.H. diffusion model, the dynamics under the objective measure P of
the underlying asset price, St, and the associated variance, Vt, are assumed to be given by

dSt ¼ lStdt þ
ffiffiffiffiffi
Vt

p
StdW

P
1;t (11)

dVt ¼ jP hP�Vt

� �
dt þ rVtdW

P
2;t (12)

where l is the mean of the underlying asset returns, hP is the long-run mean of vari-
ance, jP is the mean reversion rate of variance, r is the volatility of variance, and
WP

1;t and WP
2;t are two standard Brownian motions with CorrtðdWP

1;t; dW
P
2;tÞ ¼ q: The
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correlation parameter, q, is typically found to be negative, which captures the well-
known ‘leverage effect’ originated by Black (1976). That is, when asset prices decrease
or returns are negative, the firm becomes more risky due to an increase in its debt-
equity ratio, leading to an increase in its volatility (see also Christie (1982)).

The G.A.R.C.H. diffusion model in Equations (11) and (12) has attracted a great
deal of attention in recent years in the financial econometrics literature. A number of
papers have shown that the model can provide realistic volatility dynamics and good
option valuation performance (Christoffersen et al., 2010; Kaeck & Alexander, 2013;
Wu et al., 2012; Yang & Kanniainen, 2017).

Following Chernov and Ghysels (2000), we assume that the dynamics of the
underlying asset prices have the same form under the risk-neutral measure Q as
under the objective measure P; and the dynamics of (St, Vt) under the risk-neutral
measure Q are of the form

dSt ¼ rStdt þ
ffiffiffiffiffi
Vt

p
StdW

Q
1;t (13)

dVt ¼ jQ hQ�Vt

� �
dt þ rVtdW

Q
2;t (14)

where r is the risk-free interest rate, WQ
1;t and WQ

2;t are two standard Brownian
motions under the risk-neutral measure with CorrtðdWQ

1;t; dW
Q
2;tÞ ¼ q: As prior stud-

ies constrain jQhQ ¼ jPhP; here we specify a more flexible risk-neutral dynamics in
that we allow jQhQ 6¼ jPhP; which implies a more flexible variance risk premium

k Vtð Þ ¼ jPhP�jQhQ þ jQ�jPð ÞVt (15)

that enhances the model flexibility to fit the market option prices.
According to Wu et al. (2012), the characteristic function for the log price XT ¼

log ST under the objective measure P is given by

f Pt;T Xt;Vt; s;/ð Þ ¼ eC s;/ð ÞþD s;/ð ÞVtþi/Xt (16)

where

C s;/ð Þ ¼ i/ls� 1

2r2hP
jPhP � 1

2
qri/ hPð Þ3=2

	 


� 2 log
2d� d�gð Þ 1�e�dsð Þ

2d

� �
þ d � gð Þs

	 


þ 1
2
r2 hPð Þ2½ 16gf2

d2�g2ð Þ2 log
2d� d�gð Þ 1�e�dsð Þ

2d

� 4sf2 d2�g2
� �þ 4sf2 d�gð Þ2e�ds�8f2 d þ gð Þ 1�e�dsð Þ

d þ gð Þ2 d � gð Þ 2d � d � gð Þ 1� e�dsð Þ� � �

D s;/ð Þ ¼ 2f 1�e�dsð Þ
2d � d � gð Þ 1� e�dsð Þ
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and

f ¼ 1
2
i/ i/�1ð Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2�4r2fhP

q
g ¼ jP� 3

2
qri/ hPð Þ1=2

The characteristic function for XT under the risk-neutral measure Q denoted by
fQt;T is analogous to the objective characteristic function f Pt;T ; which can be obtained by
replacing the objective parameters in Equation (16), l, jP and hP; with the risk-neu-
tral parameters, r, jQ and hQ:

Then the objective and risk-neutral densities for RT ¼ ST=St can be obtained by
inverting the characteristic functions f Pt;T and fQt;T ; respectively. Specifically, we have

pt;T RTð Þ ¼ 1
RT

p̂t;T logRT þ log Stð Þ (17)

qt;T RTð Þ ¼ 1
RT

q̂t;T logRT þ log Stð Þ (18)

where

p̂t;T XTð Þ ¼ 1
2p

ð
R

e�i/XT f Pt;T Xt;Vt; s;/ð Þd/ (19)

q̂t;T XTð Þ ¼ 1
2p

ð
R

e�i/XT fQt;T Xt;Vt; s;/ð Þd/ (20)

The integrals in Equations (19) and (20) can be easily computed by using some
numerical methods.

Based on the theoretical links between the pricing kernel, probability weighting
function and objective and risk-neutral densities in Equations (8) and (10), the pric-
ing kernel and probability weighting function can finally be obtained.

4. Estimation methodology

For computing the objective and risk-neutral densities by Equations (17) and (18), we
still need to estimate the objective and risk-neutral parameters of the G.A.R.C.H. dif-
fusion model. In this section, we describe how to estimate the objective and risk-neu-
tral parameters of the G.A.R.C.H. diffusion model in a way that maintains the
internal consistency of the objective and risk-neutral measures. We employ a two-
step estimation procedure.

First, we take the stabilising transformation Xt ¼ log St; ht ¼ logVt: By Itô’s lemma,
we have
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dXt ¼ l� 1
2
eht

� �
dt þ eht=2dWP

1;t (21)

dht ¼ jPhPe�ht�jP� 1
2
r2

� �
dt þ rdWP

2;t (22)

In the empirical literature, the above continuous-time model must be discretised to
facilitate the parameter estimation. A simple Euler discretisation leads to the follow-
ing discrete-time stochastic processes

yt ¼ l� 1
2
eht

� �
Dt þ eht=2

ffiffiffiffiffi
Dt

p
et (23)

ht ¼ ht�1 þ jPhPe�ht�1�jP� 1
2
r2

� �
Dt þ r

ffiffiffiffiffi
Dt

p
gt (24)

where yt ¼ Xt�Xt�1 is the log return of underlying asset, Dt is the time interval,1 and
et ¼ ðWP

1;t�WP
1;t�1Þ=

ffiffiffiffiffi
Dt

p
;gt ¼ ðWP

2;t�WP
2;t�1Þ=

ffiffiffiffiffi
Dt

p
: It can be shown that et and gt

are independent and identically distributed (i.i.d.) standard normal random variables
with Corrtðet;gtÞ ¼ q:

It can be seen that Equations (23) and (24) constitute a nonlinear and non-
Gaussian state-space model that cannot be estimated using the standard Kalman fil-
ter. To overcome this problem, we adopt the continuous particle filters-based max-
imum likelihood estimation method to estimate the model parameters (objective
parameters). The log likelihood of the model is given by

log L HPð Þ ¼ log p y1; . . . ; yT jHP
� �

¼
XT�1

t¼0

log p ytþ1jF t;H
P

� �
(25)

via prediction decomposition, where HP ¼ ðl; jP; hP;r; qÞ0 are the objective parame-
ters of the G.A.R.C.H. diffusion model. In the above equation, the predictive density
(likelihood) pðytþ1jF t;H

PÞ can be written as

p ytþ1jF t;H
P

� �
¼
ð
p ytþ1jhtþ1;H

P
� �

p htþ1jF t;H
P

� �
dhtþ1 (26)

The expression in Equation (26) is crucial for the maximum likelihood estimation
via particle filters. In fact, the predictive density pðytþ1jF t;H

PÞ can be approximated
by using Monte Carlo method, that is,

p̂ ytþ1jF t;H
P

� �
¼ 1

N

XN
i¼1

p ytþ1jhitþ1;H
P

� �
(27)

where hitþ1; i ¼ 1; . . . ;N; sampled from the predictive density pðhtþ1jF t;H
PÞ via

particle filters, which is a sequential Monte Carlo technique using simulated samples

1930 X. WU ET AL.



to represent prediction and filtering distributions. Updating from the prediction dis-
tribution to the filtering distribution is carried out by using the Bayesian rule.
Specifically, we have

p htþ1jF tþ1;H
P

� �
/ p ytþ1jhtþ1;H

P
� �

p htþ1jF t;H
P

� �
¼ p ytþ1jhtþ1;H

P
� � Ð

p htþ1jht;HP
� �

p htjF t;H
P

� �
dht

(28)

where pðhtþ1jF tþ1;H
PÞ is the filtering density. The principle of Bayesian updating

implies that the density of the state conditional on all available information can be con-
structed by combining a prior with a likelihood, recursive implementation of which
forms the basis for particle filtering. The particle filtering algorithm thus propagates
and updates the samples or ‘particles’ via Equation (28), which can be approximated by

p̂ htþ1jF tþ1;H
P

� �
/ p ytþ1jhtþ1;H

P
� � 1

N

XN
t¼1

p htþ1jhit;HP
� �

(29)

where hit; i ¼ 1; . . . ;N; are the equally weighted samples or ’particles’ from the dens-
ity pðhtjF t;H

PÞ:
In order to sample from the density of Equation (29), we use the sampling

importance resampling (S.I.R.) algorithm of Gordon et al. (1993). However, the
resampling step in the standard S.I.R. algorithm creates discontinuity in the likeli-
hood function that is not conducive to numerical optimisation and statistical infer-
ence, and makes estimation by maximum likelihood problematic. To overcome this
problem, we adopt the continuous S.I.R. (C.S.I.R.) scheme proposed by Malik and
Pitt (2011) to compute the likelihood function and conduct the maximum likeli-
hood estimation.

The C.S.I.R. algorithm is outlined below:
Given samples from hit�pðhtjF t;H

PÞ; i ¼ 1; . . . ;N:

1. Sample ~h
i
tþ1�pðhtþ1jhit;HPÞ; i ¼ 1; . . . ;N; using Equation (24).

2. Calculate normalised weights,

pitþ1 ¼
xi
tþ1PN

i¼1
xi
tþ1

; i ¼ 1; . . . ;N (30)

where

xi
tþ1 ¼ p ytþ1j~hitþ1;H

P

� �
¼ 2p exp ~h

i
tþ1

� �
Dt

n o�1=2

� exp � 1
2

ytþ1 � l� 1
2
exp ~h

i
tþ1

� �� �
Dt

	 
2
= exp ~h

i
tþ1

� �
Dt

� �( )
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3. Resample from a continuous empirical distribution implied by the set of
fð~hitþ1; p

i
tþ1Þji 2 f1; . . . ;Ngg to obtain the equally weighted filtering samples

hitþ1�pðhtþ1jF tþ1;HÞ; i ¼ 1; . . . ;N (For details see Appendix A).

Based on the above C.S.I.R. algorithm, the prediction likelihood may be estimated as

p̂ ytþ1jF t;H
P

� �
¼ 1

N

XN
i¼1

p ytþ1j~hitþ1;H
P

� �
¼ 1

N

XN
i¼1

xi
tþ1 (31)

where xi
tþ1; i ¼ 1; . . . ;N; are simply the unnormalised weights calculated in Step 2 of

C.S.I.R. algorithm. The resulting likelihood function in Equation (31) is a smooth
function of parameters. Then, the log likelihood can be estimated by

log L̂ HPð Þ ¼
XT�1

t¼0

log p̂ ytþ1jF t;H
P

� �
¼
XT�1

t¼0

log
1
N

XN
i¼1

xi
tþ1

 !
(32)

Note that the log likelihood in Equation (32) will not be unbiased. According to
Malik and Pitt (2011), we may correct the original (biased) log likelihood as unbiased
one by

log ~L HPð Þ ¼
XT�1

t¼0

log lxtþ1
þ 1
2

r2
xtþ1

Nl2xtþ1

 !
(33)

where

lxtþ1
¼ 1

N

XN
i¼1

xi
tþ1; r2

xtþ1
¼ 1

N � 1

XN
i¼1

xi
tþ1�lxtþ1

� �2

Given the log likelihood approximation log ~L; the maximum likelihood estimates of
the model parameters (objective parameters) can be obtained by

Ĥ
P ¼ argmax

HP
log ~L HPð Þ (34)

Based on the above estimated parameters, the spot variances can be obtained using
the C.S.I.R. filtering algorithm.

Next, we turn to the estimation of risk-neutral parameters HQ ¼ ðjQ; hQ;r; qÞ0:
We impose consistency between the objective and risk-neutral measures in estima-
tion. Specifically, we let the volatility of variance, r, and the leverage parameters, q,
be equal under the objective and risk-neutral measures. As the parameters r and q
have been estimated in the first step of our estimation, there are only two remaining
risk-neutral parameters (jQ and hQ) need to be estimated in the second step of esti-
mation. We optimise over jQ and hQ to fit the observed option prices. Specifically, to
obtain the estimates of the parameters jQ and hQ; we minimise squared differences
of model and market option prices, that is,
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ĵQ; ĥ
Q

� �
¼ argmin

XM
j¼1

Cj � Cj H
Qð ÞÞ2

�
(35)

where M is the number of option contracts, Cj is the market option price of
contract j, and CjðHQÞ is the corresponding model option price which can
be calculated by using the fast Fourier transform approach based on the risk-
neutral characteristic function of the G.A.R.C.H. diffusion model (Carr &
Madan, 1999).

5. Empirical results

In contrast to many previous studies that have focused mainly on the S&P 500 index
option market, we investigate in this paper the empirical pricing kernel and probabil-
ity weighting functions by focusing on the H.S.I. option market. The H.S.I. serves as
an approximation to the Hong Kong economy, and it can be used as a proxy for
market portfolio.

5.1. The data

We use daily H.S.I. returns to estimate the objective G.A.R.C.H. diffusion model and
to compute the objective density. The sample period is from 4 January 2000 to 4
October 2017, which is chosen to achieve a long sample. The sample size is 4379 for
the index returns. The time-series and Q–Q plots of the H.S.I. returns are presented
in Figure 1. We can observe from Figure 1(a) that the H.S.I. returns exhibit time-
varying volatility and volatility clustering during the sample period. Summary statis-
tics for the H.S.I. returns are shown in Table 1. It can be seen that the H.S.I. returns
are skewed and leptokurtic. Jarque–Bera statistics suggests that the assumption of
normality is rejected for the H.S.I. return series, which also can be confirmed from
the Q–Q plot of the index returns in Figure 1(b). The results suggest the stochastic
volatility model, such as the G.A.R.C.H. diffusion model, may be appropriate for
modelling the dynamics of the H.S.I.

To estimate the risk-neutral parameters of the G.A.R.C.H. diffusion model, we use
the H.S.I. option data which is presented in Table 2. The option data are selected as
the most actively traded option contracts with maturity about one month on 4
October 2017. Finally, we use the annualised the 1-month Hong Kong Interbank
Offer Rate as a proxy for the risk-free interest rate. All of the data are obtained from
the Wind Database of China.

5.2. Estimation results

Based upon the data on the H.S.I. returns, the objective parameters of the G.A.R.C.H.
diffusion model can be estimated by adopting the C.S.I.R.-based maximum likelihood
estimation method described in Section 4. Table 3 reports the estimation results. Our
results show that, under the objective measure, the long-run mean of the variance is
hP ¼ 0:0522; with a mean-reversion speed of jP ¼ 2:3044: The estimate of the
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‘leverage effect’ parameter q is significantly negative, indicating that the return and
the variance processes are negatively correlated during the sample period, a well-
known empirical fact.

Figure 1. Time-series and Q–Q plots of the H.S.I. returns. Source: Own calculation.

Table 1. Summary statistics of the H.S.I. returns.
Min Max Mean Std. Skew Kurt Jarque–Bera

�0.1358 0.1341 0.0001 0.0149 �0.0925 11.0866 11937.6746
(0.000)

Notes: The number in parenthesis is the p-value of Jarque–Bera tests.
Source: Own calculation.

1934 X. WU ET AL.



Based on the estimated (objective) parameters of the G.A.R.C.H. diffusion
model, the spot variances can be estimated via the C.S.I.R. filtering algorithm.
Figure 2 shows the filtered variances. Specially, the spot variance on 4 October
2017 is 0.0185.

Using the H.S.I. option data in Table 2, the risk-neutral parameters of the
G.A.R.C.H. diffusion model can be estimated. The estimates are reported in Table 3.
It can be seen from the table that, under the risk-neutral measure, the long-run mean
of the variance is hQ ¼ 0:0180; with a mean-reversion speed of jQ ¼ 0:1990; which
both are obviously lower than the corresponding estimates under the objective

Table 2. Selected H.S.I. option data on 4 October 2017.
Option type Option price Maturity date Strike price

Call 568.00 10/30/2017 28000
Call 443.00 10/30/2017 28200
Call 329.00 10/30/2017 28400
Call 241.00 10/30/2017 28600
Call 170.00 10/30/2017 28800
Call 119.00 10/30/2017 29000
Call 80.00 10/30/2017 29200
Call 53.00 10/30/2017 29400
Call 34.00 10/30/2017 29600
Call 22.00 10/30/2017 29800
Call 13.00 10/30/2017 30000
Call 4.00 10/30/2017 30400
Put 2.00 10/30/2017 24800
Put 3.00 10/30/2017 25000
Put 4.00 10/30/2017 25200
Put 5.00 10/30/2017 25400
Put 7.00 10/30/2017 25600
Put 10.00 10/30/2017 25800
Put 13.00 10/30/2017 26000
Put 18.00 10/30/2017 26200
Put 24.00 10/30/2017 26400
Put 32.00 10/30/2017 26600
Put 44.00 10/30/2017 26800
Put 59.00 10/30/2017 27000
Put 79.00 10/30/2017 27200
Put 102.00 10/30/2017 27400
Put 133.00 10/30/2017 27600
Put 176.00 10/30/2017 27800
Put 230.00 10/30/2017 28000
Put 301.00 10/30/2017 28200
Put 393.00 10/30/2017 28400
Put 500.00 10/30/2017 28600

Source: Wind Database of China.

Table 3. Estimation results.
l jP hP r q Log-lik

Objective parameters 0.0805 2.3044 0.0522 2.1633 �0.5717 13088.2001
(0.0407) (0.7855) (0.0126) (0.1532) (0.0445)

jQ hQ R.R.M.S.E.
Risk-neutral parameters 0.1990 0.0180 0.3106

Note: The number of particles used in the C.S.I.R.-based maximum likelihood estimation is 500. The number in par-
enthesis is the standard error. Log-lik denotes the log-likelihood value. R.R.M.S.E. denotes the relative root mean
square error.
Source: Own calculation.
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measure. The relative root mean square error (R.R.M.S.E.) for the G.A.R.C.H. diffu-
sion model is 0.3106, which is obviously lower than that of Black–Scholes model in
which the R.R.M.S.E. for the Black–Scholes model is 0.5847. Thus, the improvement

Figure 2. Filtered variances of the H.S.I. returns. Source: Own calculation.

Figure 3. Estimates of objective and risk-neutral densities (O.D. and R.N.D.). Source: Own calculation.
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in R.R.M.S.E. offered by the G.A.R.C.H. diffusion model over the classical
Black–Scholes model is 46.88%.

With the estimated objective and risk-neutral parameters of the G.A.R.C.H. diffu-
sion model, we can use Equations (17) and (18) to compute the objective and risk-
neutral densities of RT � ST=St; respectively. We plot the estimates of objective and
risk-neutral densities for one-month time horizon s ¼ T�t ¼ 1=12 in Figure 3. It can
be seen that there are obvious discrepancies in the estimation results of the objective
and risk-neutral densities.

The estimates of objective and risk-neutral densities allow us to estimate the
empirical pricing kernel by using Equation (4). Figure 4 displays our estimate of the
pricing kernel. It can be seen from the figure that the estimated pricing kernel is not
monotonically decreasing, but exhibits a hump around the gross return RT ¼ ST=St ¼
1: This is not in accordance with the classical economic theory and referred to as the
‘pricing kernel puzzle’.

Using the estimated objective and risk-neutral densities, we can construct the
probability weighting function for given utility function. We use the standard
C.R.R.A. utility functions uðRÞ ¼ R1�c

1�c for c¼ 0 (linear utility), c¼ 1 (logarithmic util-
ity), and c¼ 2 (power utility). We present estimates of the probability weighting func-
tion wðPt;TÞ for one-month time horizon in Figure 5. It can be seen from the figure
that the probability weighting function estimates have the S-shaped forms, implying

Figure 4. Empirical pricing kernel. Source: Own calculation.
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that investors in the Hong Kong stock market underweight small probability events
(tail events) and overweight large ones. The probability weighting functions obtained
from Hong Kong index option market are different from those obtained from the
U.S. index option market, which typically have the inverse-S shape (see
Polkovnichenko & Zhao, 2013). The results call for further efforts to integrate the
models that can account for S-shaped probability weighting in portfolio theory, asset
pricing and risk management.

6. Conclusion

The study of the probability weighting function has been the focus of the financial
economics literature. The probability weighting function has been extensively
employed to model investor behaviour in financial markets. It is informative about
the tail risk or crash risk of return dynamics and can provide explanation for tail
risk premium. It can also be used to construct investor sentiment toward tail
events and to construct probability weighting measures of tail events to capture
investors’ decision weights toward tail events. In addition, the probability weight-
ing function can be used to understand asset price dynamics and equity pre-
mium puzzle.

In this paper, we semi-parametrically estimate the pricing kernel from the Hong
Kong index option market and obtain the empirical probability weighting functions

Figure 5. Estimates of probability weighting functions. Source: Own calculation.
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based on the rank-dependent expected utility, using the non-affine G.A.R.C.H. diffu-
sion model in a way that maintains the internal consistency of the objective and risk-
neutral measures. Our results show that the empirical pricing kernel estimated from
the Hong Kong index option market is non-monotonic, deviating from expected util-
ity theory, and that the estimated probability weighting functions are S-shaped, which
implies that investors underweight small probability events (tail events) and over-
weight large ones. The S-shaped probability weighting function with a utility function
exhibiting C.R.R.A. based on the rand-dependent utility can explain the non-mono-
tonicity of the pricing kernel. The results point to theoretical models with S-shaped
probability weighting functions as a promising direction to understand asset price
dynamics and further to explore implications for many economic issues, such as port-
folio choices, asset pricing, and risk management.

Note

1. Assuming that there are 250 trading days per year, then the time interval Dt for one
trading day is 1/250 year, and in this case the discretisation bias of Euler scheme is
expected to be negligible.
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Appendix A. Continuous stratified resampling

In the standard S.I.R. algorithm, the resampling is based on the discontinuous empirical
distribution function

F̂ hð Þ ¼
XN
i¼1

piI h�hið Þ

where hi, i ¼ 1; . . . ;N; are sorted in ascending order, and
PN

i¼1 p
i ¼ 1; I(z) is an indicator

function, satisfying

I zð Þ ¼ 1; z>0
0; z � 0




To produce samples of the state variables in a continuous way, Malik and Pitt (2011)
approximate F̂ðhÞ by continuous empirical distribution function ~FðhÞ; which is given by

~F hð Þ ¼ x0I h1<hð Þ þ xNI hN<hð Þ þ
XN�1

i¼1

xiGi
h�hi

hiþ1 � hi

� �

where x0 ¼ p1=2;xN ¼ pN=2;xi ¼ ðpiþ1 þ piÞ=2; i ¼ 1; 2; . . . ;N�1; and GiðzÞ is a monoton-
ically non-decreasing distribution function on ½0; 1�; such that

Gi zð Þ ¼
0; z<0
z; 0 � z � 1
1; z>1

8<
:

The above defined continuous distribution function ~FðhÞ is easy to invert and thus sam-
pling from it becomes very simple and quick. It can be shown that as N ! 1; ~FðhÞ !
F̂ðhÞ ! FðhÞ; with F(h) being the true distribution function. In practice the difference between
~FðhÞ and F̂ðhÞ becomes negligible for moderate N, typically we choose N¼ 500.

Continuous stratified resampling algorithm
First, we need to generate a single uniform u�UIDð0; 1Þ; and propagate sorted uniforms

given by

uj ¼ j�1
N

þ u
N
; j ¼ 1; 2; . . . ;N

Then, we sample the index corresponding to the region which are sorted as r1; r2; . . . rN ;
and also produce a new set of uniforms, u	1; u

	
2; . . . u

	
N ; according to the algorithm given below.

set s ¼ 0; j ¼ 1;
for i ¼ 0 : N
s ¼ sþ xi;
while (uj � s j � N)
rj ¼ i;
u	j ¼ ðuj�ðs�xiÞÞ=xi;
j ¼ jþ 1;
end
end
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For the selected regions r1; r2; . . . rN ; we set the new set of uniforms u	1; u
	
2; . . . u

	
N as

hj	 ¼
h1; rj ¼ 0
hN ; rj ¼ N
hr

jþ1�hr
jð Þ � u	j þ hr

j
; others

8><
>:

This produces as sample h1	; h2	; . . . ; hN	 from continuous distribution function ~FðhÞ:
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