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Abstract

Since wood represents an important proportion of the delivered cost, it is important to embrace 
and implement correct measurement procedures and technologies that provide better wood 
volume estimates of logs on trucks. Poor measurements not only impact the revenue obtained 
by haulage contractors and forest companies but also might affect their contractual business 
relationship. Although laser scanning has become a mature and more affordable technology in 
the forestry domain, it remains expensive to adopt and implement in real-life operating 
conditions. In this study, multi-view Structure from Motion (SfM) photogrammetry and 
commercial 3D image processing software were tested as an innovative and alternative method 
for automated volumetric measurement of truckloads. The images were collected with a small 
UAV, which was flown around logging trucks transporting Eucalyptus nitens pulplogs. 
Photogrammetric commercial software was used to process the images and generate 3D models 
of each truckload. The levels of accuracy obtained with multi-view SfM photogrammetry and 
3D reconstruction obtained in this study were comparable to those reported in previous studies 
with laser scanning systems for truckloads with similar logs and species. The deviations between 
the actual and predicted solid volume of logs on trucks ranged between –3.2% and 3.5%, with 
an average deviation of –0.05%. In absolute terms, the average deviation was only 0.5 m3 or 
1.7%. Although several aspects must be addressed for the operational implementation of SfM 
photogrammetry, the results of this study demonstrate the great potential for this method to be 
used as a cost-effective tool to aid in the determination of the solid volume of logs on trucks.

Keywords: volumetric measurements, truckloads, multi-view photogrammetry, structure from 
motion, 3D reconstruction, Eucalyptus nitens, Australia

technologies that provide better wood volume 
estimates (Nylinder et al. 2008). Poor measurements 
will not only impact the revenue obtained by haulage 
contractors and forest companies but also might affect 
their contractual business relationship.

The advantages of solid volume as a unit of 
measuring and payment for wood and chips have 
recently been recognised by an increasing number of 
forest companies worldwide, many of which have 
commenced to embrace commercial mechanisms and 
implement rate systems based on volumetric 
measurements (Nylinder et al. 2008). At least three 

1. Introduction
Worldwide, pulpwood is usually measured by its 

weight, green or dry. One of the drawbacks of this 
method is the inherent variation in the moisture content 
of wood and chips, and the time and cost involved for 
its determination in an operational context. On the 
other hand, measuring volume manually (with wood 
sticks, tapes, etc.) results in time-consuming, 
inconsistent and inaccurate volumetric measurements 
(Knyas and Maksinov 2014). Given that wood 
represents on average about 1/3 of the delivered cost, 
it is key to adopt correct measurement procedures and 
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technologies (laser scanning, stereoscopic cameras, and 
photogrammetry and 3D reconstruction) have evolved 
and improved substantially over the last decade 
(Harvin and Lucieer 2012), providing quicker and 
more accurate measurements of standing trees, logs 
and woodchips (Murphy et al. 2010, Skarlatos and 
Kiparissi 2012). All of them generate a cloud of points 
that can be captured and manipulated by algorithms 
and visual computing libraries and implemented in 
pieces of software developed for specific operational 
uses. The implementation of these technologies in real 
life operations requires that commercial mechanisms 
are adopted and implemented. This must also take into 
consideration the legal and commercial terms associated 
with implementing new measurement systems for 
payment on a volume basis, as well as the capital and 
running costs of the technology to be implemented 
(Schmithüsen et al. 2014).

Laser technology and the algorithms developed for 
volumetric calculations provide quick and more 
accurate measurements of standing trees, logs and 
woodchips (Gutzeit et al. 2011), as well as for volumetric 
measurements of wood truckloads while the vehicle 
positions itself on the weight scale (Nylinder et al. 
2008). Laser scanning systems for volumetric 
measurements of wood truckloads are based on laser 
technology combined with dedicated processing 
software that creates 3D model images of trucks to 
accurately estimate the volume of the material loaded 
in a truck or trailer bin.

On its initial development (release), laser technology 
has surpassed traditional close-range photogrammetry, 
because of its accuracy and automation level (Skarlatos 
and Kiparissi 2012). However, laser technologies, in 
general, are more expensive to install and maintain than 
photogrammetric and stereoscopic technologies. 
Furthermore, laser scanning for wood truckloads can 
be limited outside factory facilities (Galsgaard et al. 
2015). Modern image-based techniques have also 
become more popular over recent years, proving to be 
cost-effective, convenient and practical alternative to 
laser scanning.

Photogrammetry techniques and 3D modelling 
software have evolved to a point where now open-
source and commercial software solutions can be used 
by non-vision experts. Multi-view 3D reconstruction is 
a technology that uses complex algorithms from 
computer vision to create 3D models of a given target 
scene from overlapping 2D images obtained from a 
digital camera (Favalli et al. 2012). It is based on a 
photogrammetric technique called Structure from 
Motion (SfM), which improves the quality of 3D data 
derived from overlapping imagery by incorporating 

advancements in soft-copy triangulation and image-
based terrain extraction algorithms (Westoby et al. 
2012). Furthermore, SfM can accurately reconstruct 
scene geometry using high-resolution overlapping 
imagery obtained with single lens reflex (SLR) cameras 
and consumer point-and-shoot cameras, rather than 
relying on stereoscopic cameras, thus enhancing the 
accessibility and accuracy of 3D photogrammetric 
modelling for an array of uses.

The fundamental advantage of SfM is that the 
geometry of the photographed scene, camera positions, 
and orientation are evaluated without the need for a 
priori specification of targets with known 3D positions 
(Snavely et al. 2008). Rather, SfM photogrammetry 
determines these parameters simultaneously with a 
highly redundant and iterative bundle adjustment 
procedure, which is based on a dataset of invariant 
features extracted from multiple overlapping images 
(Westoby et al. 2012). These features are tracked from 
image to image, enabling initial estimates of camera 
position and object coordinates, which are then refined 
iteratively using non-linear least squares minimisation 
(Fonstad et al. 2013).

This process produces a point cloud of identifiable 
features present in the input photographs. Once 
georeferenced, this point cloud can be used to generate 
an array of digital elevation metrics to quantify 3D 
characteristics. Automating the process from 
identification of control points to the 3D reconstruction 
of scene geometry makes SfM substantially more 
practical and cost-effective than traditional 
photogrammetric methodologies. Multiple studies 
have validated the accuracy of SfM techniques for high-
resolution 3D topographic reconstruction and analysis 
(Micheletti et al. 2015), and in some cases found SfM to 
be highly comparable to substantially more expensive 
LIDAR techniques (Hartley and Zisserman 2003). It is 
an inexpensive, effective, flexible, and user-friendly 
photogrammetric technique for obtaining high-
resolution datasets of complex topographies at 
different scales.

In the forestry sector, SfM and remote sensing have 
been mainly employed to complement existing ground-
based techniques, providing spatially representative 
characteristics of investigated forest stands in a more 
efficient manner (White et al. 2016). Data captured over 
varying spatial, spectral, and temporal scales has been 
shown to contain information, which can be used to 
measure and monitor various aspects of a complex 
forest structure (Zellweger et al. 2013). Advances in the 
acquisition of this information have led to high spatial 
resolution three-dimensional (3D) remote sensing 
becoming an important tool in forest modelling over 
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time (St-Onge et al. 2013). One reason for the forest 
community’s interest in photogrammetry is the cost, 
with SfM methods estimated to be one-third to one-half 
the cost of laser scanning technology (White et al. 2016).

The recent development of small-size unmanned 
aerial vehicles (mini UAVs of less than 5 kg) represents 
a low-cost remote sensing alternative to airborne and 
satellite platforms. When equipped with sensors, small 
UAVs can produce cost-effective data at local scales 
(e.g., for areas the size of traditional forest plots up to 
areas of several km2), with an unrivalled combination 
of spatial and temporal resolution (Wallace et al. 2016). 
Equipping UAVs with sensors capable of detecting 3D 
structure has led to the systems being increasingly used 
to provide an understanding of the structure and 
variability of forests (Tang and Shao 2015). Lisein et al. 
(2013) presented the potential of combining UAV with 
photogrammetric workflows for collecting multi-
temporal data for canopy height modelling.

In the literature, there are very few studies using 
digital imagery to assist in the calculation of volume 
of logs on trucks, (Sosa et al. 2015), and on piles 
(Kruglov and Chiryshev 2017). However, to our best 
knowledge, nothing has been published on the use of 
multi-view photogrammetry and 3D reconstruction 
for the volumetric measurements of log truckloads, 
and this study is a first attempt to determine the levels 
of accuracy obtained with this technology as well as 
its potential to be implemented in operating conditions. 
Thus, this study aimed to assess the combination of 
multi-view SfM photogrammetry and commercial 3D 
image processing software as a more affordable 
alternative to laser scanning systems for automated 
volumetric measurements of log truckloads. Specific 
objectives included: 1. Developing a regression model 
to predict the solid volume of pulplogs on trucks with 
low-cost SfM photogrammetry, and 2. Calculating the 
deviations between the actual and predicted solid 
volume.

2. Material and methods
2.1 Trial site and data collection with UAV

Data from 10 semitrailer truckloads delivering 
debarked shinning gum (Eucalyptus nitens (H. Deane 
& Maiden)) logs to the Surrey Hills chip mill, Tasma-
nia, Australia were collected with an Unmanned Aer-
ial Vehicle (UAV) between 18th July and 20th July 2016. 
The UAV was a Phantom 4 drone developed by the 
company DJI™. The Phantom 4 is a 1.38 kg drone, 
with a maximum speed of 20 m/s and a maximum 
flight time of 28 minutes. It comes with a GPS/
GLONASS system that allows geotagging of the pic-

tures that are taken during the flight. The specifica-
tions of the built-in camera are shown in Table 1.

Flights were planned using the DJI Go 4™ app 
installed on an iPad Air 2™. Among others, this app 
allows to auto take-off and land the drone with just a 
swipe of the finger on the mobile device, track the 
drone’s position on a map, and using this map set a new 
home point and even activate return to home, making 
flying easy and simple. The app also includes intelligent 
flight modes such as »Course Lock«, »Home Lock«, 
»Follow Me«, »Waypoints«, and »Point of Interest«.

Fig. 1 Camera locations above logging trucks during data capture 
with UAV

Table 1 Technical specifications of the camera mounted on the 
Phantom 4

Specification Value

Camera model FC330

Effective pixels 12.4 M

Sensor 1/1.3” (6.17 x 4.55 mm) CMOS

Resolution 4000x3000

Focal length 3.61 mm

Pixel size 1.56 x 1.56

Video recording modes
FHD: 1920×1080 24 / 25 / 30 / 48 / 50 / 60 / 120p

HD: 1280×720 24 / 25 / 30 / 48 / 50 / 60p

Format photos JPEG, DNG (raw)

Format videos MP4, MOV
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Flights around logging trucks were performed at a 
height that ranged between 12.4 and 18.6 metres. For 
this purpose, a »Point of Interest« intelligent flight 
mode was selected, where each truckload was set as 
the point of interest, and the UAV continuously circled 
around it while photos were recorded every 3 seconds. 
This allowed forward and side overlaps of about 80% 
between consecutive images (Fig. 1).

2.2 Processing images of each truckload with 3D 
reconstruction software

Between 30 and 66 photos (average = 48 photos) were 
collected from the ten truckloads. Processing of the 
images collected with the drone was performed with the 
software AgiSoft PhotoScan™ version 1.3.2. PhotoScan 
is an advanced image-based 3D modelling solution for 
creating professional quality 3D content from still 
images. Based on the latest multi-view 3D reconstruction 
technology, it operates on arbitrary images and is 
efficient in both controlled and uncontrolled conditions. 
The photos can be taken from any position, provided 
that an object to be reconstructed is visible on at least 
two photos. Both image alignment and 3D model 
reconstruction are fully automated. It supports the 
following input formats: JPEG, TIFF, PNG, BMP, JPEG 
Multi-Picture Format (MPO), and the following output 
formats: Wavefront OBJ, 3DS Max, PLY, VRML, 
COLLADA, Universal 3D, PDF (Agisoft 2018a).

The technology behind the software allows for very 
fast processing. Processing times were within 30 min 
with a computer with a 6th Generation Intel Core i7 
Processor, with four CPU cores, 32 GB of RAM, and a 
graphics card of 2 GB, providing highly accurate re-
sults (up to 3 cm for aerial, and up to 1 mm for close-
range photography) (Agisoft 2018a). The package has 
a linear project-based workflow (Fig. 2) that is intuitive 
and can be easily mastered even by a non-specialist, 
while professional photogrammetrists have complete 
control over the results accuracy, with a detailed re-
port being generated at the end of processing (more 
details about the linear workflow in Agisoft (2018b)). 
Photorealistic, highly detailed 3D models, classified 
dense point clouds, fine resolution Digital Elevation 
Models (DEMs) generated with the software can be 
used in wide range of applications, from visual effects 
industry to engineering projects. Also, high accuracy 
of polygonal models and digital surface models recon-
structed with the software guarantees precise area and 
volume measurements. This feature made it possible 
to use this technology and software for volumetric 
measurements of truckloads.

After the photos were loaded and aligned in 
PhotoScan, the software found the camera position 

and orientation for each photo, identifying and match-
ing features in a set of images using an algorithm 
based on the scale invariant feature transform (SIFT) 
object recognition system (Lowe 2004). Also, bundle 
adjustment algorithms implemented in the software 
estimated the 3D geometry of the truckloads, as well 
as the internal and external camera orientation 
parameters, producing a sparse, unscaled 3D point 
cloud in arbitrary units. The density of this point cloud 
for the ten truckloads ranged between 24 128 and 
35 596 points.

After alignment and optimisation, the dense multi-
view 3D reconstruction algorithm was executed by 
implementing a multi-view stereo (MVS) image 
matching algorithm. PhotoScan tends to produce extra 
dense point clouds, which are of almost the same 
density, if not denser, as LIDAR point clouds. Thus, 
point cloud densities ranged between 607 000 and 
1 374 000 points for the ten truckloads.

In a next step, a mesh (3D model) was created from 
the dense point cloud. The use of a high-quality dense 
cloud as a source data resulted in longer processing 
times. The number of faces and vertices in the 3D 
models ranged between 180 000 and 274 400, and 
between 90 500 and 138 000, respectively. Subsequently, 
pixel data from the photographs were used to generate 
a 3D model texture, and a high-resolution tiled model 
was generated for each truckload.

2.3 Estimating solid volume from gross volume
After the tiled model (3D textured) was generated, 

it was imported in the software Autodesk Remake™ 

Fig. 2 Agisoft PhotoScan’s project workflow for image processing 
and 3D reconstruction
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and extruded to facilitate the calculation of gross vol-
ume (solid volume of logs including air spaces) by a 
dedicated algorithm included in the tool. The mesh 
report provides information about the number faces 
and vertices, as well as area and volume of the 3D 
model.

In addition to the gross volume calculated from 
SfM photogrammetry and 3D reconstruction, each 
truckload was physically measured on the ground for 
actual solid wood volume. For that purpose, 1605 fully 
debarked logs were measured for mid-diameter and 
total length. Mid-diameter was measured to the 
nearest millimetre with a calliper, whereas the length 
of each log was measured to the nearest 0.1 m with a 
tape. Both mid-diameter and length data were 
recorded with a Windows tablet for further processing. 
The solid volume of the logs was calculated using 
Huber’s equation, which uses mid-diameter and 
length as inputs. Huber’s volume equation is as 
follows (Eq. 1):

 
21

1000000 4
DmSv L= ´ ´ ´p  (1)

Where:
Sv solid volume, m3

Dm mid-diameter, mm
L log length, m.

To predict the solid volume of each truckload, a 
linear regression model between the explanatory vari-
able »Gross volume« (from photographs and 3D re-
con  struction) and the response variable »Solid vo lu me« 
(from measurement on the ground) was de ve loped. 
The linear regression model had the following form 
(Eq. 2):

      Solid volume [m3] = a + b ´ Gross volume [m3] (2)

Predicted solid volume of each truckload was then 
compared to their actual solid volume, and both 
absolute and percentage deviations were calculated to 
determine the accuracy of the predictions.

3. Results

3.1 Summary of flights around logging trucks 
and processing of images

Table 2 shows a summary of the flights performed 
around the 10 logging trucks, including aligned 
images, flying altitude, ground resolution and cover-
age area. The ground resolution was high given the 
short distance between the camera allocation and the 
trucks. It was evident that the ground resolution in-
creased at lower flight altitudes. For example, at a flight 
altitude of 12.4 m (Truckload #6), the ground resolu-
tion was 4.6 mm/pix, while at a flight altitude of 18.6 m 
(Truckload #1), the ground resolution was 6.2 mm/pix.

Fig. 3 shows an image of the sparse point cloud 
generated with PhotoScan. On average, around 29 000 
points were generated from the photos of each 
truckload. Matching time ranged between 1.6 and 10.1 
minutes (average = 4.5 minutes), while alignment time 
ranged between 0.16 and 0.5 minutes (average = 0.2 
minutes).

Fig. 4 shows an image of the dense cloud (whole 
truck) generated with Agisoft PhotoScan. On average, 
around 1 019 000 points were generated for each 
truckload. Processing times were much longer than in 
the case of the sparse point cloud. Depth maps 

Table 2 Summary of the flight performed around the 10 logging trucks

Truckload

1 2 3 4 5 6 7 8 9 10

# Aligned images 37 37 36 51 66 46 54 55 64 30

Flying altitude, m 18.6 13.2 14.8 17.3 14.1 12.4 12.8 15.0 15.2 16.4

Ground resolution, mm/pix 6.2 4.5 5.4 5.6 5.4 4.6 4.9 5.3 5.2 5.5

Coverage area, m2 40.9 54.6 30.1 29.1 28.8 31.0 36.8 31.6 29.2 65.9

Fig. 3 Sparse point cloud generated with Agisoft PhotoScan
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generation time ranged between 4.0 and 34.8 minutes 
(average = 18.7 minutes), while dense cloud generation 
time ranged between 0.8 and 6.5 minutes (average = 
3.2 minutes).

An image of the 3D model (mesh for a whole truck) 
is shown in Fig. 5. On average, around 214 000 faces 
and 107 660 vertices were generated for each truckload. 
In this case, processing time ranged between 0.5 and 
1.2 minutes (average = 0.9 minutes).

Finally, Fig. 6 shows the tiled model (size = 256 pixels) 
generated from the dense cloud with PhotoScan. Pro-
cessing time ranged between 1.4 and 2.5 minutes (av-
erage = 2.1 minutes).

3.2 Processing time for 3D reconstruction of 
truckloads

Total processing time (including processing to 
generate the tiled model) ranged between 10.1 and 
52.2 minutes (average = 30.9 minutes). The variation 
in total time is explained by the number of images to 
generate the 3D model as well as the average flight 
altitude when capturing the photographs. Processing 
time increases as more images are used to generate the 
models and when these photographs are captured at 
a lower altitude. The regression model is as follows 
(Eq. 3):

Processing time [min] = 36,9 + (1.01 * #Images) –  
 (3.6 * Altitude [m]), Adj. r2 = 0.86 (3)

The standard error of the estimate was 6.391, while 
the p-values for the intercept and coefficients associ-
ated with explanatory variables #Images, and Altitude 

were 0.012, <0.001, and 0.014, respectively. A regres-
sion model between actual and predictive processing 
time is shown in Fig. 7.

3.3 Summary statistics of truckloads
Table 3 presents a summary of the statistics of the 

logs being transported by the ten trucks included in 
the study (1605 logs). These include the mid-diameter 
measured in the centre of the logs, the total length, and 
the solid volume calculated with the Huber equation.

Fig. 4 Dense point cloud generated with Agisoft PhotoScan

Fig. 6 Tile model generated with Agisoft PhotoScan

Fig. 5 3D model (mesh) generated with Agisoft PhotoScan

Fig. 7 Regression model between actual and predicted processing 
time
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Table 3 Summary of statistics for the long logs measured in the study

Mid-diameter, mm Log length, m Solid volume, m3

Min. 80.0 2.0 0.01

Max. 361.0 13.3 1.11

Mean 163.1 9.6 0.23

Median 158.0 10.9 0.19

Std. dev. 47.2 2.4 0.16

Table 4 shows summary statistics for Gross Vehicle 
Mass (GVM), tare, net payload, solid volume, gross 
volume calculated from 3D models, and solid-to-gross 
ratio by truck.

There was a big difference in GVM (8.8 tonnes) and 
net payload (7.5 tonnes) between the lightest and the 
heaviest trucks, although their difference in tare was 
only 3.1 tonnes. The inclusion of these two trucks did 
not affect the average GVM, tare, and net payload, 
which were around 45.8, 15.8, and 30.0 tonnes, 
respectively, for the ten trucks included in the study.

Regarding solid volume, there was a difference of 
5.4 m3 between the lightest and the heaviest truck. The 
average solid volume was 28.5 m3 for the ten trucks, 
which was lower than the 30.2 m3 calculated in a previ-
ous study from 54 truckloads (Acuna and Herd 2016). 

This difference is explained in part by the date of each 
trial (end of summer in the previous trial and mid-
winter in the case of the present study), as well as the 
volume equation used (Smalian in the previous trial 
and Huber in the case of the present study). Also, there 
was a high correlation between net payload and solid 
volume (Pearson coefficient of correlation = 0.87). This 
high correlation can be explained in part by the fact 
that all the loads were moved from the forest to the 
chip mill immediately after harvesting, consisting of 
logs with similar moisture content and basic density.

Regarding gross volume, the gap between the light-
est and the heaviest truck was 6.7 tonnes, which was 
bigger than the gap in solid volume, and with greater 
variation among the trucks. The average gross volume 
was 44.8 m3 for the ten trucks, which was lower than 
the 47.9 m3 calculated in a previous study from 54 
truckloads (Acuna and Herd 2016). This difference is 
explained in part by the method being used to 
determine the gross volume (pictures taken from both 
sides of the trucks in the previous trial and multi-view 
photogrammetry and 3D reconstruction in the present 
study). The average solid-to-gross ratio in the present 
study for ten trucks (0.64) was very close to the one 
calculated in the previous trial for 54 trucks (0.63). The 
difference between the maximum and minimum 
values (0.05) and the standard variation (0.02) was 
smaller in the present study than in the previous one.

Table 4 Summary statistics for the 10 truckloads included in the study

Truck GVM, tonnes Tare, tonnes Net payload, tonnes Solid volume, m3 Gross volume, m3 Solid-to-Gross 
volume ratio

1 45.90 14.95 30.95 29.04 43.73 0.66

2 45.55 15.35 30.20 28.52 45.92 0.62

3 50.35 16.10 34.25 31.64 47.56 0.67

4 41.55 14.75 26.80 26.20 40.85 0.64

5 46.00 15.65 30.35 29.09 45.40 0.64

6 46.00 15.70 30.30 29.13 45.15 0.65

7 45.35 14.95 30.40 28.86 45.97 0.63

8 46.10 15.15 30.95 28.73 45.95 0.63

9 46.50 17.85 28.60 27.15 43.13 0.63

10 45.35 15.50 29.85 28.80 44.83 0.64

Min. 41.55 14.75 26.80 26.20 40.85 0.62

Max. 50.35 17.85 34.25 31.64 47.56 0.67

Average 45.88 15.78 30.09 28.54 44.85 0.64

Std. dev. 2.00 1.05 1.87 1.46 1.87 0.02
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3.4 Estimating solid volume from gross volume
A good prediction of solid volume from gross vol-

ume was achieved with a regression model that com-
bined the data of the ten truckloads (Fig. 8). The re-
gression equation obtained was as follows (Eq. 4):

Solid volume [m3] = –0.617 +  
 (0.654 * Gross volume [m3]), Adj. r2 = 0.76 (4)

The standard error of the estimate was 0.737, while 
the p-values for the intercept and coefficient associated 
with explanatory variable Gross Volume were 0.009, 
<0.001, respectively.

A significant dependence relation was observed 
between the solid and gross volume, even though the 

model was only developed from 10 truckloads. This is 
also supported by the results presented in Table 5, 
which shows a summary by truck of the gross and 
solid volume, predicted solid volume with the above 
regression model, and the errors (deviations) between 
the actual and the predicted solid volume. Positive 
deviations mean that the actual solid volume was big-
ger than the predicted solid volume (the model under-
estimates solid volume), while negative deviations 
mean that the actual solid volume was smaller than 
the predicted solid volume (the model overestimates 
solid volume). As shown in Table 6, the deviation for 
the 10 trucks ranged between –0.9 and 1.2 m3, with an 
average value of 0.5 m3. However, the absolute devia-
tion only ranged between 0.0 and 1.2 m3, with the same 
average value of 0.5 m3. These values represent a max-
imum absolute deviation of 3.5%, with an average 
value of only 1.7% for the 10 trucks.

4. Discussion
The main objective of this study was to assess the 

combination of multi-view photogrammetry and 

Fig. 8 Regression model between gross and predicted solid volume 
of logs on trucks

Table 5 Summary of gross and solid volume, and errors by truck

Truck

1 2 3 4 5 6 7 8 9 10

Gross volume*, m3 43.7 45.9 47.6 40.8 45.4 45.1 46.0 45.9 43.1 44.8

Actual solid volume, m3 29.0 28.5 31.6 26.2 29.1 29.1 28.9 28.7 27.2 28.8

Predicted solid volume, m3 28.0 29.4 30.5 26.1 29.1 28.9 29.4 29.4 27.6 28.7

Deviation, m3 1.05 –0.90 1.15 0.10 0.01 0.22 –0.58 –0.71 –0.44 0.09

Deviation, % 3.45 –3.16 3.48 0.38 0.00 0.69 –1.73 –2.44 –1.47 0.35

* Calculated with photogrammetry and 3D reconstruction

Table 6 Summary of gross and solid volume, and errors for the 10 
trucks in the study

Min. Max. Average Std. dev.

Gross volume*, m3 40.8 47.6 44.8 1.9

Actual solid volume, m3 26.2 31.6 28.7 1.4

Predicted solid volume, m3 26.1 30.5 28.7 1.2

Deviation, m3 –0.9 1.2 0.5 0.4

Absolute deviation, m3 0.0 1.2 0.5 0.4

Absolute deviation, % 0.0 3.5 1.7 1.4

* Calculated with photogrammetry and 3D reconstruction
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commercial 3D image processing software as a more 
affordable alternative to laser scanning systems for 
automated volumetric measurements of log truck-
loads. Specific objectives included developing a re-
gression model to predict the solid volume of pulplogs 
on trucks with low-cost SfM photogrammetry and 
determining the errors of those predictions.

A UAV was the choice for the collection of the im-
ages during the study because of their ease of use and 
affordability. Data capture with UAVs is limited by 
weather conditions such as rain, snow, high winds, 
dust, and low light conditions, which can have a neg-
ative impact on the quality of the images collected. 
Thus, if a photogrammetric is to be implemented op-
erationally, it is recommended that it is based on pho-
to-measuring stations, for example with several cam-
eras mounted on masts that allow capturing images of 
the trucks from different angles through a more con-
trolled and protected photo capture system.

The levels of accuracy obtained with SfM photo-
grammetry and 3D reconstruction in this study were 
quite similar to the ones reported in previous studies 
with laser scanning systems for truckloads with pulp-
logs of similar species. For example, in the study con-
ducted by Nylinder et al. (2008), deviations between 
gross volume measured manually and estimated with 
laser scanning systems ranged between –4.5% and 
1.7% for Eucalyptus globulus pulplogs. In our study, the 
deviations between actual and predicted solid volume 
of logs on trucks ranged between –3.2% and 3.5%, with 
an average deviation of –0.05%. In absolute terms, the 
average deviation was only 0.5 m3 or 1.7%. These re-
sults confirm the great potential for multi-view SfM 
photogrammetric and 3D reconstruction methods to 
be used as a cost-effective tool to aid in the determina-
tion of the solid volume of logs on trucks.

Commercial software and algorithms to process 
the photographs and generate the 3D profiles are pro-
gressing quite rapidly, and the approach has demon-
strated to be as accurate as the one based on laser scan-
ning systems, but a more affordable option (Koci et al. 
2017). In this study, a relatively high coefficient of 
determination (r2=0.76) was obtained between the re-
sponse variable (solid volume) and the explanatory 
variable (gross volume). Despite the high r2 value of 
the regression model, the greater variability of solid 
volume could be explained if additional explanatory 
variables were added to the regression model. One of 
these variables could be the solid volume of the logs 
situated in the periphery of the load, which might be 
reconstructed in 3D during the scanning process. This 
has already been done by some commercial laser scan-
ning units such as the Logmeter (WoodTech 2018), 

which captures cross-sectional point cloud data dur-
ing the scanning of truckloads and fits circles in each 
cross section to allows the 3D reconstruction of the 
logs in the periphery of the load. A similar approach 
could be used and implemented with the SfM photo-
grammetric approach used in this study, but this will 
require developing efficient algorithms to edit, pro-
cess, and manipulate the point cloud data generated 
from the photos captured with a UAV or fixed cam-
eras.

A major advantage of SfM is the relatively low cost 
of the instruments to collect and process photogram-
metric data. In our study, we utilised a lightweight 
UAV equipped with a 12.4 MP camera, whose total 
weight did not exceed 2 kg and whose cost was ~ 
$AUD 2500 including all the accessories. In addition, 
the cost of one Agisoft™ Academic licence was about 
US$ 700. The SfM instrument costs are much lower 
than LiDAR (laser) systems; while LiDAR systems are 
becoming smaller and more compact, they are still or-
ders of magnitude more expensive than small-scale 
UAVs with a digital camera (Mlambo et al. 2017). The 
low SfM survey instrument costs mean they can be 
purchased outright and deployed rapidly. In Austra-
lia, lightweight drones (<2 kg) can be used without a 
remote pilot license (CASA 2018), representing a very 
affordable option to collect photogrammetric data as 
compared to another sensor technology. In our study, 
data collection with the UAV took approximately 2.4 
minutes per flight using Phantom 4’s »Point of Inter-
est« intelligent flight mode, with an average of 48 pho-
tos collected per flight (range between 30 and 66 im-
ages).

Related to the above, one of the biggest limitations 
of photogrammetry and 3D reconstruction is their ap-
plication in operating conditions due to the processing 
times involved to generate a 3D model of the truck-
loads. The high number and resolution of images cap-
tured during SfM surveys demand substantial com-
puting resources for data storage, processing and 
analysis. In our study, processing time up to comple-
tion of the 3D models averaged 30.0 minutes on a com-
puter with a 6th Generation Intel Core i7 Processor, 
with four CPU cores, 32 GB of RAM, and a graphics 
card of 2 GB. Such computational demands may limit 
the scale and uses at which SfM is currently applied, 
in particular to users of the technology who do not 
have access to high-performance computers. Howev-
er, rapid advances in computing capability, for ex-
ample through improvements to Graphics Processing 
Units and the implementation of parallel computing, 
are revolutionising SfM workflows (Koci et al. 2017). 
In our study, as expected, the number of images to be 



M. Acuna and A. Sosa Automated Volumetric Measurements of Truckloads through Multi-View ... (151–162)

160 Croat. j. for. eng. 40(2019)1

processed was a statistically significant variable to 
explain processing time (at a rate of about 1 minute of 
extra processing time per image). However, no 
correlation was observed between the number of 
images used for the 3D reconstruction and the 
deviations between actual and predicted solid volume. 
For example, for one of the truckloads, processing of 
30 images took only 13.0 minutes with a deviation of 
0.09 m3 between actual and predicted solid volume, 
whereas, for another truckload, processing of 64 
images took 52.2 minutes with a deviation of –0.44 m3 
between actual and predicted solid volume. Due to 
these results, future tests will focus on determining the 
minimum number of images that are required to be 
captured without compromising the accuracy of the 
volumetric predictions of logs on trucks. It is expected 
that a reduction in the time required for capturing the 
images with the UAV, as well as in the processing time 
due to an improvement of SfM algorithms and better 
computing capabilities, will lead to the commercial 
implementation of these methods for the automated 
volumetric measurements of truckloads.

5. Conclusions
Structure from Motion with Multi-View Stereo 

photogrammetry (SfM) is being increasingly utilised 
by forestry practitioners as a cost-effective method of 
rapidly acquiring high resolution topographic and 
forest resource data across a range of scales and 
landscapes but has not been tested to determine the 
solid volume of logs on trucks accurately. 
Implementing innovative technology and correct 
measurement procedures of truckloads will impact 
the contractual business relationships between 
haulage contractors and forest companies positively, 
and will enable the correct implementation of 
commercial payment mechanisms along the supply 
chain based on volumetric measurements of 
truckloads.

Although laser scanning has become a mature and 
more affordable technology in the forestry domain, it 
remains expensive to adopt and implement in real-life 
operating conditions. The main goal of this study was 
to test multi-view structure from motion (SfM) 
photogrammetry and commercial 3D image processing 
software as an innovative and alternative method for 
automated volumetric measurement of truckloads. 
The levels of accuracy obtained with multi-view SfM 
photogrammetry and 3D reconstruction obtained in 
this study were comparable to those reported in 
previous studies with laser scanning systems for 
truckloads with similar logs and species. The 

deviations between actual and predicted solid volume 
of logs on trucks ranged between –3.2% and 3.5%, with 
an average deviation –0.05%. In absolute terms, the 
average deviation was only 0.5 m3 or 1.7%.

Although several aspects must be addressed for 
the operational implementation of SfM 
photogrammetry, including further testing and 
refinement of different methodological approaches to 
improve model accuracy and reduce processing times, 
the results of this study demonstrate the great poten-
tial of this method to be used as a cost-effective tool to 
aid in the determination of the solid volume of logs on 
trucks.
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