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ONE-ALPHA WEIGHTED NETWORK DESCRIPTORS

Tanja Vojković and Damir Vukičević

Abstract. Complex networks are often used to model objects and
their relations. Network descriptors are graph-theoretical invariants as-
signed to graphs that correspond to complex networks. Transmission and
betweenness centrality are well known network descriptors and networkness
and network surplus have been recently analyzed. All these four descrip-
tors are based on the unrealistic assumption about equal communication
between all vertices. Here, we amend this by assuming that vertices on
the distance larger then one communicate less than those that are neigh-
bors. We analyze network descriptors for all possible values of the factor α
that measures reduction in the communication of the vertices that are not
neighbors. We term these descriptors one-alpha descriptors and determine
their extremal values.

1. Introduction and motivation

Many complex systems in nature and society can be described in terms of
complex networks capturing the web of connections among the units they are
made of. So the study of complex networks pervades many fields of science,
from chemistry [12], biochemistry [1, 16] to communication theory [14].

Many aspects of complex networks are studied and in this paper we ob-
serve the network from the aspect of communication between the vertices.
Key issues are of organizational nature: Are there any universal principles
regarding the structural design and dynamic of communication in complex
networks? Finding the answers to this question brings us to network descrip-
tors [5, 15].

A complex network is represented by a simple connected graphG = (V,E)
and in this paper we use standard terminology of graph theory [7].

We will take a look at commonly used network descriptors, values that
strive to describe the dynamic of information transfer in the network and
define a variation of these descriptors. Extremal values for the already known
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descriptors are thoroughly analyzed and in this paper we will explore the
extremal values of our newly defined descriptors.

Two most important descriptors are betweenness centrality and transmis-
sion. Betweenness centrality is defined and studied in papers [10, 11] and it
can be efficiently calculated by the algorithm of Brandes [6]. It has been ap-
plied to indicate the importance of an individual node [2,10], and its extremal
values have been analyzed in paper [8].

Definition 1.1. Let G be a simple connected graph. Edge betweenness
bG(uv) of edge uv ∈ E(G) is

bG(uv) =
∑

{k,l}∈
(

V
2

)
skl

uv

skl
,

where skl
uv is the number of shortest paths between vertices k and l that pass

through the edge uv and skl is the total number of shortest paths between k
and l.

Definition 1.2. Let G be a simple connected graph. Betweenness cen-
trality cG(u) of vertex u ∈ V (G) is the sum of edge betweennesses of all the
edges incident to u, that is

cG(u) =
∑

v∈N(u)

b(uv),

where N(u) is the set of neighbors of vertex u.

This kind of centrality is defined in paper [13] as Adjusted betweenness
centrality. Note that betweenness centrality defined in this way is closely
related to, but different from Freeman’s betweenness centrality bG(u) [8], it
holds

bG(u) = cG(u) − n+ 1.

Betweenness centrality can be interpreted as the quantity of communica-
tion processed by vertex u [18] in the network.

Definition 1.3. Let G be a simple connected graph. Transmission tG(u)
of vertex u ∈ V (G) is

tG(u) =
∑

v∈V

d(u, v),

where d(u, v) is the distance between vertices u and v.

Observing the aspect of communication in complex network, transmission
can be interpreted as the cost of the vertex u to the network [18].

Besides betweenness centrality and transmission we will observe two more
network descriptors, networkness and network surplus [18] which can be in-
terpreted as ways of measuring “productivity” and “profitability” of vertex u.
They are defined as follows.
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Definition 1.4. Let G be a simple connected graph. Networkness ρG(u)
of vertex u ∈ V (G) is

ρG(u) =
c(u)
t(u)

.

Definition 1.5. Let G be a simple connected graph. Network surplus
νG(u) of vertex u ∈ V (G) is

νG(u) = c(u) − t(u).

As most often will be clear which graph G we are observing, we will use
the denotations c(u), t(u), ρ(u), ν(u) instead of cG(u), tG(u), ρG(u), νG(u).

Now we will describe our motivation for defining a variation of these
descriptors.

Note that interpretation of the betweenness centrality as the amount of
information processed by the vertex u assumes that the quantity of the infor-
mation exchanged by any two vertices is equal. As this is not a case in real life
networks we searched for a descriptor which amends this problem and gives
a more realistic representation of the actual communication dynamic in the
network. In the paper [3] we presented one way of fixing this by defining a
generalized version of the observed descriptors, where the amount of commu-
nication was weighted by d(u, v)λ, for λ < 0, and in paper [4] by weighting
the amount of communication by λd(u,v), for λ ∈ 〈0, 1〉.

Here we consider network descriptors where the amount of communication
between two non-neighbor vertices decreases proportional to α, compared to
the amount of communication between neighboring vertices, for some α ∈
〈0, 1〉. This modification, unlike the ones in [3] and [4], takes in the account
that neighboring vertices communicate much more than non-neighboring ones,
which is of course true in vast majority of networks.

We proceed by defining one-alpha weighted descriptors, and then analyz-
ing their extremal values in simple connected graphs.

2. Defining one-alpha weighted descriptors

The definitions of one-alpha weighted descriptors for α ∈ 〈0, 1〉 are as
follows.

Definition 2.1. Let G be a simple connected graph and α ∈ 〈0, 1〉. One-
alpha weighted transmission tα(u) of vertex u ∈ V (G) is

tα(u) = d(u) +
∑

v /∈N(u)

d(u, v)α,

where d (u) is the degree of the vertex u and d (u, v) is the distance between
vertices u and v.
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Definition 2.2. Let G be a simple connected graph and α ∈ 〈0, 1〉. One-
alpha weighted betweenness centrality cα(u) of vertex u ∈ V (G) is

cα(u) =
∑

v∈N(u)

∑

{k,l}∈(V
2 )

skl
uv

skl
·
{

1, if d(k, l) = 1,
α, if d(k, l) > 1.

One-alpha weighted networknes and one-alpha weighted network surplus
are defined analogously with

ρα(u) =
cα(u)
tα(u)

,

να(u) = cα(u) − tα(u).

Note that by putting α = 1 we get standard definitions of transmission,
betweenness centrality, networkness and network surplus [8, 18]. From the
definitions is clear that the range for α, α ∈ 〈0, 1〉 is chosen because of the
assumption that distant vertices communicate less than the close ones.

By observing the values of each of these descriptors for all vertices in a
given graph, we can define a minimal and a maximal value of each descriptor
in the graph:

mtα (G) = min {tα (u) : u ∈ V (G)} ,
Mtα (G) = max {tα (u) : u ∈ V (G)} ,
mcα (G) = min {cα (u) : u ∈ V (G)} ,
Mcα (G) = max {cα (u) : u ∈ V (G)} ,

mρα (G) = min {Nα (u) : u ∈ V (G)} ,
Mρα (G) = max {Nα (u) : u ∈ V (G)} ,

mνα (G) = min {να (u) : u ∈ V (G)} ,
Mνα (G) = max {να (u) : u ∈ V (G)} .

The main goal of this paper is to find lower and upper bounds of these
values and the graph for which they are obtained, for all α ∈ 〈0, 1〉.

First we prove an analogous result to Lemma 2.1. in paper [3], as it will
prove useful in our following proofs.

Lemma 2.3. For each graph G it holds
∑

u∈V

tα(u) =
∑

u∈V

cα(u).

Proof. It holds
∑

u∈V

tα(u) =
∑

u∈V

d(u) +
∑

u∈V

∑

v /∈N(u)

d(u, v)α.
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Let us prove the sum of betweenness centrality of all the vertices in G equals
that. We have

∑

u∈V

cα(u) =
∑

u∈V

∑

v∈N(u)

∑

{k,l}∈
(

V
2

)

d(k,l)=1

skl
uv

skl
+
∑

u∈V

∑

v∈N(u)

∑

{k,l}∈
(

V
2

)

d(k,l)>1

skl
uv

skl
α

=
∑

{k,l}∈
(

V
2

)

d(k,l)=1

1
skl

∑

u∈V

∑

v∈N(u)

skl
uv +

∑

{k,l}∈
(

V
2

)

d(k,l)>1

1
skl

α
∑

u∈V

∑

v∈N(u)

skl
uv.

In the first sum, skl
uv equals 1 only when {u, v} = {k, l}, and in other cases

it equals 0. skl always equals 1 since k and l are neighbors. So the first sum
equals

∑
u∈V

d(u) because {u, v} = {k, l} will hold when we observe u and all

its neighbors. In the second sum skl
uv = slk

uv will equal 1 when uv edge lies
on the kl-path. Number of edges on the kl-path is d(k, l), and there are skl

kl-paths so we have
∑

{k,l}∈
(

V
2

)

d(k,l)>1

1
skl

α
∑

u∈V

∑

v∈N(u)

skl
uv =

∑

{k,l}∈
(

V
2

)

d(k,l)>1

α

skl
· 2 · d(k, l) · skl

=
∑

{k,l}∈
(

V
2

)

d(k,l)>1

2 · α · d(k, l) =
∑

u∈V

∑

v /∈N(u)

d(u, v)α.

It follows ∑

u∈V

cα(u) =
∑

u∈V

d(u) +
∑

u∈V

∑

v /∈N(u)

d(u, v)α,

and the claim is proven.

Remark 2.4. It is well-known that betweenness centrality and transmis-
sion are connected to Wiener index [19] defined by

W (G) =
1
2

∑

(u,v)∈V 2

d(u, v),

in the following way:
∑

u∈V

t(u) =
∑

u∈V

c(u) = 2W (G).

So considering the result in Lemma 2.3 it is natural to denote

Wα(G) =
1
2

∑

u∈V

tα(u) =
1
2

∑

u∈V

cα(u).
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3. Results - lower and upper bounds

3.1. One-alpha weighted transmission. In the proofs of our theorems we shall
need the concept of Dijkstra tree [9]. Let v be a vertex in a graph G. Dijkstra
tree of vertex v is a spanning tree that consists of the shortest paths starting
in the vertex v. Note that there can be more than one Dijkstra tree of vertex
v.

Theorem 3.1. Let G be a graph with n vertices and α ∈ 〈0, 1〉. It holds

mtα(G) ≥






1 + 2α(n− 2), α <
1
2

;

n− 1, α ≥ 1
2
.

The equality holds for the center of a star in the case α ≥ 1
2

, and for any

pendant vertex of a star otherwise.

Proof. From the definition of one-alpha weighted transmission it is clear
that the values of tα(u), for any vertex u in graph G will be the same for each
vertex in the Dijkstra tree of vertex u. Therefore we may conclude that G
that minimizes mtα (G) is a tree. Let G be a tree with n vertices, and u a
vertex for which minimal transmission is obtained. Let us observe a tree G′

obtained from G in the following way. All the vertices that are on a distance
3 or greater from u we cut and move to any neighbor of u, so that the new
distance from u to those vertices is 2. We obviously decreased the value of
tα(u) with each moved vertex. Let k be the degree of u. In G′ it holds
tα(u) = k + 2α(n− 1 − k).

Now we define f(k) = k + 2α(n − 1 − k), where k ∈ [1, n− 1], n and α
are predefined constants, and by observing its extremal values we obtain the
result.

Theorem 3.2. Let G be a graph with n vertices and α ∈ 〈0, 1〉. It holds
that

Mtα(G) ≤






n− 1, α ≤ 2
n+ 1

;

1 + α · n
2 − n− 2

2
, α >

2
n+ 1

.

The equality holds for the end-vertex of a path in the case α >
2

n+ 1
, and for

the center of a star otherwise.

Proof. As in the proof of Theorem 3.1, we may conclude G that max-
imizes tα (G) is a tree. Let G be a tree and v a vertex for which maximal
transmission is obtained. Let us observe the longest path in G that contains
vertex v. If v is the end-vertex than let us denote by u the other end-vertex
of that path, and if v is not the end-vertex let us denote by u the end of that
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path which is farther from v. If both end-vertices are on the same distance
from v let u be any one of those end-vertices. Now, if G contains a leaf w
such that w 6= u and d(v, w) > 1, let us observe a graph where that leaf is cut
and moved so that its only neighbor is u. We continue this procedure until
we put on that path all the vertices which are on distance greater than 1 from
v. Let this path be of length k. In the obtained tree G′ it holds

n = k + d(v).

In each step of the above procedure we increased the distances from v so the
transmission tα(v) is larger (or the same) in G′ then in G. Now we have

tα(v) = α ·
k∑

i=2

i+ (n− k) = α · k
2 + k − 2

2
+ n− k.

Proceeding as in the proof of Theorem 3.1 and analyzing the corresponding
function, we obtain the values from the claim.

For the next result, lower bound of Mtα, we first need a technical lemma.

Lemma 3.3. There is n0 ∈ N such that for each d ∈ N and n > d the
following implication holds

d2 − 2d1.525 ≤ n ≤ d2 + 1 =⇒
√
n− 1 ≤ d ≤ √

n+ n0.4.

Proof. Let n0 = ⌈21.525/0.1375⌉. From n > d if follows n ≤ d2 + 1 so it
obviously holds

√
n− 1 ≤ d and the left inequality is proven. For the right

inequality, let us assume the opposite, d >
√
n+ n0.4. It follows

(√
n+ n0.4)2 − 2(

√
n+ n0.4)1.525 < d2 − 2d1.525 ≤ n.

We have

n >
(√
n+ n0.4)2 − 2(

√
n+ n0.4)1.525 ≥ n+ 2n0.9 − 22.525n0.7625 =

= n+ 2n0.7625(n0.1375 − 21.525) > n, for n > n0.

We obtained a contradiction, so the claim is proven.

Remark 3.4. By the results in [17] there exists sufficiently large n0 so
that for any n ≥ n0, there exists a d-regular graph with diameter 2 and n
vertices so that it holds d2 − 2d1.525 ≤ n ≤ d2 + 1. We will denote such graph
by Hn,d.

Theorem 3.5. Let G be a graph with n vertices, and α ∈ 〈0, 1〉. It holds

lim
n→∞

(
mMtα(n)√

n
− min{√

n, 2α
(√
n− 1

)
+ 1}

)
= 0,

where mMtα(n) is minimal value of Mtα for graph with n vertices. Equality

holds for a complete graph when α ≥ 1
2

and for Hn,d when α <
1
2

.
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Proof. We will prove the claim for two cases separately, depending on
α.

1) Let α ≥ 1
2

. It is easy to see that minimal value of Mtα will be obtained

for a complete graph. For u ∈ V (Kn) it holds tα(u) = n− 1. It follows

lim
n→∞

(
mMtα(n)√

n
− √

n

)
= lim

n→∞

(
Mtα(Kn)√

n
− √

n

)

= lim
n→∞

(
n− 1√
n

− √
n

)
= 0.

2) Let α <
1
2

. Now it holds min{√
n, 2α (

√
n− 1)+1} = 2α (

√
n− 1)+1.

We will first show that

mMtα(n)√
n

−
(
2α
(√
n− 1

)
+ 1
)

≥ (1 − 2α)(
√
n− 1 − √

n) − 3α√
n

,

for n ≥
(

1−2α
α

)2
.

Let Gn be a graph that minimizes the maximal value of tα in the family
of graphs with n vertices and let un be a vertex that maximizes tα in Gn. Let
d (n) = d (un). If d (n) ≥

√
n− 1, we say that Gn is of type A, and otherwise,

we say that Gn is of type B. Let us define

mMAtα(n) =

{
+∞, d (n) <

√
n− 1,

mMtα(n) d (un) ≥
√
n− 1,

mMBtα(n) =

{
mMtα(n), d (n) <

√
n− 1,

+∞, d (un) ≥ √
n− 1.

Obviously,

mMtα(n) = min {mMAtα(n),mMBtα(n)} .
First, let us prove that

mMAtα(n)√
n

−
(
2α
(√
n− 1

)
+ 1
)

≥ (1 − 2α)(
√
n− 1 − √

n) − 3α√
n

,

for each n.
Suppose to the contrary that there is n such that the opposite holds.

Then, Gn is of type A, i.e. it holds d (n) ≥
√
n− 1. We have

mMAtα(n) ≥ d (n) + (n− d (n) − 1)2α ≥ (n− 1)2α+ (1 − 2α)d (n)

≥ (n− 1)2α+ (1 − 2α)
√
n− 1.

Let us denote f1(n) = (n− 1)2α+ (1 − 2α)
√
n− 1, so we have mMAtα(n) ≥

f1(n) and from this we obtain a contradiction. Similarly, we prove

mMBtα(n)√
n

−
(
2α
(√
n− 1

)
+ 1
)

≥ (1 − 2α)(
√
n− 1 − √

n) − 3α√
n

,
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for each n >
(

1+2α
α

)2
.

By the results in [17] there exists sufficiently large n0 so that for any
n ≥ n0, there exists a d-regular graph with diameter 2, and n vertices and it
holds d2 − 2d1.525 ≤ n ≤ d2 + 1. Let Gn be such a graph with n vertices, and
d(n) the degree of its vertices.

It obviously holds

Mtα(Gn) = d(n) + (n− d(n) − 1)2α = (n− 1)2α+ (1 − 2α)d(n).

For sufficiently large n, now we have

(3.1)
(1 − 2α)(

√
n− 1 − √

n) − 2α√
n

≤ Mtα(Gn)√
n

−
(
2α
(√
n− 1

)
+ 1
)
.

For Gn we have n ≤ d(n)2 + 1 and therefore d(n) ≥
√
n− 1. We obtain

lim
n→∞

(
Mtα(Gn)√

n
−
(
2α
(√
n− 1

)
+ 1
))

= lim
n→∞

(1 − 2α)

(
d(n)√
n

− 1

)
.

Now by using Lemma 3.3 and the Squeezing Theorem we prove

lim
n→∞

(
d(n)√
n

− 1

)
= 0.

For the other side, we have

lim
n→∞

(
(1 − 2α)(

√
n− 1 − √

n) − 2α√
n

)

= lim
n→∞

(
(1 − 2α)

(√
n− 1√
n

− 1

)
− 2α√

n

)
= 0.

Now, by (3.1) and The Squeezing Theorem it follows

lim
n→∞

(
mMtα(n)√

n
−
(
2α
(√
n− 1

)
+ 1
))

= 0.

That completes the proof for the case 2) and the original claim is therefore
proven.

Now we will observe the upper limit of mtα. First, we need two lemmas.

Lemma 3.6. Let α ∈ 〈0, 1〉, n ∈ N, n ≥ 2. Let S be a set of sequences(
x1, x2, ..., x⌊n/2⌋

)
such that x1 + x2 + ... + x⌊n/2⌋ = n − 1 and there exists

k ∈ {1, ..., ⌊n/2⌋} such that xi ≥ 2 for each i < k and xi = 0 for each i > k.
Let S′ be the set of sequences of the form

(
y1, y2, ..., y⌊n/2⌋

)
such that there is

k ∈ {2, ..., ⌊n/2⌋} such that yk ∈ {0, 1}, yi = 2 for each 2 ≤ i < k and yi = 0
for each i > k.
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Let Tn

(
x1, x2, ..., x⌊n/2⌋

)
be defined by

Tn

(
x1, x2, ..., x⌊n/2⌋

)
= x1 +

⌊n/2⌋∑

i=2

xi · i · α.

Then it holds

max {Tn (s) : s ∈ S} = max {Tn (s) : s ∈ S′} .
Proof. Suppose to the contrary. Let

(
x1, x2, ..., x⌊n/2⌋

)
/∈ S′ maximize

Tn in S. Then there is k ≥ 2 such that xk > 2. Note that k < ⌊n/2⌋. Then,
(
x1, x2, ..., xk − 1, xk+1 + 1, xk+2, ..., x⌊n/2⌋

)
∈ S.

It follows that

0 ≤ Tn

(
x1, x2, ..., x⌊n/2⌋

)
− Tn

(
x1, x2, ..., xk − 1, xk+1 + 1, xk+2, ..., x⌊n/2⌋

)

= k · α− (k + 1) · α < −α,
which is a contradiction.

Lemma 3.7. Let S′ be a set of sequences defined in Lemma 3.6. Then,
the value Mn = max {Tn (s) : s ∈ S′} is:
i) n− 1, for α < 4

3+n and n odd or α < 4n−12
n2−8 and n even;

ii) 2 + 1
4α ·

(
n2 − 9

)
, for α ≥ 4

3+n and n odd;
iii) 2 + 1

4α ·
(
n2 − 8

)
, for α ≥ 4n−12

n2−8 and n even.

Proof. If n ≤ 4, the claim is obvious. Hence, let us assume n ≥ 5. It
can be easily seen that i) is obtained for the sequence (n− 1, 0, ..., 0), ii) for
the sequence (2, ..., 2) and iii) for the sequence (2, ..., 2, 1). Moreover, it can
be easily seen that Tn (2, ..., 2) > Tn (n− 1, 0, ..., 0) if and only if α ≥ 4

3+n ,
and that Tn (2, ..., 2, 1) > Tn (n− 1, 0, ..., 0) if and only if α ≥ 4n−12

n2−8 .
Hence, it is sufficient to prove that for all n:

Mn ≤ max

{
n− 1, 2 +

1
4
α ·
(
n2 − 9

)}
.

Let us distinguish two cases:
1) n− x1 is odd.
Then,

Tn

(
x1, x2, ..., x⌊n/2⌋

)

= x1 +

n−1−x1
2 +1∑

i=2

2 · i · α = −5α
4

+ αn+
αn2

4
+ x1 − αx1 − αnx1

2
+
αx2

1

4
.

Simple calculation shows that the function corresponding to the above
expression obtains maximal value in f (2) or f (n− 1). It holds f (2) = 2 +
1
4α ·

(
n2 − 9

)
and f (n− 1) = n− 1, so the case is proven.
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2) n− x1 is even.
Note that in this case x1 6= n− 1. It holds:

Tn

(
x1, x2, ..., x⌊n/2⌋

)
= −α+ αn+

αn2

4
+ x1 − αx1 − αnx1

2
+
αx2

1

4
.

By similar reasoning as in the previous case and observing two subcases,
depending whether n is even or odd we obtain a contradiction with n ≥ 5.

All the cases are analyzed so the claim is proven.

The upper bound of mtα is solved for 2-connected graphs only and the
general case remains an open problem.

Theorem 3.8. Let G be a 2-connected graph with n vertices and α ∈
〈0, 1〉. It holds

mtα(G) ≤





2 +
1
4
α(n2 − 9), α ≥ 4

3 + n
and n odd;

2 +
1
4
α(n2 − 8), α ≥ 4n− 12

n2 − 8
and n even;

n− 1, α <
4

3 + n
and n odd or

α <
4n− 12
n2 − 8

and n even.

Equality holds for any vertex in a complete graph in the third case and for
any vertex in a cycle in the first two cases.

Proof. Let G be a 2-connected graph and u any vertex in G. Let v be
the vertex farthest from u and let d(u, v) = D. Since G is 2-connected it holds
that for every d < D there are at least 2 vertices on a distance d from u. From

that it is easily seen that D ≤
⌊n

2

⌋
. Let us denote with xi the number of

vertices on a distance i from u, and let us observe the sequence (x1, ..., x⌊n/2⌋).
This sequence is obviously in set S defined in Lemma 3.6 and by Lemmas 3.6
and 3.7 it follows that the maximal one-alpha weighted transmission value of
vertex u is the one from the claim.

3.2. One-alpha weighted betweenness centrality.

Theorem 3.9. Let G be a graph with n vertices and α ∈ 〈0, 1〉 . It holds

mcα(G) ≥ 1 + (n− 2)α.

The equality holds for any leaf in G.

Proof. Minimal one-alpha weighted betweenness centrality will be ob-
tained for a tree because we observe the shortest paths between vertices. Let
G be a tree and u any vertex in V (G). Let v be the farthest vertex from u. If
d(u) > 1 let us cut a branch from u (not the one containing v), and connect
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it to vertex v. We made cα(u) smaller. Now let us repeat the procedure until
d(u) = 1. It holds

cα(u) = 1 + (n− 2)α.

That is the minimal value of betweenness centrality in any graph with n

vertices because in the sum
∑

v∈N(u)

∑

{k,l}∈
(

V
2

)
skl

uv

skl
,
skl

uv

skl
is always 1, and we

count all the vertices in G different from u only once. So it follows

1 + (n− 2)α ≤ mcα(G).

Theorem 3.10. Let G be a graph with n vertices and α ∈ 〈0, 1〉. It holds

Mcα(G) ≤ (n− 1)(1 + α(n− 2)).

The equality holds for the center of a star.

Proof. The claim is proven similarly as in the Theorem 3.2, by moving
the vertices in G and increasing the value of betweenness centrality.

The upper bound of mcα is given for 2-connected graphs only.

Theorem 3.11. Let G be a 2-connected graph with n vertices and α ∈
〈0, 1〉. It holds

mca(G) ≤






2 +
1
4
α(n2 − 9), α ≥ 4

3 + n
and n odd;

2 +
1
4
α(n2 − 8), α ≥ 4n− 12

n2 − 8
and n even;

n− 1, α <
4

3 + n
and n odd or

α <
4n− 12
n2 − 8

and n even.

.

Equality holds for any vertex of a complete graph in the third case and for any
vertex of a cycle in the first two cases.

Proof. By Lemma 2.3 we have
∑

v∈V

t(v) =
∑

v∈V

c(v),

so the claim follows from the proof of Theorem 3.8.

Remark 3.12. The lower bound of Mcα(G) is still an open problem.
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3.3. One-alpha weighted networkness. First we prove a claim which will be
used in some of the proofs in this section.

Lemma 3.13. Let G be a graph with n vertices and u its vertex with the
degree D. It holds

tα(u) ≤ D + α

n−D∑

i=2

i.

The equality holds when all non-neighbors of u are on a single path starting
with one fixed neighbor of u.

Proof. The claim is easily proven by observing the Dijkstra’s tree of
graph G and moving vertices as to obtain a broom, similarly as in the proof
of Theorem 3.2.

Theorem 3.14. Let G be a graph with n vertices and α ∈ 〈0, 1〉. It holds

1 + α(n− 2)

1 + 1
2α(n2 − n− 2)

≤ mρα(G) ≤ 1.

The upper equality holds for any vertex of a vertex-transitive graph and the
lower equality for an end vertex of a path.

Proof. For any graph G, by using Lemma 2.3, for the upper bound we
have

mρα(G) = min

{
cα(u)
tα(u)

: u ∈ V (G)

}
≤

1
n

∑
u∈V (G)

cα(u)

1
n

∑
u∈V (G)

tα(u)
=

2Wα(G)
2Wα(G)

= 1.

Let us prove the lower bound. Let G be a graph for which the minimum of
mρα(G) is obtained and u its vertex for which mρα(G) = ρα(u). Let d be
the degree of vertex u. One-alpha weighted betweenness centrality cannot be
smaller than d+(n−1−d)α since u lies on every shortest path between itself
any every other vertex in a graph, while by Lemma 3.13 one-alpha weighted
transmission is maximized when all non-neighbors of u are on a single path
starting with some fixed neighbor of u. So it holds

mρα(G) =
cα(u)
tα(u)

≥ d+ (n− 1 − d)α

d+ α
n−d∑
i=2

i

=
d+ α(n− d− 1)

d+
1
2
α(d2 + n+ n2 − 2 − d(1+2n))

.

Hence, it remains to minimize the function of d, f : [1, n− 1] → R given
by the above expression. Calculation shows that it achieves its minimum for
d = 1 so it follows that the minimum is obtained for an end-vertex of a path.
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Definition 3.15. Let k1, k2, ..., kd be non-negative integers. Thorny star
S(k1, ..., kd) is a tree G with n = k1 + ...+kd +1 vertices such that there exists
a vertex u with degree d so that d(u, v) ≤ 2, for each v ∈ V (G)\{u}, and that
k1, ..., kd are numbers of vertices in the components of G− u.

The example of a thorny star is given in Figure 1.

Figure 1. Thorny star S(4,5,4)

Lemma 3.16. Let x1, x2, ..., xd be non-negative real numbers and x1 +x2 +

...+ xd = n− 1. It holds
∑

1≤i<j≤d

xixj ≤
(

n−1
2

)
− d
(n−1

d
2

)
.

Proof. Simple calculation shows that if x1 = x2 = ... = xd it follows
∑

1≤i<j≤d

xixj =
(

n−1
2

)
− d
(n−1

d
2

)
. Now let us assume (y1, ..., yd) to be a d-tuple

of non-negative real numbers such that the following stands
i) y1 + y2 + ...+ yd = n− 1,
ii) k, l ∈ {1, ..., d} exists such that |yk − yl| > 0,
iii) (y1, ..., yd) maximizes the sum

∑
1≤i<j≤d

xixj .

Without the loss of generality let us assume that k < l (otherwise we
reverse their notation) and yk < yl. Let us denote σ =

∑
1≤i<j≤d

yiyj .

Now we observe a d−tuple

(z1, z2, ..., zd) = (y1, ..., yk + ε, ..., yl − ε, ..., yd),

ε = yl−yk

2 . Let us denote σ′ =
∑

1≤i<j≤d

zizj . Obviously z1 + ... + zd = n − 1

still holds. It is easy to show that σ′ = σ+ 2ε(yl − yk − ε). Since ε < yl − yk,
it holds σ′ > σ. This is in contradiction with iii), hence indeed

(
n−1

d , ..., n−1
d

)

maximizes the sum
∑

1≤i<j≤d

xixj .
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Theorem 3.17. Let G be a graph with n vertices and α ∈ 〈0, 1〉. It holds

1 ≤ Mρα(G) ≤





4 + (n2 − 6)α
4(1 + α(n− 3))

, if 0 < α ≤ n− 7
2n2 − 2n

;





q + (n− q − 1)α+[(
n−1

2

)
− q
(n−1

q
2

)]
· 2α






q + (n− 1 − q) · 2α
, if

n− 7
2n2 − 2n

< α <
n− 3

2(n− 2)
;

1 + (n− 2)α, if
n− 3

2(n− 2)
≤ α < 1;

where

q =
1

2(2 − 2α− n+ 2αn)

(
2 − 4α− 2n+ 4αn−

√
(−2 + 4α+ 2n− 4αn)2 − 4(2 − 2α− n+ 2αn)(2α− 4αn+ 2αn2)

)
.

The lower equality holds for any vertex of a vertex-transitive graph and the
upper equality for the central vertex of a graph S

(
n−1

2 , n−1
2

)
in the first case

(when n is odd), for the central vertex of a graph S
(

n−1
q , ..., n−1

q

)
in the

second case (when q and n/q are integers) and for the central vertex of a star
in the third case.

Proof. The lower bound is easily proven as in the proof of Theorem 3.14.
Let us prove the upper bound. First we observe that from Theorems 3.1 and

3.10 it follows that for α ≥ 1
2

the equality will hold for the central vertex of

a star, since that vertex has minimal transmission and maximal betweenness

centrality value for α ≥ 1
2

. So let α <
1
2

, G be a graph with n vertices

and u its vertex in which maximal value of one-alpha weighted networkness is
obtained. As before we conclude that G must be a tree. Let d be the degree
of vertex u and let k1, ..., kd be the number of vertices in components of G−u,
respectively. Denote by Γ (k1, ..., kd) family of all graphs H that have vertex u
of degree d and k1, ..., kd vertices in components of H − u, respectively. Note
that one-alpha weighted betweenness centrality of vertex u in each such graph
in Γ (k1, ..., kd) is d + (n − d − 1)α +

∑
1≤i<j≤d

kikj · 2α. Hence, networkness

of graph in Γ (k1, ..., kd) is maximized when transmission is minimized, i.e.
for thorny star S (k1, .., kd), therefore the upper bound is achieved for some
G = S (k1, .., kd).

Now we have

ρα(u) =
cα(u)
tα(u)

=

d+ (n− d− 1)α+
∑

1≤i<j≤d

kikj · 2α

d+ (n− 1 − d) · 2α
.
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From Lemma 3.16 we have
∑

1≤i<j≤d

xixj ≤
(

n−1
2

)
− d

(n−1
d
2

)
, hence, it

remains to maximize the function of d, f : [1, n− 1] → R given by the above
expression Further calculation leads to the claim.

Remark 3.18. Let us illustrate the case when graph S
(

n−1
d , ..., n−1

d

)

from Theorem 3.17 is a tight upper bound. For α =
1
12

, n = 10 and d = 3

the bound is reached for S(3, 3, 3). See Figure 2.

Figure 2. Thorny star S(3,3,3)

3.4. Network surplus.

Theorem 3.19. Let G be a graph with n vertices and α ∈ 〈0, 1〉. It holds

−n2 − 3n+ 2
2

α ≤ mνα(G) ≤ 0.

The lower equality holds for an end-vertex of a path and the upper equality
for any vertex in a vertex-transitive graph.

Proof. The upper bound is easily proven as in the proof of Theorem
3.14. Let us prove the lower bound. Let G be a graph with n vertices and u
vertex that minimizes the value of one-alpha weighted network surplus. By
similar reasoning as in Theorem 3.14 we have

mνα(G) = cα(u) − tα(u) = −d2 + d− 2dn+ n(n− 1)
2

α,

where d is the degree of vertex u. The value of να for an end vertex of a path

is −n2 − 3n+ 2
2

α and with simple calculation we have

−n2 − 3n+ 2
2

α−
(

−d2 + d− 2dn+ n(n− 1)
2

α

)
=

(d− 1)(d− 2n+ 2)
2

α.

The right side is always negative, for any degree d > 1, so we conclude that
the lower bound is reached for an end-vertex of a path.
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Theorem 3.20. Let G be a graph with n vertices and α ∈ 〈0, 1〉. It holds

0 ≤ Mνα(G) ≤ α(n2 − 3n+ 2).

The lower equality holds for any vertex of a vertex-transitive graph and the
upper equality for a central vertex of a star.

Proof. The lower bound is easily proven as in the proof of Theorem
3.14. Let us prove the upper bound. Let G be a graph with n vertices and u
vertex that maximizes the value of one-alpha weighted network surplus. By
similar reasoning as in Theorem 3.17 we obtain

Mνα(G) =
α(d2 − (n− 1)2 + d(n2 − 3n+ 2))

d
,

where d is the degree of vertex u. The value of να for the central vertex of a
star is α(n2 − 3n+ 2) and with simple calculation we have

α(n2 − 3n+ 2) − α(d2 − (n− 1)2 + d(n2 − 3n+ 2))
d

=
α((n− 1)2 − d2)

d
.

The right side is always positive, for any degree d < n − 1, so we conclude
that the upper bound is reached for the central vertex of a star.

Conclusions

In the view of fast growing field of complex network and communica-
tions theory, new, better ways to describe the behavior of information in the
network are proposed all the time. Here we modified four well studied net-
work descriptors, trying to implement the fact that vertices on distance one
communicate much more then those on larger distances. For our modified
descriptors, named one-alpha weighted network descriptors, we analyzed the
extremal values and in each solved case found the numerical bound, the graph
in which that value is obtained and the vertex for which it is obtained. Some
bounds we proven only in the case of 2-connected graphs, and one of the
bounds remains an open problem. We hope that here defined modified de-
scriptors will inspire further study and new ways of observing the dynamics
of networks.
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(1, α)-težinski mrežni deskriptori

Tanja Vojković i Damir Vukičević

Sažetak. Kompleksne mreže često koristimo za modeliranje
objekata i njihovih odnosa, a mrežni deskriptori su invarijante
pridružene grafovima koji odgovaraju kompleksnim mrežama.
Transmisija (transmission) i medupoloženost (betweenness cen-
trality) su dobro poznati u teoriji kompleksnih mreža, a vršna pro-
duktivnost (networkness) i vršna profitabilnost (network surplus)
su nedavno definirani deskriptori. Sva četiri deskriptora su defini-
rana s nerealnom pretpostavkom o jednakoj količini komunikacije
svaka dva vrha u grafu. U ovom radu definiramo izmijenjene
verzije ovih deskriptora, uz pretpostavku da vrhovi na udaljenosti
većoj od 1 komuniciraju manje nego vrhovi koji su susjedni. Ko-
eficijentom α izražavamo redukciju u komunikaciji nesusjednih
vrhova te za sve moguće vrijednosti koeficijenta α ∈ 〈0, 1〉 anali-
ziramo ekstremalne vrijednosti ovih deskriptora.
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