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EXECUTIVE SUMMARY: Largemouth bass are frequently stocked in many Illinois
impoundments to compensate for variable recruitment. Even so, the long-term contribution of
stocked fish to recruitment and harvest of natural bass populations is unknown. Because stocking
is only one of several management options for this species, it is critical that additional information
on factors limiting recruitment processes be identified. In addition, information on the importance
of rearing technique, size of stocked fish, forage base, cover, resident predators, physical-chemical
conditions, and stocking stress in determining largemouth bass stocking success is needed to
optimize use of hatchery produced fish.

In Job 101.1 we are attempting to determine the most reliable and cost-effective method
for mass-marking fingerling largemouth bass. We evaluated the long-term retention rates of fin
clips, fin clips followed by freeze cauterization, and freeze branding. Amongst all three marking
types, freeze-branding marks exhibited the least amount of fin regrowth and were the easiest
marks to distinguish, except in the spring when bass coloration darkens. Over the four-year
period of this study, fin-cauterized marks have been the longest lasting and none of the mark types
have significantly influenced bass growth. We will continue this long-term study by periodically
monitoring mark retention and growth.

Supplemental stocking is a widely used management tool for increasing the standing
stock of an existing population. Survival of stocked largemouth bass fingerlings varied
considerably across lakes, ranging from 0 to 21.7 stocked fish per hour of electrofishing during
the fall of 2002. Initial stocking mortality was low among different sizes of stocked bass.
Stocking mortality was related to temperature at the time of stocking, therefore, stocking during
cooler times of year should reduce mortality. Predation rates on stocked fish was low among all
sizes of stocked fish. Four inch fish experienced the highest level of predation and may be more
susceptible to bass predation than other sizes of stocked largemouth bass. Despite initial
differences in size and catch per unit effort (CPUE), all stocked bass except 2-inch fish were
found in similar relative abundances and at similar mean size from the first summer after
stocking throughout the following seasons. The exception was 2-inch bass which did not occur
in samples after the first spring following stocking. Cost analysis will be conducted in
subsequent segments in order to make recommendations on which size of fish should be stocked
in Illinois impoundments.

The relative survival of intensively and extensively reared largemouth bass varied
between lakes. However, few fish were recaptured and larger efforts must be put into sampling
in order to accurately assess which rearing strategy yields the highest survival and growth.
Based on our results thus far, the usefulness of supplemental stocking as a management strategy
will vary by individual lakes. Additional research regarding the importance of predator and prey
populations are needed to determine lake characteristics most favorable for stocking largemouth
bass.

In Job 101.3 our objective is to evaluate the long-term contribution of stocked largemouth
bass to the numbers of harvestable and reproducing adults. The contribution of stocked
largemouth bass to an existing bass population will be tracked by stocking largemouth bass
specifically fixed for the MDH-B2B2 genotype. Prior to stocking, we evaluated the background
frequency of the MDH-B 1 and MDH-B2 alleles in the natural largemouth bass population of
each study lake and verified that our experimental bass contained the MDH-B2B2 genotype. In



2001, five out of fifty fingerlings stocked into Lake Shelbyville contained the MDH B 1B2
genotype, therefore, a correction factor will be used to analyze future samples from this lake.
Background frequencies of the MDH-B2 allele were typically less than 20%, except in Forbes
(33%) and McLeansboro (55%). The high background frequency of the MDH-B2 allele in
McLeansboro will potentially complicate any estimate of contribution made by stocked bass in
this lake. If stocked largemouth bass successfully reproduce in our study lakes, we should find
an increase in the frequency of the MDH-B2 allele.

The goal of Job 101.4 is to determine the mechanisms responsible for variation in
largemouth bass recruitment in Illinois lakes. Total phosphorus and important components of the
reservoir food web were monitored in 12 study lakes from May to October. Abundance and size
structure of YOY largemouth bass was extremely variable across all 12 reservoirs. Peak
abundance of YOY largemouth bass was positively related to the size of vegetated area within a
reservoir. The earliest significant indicators of YOY largemouth bass density at the end of the
2002 growing season was July and August abundances. YOY largemouth bass densities at these
times were negatively related to total phosphorus concentrations and positively correlated with
the abundances of macroinvertebrates and juvenile bluegill. Overall, density of juvenile bluegill
was the most consistent correlate of YOY largemouth bass abundance. Number of YOY
largemouth bass surviving to age-1 was significantly correlated with fall abundance of YOY,
therefore, recruitment strength of the 2002 year class was set by YOY mortality during the first
summer. Similar to YOY abundance, the strongest correlation with year class strength was
density of juvenile bluegill. YOY largemouth bass size structure at the end of the growing
season was larger and positively correlated with primary productivity in reservoir communities
containing gizzard shad than in those without gizzard shad. However, fall size structure of YOY
largemouth bass did not significantly affect recruitment strength. Across years, recruitment
patterns have varied a great deal among the 12 study reservoirs, with recruitment either
consistently low, declining, increasing, or varying from year to year. We will continue to
monitor these populations in order to understand the causes of these recruitment patterns.

Removal of spawning males by angling in the spring could have detrimental effects on
largemouth bass recruitment and size structure. In Job 101.5, our objective was to assess the
level of angling for nesting bass in Illinois and to determine its impact on reproductive success,
recruitment, and size strucutre. Snorkel surveys at Lincoln Trail Lake were used to measure
male bass nest site selection and to test the effects of angling and electrofishing on nest success.
Manipulations included catch-and-release (bass were released after two minutes of air exposure),
tournament (bass were held for two hours and released at the boat ramp), and electrofishing
(bass were captured with an AC electrofishing boat, measured for total length, given a fin clip,
held for 30 minutes, and released 100 meters from their nests). Nest abandonment rates were
12% for control bass (unmanipulated), 39% for electrofishing, 30% for catch-and-release, and
100% for tournament treatments. Bass tournaments were monitored at Mill Creek Lake,
Mattoon Lake, Forbes Reservoir, and Lake Shelbyville during the spawning and post-spawning
period to determine the extent to which nesting male largemouth bass are at risk from
tournament angling relative to non-nesting males and females. Many reproductively active bass
(47%; N = 4 lakes) were captured by anglers during spring tournaments. More males than
females were caught by tournament anglers during the spawning season (2:1; male:female) and
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this difference disappeared after the spawn (1:1; male:female). Based on a pond experiment
wherein 4 ponds were stocked with mature bass subjected to typical tournament stressors
(exhaustive exercise, air exposure, culling, live-well retention, and weigh-in) and 4 ponds were
stocked with control bass, tournament-stressed populations produced similar numbers of recruits
but smaller offspring than the control populations. Based on a series of experiments, we found
that live-well retention causes stress responses in largemouth bass but creation of the appropriate
live-well conditions can ameliorate these effects.

There are a number of potential options that can be used to help manage bass populations
in Illinois, including a variety of different harvest regulations such as size and bag limits, closed
seasons, and spawning sanctuaries. In Job 101.6, we are working on a model to evaluate the
effects of various angling scenarios and pressures on Illinois bass recruitment and size structure.
As a starting point, we have constructed a conceptual model based on a population of bass in a
hypothetical lake to describe how reproductive success is impacted by fishing. We are currently
calibrating the model with data derived from our angling manipulations in Lincoln Trail Lake.
Field experiments on different bass populations will be used to refine the parameters used in the
model. When the model has been advanced to a mathematical stage, we will test it with large
scale manipulative experiments. In addition, largemouth bass abundance and size structure has
been collected from Clinton Lake prior to the closing of a fishing refuge. Data from within the
refuge will be collected in future sampling seasons and compared to values from before the
closure. With this series of experiments, we are working towards the ultimate goal of
developing management strategies that maximize growth, recruitment, and harvest of
largemouth bass in Illinois impoundments.



Job 101.1 Evaluating marking techniques for fingerling largemouth bass

OBJECTIVE: To determine the most reliable and cost-effective method for mass-marking
fingerling largemouth bass.

INTRODUCTION: The ability to reliably identify stocked fish is an essential component to
successful population assessment. The choice of a particular fish marking technique depends
primarily on the scope of the management question. In some instances, short-term marks can
provide sufficient information to address management questions. Often times, however, it is
important to identify marked fish throughout their lifetime. In Illinois, freeze branding (Mighell
1969) has been a commonly used method for mass-marking largemouth bass fingerlings.
Although this technique permits marking large numbers of hatchery fish both quickly and
inexpensively, long-term retention of freeze brands in centrarchids is variable (Coutant 1972).
Because uncertainty about mark retention compromises the quality of recapture data by making
the true contribution of hatchery fish unknown, it is important that a reliable, long-term mark is
established. An ideal mark should be inexpensive, easy to apply, have long-term retention, and
have minimal impact on the health of the fish.

Several marking techniques have the potential to produce long-term physical marks on
largemouth bass. Fin clipping can permanently mark largemouth bass if all fin rays are carefully
clipped at the point of attachment to the bone (Wydoski and Emery 1983). Partial or incomplete
removal of fin rays, however, can result in fin regeneration and preclude our ability to identify
stocked fish. Boxrucker (1982; 1984) used a combination of fin clipping followed by freeze
cauterization of the wound to create a long-term mark on fingerling largemouth bass. This
technique required more man-hours than fin clipping or freeze branding alone (Boxrucker 1982).

PROCEDURES: We evaluated the long-term retention rate associated with three different
marking techniques for 4" largemouth bass. Marking techniques included (1) fin clipping, (2)
fin cauterization, and (3) freeze branding. Fin clips were obtained by removal of the right pelvic
fin. Removing both pelvic fins and 'freeze-branding' the wound with liquid nitrogen made fin
cauterizations. Freeze branding was accomplished by holding fish for 2 s against a branding iron
chilled to -190 oC with liquid nitrogen. Freeze brands were located on the left side of individual
fish, just below the dorsal fin. Groups of fingerling bass with each mark (75-100 each) were
then stocked into 3 outdoor ponds (1/3 acre) at a total density of 250 fish/pond (Table 1-1). Fish
used in these experiments were previously identified as either thel:1, 1:2, or 2:2 MDH-B
genotype. At the beginning of the experiment, fish with known genotypes were assigned to a
specific physical mark so that they could be genetically identified if marks disappeared or could
not be positively identified in the field (Table 1-1). Fingerling bass were stocked into ponds on
December 14, 1998. Fish growth, differences in mark retention rates and percent regrowth
among marking techniques have been measured and assessed every six months starting May
1999 through March 2003.

FINDINGS: In the long-term pond experiments (4" fingerlings), fin cauterization was the
longest lasting mark followed by fin clip and freeze brand marks (Figure 1-1). Fin clips and fin



cauterized marks had considerable amounts of fin regrowth that made them less desirable than
freeze brand marks. Fin cauterized marks had 20% less fin regrowth than fin clips (Figure 1-2).
Less fin regrowth in fin cauterized marks made them more obvious than fin clips and required
less handling time to identify marks. Freeze brand marks were the most distinguishable and
required the least amount of handling time to identify. Freeze brand marks were 7% less
distinguishable during spring sampling (93%) as compared to fall sampling (100%) because of
darker external fish coloration (Figure 1-3). Conversely, fin clips and fin cauterized marks
(100%) were distinguishable regardless of season (i.e., fish coloration).

Long-term growth appears to be unhampered by fin clips, fin cauterization, or freeze
brand marks (Table 1-1). Fish have grown to a similar length over the 4-year period (291 mm,
TL; March 2003) regardless of the three marking techniques. The removal of a pelvic (fin clip;
289 mm, TL), or both pelvic fins (fin cauterized; 295 mm, TL) compared to freeze branding (288
mm, TL) does not appear to impact foraging success or energy allocation.

RECOMMENDATIONS: Short-term marking experiments reported previously suggest that
OTC-marks are preferable over fin clips, fin cauterization, freeze brand, and photonic dye.
However, this recommendation is based strictly on retention rates coupled with ability to mark
large numbers of fish quickly. Specific scientific and management related objectives should be
considered because OTC marked fish must be sacrificed for identification, which may not be
acceptable for all applications. For those scientific and management endeavors that wish to
reduce mortality, fin clip marks should be employed since they had comparable retention rates as
OTC.

Long-term marking results suggest that freeze brand marks are more distinguishable and
take less handling time to identify than fin clips and fin cauterized marks. This in conjunction
with better growth rates during the first year as well as the speed and low cost that freeze brands
afford suggest that this is the best method for long-term marking of 4" largemouth bass. The
seasonal variability to mark visibility for freeze branded fish is potentially problematic and will
need to be assessed in subsequent years. We will continue to sample these marked fish at 6-
month intervals and evaluate growth rates, long-term mark retention, and ease of readability to
determine if these results hold true as these largemouth bass continue to increase in size and age.
These long-term experiments will allow us to estimate loss rate for the most common physical
marks used on largemouth bass.



Job 101.2. Evaluating various production and stocking strategies for largemouth bass.

OBJECTIVE: To compare size specific survival and growth among different sizes of stocked
largemouth bass fingerlings and to compare various rearing techniques.

INTRODUCTION: Supplemental stocking of largemouth bass Micropterus salmoides is a
commonly used management tool for increasing population size. Benefits of supplemental
stocking include either increasing harvest rates and reproductive potential, or increasing the
number of predators to control an overabundant forage population. However, in order for these
positive benefits to occur, stocked fish must contribute to the natural population. Numerous
studies have examined either introductions of different genetic stocks of largemouth bass (Rieger
and Summerfelt 1978; Maceina et al. 1988; Mitchell et al. 1991; Gilliland 1992; Terre et al.
1993) or introductions of largemouth bass into ponds (Dillard and Novinger 1975; Modde 1980;
Stone and Modde 1982). Surprisingly, few studies have examined the factors influencing
success of supplemental stocking of largemouth bass. The few studies that have examined the
contribution of stocked largemouth bass to a natural population, examined only one (Lawson and
Davies 1979; Buynak and Mitchell 1999) or two lakes (Boxrucker 1986; Ryan et al. 1996).
Given that lakes are highly variable, examining stocking evaluations in only one or two lakes
limits our ability to make generalizations.

Factors influencing stocking success may include predation, prey availability, and abiotic
variables (Wahl et al. 1995). Predation from older age classes of largemouth bass may be
especially important given that they have been shown to prey heavily on other species of stocked
fish (Wahl and Stein 1989; Santucci and Wahl 1993) and are highly cannibalistic (Post et al.
1998). The availability of appropriate sized prey has also been shown to be important to
survival of stocked fish for other species (Fielder 1992; Stahl and Stein 1993). Finally, abiotic
factors such as water temperature at time of stocking may contribute to stocking success. High
water temperatures at time of stocking may increase stocking stress and subsequent mortality
(Clapp et al. 1997). Determining which of these factors is most important to stocking success
has important implications for deciding the appropriate locations and times to stock.

Previous stocking evaluations conducted in the Midwest have often examined species
that do not naturally reproduce in the recipient water body (e.g. muskellunge Esox masquinongy,
Szendrey and Wahl 1996; walleye Stizostedion vitreum, Santucci and Wahl 1993). Largemouth
bass, however, reproduce naturally in most Midwestern reservoirs, and therefore stocking occurs
in addition to an existing population. The number of natural fish produced during the year of
stocking may influence stocking success through competitive interactions for food and habitat.
Because native largemouth bass may out compete stocked largemouth bass, a large natural
yearclass may decrease stocking success in an individual lake. Conversely, stocked largemouth
bass may do well in years with high natural recruitment because they are potentially influenced
by the same variables.

In addition to stocking bass in appropriate lakes, the size of largemouth bass fingerlings
produced by Illinois hatcheries and timing of their release into recipient populations could greatly
affect the success of largemouth bass stocking efforts. New or rehabilitated lakes in Illinois are
often stocked with two inch fingerlings, however, most supplemental stockings occur in the fall



with four inch fingerlings. In addition, some recent programs in Illinois have used eight inch
fingerlings to stock populations in the spring. Advantages of the latter strategy include being
able to stock the same age fish after a weak year-class has been identified and potentially higher
survival of larger stocked fish. Disadvantages include increased cost and hatchery space required
to rear larger fish.

Differences in rearing method (e.g., intensive raceway versus extensive ponds) of the
largemouth bass fingerlings may also influence growth and survival. Largemouth bass raised on
commercial food pellets have been shown to grow better when stocked into rearing ponds than
those fed a diet of fathead minnows (Heam 1977). A number of Illinois reservoirs and
impoundments are stocked with largemouth bass raised extensively in nursery ponds. These and
other lakes can also be stocked using largemouth bass raised at state hatcheries. The relative
merits of these two rearing techniques have not yet been assessed.

PROCEDURES:
Contribution of Four Inch Fingerlings

We stocked 15 lakes in Illinois with advanced fingerling largemouth bass during August
of 1999 - 2002. Lakes varied in size from 11 to 250 ha and were located throughout Illinois,
ranging from the Wisconsin to the Kentucky border (Figure 2-1). Largemouth bass, bluegill
Lepomis machrochirus, crappie Pomoxis spp., and channel catfish Ictalurus punctatus were
abundant in all study lakes. Gizzard shad Dorosoma cepedianum were present in 11 of the lakes.
In addition, we chose lakes with varying levels of available prey and natural largemouth bass
recruitment to examine their effects on stocking success.

Bass fingerlings were produced either intensively or extensively at three hatcheries in
Illinois (Jake Wolf, Topeka; Little Grassy, Makanda; LaSalle, Marseilles). Intensively reared
fish were held inside the hatchery in 265 L concrete tanks and fed commercially produced pellets
until stocked. Extensively reared fish were held in ponds and fed on minnows until stocked.
Before leaving the hatchery, each fish was given a left pelvic fin clip for future identification.
Fish were transported from the hatchery in oxygenated hauling tanks to the recipient lakes.
Hauling time ranged between 0.5 to 3 hours. Fifty largemouth bass were measured (nearest mm)
and weighed (nearest g) before stocking on each date. Fish were released nearshore at a single
location at each lake. Attempts were made to stock largemouth bass at a rate of 60 fish per
hectare, however rates varied by individual lake due to varying success of rearing ponds and
hatchery production.

We estimated initial stocking mortality on a subset of four lakes by placing 30 fish into
each of three floating mesh cages. Largemouth bass were taken directly from the hatchery truck
and placed immediately into the cages. Cages were 3 m deep and 1 m in diameter and were
placed in at least 3 m of water. The cages were removed after 24 or 48 hours and the number of
live and dead fish were counted.

Growth and survival of stocked largemouth bass was determined in the fall and spring by
sampling during the day with a 3-phase AC electrofishing boat. Three shoreline transects on
each lake were shocked for 0.5 h each on each sampling date and all largemouth bass were
collected, measured, weighed, and examined for clips. Catch per unit of effort (CPUE) was
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calculated as the number of stocked fish collected per hour and was used as a relative measure of
survival across lakes.

Stocking Size
We evaluated the success of four size groups of stocked largemouth bass in two lakes in

2002 (Homer and Charleston). Largemouth bass were stocked as small fingerlings (50 mm) in
July, medium fingerlings (100 mm) in August, large fingerlings (150 mm) in September and
advanced fingerlings (200 mm) in spring 2003 (Table 2-1). Each size group was given a
distinctive mark for identification during subsequent sampling. Small fingerlings were immersed
in oxytetracycline (OTC), while larger fingerlings were marked with distinctive fin clips.
Following stocking, we evaluated the importance of stocking stress, physicochemical properties,
predation, and prey availability, on the growth and survival of the different size groups of stocked
largemouth bass.

The effects of rearing techniques on growth and survival of stocked largemouth bass were
evaluated in lakes Jacksonville, Shelbyville and Walton Park during fall 2002. Study lakes were
stocked both by Little Grassy Fish Hatchery (pond production) and Jake Wolf Fish Hatchery
(raceway production). Different clips were given at each hatchery for future identification.
Electrofishing was conducted during fall and spring to assess the contribution of largemouth bass
from rearing ponds and raceways. All bass were examined for clips, weighed, and measured.

FINDINGS:
Survival of stocked largemouth bass was highly variable across lakes in 2002. Catch per

unit effort ranged from 0 to 21.7 stocked fish per hour of electrofishing in the fall. Many factors
could influence survival of stocked largemouth bass. We attempted to examine some of these
factors by examining size specific stocking success.

We examined growth, survival and mortality of different sizes of largemouth bass. Two
inch bass were stocked at a smaller size than natural bass in the study lakes and remained smaller
for the duration of the time they remained in electrofishing samples (Figure 2-2). Four inch bass
were stocked at a similar size as unclipped (natural) bass and continued to grow at a similar rate.
Six inch bass were stocked at a larger size than attained by both the 2 and 4 inch bass as well as
natural bass in the lakes (Figure 2-2). There were also size differences going into the first winter,
with 6-inch stocked fish larger than those stocked as 4-inch fish, followed by the 2-inch size of
stocked fish. This suggests there is a potential for size specific mortality over winter. The
following spring however, size differences no longer existed between all of the size groups and
natural bass. Eight inch bass were stocked in the spring at a larger size than all other bass at that
time but by the summer the size difference no longer existed. All sizes of stocked bass as well as
the natural bass were of similar length going into the second winter. Although there are initial
size differences at stocking, lags in growth occur shortly after, perhaps as the bass go from
foraging in hatchery conditions to the wild. There were little differences in growth after the first
year so we must examine other factors that may influence stocking success.

Survival also differed among the different size groups of stocked fish. Six inch fish were
present in the highest abundance in the first fall after stocking (Figure 2-3), probably because
little time had passed since they were stocked. As a result, 6 inch bass were in higher abundance



going into the first winter than 2 and 4-inch size groups and unclipped bass. Over winter survival
was extremely low for both 2 and 6 inch bass and somewhat higher for the 4-inch size group. In
the spring very few 2 inch fish were recaptured in electrofishing samples and 6 inch bass were
observed at similar catch per unit effort as 4 inch fish. Overwinter survival was high however for
unclipped fish and in the spring they are observed in a much higher relative abundance. Eight
inch fish were stocked in the spring and as a result were recaptured during spring electrofishing
samples at a higher abundance than other sizes of stocked fish (Table 2-2). However, a short
time after stocking, CPUE during the summer months for 8 inch bass had declined to a similar
level as 4 and 6 inch bass. Also, no 2 inch fish were recaptured at any of the lakes after the first
spring following stocking. Overall survival was low for all stocking sizes and a majority of fish
in electrofishing samples of older ages were naturally produced fish. This pattern is consistent
over the following seasons and CPUE for the 4, 6, and 8 inch fish remained low at around 2 -3
bass per hour of electrofishing. In the future, population estimates will be calculated to determine
the total number of each size that we observe in the adult population.

Predation on stocked bass could reduce overall survival if levels are high. Smaller bass
may be more vulnerable to predation and may have a higher potential mortality. Predation on
stocked largemouth bass was primarily by adult largemouth bass populations present in the study
lakes. Northern pike, channel catfish, and white crappie also preyed on stocked largemouth bass,
but in very limited amounts due to the low abundance of these fish in the study lakes. As a
result, largemouth bass were examined as the main predators of stocked bass. Four inch
advanced fingerlings experienced the highest level of bass predation (8.8% of potential bass
predators with stocked bass in their diet) of all sizes of stocked bass. Predation was generally
low, however, across all sizes of stocked bass (Figure 2-4). Because low levels of mortality due
to predation were observed, other factors were examined to explain the low overall survival of
stocked bass. Lake temperature at the time of stocking may play a role in determining observed
stocking mortality. All mortality observed in mortality cages took place at temperatures over 23 o
C. (Figure 2-5). No stocking mortality was observed for 8 inch bass throughout the duration of
the study. All 8 inch bass stockings took place in the spring when water temperatures were cooler
and had not yet reached 23 ° C. Stocking mortality was generally low for all sizes of stocked bass
and was never observed to be higher than 10%.

Rearing techniques:
Survival of intensively versus extensively reared largemouth bass differed across lakes.

In Jacksonville, intensively reared fish had a higher CPUE than extensively reared largemouth
bass in fall and spring electrofishing samples (Table 2-3). Walton Park also had a greater CPUE
of intensively reared bass in the fall but no intensive or extensive bass were recaptured in the
spring electrofishing samples. Lake Shelbyville, however, had higher CPUE of extensively
reared bass in the spring and fall.

RECOMMENDATIONS:
Survival rates of the different sizes of stocked fish were initially different, but were

similar after the second spring following stocking. Similarly, there were some differences in
sizes of bass through the first fall and winter. After the first spring, no size difference remained



between the different sizes of stocked fish. In particular, a lag in growth occurred for the 6 and 8
inch fish after stocking and despite being larger initially, they were soon similar in size to the
natural population. This may be due to an acclamation period where hatchery bass adjust to
feeding on natural prey resources. The study lakes have primarily bluegill forage and it may take
some time for minnow fed hatchery bass to become efficient at feeding on different prey fish.
Feeding experiments and diet analysis will be completed in future segments in order to examine
the factors that cause the observed growth lag. Mortality due to temperature stress and predation
was low for all sizes of stocked fish. Four inch fish were found in higher numbers in predator
diets and may be more vulnerable to bass predation than other sizes. In order to determine how
many fish are lost to predation, population estimates should be analyzed and diet data used in
order to estimate the total number of stocked bass that are consumed after stocking. Temperature
related mortality was also low across all sizes of stocked fish in all study lakes. All observed
mortality in cages occurred at a temperature higher than 23 ° C. Stocking at times of year when
temperatures are cooler or stocking a size of bass that is available during cooler temperatures
may reduce stocking mortality and increase the survival of stocked bass. Because there is little
difference in size, abundance and stocking mortality for different sized bass, there is no clear
preferred size to stock. Before a recommendation can be made about stocking size, hatchery
costs for producing the fish must be considered. In future segments, we will examine cost-benefit
relations to recommend a particular size of bass to stock in Illinois lakes.

Results from comparisons between intensive and extensive stocked fish were not
consistent across lakes, suggesting the need for further exploration of the effectiveness of the two
techniques. Comparisons of these two techniques will be conducted again in Walton Park,
Shelbyville, and Jacksonville in 2003. Attempts will also be made to supplement shocking
efforts in order to increase sample size and recapture a larger number of stocked bass to better
represent survival of fish from the two rearing techniques.
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Job 101.3. Assessing the long-term contribution of stocked fish to largemouth bass populations.

OBJECTIVE: To evaluate the long-term contribution of stocked largemouth bass to the
numbers of reproducing and harvestable adults.

INTRODUCTION: Many species of fish, including both largemouth and smallmouth bass, are
cultured in hatcheries for release into lakes and streams in an effort to establish new or
supplement existing populations. Although it is assumed that subsequent increases in the
standing stock are the direct result of those stocking efforts, little data exist to either refute or
support that idea. Furthermore, if the stocking effort does indeed increase the standing stock of
adult bass, it remains unclear how that increase could or would impact the level of reproduction
and recruitment in subsequent generations.

Both largemouth and smallmouth bass likely home back to natal areas to spawn (Philipp,
and Ridgway, personal communication), therefore it is possible that introduced bass may not
compete successfully with resident bass for optimal spawning sites or may simply make poor
choices in selecting nesting sites on their own. Under either of these scenarios, the level of
reproductive success of stocked bass would be lower than that of resident bass. Preliminary
results of largemouth bass stocked into Clinton Lake during 1984 (Philipp and Pallo,
unpublished results) indicated that survival of the stocked fish to at least age 4 was good
(approximately 8-10% of that year class), however those individuals made no discemable
contribution to any later year classes. To justify continued stocking efforts for largemouth bass
in Illinois, it is important to determine the actual contribution that stocked fish make to bass
populations. The objective of this job is to compare the survival and reproductive success of
stocked bass to resident bass. In this way, we can assess the costs and benefits of the bass
stocking program in a long-term timeframe.

PROCEDURES: Largemouth bass to be stocked in each selected study lake were those
produced at the Little Grassy Hatchery bred specifically to be fixed for the MDH-B2B2
genotype as a genetic tag. These fish were stocked directly into a target lake, while others were
first introduced into rearing ponds near the target lake before being stocked. Six study lakes
were stocked and sampled; Lake Shelbyville and Forbes Lake beginning in 1998, and these in
addition to Walton Park, Murphysboro, Mcleansboro, and Sam Parr in 1999-2002.

Prior to actual stocking, samples of fish from the hatchery rearing ponds were sampled,
and protein electrophoretic analysis (Philipp et al., 1979) was used to determine if those fish had
the MDH B2B2 genotype. Also prior to stocking, a sample of naturally produced largemouth
bass were collected from each study lake and analyzed to determine the inherent background
frequency of the MDH-B locus. Beginning in 2001 and 2002, YOY from the six lakes were
sampled to determine if the frequency of the MDH B2 allele has increased through reproduction
of the stocked fish. The fish stocked into these lakes should be beginning to become sexually
mature and should begin to reproduce.

FINDINGS: Largemouth bass fingerlings stocked into each lake have been analyzed to
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determine if the fingerlings have all had the MDH B2B2 genotype. All samples analyzed have
been 100% MDH B2B2 genotype with the exception of fingerlings stocked into Lake
Shelbyville in the summer of 2001. Five of the fifty fingerlings that were analyzed had the
MDH B 1B2 genotype and not the MDH B2B2 genotype; therefore a correction factor will have
to be used to analyze future samples from Lake Shelbyville.

Background frequencies of LMB from four of the six study lakes have less than 20% of
the individuals with the MDH B2B2 genotype. The exceptions were Forbes and McCleansboro
(Table 3-1). The higher frequency of the MDH B2 allele from McCleansboro is potentially
problematic and may make this lake difficult to use in determining the contribution of stocked
fish to recruitment.

Largemouth bass stocked into Forbes and Lake Shelbyville in the summer of 1998 and
Mcleansboro, Murphysboro, Sam Parr, and Walton Park in 1999 should be sexually mature and
reproducing. We have collected YOY from these lakes to determine if the frequency of the
MDH B allele has changed as a result of the stocked fish spawning and passing on the MDH B2
allele (Table 3-1). To date, only young of the year from Lake Shelbyville have been analyzed
and are not adequate to make recommendations.

RECOMMENDATIONS: Genetic frequencies from YOY that have been collected from all six
study lakes and those that will be collected in subsequent years will need to be analyzed to
determine if the stocked fish are contributing to the overall reproductive success within each
lake. The prediction is if the stocked fish are contributing we should observe an increase in the
MDH B2 allele as more stocked fish mature and contribute to the reproductive success.
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Job 101.4. Evaluating factors that influence largemouth bass recruitment in Illinois.

OBJECTIVE: To determine important mechanisms affecting largemouth bass recruitment in
Illinois impoundments and develop recruitment indices for management.

INTRODUCTION: Largemouth bass Micropterus salmoides recruitment in Illinois reservoirs is
variable among systems and years (Parkos et al. 2002). Despite a large number of studies on the
population dynamics of largemouth bass, the mechanisms responsible for largemouth bass
recruitment variability are still largely unknown (Jackson and Noble 2000). The current lack of
consensus on general mechanisms is likely to be a result of extensive region- and system-specific
variation in the factors influencing largemouth bass recruitment (Garvey et al. 2002). Most
studies of largemouth bass dynamics have been performed on single systems in lower latitude
regions, therefore, there is a current need for studies of recruitment mechanisms across multiple
systems in other portions of the largemouth bass range (Parkos and Wahl 2002). Our current
research addresses these needs by simultaneously evaluating the importance of a range of
environmental factors over multiple years to largemouth bass recruitment in reservoir systems that
vary in important abiotic and biotic components (see Table 4-1).

Fish recruitment in general is driven by variation in either reproductive output (Ricker
1954) or mortality rates during the earliest life stages (Houde 1987). Appropriate habitat and the
composition and size of the adult spawning stock are usually considered to be the key factors
influencing reproductive output (Rutherford 2002). For nesting fishes, environmental fluctuations
and high nest predation rates can also potentially limit reproductive output (Parkos and Wahl
2002). Mortality rate of young of the year (YOY) fishes is typically size-dependent, therefore,
variables affecting growth are also important to variation in survival and, ultimately, recruitment
(Miller et al. 1988). For piscivorous species, the timing of the behavioral switch from preying on
invertebrates to a diet of primarily fish is crucial for rapid growth during the juvenile life stages
(Mittelbach and Persson 1998). Important causes of YOY mortality are predation, starvation,
and extreme abiotic conditions. Recruitment variation can be the result of either episodic
mortality at sensitive life stages or small changes in daily mortality rates (Houde 1989). Different
sources of mortality will be important during different life stages, therefore, determining the
critical time frame for YOY survival will help to focus management on those mechanisms most
influential to recruitment.

Largemouth bass dynamics appear to be driven by either events during nesting or juvenile
mortality during the first summer and winter (Parkos and Wahl 2002). Potential factors
influencing nest success are fluctuating abiotic conditions (e.g., water level and temperature) and
nest predation. Juvenile mortality is typically the result of either predation during the first
growing season or predation and starvation during the first winter. Vulnerability to predators is
often ameliorated by rapid growth and the availability of cover (Miranda and Hubbard 1994).
Furthermore, cannibalism is an important form of predation pressure on largemouth bass,
therefore, any early growth advantage can be crucial for individual survival (Post et al. 1998;
Parkos and Wahl 2002). An early switch to piscivory by largemouth bass YOY is often linked to
increased growth and condition, potentially resulting in increased foraging efficiency, lower
vulnerability to predators, and increased chance of overwinter survival (Olson 1996; Ludsin and
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DeVries 1997). The availability of appropriately sized prey is likely to be critical for early
piscivory, growth, and survival through the first summer and winter. Two of the most important
species of fish prey for largemouth bass are bluegill Lepomis macrochirus and gizzard shad
Dorosoma cepedianum, and the vulnerability of these two species is likely to be contingent upon
the temporal range of the protracted spawning events of bluegill and factors influencing gizzard
shad growth rates (Garvey et al. 2002). Overwinter survival appears to be strongly size-
dependent for largemouth bass YOY and influenced by factors such as food availability,
predation, and individual condition (Ludsin and DeVries 1997; Fullerton et al. 2000). However,
there is currently no evidence that overwinter mortality is important to largemouth bass
recruitment in Illinois (Fuhr et al. 2002).

Identification of the mechanisms causing variation in largemouth bass recruitment will help
to prioritize management options for the maintenance and enhancement of Illinois largemouth
bass populations. Management actions, such as protection of nesting adults or regulation of
water level, could potentially enhance reproductive output (Miranda et al. 1984; Suski et al.
2002), while juvenile survival may be enhanced by increasing the availability of cover and prey
(Durocher et al. 1984). Furthermore, identification of reservoirs with consistently high or low
recruitment and determination of reliable recruitment indices will help to prioritize largemouth
bass stocking. Largemouth bass are both an important game species and component of reservoir
food webs, therefore, many benefits can be gained by an understanding of largemouth bass
recruitment mechanisms. Our current project will greatly aid in this goal by providing a long-
term, multiple system data set on bass population dynamics and relevant ecological factors.

PROCEDURES: We sampled 12 reservoirs in 2002 to assess the influence of various factors on
largemouth bass recruitment. Eight reservoirs were sampled every two weeks, while the
remaining four impoundments were sampled monthly from May to October. The lakes chosen for
this study varied in surface area, latitude, and trophic state. In addition, we chose lakes with
poor, medium, and good largemouth bass recruitment.

Largemouth bass recruitment was assessed by shoreline seining and electrofishing.
Seining was conducted using a 9.2-m bag seine pulled along the shoreline at fixed transects. All
fish were counted and up to 50 fish were measured for each species. In five lakes, we saved thirty
young of year (YOY) largemouth bass from each sampling date for diet and age analyses.
Electrofishing was used to collect YOY largemouth bass in the fall after they were no longer
vulnerable to the seine. Based on otolith-derived ages, all largemouth bass from fall to the
following spring that were less than 150 mm were considered to belong to the same year class.
This assumption allowed us to estimate the number of YOY surviving their first winter and
recruiting to age-1. In the spring of 2002, we used weekly electrofishing to determine the
abundance of spawning largemouth bass in order to estimate the timing of peak spawning activity
in four lakes (Lincoln Trail, Paradise, Ridge, and Woods). Forbes Lake was also sampled
biweekly to determine the timing of bass spawning. Each captured fish was sexed and checked
for reproductive condition (immature, running, spent).

Prey resources were estimated by sampling benthic invertebrates, zooplankton, larval fish,
and small forage fish. Benthic invertebrates were sampled at six sites in each lake during June and
August by using a modified stovepipe sampler. The benthos was sieved through a 250-rm sieve
bucket and preserved in ETOH and rose bengal. Invertebrates were sorted, identified, and
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measured at the lab. Zooplankton was collected at four offshore and four inshore sites with a 0.5-
m diameter zooplankton net with 64-im mesh. Samples were taken either from the thermocline
or from the bottom (if the lake was not stratified) to the surface. Zooplankton samples were
preserved in a 4% Lugols solution and returned to the lab for processing. Zooplankton
subsamples were counted until 200 organisms from two taxonomic groups were counted.
Measurements were taken on 30 individuals of each species from two of the inshore and two of
the offshore sites. Larval fish were sampled at six sites on each lake using an 0.5-m diameter
larval push net with 500-im mesh. The larval net was mounted to the front of the boat and
pushed for 5 minutes along the shoreline and 5 minutes offshore. Larval fish were preserved in
ETOH for later sorting and identification. Forage fish were collected by shoreline seining as
described for the YOY largemouth bass.

Physical and chemical variables important to largemouth bass recruitment were sampled in
each of the study lakes. Aquatic vegetation was identified and mapped in each lake to estimate
percent vegetative cover in June and August. Water level was monitored throughout the spring
and summer. Water temperature and dissolved oxygen was measured at 1-m intervals using a
YSI oxygen meter. In addition, thermographs were placed into four lakes and recorded water
temperature at 2 hour intervals throughout the year. Water samples for chlorophyll-a and
phosphorous were collected using an integrated tube sampler lowered to twice the secchi depth.
Chlorophyll was measured using a flourometer, while total phosphorous was measured with a
spectrophotometer.

FINDINGS: Young of the year (YOY) largemouth bass densities were highly variable across
study reservoirs during 2002 (Figure 4-1). YOY largemouth bass recruited to the seines in May
(Lake of the Woods, Lincoln Trail, Walnut Point; avg TL = 13 mm), June (Clinton, Dolan,
Forbes, Ridge; avg TL = 28 mm), and July (Paradise, Pierce, Sterling; avg TL = 46 mm). Peak
YOY largemouth bass densities ranged from 0.006 to 3.74 fish per square meter. Differences in
abundance were smaller over time.due to larger declines from July to August in reservoirs with
higher YOY densities. July abundance was the earliest density of YOY largemouth bass
significantly correlated with fall YOY captured by seines (Spearman; r, = 0.67; P = 0.02). When
fall YOY estimates were based on electrofishing catch per unit effort, the highest correlation with
fall abundance was August density (Spearman; r, = 0.58; P = 0.08). Based on analysis of five
study lakes (Lake of the Woods, Lincoln Trail, Sterling, Walnut, Woods) that ranged from 0-
5357 square feet of vegetated area in the spring, peak abundance of YOY largemouth bass was
positively correlated with spring aquatic vegetation (Pearson; r = 0.82; P = 0.09). Abundance of
largemouth bass YOY surviving their first winter was also highly variable across reservoirs
(Figure 4-2). Abundance of YOY recruited to age-1 was significantly correlated with the
electrofishing estimate of fall abundance of YOY (Spearman; r, = 0.81; P = 0.005). The largest
correlation between largemouth bass recruited to age-1 and any spring or summer abundance was
June YOY density (Pearson; r = 0.57; P = 0.07). Based on the above patterns, year class strength
of the 2002 cohorts of largemouth bass did not appear to be set until fall (late September to early
October).

Densities of YOY largemouth bass were primarily related to total phosphorus and the
abundance of important prey resources. Nutrient concentrations and important components of
the aquatic community varied in abundance among the study reservoirs (Table 4-1; Figure 4-3).
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August YOY were negatively related to concentrations of total phosphorus (Spearman; r, = -0.65;
P = 0.02) and positively correlated with benthic macroinvertebrate density (Spearman; r, = 0.77; P
= 0.01). Total phosphorus concentrations varied from 43 to 477 gg/L and were higher in
reservoirs with abundant gizzard shad (lakes with vs. without gizzard shad; t = -2.37; P = 0.04).
YOY largemouth bass densities throughout the growing season were most consistently correlated
with juvenile bluegill (15-60 mm TL) abundance (Table 4-2). Juvenile bluegill densities were
positively correlated with the abundance of zooplankton (Spearman; r, = 0.64; P = 0.05) and
benthic macroinvertebrates (Spearman; r, = 0.79; P = 0.006). The abundance of YOY recruited
to age-1 was not significantly correlated with the abundance of any prey types, but the strongest
correlation was with density of juvenile bluegill in August (Spearman; r, = 0.54; P = 0.09).

The 12 study reservoirs varied in YOY largemouth bass size structure (Figure 4-4). YOY
largemouth bass total lengths at the end of the growing season ranged from 60 to 113 mm (Figure
4-5). August total length of YOY largemouth bass was positively correlated with chlorophyll a
concentrations in June (Pearson; r = 0.71; P = 0.02) and July (Pearson; r = 0.68; P = 0.03),
however, fall size structure was more weakly correlated with chlorophyll a (Spearman; r, = 0.61;
P = 0.06). Fall size structure of YOY was not significantly correlated with recruitment of YOY
to age-1 (Spearman; r, = 0.32; P = 0.36). Average total length in fall seine samples from
combined 2001 and 2002 year classes was larger in reservoirs with gizzard shad than in those
without (t = -2.55; P = 0.02); however, the effect of gizzard shad presence was marginally
insignificant on fall of 2002 size structure as estimated by electrofishing (t = -1.95; P = 0.09).

Across years, recruitment to age-1 has varied both within and among reservoirs (Table 4-
3). For some reservoirs, relatively strong year classes are followed by low recruitment from the
next year class (Dolan, Pierce, Ridge, Walnut Point). In Pierce Lake, some of the variation in
recruitment may be correlated with spring water temperatures (Pearson; r = 0.84; P = 0.16) and
discharge (Pearson; r = -0.87; P = 0.32). Alternatively, high abundance of yearling largemouth
bass may represent higher than usual predation pressure on YOY. Other lakes have exhibited a
decline in recruitment from 1999 to 2002 year classes (Clinton, Forbes, Lincoln Trail, Woods),
with only Lake Shelbyville showing an increase in recruitment. Survival to age-1 has been
consistently low in the remaining study lakes (Lake of the Woods, Paradise, Sterling).

In spring of 2003, peak proportions of largemouth bass in reproductive condition were
found from late April to early May (Figure 4-6). Lincoln Trail had the earliest peak at April 2 3r,
while Paradise and Woods exhibited the latest peak at May 9' . Similar to previous years, Lincoln
Trail appeared to have two peaks in inshore abundance of reproductive adults.

RECOMMENDATIONS: The timing of the establishment of largemouth bass year class
strength has been very variable across the 2000-2002 year classes. The 2002 year class did not
appear to be established until fall, the 2001 year class was set by July, and recruitment strength of
the 2000 cohort may not have been set until spring of 2001. Various factors affecting
reproductive output, first summer survival, and overwinter mortality may be responsible for this
variation in timing. Factors potentially influencing reproductive output include vegetation
abundance, water level, and water temperature. Future reports shall expand the testing of the
importance of these factors by increasing sample size to include more lakes and years.
Furthermore, additional data on peak abundance of reproductive adults will enable us to focus our
correlations relative to reproductive output to the days when largemouth bass are most likely
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nesting. Recruitment strength of the 2002 year class appeared to be set by first summer mortality
and to be strongly correlated to prey abundance, especially juvenile bluegill. Currently, we are
quantifying YOY largemouth bass diets to test the hypothesis that an earlier and more persistent
switch to piscivory is correlated with higher recruitment. Furthermore, we shall use the results of
previous feeding experiments to aid in identifying the abundance of those fish that can be
considered vulnerable to YOY largemouth bass predation in order to test if variation in the
availability of vulnerable fish prey is correlated to largemouth bass year class strength. Many
previous studies have considered mortality during the first winter to be primarily responsible for
setting year class strength of largemouth bass. We have found little evidence of year class
strength being set by size-specific mortality over the first winter, but at least one cohort may in
fact have followed this pattern (2000 year class). To test the influence of first winter mortality on
recruitment, we will examine the effect of winter severity, fall YOY size structure, and fall prey
availability on overwinter survival.

The twelve study reservoirs have exhibited highly variable recruitment with patterns of
either consistently low, declining, rising, or variable recruitment from the 1999-2002 year classes.
Factors such as poor conditions for reproduction or low food availability may be responsible for
consistently small year class strength. In lakes where each strong year class is followed by low
recruitment, a high abundance of yearling largemouth bass may depress recruitment through
intense predation on YOY largemouth bass. In lakes, such as Lake of the Woods, where YOY
are extremely abundant, but recruitment is generally low, intraspecific competition or high
predation pressure may limit recruitment. Future reports shall explore the potential effect of
predator abundance and cannibalism on year class strength.

In many of our study lakes, gizzard shad represent the dominant biomass of the fish
community, and therefore, this species may have a strong influence on largemouth bass
recruitment. In 2002, gizzard shad were associated with higher total phosphorus concentrations
and lower abundance of YOY largemouth bass. However, YOY largemouth bass in gizzard shad
lakes were also generally larger and could have positive effects on recruitment. To this point, we
have not found any differences in recruitment between lakes with or without gizzard shad, but the
differences in YOY size structure may nonetheless be quite important. We will detail whether or
not gizzard shad are an important component of YOY largemouth bass diets or if gizzard shad
increase largemouth bass sizes through a more indirect mechanism.

The significant influence of multiple variables on largemouth bass recruitment points out
the relatively complex mechanisms responsible for recruitment variation in these fish. Future
reports shall incorporate multivariate statistical tests in order to aid in separating out the
important components of largemouth bass recruitment. Furthermore, as values from more year
classes are added to our data set, we will be able to determine if specific factors consistently
influence recruitment across years or if the pattern is more variable. Further analysis on the
correlation among reservoirs in year class strength will help us to identify those reservoirs in
which relative year class strength varies simultaneously, perhaps due to similar mechanisms
governing recruitment variation. Better understanding of the factors that control largemouth bass
recruitment will enable us to make recommendations for effective management actions to enhance
this valuable fishery.
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Job 101.5 Assessing the impact of angling on bass reproductive success, recruitment, and
population size structure.

OBJECTIVE: To assess the level of angling for nesting bass in Illinois and to determine its

impact on reproductive success and annual recruitment, as well as to determine how much long
term exploitation of Illinois bass has changed the size structure of those populations.

INTRODUCTION: Identifying the effects of capture and handling stress on largemouth bass
reproduction is important given the continued growth in popularity of angling, including the
common practice of catch and release (Quinn 1996) and competitive angling events (Gustaveson
et al., 1991; Schramm et al. 1991a,b; Wilde et al. 1998). However, the ultimate consequences of
angling stress in terms of overall reproductive success in largemouth bass have received little
attention. Removal of spawning males by angling in the spring has unknown effects on
largemouth bass recruitment. In the spring, male largemouth bass (Micropterus salmoides) and
smallmouth bass (Micropterus dolomieu) build solitary, highly visible saucer-shaped nests in the
substrate in order to court and spawn with females (Kramer and Smith 1962; Pflieger 1966;
Coble 1975). Once spawning is completed, females leave the nesting area and the males alone
remain to provide all parental care for the developing offspring, a period that may last four or
more weeks (Ridgway 1988). While male bass are providing parental care for their broods, they
are extremely aggressive (Ridgway 1988) and, therefore, highly vulnerable to many angling
tactics (Neves 1975; Kieffer et al. 1995). Even though this vulnerability has never been assessed
accurately, many fisheries management agencies have invoked closed fishing periods, catch-and-
release regulations, and various length and harvest limits in different combinations in an attempt
to limit harvest of male bass during the spawning season (see Schramm et al. 1995). This
strategy of maximizing reproductive success by protecting the successful spawners from angling
harvest and even disturbance operates under the assumption that there is some positive
relationship between reproductive success and recruitment. The standard dogma in fisheries has
been that there is no relationship between standing adult stock and recruitment. Although much
of the data for those conclusions has been collected for marine species, that belief has been
generalized to freshwater species as well, even those species for which there is extended parental
care (e.g., largemouth and smallmouth bass). The error in logic has been compounded further
by extending the dogma to include the "lack of relationship" to recruitment and reproductive
success. That extension clearly makes little sense for species, such as the basses, which have
been shown to have high levels of variability in the percentage of adults that choose to spawn in
any given year. In addition, because there is also a substantial and variable level of natural
brood abandonment, the numbers of successful broods would not at all be expected to be related
to the numbers of adults. One objective of this job is to assess how well reproductive success
correlates with recruitment, at least through the establishment of YOY year class strength.

Male largemouth bass and smallmouth bass experience reduced levels of food
consumption while providing parental care (Kramer and Smith 1962; Pflieger 1966; Coble
1975), therefore, this period in the reproductive cycle is characterized by a continual decrease in
energy storage and somatic growth. The quality of post swim-up parental care provided is
influenced by the energy reserves of the nesting male (Ridgway and Friesenl992). As a result,

any energetically costly activity, such as the type of exhaustive exercise experienced during
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angling, could result in a decreased ability or willingness of that male to provide continued
parental care (Kieffer et al. 1995) and thus, negatively impact offspring survival. In fact, Philipp
et al. (1997) have confirmed that preseason angling of nesting bass, even on a catch-and-release
basis, results in increased brood predation and male abandonment rates. It is likely, therefore,
that substantial levels of catch-and-release, much less catch-and-harvest, angling for nesting bass
would have negative effects on the production of black bass fry at the population level.
Moreover, because female black bass choose to spawn preferentially with the largest males
(Wiegmann et al. 1992), the largest males have the largest broods. Furthermore, because
parental investment decision rules dictate that those males with the largest broods will defend
those broods most aggressively, we would expect that the individual nesting males that are most
at risk in a catch-and-release (even full harvest) scenario are the largest ones, i.e., those that have
enjoyed the most mating success. This is indeed what we have observed; angling efforts
disproportionately target that portion of the male population that is most productive and,
therefore, most important with respect to reproductive success.

Despite the increase in prevalence of catch-and-release angling tournaments in North
America, there is still very little research on the effects of catch-and-release angling tournaments
on fish. By identifying and understanding the factors associated with hooking and handling
injury and mortality (Mouneke and Childress 1994; Wilde 1998), fisheries managers, outdoor
media, competitive angling groups, and conservation organizations have been able to increase
fish survival following catch-and-release. One component of fishing tournaments that has been
identified as a possible opportunity for improvement is during the period of live-well retention
(Cooke et al. 2002). In this segment, we document the behavioral and physiological responses
of fish to live-well retention to develop strategies that facilitate recovery.

PROCEDURES: Snorkel surveys were used to assess the extent of bass spawning activity,
nesting site selection by spawning males, and the effects of angling and electrofishing on nesting
success in Lincoln Trail Lake. Twelve sites are monitored each spring. We gave each nest a
tag and recorded egg score (1-5), water depth of the nest location, and the life stage of the eggs
or fry. Habitat within a 4m x 4m area around the nest was mapped, making note of substrate,
cover, and potential nest predators. We made visual estimates of the total length of the males
guarding the nests and noted the presence of any hook wounds. We also chased a subset of
males off the nest for a 5-minute period to observe nest predation while the male was absent.
Number of predators, their size and time spent feeding in the nest was recorded. The number of
times the male had to be chased from the nest in the five-minute observation period was
recorded as a measure of aggressiveness.

We assessed the effects of catch-and-release and tournament angling on nest guarding by
parental males. We hook and line angled nests at three of the sites in 2000 and recorded the
nests from which we were able to remove the males. Males were released after two minutes of
air exposure to simulate a catch-and-release angling event. The next day, we swam the angled
sites and recorded whether or not the nest was abandoned. In 2001 and 2003, we angled nests
and simulated tournament conditions by holding the fish for two hours and releasing the fish at
the boat ramp. We swam the sites the following day and recorded nest abandonment by the
males. In 2003, we also assessed the potential effects of electrofishing on nesting success by
nest-guarding male largemouth bass. We snorkel surveyed nests In Lincoln Trail Lake before
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assigning each nest either a control or electrofishing treatment. Control nests were not
manipulated while electrofished nests were approached perpendicular to the bank with the AC
electrofishing boat, stunned, and removed from the nest. Total lengths were taken, upper caudal
clips given, and fish were held for 30 minutes before being released 100 meters from the nest
site. We then snorkel surveyed each nest site the following day to note abandonment rates.

Throughout the spawn and post-spawn period, we monitored bass tournaments at Mill
Creek, Mattoon, Forbes, and Shelbyville Lakes to determine if nesting males were more at risk
from anglers than either non-nesting males or females. The total length, sex, and reproductive
condition of each fish brought to weigh-in was recorded. In 2003 we began interviewing anglers
at weigh-ins to determine if anglers were culling fish and influencing sex ratios observed at the
conclusion of the tournaments. From our data, we noted that females were larger on average
than males; therefore, sex ratios may be skewed towards larger females as anglers culled out
smaller males. If this were true, male capture rates may have been substantially more than that
of females.

We examined the effects of simulated tournaments (i.e., exhaustive exercise, air
exposure, culling, live-well conditions, and weigh-in-procedures) on largemouth bass
reproductive processes prior to spawning. Adult largemouth bass were held for two months
prior to spawning. .Fish were sorted into a control and simulated tournament group (treatment)
based upon weight, total length (TL), and gender. Fish were acclimated prior tobeing subjected
to a suite of stressors (i.e., exhaustive exercise, air exposure, culling, live-well conditions and
weigh-in procedures) designed to simulate tournament-angling practices. Fish were first chased
manually for 90 s., exposed to air for 60 s, and introduced to live-wells and held at a density of
five fish per live-well for 6 h. At the termination of live-well retention, fish were held in a
water-filled bag for 120 s to simulate the movement of fish from the boat to the weigh-in site.
The contents of the bag were then emptied into a laundry basket, to simulate weigh-in, prior to
being introduced into eight 0.04 ha ponds (N = 5 males, N = 5 females per pond). Four of the
eight ponds were stocked with stressed largemouth bass randomly selected from those fish that
had experienced stress; the remaining four ponds were stocked with non-stressed control fish and
allowed to spawn. Ponds were drained and all adult and age-0 largemouth bass were removed,
enumerated, weighed and measured. Otoliths from age-0 largemouth bass produced from adults
in stressed (N = 20 per pond) and non-stressed (N = 20 per pond) treatments were prepared and
the number of daily growth rings was counted. We compared the number, length, weight, and
age of offspring produced from stressed adults with those produced from controls.

We conducted a series of experiments to assess the real-time physiological and
behavioral responses of largemouth bass to live-well retention. Techniques used in this study
incorporated assessments of physiological and energetic responses using cardiac output, blood
biochemistry, and behavioral responses using videography. Methodological details on each of
these techniques are reported elsewhere and blood analyses were conducted in collaboration with
Dr. Bruce Tufts and Cory Suski from Queen's University.

FINDINGS: Timing of spawning was summarized for each year in Lincoln Trail (Figure 5-1).
In 1999 the spawn appeared to be bimodal, while fish spawning in 2000, 2001, and 2003 was
unimodal. Spawning duration is similar across years, but appears different because of limited
sampling trips in some years. Initiation of spawning was similar across years, except for 2003
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when early warm weather likely caused spawning to commence earlier than previous years. Bass
began spawning in Lincoln Trail on approximately April 22. A total of 44 nests were found in
the six surveyed sections. These numbers dropped on subsequent sampling dates (Figure 5-1).
Snorkel surveys were delayed from May 1 to May 22 due to heavy rainfall and increased
turbidity levels in the lake.

Abandonment rates from simulated tournaments were substantially higher than from
catch and release angling (Table 5-1). Abandonment rates of control and electrofished bass is
summarized in Table 5-2. A total of 91 nests were used to evaluate the impacts of electrofishing
during largemouth bass spawning. Average abandonment rates of electrofished bass (39%) was
over three times that of control fish (12%).

Tournament anglers in the spring appear to target spawning bass. The percentage of bass
that were reproductively active ranged from 37.0% to 51.4% of all fish captured (Table 5-3).
Tournament anglers tended to capture more males than females, which may indicate that anglers
are targeting males that are either on nests or actively guarding offspring. Sex ratios (males :
females) ranged from 1.1:1 to 2.3:1 across lakes Mattoon, Mill Creek, and Forbes during the
spawn. Average total length of captured males (357 mm to 409 mm) was smaller than female
average size (426 mm to 455 mm) during the spawning period. Shelbyville had different results
with a sex ratio (male:female) of 1:1.2. Average size of captured males in Shelbyville (393 mm)
were also smaller than the females (419 mm) during the spawn. Mill Creek and Shelbyville
produced sex ratios for the postspawn period of 1:1.4 and 1:1, respectively while Lake Mattoon
and Stephen Forbes had sex ratios of 1:1.5 and 1.8:1, respectively.

In the first year of angler interviews, we have thus far only surveyed 5 anglers to
determine if they were culling smaller male fish from their creel to increase their weights with
larger female fish during the spawn. Of the five anglers surveyed, only one had captured a limit
of fish. No anglers had culled any fish from their creel. Additionally, we asked how many short
fish were captured and released. Several anglers had released short fish.

Age-0 largemouth bass produced from parents subjected to simulated tournaments were
smaller and weighed less than controls (Table 5-4). Length and weight differences at the time of
draining appear small (x = 4.0 mm, TL; T = 0.2 g respectively), but the relative differences were
high as a percent of total length (11%) and body weight (26%). Length frequency distributions
of age-0 largemouth bass at draining also were variable among individual ponds within a
treatment (Figure 5-2). However, when length frequencies were combined across ponds they
differed between treatments. Length frequency distributions of the cohort produced from parents
that experienced stress was skewed toward smaller size classes compared to controls (Figure 5-
2). Numbers of age-0 largemouth bass recruited to each pond were highly variable, resulting in
no difference between treatments (Table 5-4). Daily ring counts from age-0 largemouth bass
otoliths indicated that individuals subjected to stress had earlier swim-up dates (2 d) compared to
largemouth bass that were not stressed (Table 5-4).

When we monitored the physiological response of fish to a variety of tournament-related
stressors, live-well retention resulted in less physiological disturbance than the actual angling
event or weigh-in. Energy stores were replenished, stress hormones decreased, metabolites were
eliminated, and heart rate decreased during live-well retention (Figure 5-3).

Observations using videography revealed that during live-well retention, fish expended
significant energy maintaining position to prevent repeated physical collision with the live-well
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walls, particularly during rough water conditions. Live-well design should thus incorporate
elements that minimize sloshing of water and it may be prudent to restrict tournaments on days
with rough water conditions. Furthermore, our videographic observations suggest that bass
interact aggressively with conspecifics and thus, there may be some merit in minimizing density
or using a sedative to calm the fish. Indeed, previous work in our lab using smallmouth bass
determined that fish density can also affect recovery of fish in the live-well (Cooke et al. 2002).
Metabolic rates of captured fish increase with live-well densities greater than one individual, due
to a greater demand on live-well oxygen conditions. The repeated handling of fish during
tournament angling, including culling, the addition of fish or other live-well disturbances, and the
final tournament weigh-in, which adds an additional several minutes of air exposure, further adds
to already heightened stress levels.

This season, we also began experimentation with the anesthetic clove oil (see Keene et al.
1998) as a tool to stabilize and calm largemouth bass during live-well retention. Our preliminary
data indicate that low levels of clove oil that reduce sensory activity, but allow fish to maintain
equilibrium, results in a general calming effect that reduces conspecific interactions (Figure 5-4).
Research by other groups (i.e., Wagner et al. In press) indicates that clove oil is effective at
minimizing stress in fish already exposed to the stressor, such as what would be experienced by
bass in fishing tournaments. Previous research by our group determined that current
commercially available live-well additives actually increase metabolic rate and retard
physiological recovery (Cooke et al. 2002). Therefore, clove oil may provide an alternative tool
for anglers to calm fish during retention and this should be a focus of future research.

RECOMMENDATIONS: In future segments, we will examine potential factors influencing
largemouth bass spawning time in Lincoln Trail Lake. In addition, we will examine the
consequences of those differences in spawning time through fall recruitment for young-of-year
bass. Examination of nest site habitat and nest predator densities will again take place next year
to increase sample sizes. Relationships among habitat type and predator abundance, male
aggression level, and ultimately nest success will be closely examined. Further work is also
needed to increase sample sizes on the potential effect of angling on nest guarding by parental
largemouth bass, but preliminary results show about a 30% abandonment rate due to catch-and-
release angling and a 100% abandonment rate due to tournament angling. To understand how to
minimize negative impacts of angling, future experiments need to determine which factors are
most important in influencing the parental decision to abandon, and to understand when and how
these important factors interrelate in natural systems. These experiments should test nest
abandonment and male aggression towards nest predators for fish that are experimentally angled
and in controls that are not manipulated. Our data from Lincoln Trail shows increased rates of
nest abandonment due to electrofishing confirming that spring sampling with electrofishing
equipment negatively impacts largemouth bass nesting success.

In conjunction with our angling experiments, we will continue to monitor bass
tournaments in order to assess if reproductively active males are being preferentially caught.
Data from three of the four lakes examined suggests that this may be the case during spring
tournaments. Preliminary information provided by tournament angler surveys suggests that the
culling and release of smaller males for larger females is not skewing our sex ratio numbers.
However, sample sizes are very small thus far. We will focus on increasing sample sizes of

22



angler surveys to determine if this truly is the case. Using this data, we will be able to make
predictions about how angling will affect fall recruitment of largemouth bass.

Largemouth bass exposed to simulated tournaments can delay the swim-up date of offspring
and negatively affect the size of young produced. The effects of stress on offspring will most likely
vary with the severity and duration of the stressor, the gonadal maturation stage of the adults. Delays
in swim-up date and smaller progeny resulting from stress could have negative population
consequences. Smaller larval and juvenile fishes within a cohort have a number of disadvantages
such as an increased risk to starvation and predation leading to lower survival. Size specific
mortality can have important consequences for later recruitment when inter and intraspecific
competition is strong and resources are limiting. Additional experiments will be required to test if
the differences in size we observed remain throughout the first year of life, reduce over winter
survival, and effect later recruitment. The single exposure to a sequence of acute stressors in our
experiment occurred a few days prior to spawning and thus was probably too late to affect fecundity
but may effect egg quality and lower progeny survival (e.g., increased cannibalism within and among
broods). If additional work confirms our findings, then protection of potential spawners from
stressors or attempts to minimize physiological disturbance prior to spawning would be warranted.

In subsequent segments, we will begin to examine effects of sublethal angling stressors on
largemouth bass feeding behavior, growth, and survival. To further investigate the impacts of angling
on largemouth bass reproduction and its relation to lake recruitment, we will examine: 1) the
influence of sublethal angling stressors prior to spawning on female egg health. 2) the influence of
delayed spawning or decreased progeny size on offspring survival due to cannibalism among broods.
3) feeding behavior of largemouth bass following angling, and 4) practical procedures (e.g. livewell
conditions, weigh-in and release procedures) that can be implemented by tournament participants
and organizers to further reduce initial and delayed largemouth bass mortality.

Our data suggest that live-well retention itself does result in a stress response, but if fish are
provided with appropriate conditions, fish will actually recover during this period. Collectively, the
results of our research program examining the effects of live-well retention on fish provide direction
for fisheries managers, anglers, and tournament organizers to enhance the recovery and survival of
fish retained in live-wells. The information we present is essential for ensuring adequate live-well
management.
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Job 101.6. Evaluating the impact of harvest regulations on largemouth bass recruitment in Illinois.

OBJECTIVE: To develop a model to evaluate the effects of various angling scenarios and pressures
on Illinois bass recruitment and size structure.

INTRODUCTION: There are a number of potential options that can be used to help manage bass
populations in Illinois, including a variety of different harvest regulations such as size and bag limits,
closed seasons, and spawning sanctuaries. Each of these has a different impact on the population,
by affecting numbers and/or sizes of adults. Some regulations have the potential for impacting
recruitment more than others, but little information is available comparing those impacts. We need
to develop a theoretical framework by which we can assess how and why management regulations
impact populations. To accomplish that task, we need to develop a conceptual model of how
reproductive success is impacted by these various management actions, then develop a set of parental
care decision rules that are based on field-developed parameters, and combine those to devise a
predictive model that can help evaluate how best to manage bass populations under varying
conditions.

The model we are developing is designed to determine how the reproductive success of a
population changes under varying levels of fishing pressure, and how various management options
affect that change. To establish baseline data, we need to determine a variety of parameters, some
of which include density of nesting males along a shoreline (including how much variation exists
within and among lakes), size and age of the nesting males, natural levels of brood abandonment
(including how much variation exists among lakes and years), fishing pressure during the spawning
season, vulnerability of nesting males to fishing (including how much variation exists among lakes
as well as among male sizes), etc. The objective of this job is to use a combination of data gathered
from studies in Illinois (including the creel and FAS databases), data gathered from our studies in
Ontario, and literature studies to build this model.

Largemouth bass can be vulnerable to anglers while spawning and the success of the spawn
may depend on stress the fish undergoes during this period. This has sparked a recent controversy
in anglers whether or not bed fishing (angling fish off the nest) is detrimental to bass populations.
Our recent research (Job 101.5) suggests that angling largemouth bass off the nest can cause the fish
to abandon the nest, which results in the failure of the nest to produce offspring. Many states have
implemented closed seasons or spawning refuges, which are closed to fishing in an attempt to
alleviate this problem. It is unclear if these management techniques are appropriate for Illinois
reservoirs.

Clinton Lake is an approximately 5000-acre lake that is operated as both a power plant
cooling lake and a recreational lake. In the fall of 2001, a portion of the lake adjacent to the Clinton
Lake Power Plant was closed to boaters and anglers permanently. This closed area provides a refuge
for largemouth bass from angling. The refuge may be beneficial to largemouth bass, by increasing

spawning success and decreasing fishing mortality. We will use this opportunity to begin to evaluate

the success of a fish refuge in increasing numbers and size structure of the largemouth bass

population.

PROCEDURES: We have constructed a conceptual model based on a population of bass in a

hypothetical lake to describe how reproductive success is impacted by fishing. The hypothetical lake
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has 10 km of shoreline, a surface area of 1500 acres, and an annual spawning population of 1000
adult males (i.e., 1000 males receive eggs in a nest they construct). Factors affecting the number of
successful nests in this model include fishing pressure, minimum length limits, abandonment rates,
and protected spawning areas. We used abandonment rates determined from our angling
manipulations in Lincoln Trail combined with this model to examine the effects of fishing pressure
on nesting success.

Population abundance and size structure of largemouth bass were assessed in Clinton Lake
using spring and fall electrofishing and seining in 1999-2003. Data collected before 2001 will be
compared to samples collected after this time. Three shoreline electrofishing transects were
performed on the lake in the fall and in the spring using AC electrofishing gear during the day. One
electrofishing transect is located in the current refuge on Clinton Lake while the other two are
located approximately 2 and 4 lake miles from the refuge. Fish were identified to species and total
length was recorded. Catch per unit effort (CPUE) was then calculated as the number of fish per
hour of electrofishing. Seining was conducted using a 9.2-m bag seine pulled along the shoreline
at fixed transects. All fish were counted and up to 50 fish were measured for each species.

FINDINGS: In Lincoln Trail, abandonment rates were 30% for catch and release angling and 100%
for simulated tournament angling (see job 101.5). Using this rate in the model, we would predict
little change in the number of successful nests with changes in catch-and-release fishing pressure
(Figure 6-1). Under a tournament angling scenario, our model would predict a strong decrease in
nest success as fishing pressure increased.

Mean CPUE for largemouth bass in Clinton Lake from 1999 through 2003 was 22.6 fish per
hour of electrofishing (Table 6-1). This is lower than most of our study lakes, which have a range
of CPUE from 20.9 to 67.3 fish per hour. As a result, there is the potential for an increase in
abundance of largemouth bass in Clinton Lake from the refuge.

RECOMMENDATIONS: To refine the model, we will continue to measure natural parameters (i.e,
size structure of nesting males, number of nests, and natural abandonment rates), and the effects of
angling by experimental catch-and-release and tournament angling manipulations of nesting male
bass. We will further develop our model by using creel survey data for fishing pressure and our
tournament data for characteristics of bass vulnerable to angling.

We will continue to monitor largemouth bass abundance and size structure in the Clinton
Lake refuge through the next several field seasons. Access must be gained to the closed area of the
lake in order to perform sampling after the implementation of the refuge. Sampling will also
continue at all other sites on the lake in order to determine the local and lake-wide effects of the
refuge. In future segments, we will also analyze electrofishing and seine CPUE data for young of
year bass production.
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Job 101.7. Analysis and reporting.

OBJECTIVE: To prepare annual and final reports summarizing information and develop
management guidelines for largemouth bass in Illinois.

PROCEDURES and FINDINGS: Data collected in Jobs 101.1-101.6 were analyzed to develop
guidelines for largemouth bass regarding stocking and management techniques throughout Illinois.
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Table 1-1. Growth rates for 4" largemouth bass marked with fin clips (FC), freeze brands (FB),
or fin cauterization (FCFB). Seventy-five fin clipped, 100 freeze brand, and 75 fin clip
cauterized fish were stocked into three 0.3-acre ponds on 14 December 1998 and sampled every
subsequent spring and fall. Unidentifiable.fish were recognized by their respective genotype: fin
clipped (1:1), freeze brand (1:2), and fin clip cauterized (2:2).

Growth Rate (g/d)

Date Fin clip Freeze brand Fin Cauterization

12/14/98 to 5/27/99 0.10 0.09 0.10

5/27/99 to 10/26/99 0.19 0.23 0.22

10/26/99 to 3/20/00 0.05 0.05 0.03

3/20/00 to 11/2/00 0.38 0.30 0.41

11/2/00 to 3/15/01 0.08 0.08 0.10

3/15/01 to 10/18/01 0.04 0.05 0.06

10/18/01 to 3/12/02 0.18 0.18 0.18

3/12/02 to 10/16/02 0.76 0.66 0.78

10/16/02 to 3/19/03 0.05 0.07 0.06

31



COc
mj

0C) o coo o0 00 CNJ00co
co(%4

0 0
0 0
0 0oo

0 s

0e | *+- .b-.,

• N

0D 0

i-g *o o
n,

a

O , -0

8tO

0 )'

C)

4-4 . '

o lsria> 00

AN&p C^ §il.-s
7§ IO S r0 ^ ig: Q> a
iZ' , SI

H O 5b 5

C) 0)
Co It

4- 4ao

il.,
n =«= 3

Vco

0. ca
E E
0LU

c. a)
CO-

EE

w.
E

0

C-

co

c o

0)
N

CI0
cu

5

0

N

N

0

0c

cu

CM

CN

C(

C)

0

CM
Co

CN

r2!

CD

0)

0

0

C)

00

T-

LO

0 CD 00 00 CDS) 00 CMcX3 I 03 O v.0

ct
0)
CM1

C\M
0

(Ncy

CM4

E
0
ar

CYo
00

0
o0

(N
0

0)

0

0

CO

Co

0

o

CO

0

0

(NC)
T-25

%.--.

O0

O I

o
0 6-mn

(CN

o

0

C Co 0 0 04 C4 00

C- 0 to
CO Co CM 0) CO

0)
-J

-s
z:3
o cn
,EmE acn
D cu



Table 2-2. Comparison of survival among three sizes of stocked and naturally produced
largemouth bass. Catch per unit effort (CPUE) is the mean from electrofishing samples
performed in the fall of 2002 and spring of 2003. CPUE is reported as number of fish per
hour of AC electrofishing.

Lake Size Fall CPUE Spring CPUE

CHARLESTON Natural 3.9 1.3

4 11.2 2.0

6 4.9 2.4

8 0.0 16.3

HOMER Natural 11.9 8.6

4 3.4 0.0

6 4.5 1.1

8 0.0 2.0
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Table 2-3. Largemouth bass stocking summaries for lakes Jacksonville, Shelbyville, and Walton
Park. Intensively reared bass were raised in raceways while extensively reared bass were
raised in ponds. Catch per unit effort (CPUE) is based on the number of fish collected
per hour of daytime AC electrofishing in fall and spring months.

Rearing
Lake Technique Number Stocked Fall CPUE Spring CPUE

Jacksonville Intensive 5000 5.00 5.00

Extensive 15000 0.00 2.00

Shelbyville Intensive 8800 0.00 3.64

Extensive 35000 6.00 10.00

Walton Park Intensive 1250 21.67 0.00

Extensive 1250 5.33 0.00
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Table 4-1. Average values of total phosphorus (TP; gg/L), chlorophyll a (chloro;. g/L),
zooplankton (zoop; N/L), benthos (N/m2), larval fish (larval; N/m3), juvenile bluegill (blg; N/m2),
and aquatic vegetation (veg; ft2 ) in the twelve study reservoirs during 2002. Data that are starred
(*) will be presented in future reports.

Lake TP chloro zoop benthos larval big veg

Clinton 477 29.6 8.26 1011 1.35 0.06 *
Dolan 152 45.2 34.17 * 2.9 0.24 *
Forbes 82 20.8 35.32 * 7.8 0.56 *
Lake of t. Woods 66 27.4 83.1 11440 21.1 8.58 5357
Lincoln Trail 75 16.6 26.3 6407 409 2.63 2645
Paradise 229 37.8 29.5 2824 16.9 0.07 *
Pierce 80 34.9 43.6 6574 10.8 1.47 *
Ridge 90 12 166 4012 2.02 3.69 *
Shelbyville 100 22.6 24 839 12.6 0.04 *
Sterling 43 4.46 54.9 5013 7.99 0.11 1438
Walnut Point 82 36.1 28.9 6055 * 1.93 163
Woods 182 31 33 2757 6.89 0.46 0
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Table 4-2. Spearman correlation coefficients for the relationships between the mean densities of
YOY largemouth bass (N/m 2) during 2002 and average values of total phosphorus (TP; jtg/L),
chlorophyll a (chlorophyll; [tg/L), zooplankton (N/L), benthos (N/m2), larval fish (N/m3), and
juvenile bluegill (bluegill; N/m 2). Sample size is 12 for all variables except benthos (N = 10) and
larval fish (N = 11). * is P < 0.05, ** is P < 0.01, and *** is P < 0.001.

Lake TP Chlorophyll Zooplankton Benthos Larval fish Bluegill

May -0.46 0.01 -0.15 0.59 0.67* 0.61*

Jun -0.29 -0.19 0.22 0.49 -0.3 0.67*

Jul -0.36 -0.18 0.28 0.6 0.03 0.85***

Aug -0.65* -0.3 0.28 0.77** 0.23 0.86***

Sep -0.53 -0.13 0.45 0.74** 0.12 0.96***

Oct -0.30 -0.23 0.35 0.43 0.02 0.70**



Table 4-3. Catch per unit effort (N/hr) of largemouth bass recruited to age-1. Abundances are
means of largemouth bass captured by AC electrofishing three shoreline transects for 0.5 hour
each in the spring. Data that are not available are starred (*).

Lake 1999 2000 2001 2002

Clinton 8.17 4 1.33 2.58
Dolan * 0.67 16.8 1
Forbes 8.22 15 4.89 1.78
Lake of t. Woods 2.5 * 3.17 3.59
Lincoln 30 26.7 5.78 7.11
Paradise 0.67 0.67 1 0
Pierce 44.9 7 31.3 11.1
Ridge 10.3 1.43 24.3 0.12
Shelbyville 1.34 4.5 3.84 8.39
Sterling 6 6 4 0
Walnut Point 29 6 32.7 10.3
Woods 6.57 5.33 - 06 1.33
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Table 5-4. Average total length, weight, number, and age (± 1 SE) of adult and resulting age-0

largemouth bass between ponds stocked with stressed and non-stressed (control) adult

largemouth bass. Comparisons for all response variables between treatments were analyzed with

mixed model, nested analysis of variance except number that was compared with a one-way

analysis of variance.

Stressed Control Contrasts

Mean SE Mean SE F-value (df) P-value

Adult Largemouth Bass

Male Length (mm) 357 ± 4 363 ± 8 0.11(1,6) 0.75

Weight (g) 597 ± 39 641 ± 90 0.13 (1, 6) 0.72

Female Length (mm) 385 ± 12 386 ± 15 0.01 (1, 6) 0.94

Weight (g) 866 ± 76 944 ± 104 0.19 (1, 6) 0.66

Age-0 Largemouth Bass

Length (mm) 31 ± 0.38 35 ± 0.43 40.94 (1, 6) < 0.01

Weight (g) 0.59± 0.03 0.76 ± 0.04 10.84(1, 6) < 0.01

Number 214 ± 54 444 ±239 0.88(1,6) 0.38

Age (days) 48 ± 0.63 50 ± 0.58 3.64 (1, 6) 0.05
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Table 6-1. Catch per unit effort (CPUE) for control and refuge electrofishing transects performed

proir to the closing of the refuge area. CPUE is the number of Largemouth bass collected per hour o

AC electrofishing.

Year Control Refuge

Spring Fall Spring Fall

1999 28.8 33.0 56.0 48.0

2000 32.4 8.0 18.0 2.4

2001 26.0 48.7 10.0 22.0
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Figure 1-1. Retention rates for freeze brands, fin cauterizations, photonic dye,
fin clips, and oxytetracycline (OTC) marks applied to 2" fingerling largemouth
bass. Total represents the cumulative percent of visible marks for all dates
combined.
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Figure 1-2. Cummulative number of 4" largemouth bass with unrecognizable
marks sacrificed and identified by 1:1 (Fin Clip), 1:2 (Freeze Brand), or 2:2
(Fin Cauterization) MDH-B genotype for each date sampled.
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Figure 1-3. Average mark regrowth (%) for fin clip, fin cauterized,
and freeze brand marked 4" largemouth bass through time. Total
denotes experiment wise average (%) regrowth for fin clip and fin
cauterized marks.
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Figure 2-1. Location of 15 lakes in Illinois stocked with fingerling largemouth bass in 1999 -
2003.
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Figure 2-2. Mean growth through time of different sized largemouth bass after stocking in 4
reservoirs in 3 years during 1998-2003. Values are mean total length (mm) +/- 1SE in
each season following stocking.
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Figure 2-3. Catch per unit effort (CPUE) through time for different sizes of stocked largemouth
bass in 4 reservoirs in 3 years during 1998-2003. Catch per unit effort is the number of
fish per hour of AC electrofishing.
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3 years during 1998-2003. Values represent the mean percent (+/- 1 SE) of predators
with stocked largemouth bass in their diets following stocking. No predation was
observed prior to stocking.
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Figure 2-5. Relationship between mortality at stocking and temperature. Stocking mortality was
estimated by holding bass in 3 mesh cages and counting the number of dead after 48
hours. Temperature is the lake surface temperature at the time of stocking.
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Figure 4-1. Average monthly young of the year (YOY) largemouth
2

bass densities (N/m ) for 12 study lakes. Largemouth bass were
collected with a 9.2-m bag seine from 4 stations in each lake. Closed
symbols represent lakes with gizzard shad, whereas, open symbols
represent lakes without gizzard shad.

47

-- Clinton
* Dolan

- -- Forbes
-o- Lincoln
-T- LOTW
-v- Paradise

--- Pierce
v Ridge
* Shelbyville

C teZrlinn
%ýLVI II IUJ

Walnut
Woods

mu / /

II I " r ' I r



16

14

12

8

6

0 4

2

0
c c cn o c: (D ) ) "
0 C i CU ( C 0 "

Figure 4-2. Average catch per unit effort (CPUE; N/hr + 1 SE)
of largemouth bass recruiting to age-1. Based on annual otolith rings,
largemouth bass < 150 mm TL were considered to be YOY. Shaded
bars represent lakes with gizzard shad, whereas open bars represent
lakes without gizzard shad.lakes without gizzard shad.
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Figure 4-3. Average monthly densities of (a) inshore
crustacean zooplankton (N/L) and (b) larval fish
(N/m3). Closed symbols represent lakes with gizzard
shad and open symbols represent lakes without gizzard shad.

Walnut Point is not included in the larval fish graph.
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Figure 4-4. Average total length (mm) of young of the year
largemouth bass collected from 12 study lakes. Largemouth
bass were collected with a 9.2-m bag seine from 4 stations in
each lake. Closed symbols represent lakes with gizzard shad,
whereas open symbols are lakes without gizzard shad.
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Figure 4-5. Average fall total length (mm ±+ 1 SE) of young of
the year largemouth bass collected from 12 study lakes.
Largemouth bass were collected from late September to early
October using A.C. electrofishing along 3 shoreline transects for a
0.5 hour each.
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Figure 4-6. Mean percentage over time of total largemouth bass
catch that was in reproductive condition during spring 2003. Male
largemouth bass were considered reproductive if gametes were freely
flowing, and female bass were considered reproductive if they were in
ripe condition (e.g., freely flowing gametes or swollen condition). All
bass were captured using 0.5 hour of AC electrofishing along three
shoreline transects.
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Figure 5-1. Number of new largemouth bass nests as a percentage of the total
number observed by date for 1999 through 2003 on Lincoln Trail Lake.
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Size Groups of Age-0 Largemouth Bass
Figure 5-2. Length frequency distribution (%) by 4-mm size increments of age-0
largemouth bass produced by either stressed (panels 1-4) or non-stressed (panels 5-8)
adults. Totals in the bottom panels represent fish combined across treatments
(N = 4 ponds/treatment).
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Figure 5-3. Heart rate of largemouth bass during
different components of a catch-and-release angling
tournament. Note that when provided with appropriate
conditions in the livewell, including low density of fish,
minimal disturbance, and adequate water quality, fish
actually begin recovery, as evidenced by lower heart
rates than fish that are just angled (exercised).
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Figure 5-4. Behavior of largemouth bass during
exposure to rough conditions intended to simulate
conditions during livewell retention. Fish were exposed
to clove oil sedative concentrations ranging from 0 to
20 mg/L. Interactions between fish decreased at higher
concentrations (top panel), however, collisions with the
tank increased as fish became too lethargic and were
unable to maintain equilibrium or stop from hitting the
wall of the livewell (bottom panel). Taken together,
concentrations ranging from ~5 to 10 mg/L seem to be
effective for both minimizing interaction between fish
while still permitting them to avoid excessive livewell
wall collisions. These optimal levels of sedation are
indicated between the dashed lines on the figure.
Regressions include 95% confidence limits.
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