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Abstract. Let GR be a simple real linear Lie group with maximal
compact subgroup KR and assume that rank(GR) = rank(KR). In [MPVZ]
we proved that for any representation X of Gelfand-Kirillov dimension
1
2
dim(GR/KR), the polynomial on the dual of a compact Cartan subalge-

bra given by the dimension of the Dirac index of members of the coherent
family containing X is a linear combination, with integer coefficients, of
the multiplicities of the irreducible components occurring in the associated
cycle. In this paper we compute these coefficients explicitly.

1. Introduction

Let GR be a simple real linear Lie group with a Cartan involution θ
and maximal compact subgroup KR = Gθ

R
. Let g = k ⊕ p be the Cartan

decomposition of the complexified Lie algebra g of GR; this decomposition is
orthogonal with respect to the Killing form B. Let K be the complexification
of KR and G a complex Lie group (with Lie algebra g) containing K as the
set of fixed points of the complex extension of θ. We assume throughout the
paper that g and k have equal rank, i.e., there is a Cartan subalgebra h of g
contained in k. We fix such h and write W for the Weyl group of (g, h).

In this paper we are concerned with comparing two important invariants
of (g,KR)-modules. One is the Dirac index studied in [MPV]. It is defined
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using the Dirac operator D ∈ U(g) ⊗ C(p), where U(g) is the universal en-
veloping algebra of g and C(p) is the Clifford algebra of p with respect to B.
If M is a (g,KR)-module, then D acts on M ⊗ S where S is a spin module
for C(p). The Dirac cohomology of M is defined as

HD(M) = Ker(D)/(Im(D) ∩Ker(D);

it is a module for the spin double cover K̃ of KR (finite-dimensional if M is
admissible). This invariant was introduced in [V2], it turned out to be very
interesting and also quite computable; see for example [HP1,HP2,HKP,HPR,
HPP,HPZ,BP1,BP2,BPT,MP,MZ,DH].

Decomposing the K̃-module S as S = S+ ⊕ S− induces a decomposition
of Dirac cohomology

HD(M) = HD(M)+ ⊕HD(M)−.

The Dirac index of M is then defined as the virtual K̃-module

DIv(M) = HD(M)+ −HD(M)−.

It is proved in [MPV] that Dirac index varies nicely over coherent families of
(g,KR)-modules. In particular, if {Mλ} is such a coherent family, attached
to a module M , then the function

λ 7→ dimDIv(Mλ)

extends to a polynomial on h∗, which we denote by DIp(M).
Another very useful invariant of a Harish-Chandra module M is its asso-

ciated cycle AC(M), defined in [V1]. See [MPVZ] for a short review of the
definition.

In concrete terms, for irreducibleM , AC(M) can be written as the formal
sum

AC(M) =
∑

i

mi(M)Oi,

where Oi ⊂ p are the real forms of a complex nilpotent G-orbit OC ⊂ g, and
the multiplicities mi(M) are nonnegative integers. The orbit OC is specified

by the requirement that OC is the associated variety of the annihilator of M .
If M is put into a coherent family {Mλ}, then the corresponding multi-

plicities extend to polynomials mi(M) on h∗. It was conjectured in [MPV],
and proved in [MPVZ], that in certain special circumstances these multiplicity
polynomials are related to the Dirac index polynomial by

DIp(M) =
∑

i

cimi(M)

for some integers ci. Such a relationship is true when the associated variety of

the annihilator of M is contained in OC, with OC corresponding via Springer
correspondence to the W -representation generated by the Weyl dimension
polynomial PK for K (PK is defined by (3.1)).
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The purpose of this paper is to complement [MPVZ] by explicitly com-
puting the constants ci in the classical cases other than SU(p, q). The case
GR = SU(p, q) as well as the case of exceptional groups are done in [MPVZ].

We start by reviewing some facts about real forms of nilpotent orbits in
Section 2, and assembling a few useful general facts about the computations
in Section 3. Then we do the case-by-case computations in Sections 4 – 8.

2. Nilpotent orbits and their real forms

We recall that the list of the classical real groups for which the conjecture
from [MPV] applies is given in [MPVZ], Section 6, Table 1, along with the
relevant explanations. The groups on the list are the connected classical
equal rank groups such that the W -representation σK generated by the Weyl
dimension polynomial PK for K is Springer. The list consists of

• SU(p, q), q ≥ p ≥ 1;
• SOe(2p, 2q + 1), q ≥ p− 1 ≥ 0;
• Sp(2n,R), n ≥ 1;
• SO∗(2n), n ≥ 1;
• SOe(2p, 2q), q ≥ p ≥ 1.

The table in [MPVZ] also includes the nilpotent orbits OC corresponding to
σK in each of the cases, as well as the number of real forms of these orbits.
Here we explain how to get these real forms, and in particular how to write
down the semisimple elements h of the corresponding sl2-triples, which we
need to begin our computations.

We start by recalling that complex nilpotent orbits in classical Lie algebras
are in one-to-one correspondence with the set of partitions [d1, · · · , dk] with
d1 ≥ d2 ≥ · · · ≥ dk ≥ 1 (if dj occurs m times, we will simply write dmj ) such

that (see [CM, Chapter 5]):

• d1 + d2 + · · ·+ dk = n, when g ≃ sl(n,C);
• d1+d2+ · · ·+dk = 2n+1 and the even dj occur with even multiplicity,
when g ≃ so(2n+ 1,C);
• d1 + d2 + · · · + dk = 2n and the odd dj occur with even multiplicity,
when g ≃ sp(2n,C);
• d1 + d2 + · · ·+ dk = 2n and the even dj occur with even multiplicity,
when g ≃ so(2n,C); except that the partitions having all the dj even
and occurring with even multiplicity are each associated to two orbits.

We now recall the procedure which attaches sl2-triples to complex nilpo-
tent orbits (see [CM, Chapter 3]). For a positive integer i, define the Jordan
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block Ji to be the i× i matrix

Ji =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 0 0 · · · 0 1
0 0 0 0 · · · 0




For a positive integer n, write [d1, d2, · · · , dk] for a partition of n. Define the
n× n matrix

X[d1,d2,··· ,dk] =




Jd1 0 0 0 · · · 0
0 Jd2 0 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 0 0 0 · · · Jdk




Then X[d1,d2,··· ,dk] is a nilpotent element in the complex Lie algebra sln. Write
O[d1,d2,··· ,dk] for the complex nilpotent orbit under the adjoint group PSLn

of sln. It is convenient to attach to O[d1,d2,··· ,dk] a Young tableau, i.e a left-
justified arrangement of empty boxes of rows with size in the non-increasing
order d1, d2, ..., dk.

Let H =

(
1 0
0 −1

)
, X = J2 =

(
0 1
0 0

)
and Y = J t

2 =

(
0 0
1 0

)
. Then

[H,X ] = 2X , [H,Y ] = −2Y and [X,Y ] = H , so that H,X, Y span, over C,
the simple Lie algebra sl2 of 2 × 2 complex matrices with zero trace. For a
non-negative integer r, define the linear map ρr : sl2 → slr+1 by

ρr(H) =




r 0 0 0 · · · 0
0 r − 2 0 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · −r + 2 0
0 · · · 0 −r




ρr(X) = Jr+1

ρr(Y ) =




0 0 0 0 · · · 0
µ1 0 0 0 · · · 0
0 µ2 0 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · µr 0




with µi = i(r + 1− i) for 1 ≤ i ≤ r
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ρr defines an irreducible representation of sl2 of dimension r + 1, and any
finite dimensional irreducible representation of sl2 is equivalent to ρr for some
r. The map ρr induces the homomorphism ΦO : sl2 → sln defined by:

ΦO =
⊕

1≤j≤k

ρdj−1

so that ΦO(X) = X[d1,d2,··· ,dk]. The standard sl2-triple associated with the
complex nilpotent orbit O[d1,d2,··· ,dk] is

{H[d1,d2,··· ,dk];X[d1,d2,··· ,dk];Y[d1,d2,··· ,dk]}

where H[d1,d2,··· ,dk] := ΦO(H), X[d1,d2,··· ,dk] := ΦO(X) and Y[d1,d2,··· ,dk] :=
ΦO(Y ). Choose the Cartan subalgebra consisting of n × n diagonal matri-
ces diag(a1, a2, · · · , an) with zero trace, and fix the positive system of roots
{ǫi− ǫj | 1 ≤ i < j ≤ n} whose corresponding Borel subalgebra consists of the
upper tringular matrices of zero trace. Here ǫi is the complex linear form de-
fined on the Cartan subalgebra such that ǫi(diag(a1, a2, · · · , an)) = ai. Then
up to a Weyl group element of sln, the element H[d1,d2,··· ,dk] is conjugate to a
dominant element

(h1, h2, · · · , hn) := diag(h1, h2, · · · , hn)

with h1 ≥ h2 ≥ · · · ≥ hn and h1 + h2 + · · · + hn = 0. Associated with the
orbit O[d1,d2,··· ,dk] is the weighted Dynkin diagram

h1−h2

◦
h2−h3

◦ · · · · · ·
hn−1−hn

◦

Suppose now that GR = SU(p, q), KR = S(U(p) × U(q)) and g = slp+q,
with q ≥ p ≥ 1 and p+ q = n. The dominant h associated with the complex
nilpotent orbit OC = O[2p;1q−p] is given by

h = (1, 1, · · · , 1︸ ︷︷ ︸
p

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

,−1,−1, · · · ,−1︸ ︷︷ ︸
p

)

along with the weighted Dynkin diagram

0
◦

ǫ1−ǫ2
· · · · · ·

1
◦

ǫp−ǫp+1

0
◦

ǫp+1−ǫp+2

· · · · · ·
1
◦

ǫq−ǫq+1

0
◦

ǫq+1−ǫq+2

· · · · · ·
0
◦

ǫp+q−ǫp+q−1

Moreover, by Kostant-Sekiguchi, it is known that the nilpotent orbit OC

has p + 1 real forms which are in one to one correspondence with nilpotent
K-orbits in p. More precisely, for k = 0, 1, 2, · · · , p, let I0 = 0 and

ek =




0p
Ik 0
0 0

0 0
0 Ip−k

0q
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For each k, the element ek belongs to OC. On the other hand, the K-orbit of
ek consists of matrices of the form

(
0 A
B 0

)
with rank(A) = k and rank(B) = p− k

In particular, if k 6= k′ then the K-orbits of ek and ek′ are disjoint. Choosing
the positive system {ǫi − ǫj | 1 ≤ i < j ≤ p or p + 1 ≤ i < j ≤ p + q}, the
(dominant) neutral element of the sl2-triple corresponding to the real form
K · ek is

hk = (1, 1, · · · , 1︸ ︷︷ ︸
k

,−1,−1, · · · ,−1︸ ︷︷ ︸
p−k

, 1, 1, · · · , 1︸ ︷︷ ︸
p−k

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

,−1,−1, · · · ,−1︸ ︷︷ ︸
k

)

The description in terms of Young tableaux of the complex orbit OC and of
its real forms is as follows:

OC : :



p

:



 q − p

real forms for OC

+ −
: :
+ −



k ∈ {0, . . . , p}

− +
: :
− +



p− k

−
:
−



 q − p

Consider GR = Sp(2n,R) and KR = U(n). The complexification g = sp2n
of GR is realized as the following set of matrices
{(

Z1 Z2

Z3 −Zt
1

)
|Z1 n× n complex matrix, Z2, Z3 symmetric complex matrices

}

A Cartan subalgebra in g consists of diagonal complex matrices of the form
diag(a1, a2, · · · , an,−a1,−a2, · · · ,−an). Fix the standard system of positive
roots {ǫi ± ǫj | 1 ≤ i < j ≤ n} ∪ {2ǫk | 1 ≤ k ≤ n}. As in type A, there is an
explicit recipe which attaches an sl2-triple to a complex nilpotent orbit (see
[CM, 5.2.2]). We apply this recipe to the nilpotent orbit OC = O[2n], using n
chunks coinciding with {2}. We obtain (viewing sp2n as a subalgebra of sl2n)

h := diag(1, 1, · · · , 1︸ ︷︷ ︸
n

,−1,−1, · · · ,−1︸ ︷︷ ︸
n

)

which we will simply write

h = (1, 1, · · · , 1︸ ︷︷ ︸
n

)
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along with the weighted Dynkin diagram
0
◦

ǫ1−ǫ2

0
◦

ǫ2−ǫ3
· · · · · ·

0
◦

ǫn−1−ǫn

2
◦

2ǫn

The same argument as in type A shows that OC possesses n + 1 real forms
with

hk = (1, 1, · · · , 1︸ ︷︷ ︸
k

,−1,−1, · · · ,−1︸ ︷︷ ︸
n−k

,−1,−1, · · · ,−1︸ ︷︷ ︸
k

, 1, 1, · · · , 1︸ ︷︷ ︸
n−k

)

The description in terms of Young tableaux of the complex orbit OC and of
its real forms is as follows:

OC : :





n real forms

+ −
: :
+ −



k ∈ {0, . . . , n}

− +
: :
− +



 n− k

Consider GR = SOe(2p, 2q + 1) and KR = S(O(2p) × O(2q + 1)). The
complexification g = so2n+1 of GR, with n = p+ q and q ≥ p ≥ 1, is realized
as the following set of matrices

{



0 u v
−vt Z1 Z2

−ut Z3 −Zt
1


 | u, v ∈ Cn, Z1 n× n complex, Z2, Z3 skew-symmetric

}

A Cartan subalgebra in g consists of diagonal complex matrices of the form
diag(0, a1, a2, · · · , an,−a1,−a2, · · · ,−an) (first row and column of zeros). Fix
the standard system of positive roots {ǫi ± ǫj | 2 ≤ i < j ≤ n + 1} ∪ {ǫk |
2 ≤ k ≤ n + 1}. There is an explicit recipe which attaches an sl2-triple
to a complex nilpotent orbit (see [CM, 5.2.4]). We apply this recipe to the
nilpotent orbitOC = O[3,22p−2,12(q−p+1)], using the following chunks : {3}, p−1
{2; 2}’s and q − p+ 1 {1; 1}’s. We obtain (viewing so2n+1 as a subalgebra of
sl2n+1)

h := diag(0, 2, 1, 1, · · · , 1︸ ︷︷ ︸
2p−2

, 0, 0, · · · , 0︸ ︷︷ ︸
2(q−p+1)

,−1,−1, · · · ,−1︸ ︷︷ ︸
2p−2

,−2)

which we will simply write (dropping the first zero coordinate and shifting
indices of ǫi’s)

h = (2, 1, 1, · · · , 1︸ ︷︷ ︸
2p−2

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

along with the weighted Dynkin diagram
1
◦

ǫ1−ǫ2

0
◦

ǫ2−ǫ3
· · · · · ·

1
◦

ǫ2p−ǫ2p+1

0
◦

ǫ2p+1−ǫ2p+2

· · · · · ·
0
◦

ǫp+q−1−ǫp+q

> >
0
◦

ǫp+q
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The nilpotent orbit OC possesses 2 or 3 real forms depending wether q > p−1
or not. The description in terms of Young tableaux of the complex orbit OC

and of its real forms is given below. The recipe to produce the real h’s from
the signed tableau can be stated as follows: the first row of length 3 gives
a 2 in the first p coordinates if the row starts with a ”+” and a 2 in the
p + 1 coordinate if it starts with a ”-”. For the rows of length two, a ”+”
(resp. ”-”) sign in the leftmost box provides +1 in the first p coordinates
(resp. in the second group of coordinates p+1, · · · ); a ”+” (resp. ”-”) sign in
the rightmost box provides −1 in the first p coordinates (resp. in the second
group of coordinates p+ 1, · · · ). In particular, we get

hI
1 = (2, 1, 1, · · · , 1︸ ︷︷ ︸

p−1

, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

hII
1 = (2, 1, 1, · · · ,−1︸ ︷︷ ︸

p−1

, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

h2 = (1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 2, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

) only if q > p− 1

hII
1 is obtained from hI

1 by the outer automorphism ǫp−1 + ǫp ←→ ǫp−1 − ǫp:

◦
ǫ1−ǫ2

◦
ǫ2−ǫ3

· · · ◦�
◦ ǫp−1+ǫp

�◦ ǫp−1−ǫp

The description of the orbit OC and its real forms in terms of Young tableaux
is as follows:

OC : :



2p− 2

:



2(q − p+ 1)

+ − +

real forms for OC

+ −
: :
+ −



2p− 2 I, II

−
:
−



2(q − p+ 1)

− + −
+ −
: :
+ −



2p− 2 only if q > p− 1

+
−
:
−



2(q − p) + 1
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Consider GR = SOe(2p, 2q) and KR = SO(2p) × SO(2q). The complex-
ification g = so2n of GR, with n = p + q and q ≥ p ≥ 1, is realized as the
following set of matrices

{(
Z1 Z2

Z3 −Zt
1

)
| Zi n× n complex matrices, Z2, Z3 skew-symmetric

}

A Cartan subalgebra in g consists of diagonal complex matrices of the form
diag(a1, a2, · · · , an,−a1,−a2, · · · ,−an). Fix the standard system of positive
roots {ǫi ± ǫj | 1 ≤ i < j ≤ n}. There is an explicit recipe which attaches an
sl2-triple to a complex nilpotent orbit (see [CM, 5.2.6]). We apply this recipe
to the nilpotent orbit OC = O[3,22p−2,12(q−p)+1], using the following chunks :

{3; 1}, p−1 {2; 2}’s and q−p {1; 1}’s. We obtain (viewing so2n as a subalgebra
of sl2n)

h := diag(2, 1, 1, · · · , 1︸ ︷︷ ︸
2p−2

, 0, 0, · · · , 0︸ ︷︷ ︸
2(q−p+1)

,−1,−1, · · · ,−1︸ ︷︷ ︸
2p−2

,−2)

which we will simply write

h = (2, 1, 1, · · · , 1︸ ︷︷ ︸
2p−2

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

along with the weighted Dynkin diagram

ǫ1−ǫ2
◦
2

◦
0

· · ·
ǫ2p−1−ǫ2p
◦
1

ǫ2p−ǫ2p+1

◦
0

· · · ◦
0

◦ 0 ǫp+q−1−ǫp+q

◦
0

The nilpotent orbit OC possesses 3 or 4 real forms depending whether
q > p or not. Using a recipe analogous to the one used for type B, we get

hI
1 = (2, 1, 1, · · · , 1︸ ︷︷ ︸

p−1

, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

hII
1 = (2, 1, 1, · · · ,−1︸ ︷︷ ︸

p−1

, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

hI
2 = (1, 1, · · · , 1︸ ︷︷ ︸

p−1

, 0, 2, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

)

hII
2 = (1, 1, · · · , 1︸ ︷︷ ︸

p−1

, 0, 2, 1, 1, · · · ,−1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

) only if q = p

As before, hII
i is obtained from hI

i by the outer automorphism:

◦
ǫ1−ǫ2

◦
ǫ2−ǫ3

· · · ◦�
◦ ǫp−1+ǫp

�◦ ǫp−1−ǫp
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The description of the complex orbit OC and its real forms in terms of Young
tableaux is as follows:

OC : :



2p− 2

:



2(q − p) + 1

+ − +

real forms for OC

+ −
: :
+ −



2p− 2 I, II

−
:
−



2(q − p) + 1

− + −
+ −
: :
+ −



2p− 2 (I, II if q = p) +

−
:
−



 q − p

Consider

GR = SO∗(2n) = SO(2n,C) ∩ gl(n,H),

KR = U(n) and g = so∗2n. For so2n, a Cartan subalgebra in g consists of di-
agonal complex matrices of the form diag(a1, a2, · · · , an,−a1,−a2, · · · ,−an).
Fix the standard system of positive roots {ǫi ± ǫj | 1 ≤ i < j ≤ n}. Using a
recipe analogous to that of type D, one can attach an sl2-triple to a complex
nilpotent orbit. We apply this recipe to the nilpotent orbit OC = O[2n] to
obtain (viewing so∗2n as a subalgebra of sl2n)

h := diag(1, 1, · · · , 1︸ ︷︷ ︸
n

,−1,−1, · · · ,−1︸ ︷︷ ︸
n

)

which we will simply write

h = (1, 1, · · · , 1︸ ︷︷ ︸
n

)

along with the weighted Dynkin diagram

ǫ1−ǫ2
◦
0

◦
0

· · · · · · ◦
0

◦ 0 ǫn−1−ǫn

◦
2

The nilpotent orbit OC possesses n
2 + 1 real forms if n is even, and n+1

2
real forms otherwise. Using a recipe analogous to the one used for type D,
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we get

hk = (1, 1, · · · , 1︸ ︷︷ ︸
2k

,−1,−1, · · · ,−1︸ ︷︷ ︸
n−2k

) for n even, and k = 0, · · · ,
n

2
,

hk = (1, 1, · · · , 1︸ ︷︷ ︸
2k

, 0,−1,−1, · · · ,−1︸ ︷︷ ︸
n−2k−1

) for n odd, and k = 0, · · · ,
n− 1

2
.

Finally, the description of the complex orbit OC and its real forms in terms
of Young tableaux is as follows:

n even:

OC : :





n real forms

+ −
: :
+ −



k ∈ {0, . . . , n

2 }

− +
: :
− +





n
2 − k

n odd:

OC : :



n− 1

}
2

real forms
+ −
: :
+ −



k ∈ {0, . . . , n−1

2 }

− +
: :
− +





n−1
2 − k

+

3. Some general facts

Let Oi be a real form of the orbit OC, and denote the corresponding
semisimple element of the (normal) sl(2)-triple by h ∈ h. As in [MPVZ],
we attach to h the θ-stable parabolic subalgebra q = l ⊕ u such that l is
the centralizer of h in g, and u is the sum of negative eigenspaces for adh
on g. We fix a choice of ∆+ = ∆+(g, h); in examples, this will always be
the standard positive root system. This defines a choice ∆+

c = ∆+(k, h) =
∆(k, h) ∩ ∆+ of positive compact roots. Let ∆+

n := ∆+ \ ∆+
c be the set of

positive noncompact roots. Denote by ρc (resp. ρn) half the sum of positive
compact (resp. noncompact) roots. The Weyl dimension polynomial

(3.1) PK(λ) =
∏

α∈∆+
c

〈λ, α〉

〈ρc, α〉
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will always be defined with respect to this fixed positive root system ∆+
c . If

A is a subset of ∆(g, h), write ρ(A) for half the sum of the roots in A.
We choose ∆+(l) compatibly with ∆+, i.e., ∆+(l) = ∆(l) ∩ ∆+. This

also gives a choice for positive roots of l ∩ k, and fixes the Weyl dimension
polynomial PL∩K . Denote by ∆+

n (l) the set of noncompact roots in ∆+(l),
and by ∆(p1) the set of noncompact roots that are 1 on h.

The constant c = ci we are going to compute is attached to Oi as in
[MPVZ]. It is defined by equation [MPVZ, (6.4)]; this is up to sign the same
equation as [MPVZ, (5.9)], but the sign is made precise using [MPVZ, Remark
3.8, equation (6.1)], and the discussion around (6.1). The equation is

(3.2) (−1)N
∑

A⊆∆+
n (l)

C⊆∆(p1)

(−1)#A+#CPK(λ−ρn(l)+2ρ(A)−2ρ(C)) = cPL∩K(λ),

where

(3.3) N = #{α ∈ ∆+
∣∣α(h) > 0}.

The computations we are going to make will be easier if equation (3.2) is
turned into an analogue of equation [MPVZ, (6.5)]:

Proposition 3.1. Assume that ρn(l) is orthogonal to all roots of l ∩ k.
Then

(3.4) (−1)N+#∆+
n (l)

∑

A⊆∆+
n (l)

C⊆∆(p1)

(−1)#A+#CPK(λ−2ρ(A)−2ρ(C)) = cPL∩K(λ).

Proof. This follows by passing from summation over A to summation
over the complement of A in ∆+

n (l). For any A ⊆ ∆+
n (l),

−ρn(l) + 2ρ(A) = ρn(l)− 2ρ(∆+
n (l) \A)

and

(−1)#A = (−1)#∆+
n (l)(−1)#(∆+

n (l)\A),

so (3.2) can be rewritten as

(−1)N+#∆+
n (l)

∑

A⊆∆+
n (l)

C⊆∆(p1)

(−1)#A+#CPK(λ+ρn(l)−2ρ(A)−2ρ(C)) = cPL∩K(λ).

We now replace λ by λ− ρn(l); since ρn(l) is orthogonal to the roots of l ∩ k,
PL∩K(λ− ρn(l)) = PL∩K(λ), and the statement follows.

In each of the examples we will consider, one can check directly that
indeed ρn(l) is orthogonal to all roots of l ∩ k, and hence we can compute
the constant c using (3.4). A little more systematic way of checking this
assumption, which will be easy to apply in all cases we consider, is given by
the following lemma.
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Lemma 3.2. Suppose that all simple factors of l0 are either compact or
noncompact Hermitian. Assume also that ∆+(l) (induced by ∆+) is Borel -
de Siebenthal for each noncompact factor of l. Then ρn(l) is orthogonal to all
roots of l ∩ k.

Proof. Since ρn of any compact factor is 0, it is enough to prove the
statement for each of the noncompact factors. Denote by d one of these
factors, and let d = c ⊕ s be its Cartan decomposition (so c = d ∩ k and
s = d ∩ p). Since d is Hermitian,

s = s+ ⊕ s−

as a c-module. If ∆+(d) is a Borel-de Siebenthal positive root system with
respect to a compact Cartan subalgebra of d, then ∆+

n (d) must be equal to
∆(s+) or ∆(s−), and we can assume ∆+

n (d) = ∆(s+). It follows that 2ρn(d)

is the weight of the one-dimensional c-module
∧top

s+, and so it must be
orthogonal to the roots of c.

Remark 3.3. If l has a simple noncompact factor that is not Hermitian,
and if ∆+(l) is any positive root system for l, then ρn(l) is not orthogonal
to all roots of l ∩ k. Indeed, if d = c ⊕ s is the Cartan decomposition of one
such factor, then c is semisimple and hence has no nontrivial one-dimensional
modules. So if ρn(d) were orthogonal to all roots of c, it would have to be 0,
but that is not possible since d is noncompact.

The following proposition will enable us to get our constants for some of
the real forms of OC without having to do computations.

Proposition 3.4. Let h1 and h2 correspond to two real forms of OC.
Assume that there is an automorphism σ of g such that

1. σ preserves the compact Cartan subalgebra h of g;
2. σ commutes with the Cartan involution, so it preserves k and p;
3. σ(∆+

c ) = ∆+
c ;

4. σ(h1) = h2.

Then the constants c1, c2 corresponding to h1, h2 are related by

c2 = (−1)n+N1+N2 c1,

where

n = #[∆+
n (l2) ∩ (−σ(∆+

n (l1)))] = #{α ∈ ∆+
n (l1)

∣∣ σα ∈ (−∆+)},

and N1, N2 are defined as in (3.3), i.e.,

Ni = #{α ∈ ∆+
∣∣α(hi) > 0}, i = 1, 2.

Proof. If li denotes the centralizer of hi in g, then it is clear that σ(l1) =
l2. Moreover, the conditions we put on σ ensure that PK ◦ σ = PK , and also
PL2∩K ◦ σ = PL1∩K .
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We let σ act on roots by

σ(α) = α ◦ σ−1.

Then it is clear that σ takes ∆(p1)1 (the set of noncompact roots that are 1 on
h1) to ∆(p1)2 (the set of noncompact roots that are 1 on h2). Furthermore,

σ takes ∆+
n (l1) to ∆̃+

n (l2), where ∆̃+
n (l2) is a positive root system for l2,

possibly different from ∆+
n (l2) which is defined using ∆+. It follows that

σ(ρn(l1)) = ρ̃n(l2), where ρ̃n(l2) is the half sum of roots in ∆̃+
n (l2).

Also, for any A ⊆ ∆+
n (l1), C ⊆ ∆(p1)1, we clearly have

2ρ(σ(A)) = σ(2ρ(A)), 2ρ(σ(C)) = σ(2ρ(C)).

Writing the equation (3.2) for c1, we get

(−1)N1

∑

A⊆∆+
n (l1)

C⊆∆(p1)1

(−1)#A+#CPK(λ− ρn(l1) + 2ρ(A)− 2ρ(C)) = c1PL1∩K(λ).

We now replace λ by σ−1(λ) and use the equalities PL1∩K ◦ σ−1 = PL2∩K ,
PK ◦ σ−1 = PK . We also replace summing over A and C by summing over
σ(A) and σ(C). We obtain
(3.5)

(−1)N1

∑

σ(A)⊆
˜
∆

+
n (l2)

σ(C)⊆∆(p1)2

(−1)#σ(A)+#σ(C)PK(λ− ρ̃n(l2) + 2ρ(σ(A)) − 2ρ(σ(C)))

= c1PL2∩K(λ).

We now want to pass from summing over σ(A) ⊆ ∆̃+
n (l2) to summing over

A′ ⊆ ∆+
n (l2). To do this, we define

∆1 = ∆+
n (l2) ∩ ∆̃+

n (l2); ∆2 = ∆+
n (l2) \∆1 = ∆+

n (l2) ∩ (−∆̃+
n (l2));

so

∆+
n (l2) = ∆1 ∪∆2; ∆̃+

n (l2) = ∆1 ∪ (−∆2).

It follows that for the half sums of roots ρn(l2), ρ̃n(l2) we have

(3.6) ρ̃n(l2) = ρn(l2)− 2ρ(∆2).

For any A′ ⊆ ∆+
n (l2), let

A′
1 = A′ ∩∆1; A′

2 = A′ ∩∆2;

so A′ = A′
1 ∪ A′

2. To each such A′ we attach

Ã = A′
1 ∪ (−(∆2 \A

′
2)) ⊆ ∆̃+

n (l2).
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Then the correspondence A′ ↔ Ã defines a bijection between the subsets of

∆+
n (l2) and the subsets of ∆̃+

n (l2). Using (3.6), we see that

2ρ(Ã)− ρ̃n(l2) = 2ρ(A′
1)− (2ρ(∆2)− 2ρ(A′

2))− (ρn(l2)− 2ρ(∆2)) =(3.7)

2ρ(A′
1) + 2ρ(A′

2)− ρn(l2) = 2ρ(A′)− ρn(l2).

It follows that we can rewrite (3.5) into a sum over A′ instead of a sum over

Ã = σ(A), taking into account that

(−1)#Ã = (−1)n(−1)#A′

,

with n as in the statement of the proposition. If we also rename A′ by A and
σ(C) by C, we get

(−1)N1+n
∑

A⊆∆+
n (l2)

C⊆∆(p1)2

(−1)#A+#CPK(λ− ρn(l2) + 2ρ(A)− 2ρ(C)) = c1PL∩K(λ).

If we compare this with the equation (3.2) written for c2, we immediately get
the statement of the proposition.

4. The case GR = SU(p, q), p ≤ q

This case was treated in [MPVZ] and we just record the results here. The
real forms of OC correspond to

(4.1) hk = (1, . . . , 1︸ ︷︷ ︸
k

, −1, . . . ,−1︸ ︷︷ ︸
p−k

| 1, . . . , 1︸ ︷︷ ︸
p−k

, 0, . . . , 0︸ ︷︷ ︸
q−p

, −1, . . . ,−1︸ ︷︷ ︸
k

),

with k = 0, 1, . . . , p. The corresponding constants c = cp,qk can be computed
from the formula (3.4).

The set ∆+
n (l) is

∆+
n (l) = {εi − εj

∣∣ 1 ≤ i ≤ k, p+ 1 ≤ j ≤ 2p− k}∪

∪ {εi − εj
∣∣ k + 1 ≤ i ≤ p, p+ q − k + 1 ≤ j ≤ p+ q}.

The set ∆(p1) is empty if q = p, and if q > p, then

∆(p1) = {εi − εj
∣∣ 1 ≤ i ≤ k, 2p− k + 1 ≤ j ≤ p+ q − k}∪

∪ {εi − εj
∣∣ 2p− k + 1 ≤ i ≤ p+ q − k, k + 1 ≤ j ≤ p}.

We evaluate (3.4) at λ = λ0, where

λ0 =(q, q − 1, . . . , q − k + 1, p, p− 1, . . . , k + 1

| p− k, . . . , 1, q − k, . . . , p− k + 1, k, . . . , 1).

For each choice of A ⊆ ∆+
n (l) and C ⊆ ∆(p1), we set

Λ = λ0 − 2ρ(A)− 2ρ(C).
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For q > p, we show that there is exactly one C ⊆ ∆(p1) for which PK(Λ) can
be nonzero:

C = {εi − εj
∣∣ 1 ≤ i ≤ k; 2p− k + 1 ≤ j ≤ p+ q − k},

with #C = k(q − p).
Then we show that all Λ as above, with PK(Λ) 6= 0, are of the form

Λ = (i1, . . . , ik; j1, . . . , jp−k | j1, . . . , jp−k; q, . . . , p+ 1; i1, . . . , ik),

with i1, . . . , ik; j1, . . . , jp−k a shuffle of p, . . . , 1, i.e.,

i1 > · · · > ik; j1 > · · · > jp−k; {i1, . . . , ik; j1, . . . , jp−k} = {p, . . . , 1}.

For each such Λ there is a unique corresponding A, consisting of roots αa,b,
1 ≤ a ≤ k, 1 ≤ b ≤ p− k, where

αa,b =

{
εa − εp+b, if ia < jb;

εk+a − εp+q−k+b, if ia > jb.

In particular, for each A involved, #A = k(p− k).
This leads to the following result.

Theorem 4.1. Let GR = SU(p, q), and let k ∈ {0, 1, . . . , p} correspond
to the real form of OC given by (4.1). Then cp,qk = (−1)k(p+q−k)

(
p
k

)
.

5. The case GR = SOe(2p, 2q + 1), q ≥ p− 1 ≥ 0

There are three real forms of OC if q ≥ p ≥ 1, and two real forms if
q = p− 1.

5.1. The first real form. This real form exists for all q ≥ p− 1 ≥ 0. The
corresponding h is

h1 = (2, 1, . . . , 1︸ ︷︷ ︸
p−1

| 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p+1

).

Since l = l1 is built from roots that vanish on h1, we see that

∆+
n (l) = {εi − εj

∣∣ 2 ≤ i ≤ p, p+ 1 ≤ j ≤ 2p− 1}.

It follows that for any A ⊆ ∆+
n (l),

(5.1) 2ρ(A) = (0; a1, . . . , ap−1 | − b1, . . . ,−bp−1; 0, . . . , 0),

with

(5.2) 0 ≤ ai, bj ≤ p− 1;
∑

i ai =
∑

j bj.

Furthermore, recall that ∆(p1) consists of noncompact roots that are 1 on h1.
So

∆(p1) = {ε1 − εj
∣∣ p+ 1 ≤ j ≤ 2p− 1}∪

∪ {εi ± εj
∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q} ∪ {εi

∣∣ 2 ≤ i ≤ p}.
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It follows that for any C ⊆ ∆(p1),

(5.3) 2ρ(C) = (c; d1, . . . , dp−1 | − c1, . . . ,−cp−1; e1, . . . , eq−p+1),

with

0 ≤ cj ≤ 1; 0 ≤ c ≤ p− 1; c =
∑

j cj ;(5.4)

0 ≤ di ≤ 2(q − p+ 1) + 1; −(p− 1) ≤ ej ≤ p− 1.

Note that for q = p− 1, there are no coordinates after 2p− 1, so there are no
zeros at the end of 2ρ(A), and there are no ej . Otherwise, all of the above
holds in this special case.

By (5.1),

ρn(l) = (0, p− 1, . . . , p− 1 | − p+ 1, . . . ,−p+ 1, 0, . . . , 0).

This is clearly orthogonal to all roots of l ∩ k, which are equal to

∆(l ∩ k) = {εi − εj
∣∣ 2 ≤ i, j ≤ p} ∪ {εi − εj

∣∣ p+ 1 ≤ i, j ≤ 2p− 1}∪(5.5)

∪{εi ± εj
∣∣ 2p ≤ i, j ≤ p+ q}.

By Proposition 3.1, this means that we can determine the constant c = cp,q1

from the equation (3.4). To do this, we take λ = λ0, where

λ0 = (
1

2
; q +

1

2
, q −

1

2
. . . , q − p+

5

2
|

(5.6)

| − 1,−2, . . . ,−(p− 1); q − p+ 1, q − p, . . . , 1) if q ≥ p ≥ 2;

λ0 = (
1

2
| q, q − 1, . . . , 1) if p = 1, q ≥ 1;

λ0 = (
1

2
; p−

1

2
, p−

3

2
. . . ,

3

2
| − 1,−2, . . . ,−(p− 1)) if p ≥ 2, q = p− 1;

λ0 = (
1

2
| ) if p = 1, q = 0.

Proposition 5.1. Let Λ = λ0 − 2ρ(A) − 2ρ(C), with λ0 given by (5.6),
and with A ⊆ ∆+

n (l) and C ⊆ ∆(p1). If PK(Λ) 6= 0, then:

1. If p = 1, then A = C = ∅ and Λ = λ0.
2. If p ≥ 2 and q = p− 1, then A = C = ∅ and Λ = λ0.
3. If q ≥ p ≥ 2, then

A = ∅;

C = {εi − εj
∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q};

Λ = (
1

2
; p−

1

2
, p−

3

2
, . . . ,

3

2
| − 1,−2, . . . ,−(p− 1); q, q − 1, . . . , p).

Proof. We first note that if p = 1, then

h1 = (2 | 0, . . . , 0) or h1 = (2),
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so ∆+
n (l) = ∆(p1) = ∅ and both A and C are automatically empty. It follows

that the only possible Λ is Λ = λ0, and this proves the proposition for p = 1.
We continue by induction on p. Let us assume that p ≥ 2, that q ≥ p− 1 is
arbitrary, and that the statement of the proposition is true for GR = SOe(2p−
2, 2p− 3), i.e., when p, q are replaced by p′ = p− 1, and q′ = p− 2.

By (5.6), (5.1) and (5.3), we have

Λ = (12 − c; q + 1
2 − a1 − d1, q −

1
2 − a2 − d2, . . . , q − p+ 5

2 − ap−1 − dp−1 |

| − 1 + b1 + c1,−2 + b2 + c2, . . . ,−(p− 1) + bp−1 + cp−1;(5.7)

q − p+ 1− e1, q − p− e2, . . . , 1− eq−p+1)

(the third row of the above equation is not there if q = p− 1).
Using (5.2) and (5.4), we see that the coordinates Λp+1, . . . ,Λp+q are in

the following intervals:

Λ = (. . . | −1 + b1 + c1︸ ︷︷ ︸
[−1,p−1]

,−2 + b2 + c2︸ ︷︷ ︸
[−2,p−2]

, . . . ,−(p− 1) + bp−1 + cp−1︸ ︷︷ ︸
[−(p−1),1]

;

q − p+ 1− e1︸ ︷︷ ︸
[q−2p+2,q]

, q − p− e2︸ ︷︷ ︸
[q−2p+1,q−1]

, . . . , 1− eq−p+1︸ ︷︷ ︸
[−(p−2),p]

)

(the second row of the above equation is not there if q = p− 1).
So Λp+1, . . . ,Λp+q are q integers between −(p − 1) and q. Moreover,

PK(Λ) 6= 0 implies that these integers are nonzero, different from each other,
and no two of them are opposite integers. If q ≥ p, it follows that q, q−1, . . . , p
must each be equal to some Λi, and the only possibility for that is

Λ2p = q, Λ2p+1 = q − 1, . . . , Λp+q = p.

So e1, . . . , eq−p+1 are all equal to −(p− 1), and hence

εi − εj ∈ C, εi + εj /∈ C, 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q

(if q = p− 1, the above says nothing and should be skipped).
This implies

(5.8) q − p+ 1 ≤ di ≤ q − p+ 2, 1 ≤ i ≤ p− 1,

with di = q − p+ 1 if εi+1 /∈ C, and di = q − p+ 2 if εi+1 ∈ C. (If q = p− 1,
this gives no new information about the di. The following arguments all work
also in case q = p−1 if we delete the last group of coordinates, q, q−1, . . . , p.)

Using (5.8) together with the inequalities (5.2), (5.4) for ai and c, we go
back to (5.7) and conclude that Λ1, . . . ,Λp are in the following intervals:

Λ = ( 1
2
− c

︸ ︷︷ ︸

[−p+ 3
2
, 1
2
]

; q + 1
2
− a1 − d1

︸ ︷︷ ︸

[− 1
2
,p− 1

2
]

, q − 1
2
− a2 − d2

︸ ︷︷ ︸

[− 3
2
,p− 3

2
]

, . . . , q − p+ 5
2
− ap−1 − dp−1

︸ ︷︷ ︸

[−p+ 3
2
, 3
2
]

| . . . )

So Λ1, . . . ,Λp are p half-integers between−p+
3
2 and p− 1

2 . Moreover, PK(Λ) 6=
0 implies that these half-integers are different from each other, and no two of
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them are opposite. It follows that one of them must be equal to p − 1
2 , and

the only possibility is

Λ2 = p−
1

2
.

So a1 = 0 and d1 = q − p+ 1. It follows that

ε2 − εj /∈ A, p+ 1 ≤ j ≤ 2p− 1;

ε2 /∈ C,

and hence

0 ≤ bj ≤ p− 2, 1 ≤ j ≤ p− 1.

These improved inequalities for the bj together with inequalities (5.4) for the
cj imply

Λ =(. . . | −1 + b1 + c1︸ ︷︷ ︸
[−1,p−2]

,−2 + b2 + c2︸ ︷︷ ︸
[−2,p−3]

, . . . ,−(p− 1) + bp−1 + cp−1︸ ︷︷ ︸
[−(p−1),0]

;

q, q − 1, . . . , p).

Since Λp+1, . . . ,Λ2p−1 are p− 1 nonzero integers between −(p− 1) and p− 2,
with no two of them equal or opposite to each other, we conclude that

Λ2p−1 = −(p− 1).

This implies

bp−1 = cp−1 = 0,

and hence

εi − ε2p−1 /∈ A, 2 ≤ i ≤ p;

ε1 − ε2p−1 /∈ C,

and

0 ≤ ai ≤ p− 2, 2 ≤ i ≤ p− 1;

0 ≤ c ≤ p− 2.

We see that

Λ = (12 − c; p− 1
2 , q −

1
2 − a2 − d2, . . . , q − p+ 5

2 − ap−1 − dp−1 |

| − 1 + b1 + c1, . . . ,−(p− 2) + bp−2 + cp−2,−(p− 1);

q, q − 1, . . . , p)

(the third row is not there if q = p− 1).
We now consider the subalgebra g′ ∼= so(2p − 2, 2p − 3) of g built on

coordinates

ε1, ε3, . . . , εp; εp+1, . . . , ε2p−2,
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so the coordinates 2 and 2p − 1, 2p, . . . , p + q are deleted. We also consider
the real form of OK′ given by

h′
1 = (2, 1, . . . , 1︸ ︷︷ ︸

p−2

| 1, . . . , 1︸ ︷︷ ︸
p−2

),

with centralizer l′ = l ∩ g′. Then

∆+
n (l

′) = ∆+
n (l) \ {εi − εj

∣∣ i = 2 or j = 2p− 1};

∆(p′1) = {ε1 − εp+1, . . . , ε1 − ε2p−2; ε3, . . . , εp}.

We set

A′ = A ∩∆+
n (l

′) = A;

C′ = C ∩∆(p′1) = C \ {εi − εj
∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q}.

Then

2ρ(A′) = (0; a2, . . . , ap−1 | − b1, . . . ,−bp−2)

= (0; a′1, . . . , a
′
p−2 | − b′1, . . . ,−b

′
p−2);

2ρ(C′) = (c; d2 − (q − p+ 1), . . . , dp−1 − (q − p+ 1) | − c1, . . . ,−cp−2)

= (c′; d′1, . . . , d
′
p−1 | − c′1, . . . ,−c

′
p−2),

where we define

a′i = ai+1; b′i = bi; c′i = ci; c′ = c; d′i = di+1 − (q − p+ 1).

The numbers a′i, b
′
i, c

′
i, c

′, d′i satisfy analogues of (5.2) and (5.4). We define λ′
0

by (5.6), but for GR = SOe(2p− 2, 2p− 3), i.e.,

λ′
0 = (

1

2
; p−

3

2
, . . . ,

3

2
| − 1,−2, . . . ,−(p− 2)).

Then A′, C′ and

Λ′ = λ′
0 − 2ρ(A′)− 2ρ(C′)

satisfy all conditions of the proposition, but p, q are reduced to p′ = p − 1,
q′ = p − 2. Moreover, PK(Λ) 6= 0 is equivalent to PK′(Λ′) 6= 0. Therefore
the inductive assumption implies that A′ = C′ = ∅, and that Λ′ = λ′

0. This
implies the statement of the proposition for A, C and Λ.

To compute the constant cp,q1 , we have to compute PL∩K(λ0) where λ0

is given by (5.6), and PK(Λ) for Λ determined in Proposition 5.1. The main
ingredients for this computation are given in the following lemma.

Lemma 5.2. (i) Let P 1
p be the Weyl dimension formula polynomial for

so(2p), p ≥ 1, and let λp = (p− 1
2 , p−

3
2 , . . . ,

1
2 ). Then

P 1
p (λp) = 2p−1.
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(ii) Let P 2
q be the Weyl dimension formula polynomial for so(2q + 1), q ≥ 1,

and let P 2
0 be the constant polynomial 1. Furthermore, let µq = (q, q−1, . . . , 1)

if q ≥ 1, and µ0 = 0. Then

P 2
q (µq) = 2q.

Proof. (i) Let n1
p be the numerator of P 1

p ; the denominator is then

d1p = n1
p(ρso(2p)) = n1

p(p− 1, p− 2, . . . , 1, 0).

The factors of n1
p(λp) that correspond to the roots εi − εj clearly cancel

with the corresponding factors of d1p. Denoting by m1
p(λp) respectively e1p the

product of factors of n1
p(λp) respectively d1p corresponding to the roots εi+εj,

we have

m1
p(λp) = (2p− 2)(2p− 3) . . . (p+ 1)pm1

p−1(λp−1);

e1p = (2p− 3)(2p− 4) . . . p(p− 1) e1p−1.

It follows that

P 1
p (λp) =

m1
p(λp)

e1p
=

(2p− 2)m1
p−1(λp−1)

(p− 1)e1p−1

= 2P 1
p−1(λp−1).

Since P 1
1 is the constant polynomial 1, this proves (i).

(ii) There is nothing to prove for q = 0, and it is obvious that

P 2
1 (µ1) =

1

1/2
= 2.

For q ≥ 2, let n2
q be the numerator of P 2

q ; the denominator is then

d2q = n2
q(ρso(2q+1)) = n2

q(q −
1

2
, q −

3

2
, . . . ,

3

2
,
1

2
).

The factors of n2
q(µq) that correspond to the roots εi − εj clearly cancel with

the corresponding factors of d2q . Denoting by m2
q(µq) respectively e2q the prod-

uct of factors of n2
q(µq) respectively d2q corresponding to the roots εi + εj and

εi, we have

m2
q(µq) = (2q − 1)(2q − 2) . . . (q + 2)(q + 1)q m2

q−1(µq−1);

e2q = (2q − 2)(2q − 3) . . . (q + 1)q(q −
1

2
) e2q−1.

It follows that

P 2
q (µq) =

m2
q(µq)

e2q
=

(2q − 1)m2
q−1(µq−1)

(q − 1
2 )e

2
q−1

= 2P 2
q−1(µq−1).

The statement now follows by induction.
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To compute PL∩K(λ0), we recall (5.5), which shows that l∩k is up to center
typically a product of three factors: the u(p− 1) on coordinates 2, . . . , p, the
u(p − 1) on coordinates p + 1, . . . , 2p − 1, and the so(2(q − p + 1) + 1) on
coordinates 2p, . . . , p + q. (If p = 1, then the first two factors are missing, if
q = p− 1 then the third factor is missing, and if p = 1 and q = 0, then l∩ k is
one-dimensional. What we say below applies also to these cases with obvious
modifications.)

It is clear from the definition (5.6) of λ0 that for each of the first two
factors, the corresponding coordinates of λ0 differ from the ρ of the factor by
a weight orthogonal to the roots of the factor, so in the notation of Lemma
5.2,

(5.9) PL∩K(λ0) = P 2
q−p+1(µq−p+1) = 2q−p+1.

To compute PK(Λ), we first write Λ = (ΛL |ΛR) and note that

PK(Λ) = P 1
p (ΛL)P

2
q (ΛR).

To use Lemma 5.2, we have to rearrange coordinates of ΛL and ΛR, and use
the fact that P 1

p is skew for the Weyl group of so(2p), while P 2
q is skew for

the Weyl group of so(2q + 1). To rearrange ΛL to λp, we only need to bring
the 1

2 from the first coordinate to the p-th coordinate, and hence

(5.10) P 1
p (ΛL) = (−1)p−12p−1.

To bring ΛR to µq = (q, . . . , 1), we need to change p− 1 signs, and then bring
coordinates p−1, p−2, . . . , 1, in that order, all the way to the right. The sign
produced in this way is

(−1)(p−1)+(q−p+1)+(q−p+2)+···+(q−1) = (−1)(p−1)(q−p+1)+ (p−1)p
2 .

Since

(5.11)
(p− 1)p

2
≡ [

p

2
] mod 2,

Lemma 5.2 implies that

(5.12) P 2
q (ΛR) = (−1)(p−1)(q−p+1)+[ p2 ]2q.

Now we substitute (5.9), (5.10) and (5.12) into (3.4). Since

#A+#C = #C = (p− 1)(q − p+ 1),

and since N from (3.3) is easily checked to satisfy

(5.13) N ≡ p mod 2,

we see that the total sign is (−1)[
p
2 ]+1, and we conclude the following result.

Theorem 5.3. Let GR = SOe(2p, 2q + 1), q ≥ p− 1 ≥ 0, and let cp,q1 be
the constant corresponding to the first real form of OC. Then

cp,q1 = (−1)[
p
2 ]+122p−2.
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5.2. The second real form. This real form exists for all q ≥ p − 1 ≥ 0.
The corresponding h is

h2 = (2, 1, . . . , 1︸ ︷︷ ︸
p−2

,−1 | 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p+1

).

This real form is conjugate to the first real form by the automorphism σ = sεp ,
the reflection with respect to the short noncompact root εp. The automor-
phism σ of g clearly satisfies the conditions of Proposition 3.4. Moreover, the
number n from Proposition 3.4 is p − 1; the roots from ∆+

n (l1) that σ sends
to −∆+ are

εp − εj , p+ 1 ≤ j ≤ 2p− 1.

Moreover, by (5.13), N1 ≡ p mod 2, and another short computation shows
that N2 is always even. The total sign in Proposition 3.4 is thus

(−1)n+N1+N2 = −1,

so

(5.14) cp,q2 = −cp,q1 = (−1)[
p
2 ]22p−2.

5.3. The third real form. This real form exists for q ≥ p ≥ 1, so we assume
this condition in the following. The corresponding h is

h3 = (1, . . . , 1︸ ︷︷ ︸
p−1

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p

).

Since l = l3 is built from roots that vanish on h3, we see that

∆+
n (l) = {εi − εj

∣∣ 1 ≤ i ≤ p− 1, p+ 2 ≤ j ≤ 2p}

∪ {εp ± εj
∣∣ 2p+ 1 ≤ j ≤ p+ q} ∪ {εp}.

It follows that for any A ⊆ ∆+
n (l),

(5.15) 2ρ(A) = (a1, . . . , ap−1;x | 0;−b1, . . . ,−bp−1; y1, . . . , yq−p),

with

(5.16)
0 ≤ ai, bj ≤ p− 1;

∑
i ai =

∑
j bj ;

0 ≤ x ≤ 2(q − p) + 1; −1 ≤ yj ≤ 1.

Furthermore, recall that ∆(p1) consists of noncompact roots that are 1 on h3.
So

∆(p1) = {εi ± εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q} ∪ {εi

∣∣ 1 ≤ i ≤ p− 1}

∪ {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p} ∪ {εp+1 − εi

∣∣ 1 ≤ i ≤ p− 1}.

It follows that for any C ⊆ ∆(p1),

(5.17) 2ρ(C) = (c1, . . . , cp−1;u | v; d1, . . . , dp−1; e1, . . . , eq−p),
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with

(5.18)
− 1 ≤ ci ≤ 2(q − p) + 1; −(p− 1) ≤ u ≤ p− 1;

0 ≤ v ≤ p− 1; 0 ≤ dj ≤ 2; −(p− 1) ≤ ej ≤ p− 1.

If we write (5.15) for A = ∆+
n (l), we get

ρn(l) = (p− 1, . . . , p− 1; 2(q − p) + 1 | 0;−p+ 1, . . . ,−p+ 1; 0, . . . , 0).

This is clearly orthogonal to all roots of l ∩ k, which are equal to

(5.19)
∆(l ∩ k) = {εi − εj

∣∣ 1 ≤ i, j ≤ p− 1} ∪ {εi − εj
∣∣ p+ 2 ≤ i, j ≤ 2p}

∪ {εi ± εj
∣∣ 2p+ 1 ≤ i, j ≤ p+ q} ∪ {ε2p+1, . . . , εp+q}.

By Proposition 3.1, this means that the constant c = cp,q3 satisfies (3.4)
for any λ, and we will compute cp,q3 by using this for λ = λ0, where

(5.20)
λ0 =(q −

3

2
, q −

5

2
. . . , q − p+

1

2
; q − p+

1

2
| p− 1; 0,−1, . . . ,−(p− 2); q − p, q − p− 1, . . . , 1)

(out of the 5 groups of coordinates separated by semicolons and the bar, the
first and the fourth group are missing if p = 1, and the fifth group is missing
if q = p).

Proposition 5.4. Let Λ = λ0 − 2ρ(A)− 2ρ(C), with λ0 given by (5.20),
and with A ⊆ ∆+

n (l) and C ⊆ ∆(p1). Then Λp+1 = 0. In particular, PK(Λ) =
0.

Proof. By (5.20), (5.15) and (5.17), we have

Λ = (q − 3
2 − a1 − c1, . . . , q − p+ 1

2 − ap−1 − cp−1; q − p+ 1
2 − x− u |

| p− 1− v; b1 − d1,−1 + b2 − d2, . . . ,−(p− 2) + bp−1 − dp−1;

q − p− y1 − e1, q − p− 1− y2 − e2, . . . , 1− yq−p − eq−p).

If p = 1, then the situation is much simpler; in particular, since the coordinates
of h3 are 0 or 2, ∆(p1) is empty, so C = ∅ and 2ρ(C) = 0. It follows that
Λp+1 = Λ2 = p− 1 = 0, and so PK(Λ) = 0 as claimed.

So the proposition is true for p = 1. We continue by induction on p. Let
us assume that p ≥ 2, that q ≥ p is arbitrary, and that the statement of the
proposition is true for GR = SOe(2p− 2, 2p− 1), i.e., when p, q are replaced
by p′ = p− 1, q′ = p− 1.
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By (5.20), (5.16) and (5.18), the coordinates Λp+1, . . . ,Λp+q are in the
following intervals:

Λ = (. . . | p− 1− v︸ ︷︷ ︸
[0,p−1]

; b1 − d1︸ ︷︷ ︸
[−2,p−1]

,−1 + b2 − d2︸ ︷︷ ︸
[−3,p−2]

, . . . ,−(p− 2) + bp−1 − dp−1︸ ︷︷ ︸
[−p,1]

;

(5.21)

q − p− y1 − e1︸ ︷︷ ︸
[q−2p,q]

, q − p− 1− y2 − e2︸ ︷︷ ︸
[q−2p−1,q−1]

, . . . , 1− yq−p − eq−p︸ ︷︷ ︸
[−(p−1),p+1]

).

So Λp+1, . . . ,Λp+q are q integers between −p and q. Moreover, PK(Λ) 6= 0
implies that these integers are nonzero, and no two of them are equal or
opposite to each other. It follows that q, q − 1, . . . , p+ 1 must each be equal
to some Λi, and the only possibility for that is

Λ2p+1 = q, Λ2p+2 = q − 1, . . . , Λp+q = p+ 1.

It follows that y1, . . . , yq−p are all equal to −1, and that e1, . . . , eq−p are all
equal to −(p− 1). So

εp − εj ∈ A, εp + εj /∈ A, 2p+ 1 ≤ j ≤ p+ q;

εi − εj ∈ C, εi + εj /∈ C, 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q.

This implies

q − p ≤ x ≤ q − p+ 1;(5.22)

q − p− 1 ≤ ci ≤ q − p+ 1, 1 ≤ i ≤ p− 1.

Note that x = q − p if εp /∈ A and x = q − p + 1 if εp ∈ A. Similarly,
ci = q − p− 1 if εp+1 − εi ∈ C, εi /∈ C; ci = q − p if εp+1 − εi ∈ C, εi ∈ C or
εp+1 − εi /∈ C, εi /∈ C; and ci = q − p+ 1 if εp+1 − εi /∈ C, εi ∈ C.

Using the same arguments as above, we can also conclude from (5.21)
that

Λ2p = −p.

This implies that bp−1 = 0 and dp−1 = 2. It follows that

εi − ε2p /∈ A, 1 ≤ i ≤ p− 1;

ε2p ± εp ∈ C,

so

(5.23)
0 ≤ ai ≤ p− 2, 1 ≤ i ≤ p− 1;

− (p− 2) ≤ u ≤ p− 2.
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Using the improved inequalities (5.22) and (5.23), we see that Λ1, . . . ,Λp are
in the following intervals:

Λ = (q − 3
2 − a1 − c1︸ ︷︷ ︸
[− 1

2 ,p−
1
2 ]

, q − 5
2 − a2 − c2︸ ︷︷ ︸
[− 3

2 ,p−
3
2 ]

, . . . , q − p+ 1
2 − ap−1 − cp−1︸ ︷︷ ︸

[−(p− 3
2 ),

3
2 ]

;

q − p+ 1
2 − x− u

︸ ︷︷ ︸
[−(p− 3

2 ),p−
3
2 ]

| . . .

So Λ1, . . . ,Λp are p half-integers between −(p − 3
2 ) and p − 1

2 , such that no
two of them are equal or opposite to each other. It follows that

Λ1 = p−
1

2
,

and consequently a1 = 0, c1 = q − p+ 1. Therefore,

ε1 − εj /∈ A, p+ 2 ≤ j ≤ 2p;

εp+1 − ε1 ∈ C, ε1 /∈ C,

and we conclude that

0 ≤ bj ≤ p− 2, 1 ≤ j ≤ p− 1;

1 ≤ v ≤ p− 1.

We see that

Λ = (p− 1
2 , q −

5
2 − a2 − c2, . . . , q − p+ 1

2 − ap−1 − cp−1; q − p+ 1
2 − x− u |

| p− 1− v; b1 − d1, . . . ,−(p− 3) + bp−2 − dp−2,−p;

q, q − 1, . . . , p+ 1)

(if q = p, the coordinates q, . . . , p + 1 are not there; if p = 2 there are no
coordinates involving ai, ci, bi or di).

We now consider the subalgebra g′ ∼= so(2p − 2, 2p − 1) of g built on
coordinates

ε2, ε3, . . . , εp; εp+1, . . . , ε2p−1,

so the coordinates 1 and 2p, 2p + 1, . . . , p + q are deleted. We also consider
the real form of OK′ given by

h′
3 = (1, . . . , 1︸ ︷︷ ︸

p−2

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−2

),

with centralizer l′ = l ∩ g′. Then

∆+
n (l

′) = {εi − εj
∣∣ 2 ≤ i ≤ p− 1, p+ 2 ≤ j ≤ 2p− 1} ∪ {εp};

∆(p′1) = {ε2, . . . , εp−1} ∪ {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p− 1}

∪ {εp+1 − εi
∣∣ 2 ≤ i ≤ p− 1}.
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We set

A′ = A ∩∆+
n (l

′) = A \ {εp − εj
∣∣ 2p+ 1 ≤ j ≤ p+ q};

C′ = C ∩∆(p′1)

= C \ {ε2p ± εp; εp+1 − ε1; εi − εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q}.

Then

2ρ(A′) = (a2, . . . , ap−1;x− (q − p) | 0;−b1, . . . ,−bp−2)

= (a′1, . . . , a
′
p−2;x

′ | 0;−b′1, . . . ,−b
′
p−2);

2ρ(C′) = (c2 − (q − p), . . . , cp−1 − (q − p);u | v − 1; d1, . . . , dp−2) =

= (c′1, . . . , c
′
p−2;u

′ | v′; d′1, . . . , d
′
p−2),

where we define

a′i = ai+1; x′ = x− (q − p); b′i = bi;

c′i = ci+1 − (q − p); u′ = u; v′ = v − 1; d′i = di.

The numbers a′i, x
′, b′i, c

′
i, u

′, v′, d′i satisfy analogues of (5.16) and (5.18).
We define λ′

0 by (5.20), but for GR = SOe(2p− 2, 2p− 1), i.e.,

λ′
0 = (p−

5

2
, p−

7

2
, . . . ,

1

2
;
1

2
; | p− 2; 0,−1, . . . ,−(p− 3)).

Then A′, C′ and

Λ′ = λ′
0 − 2ρ(A′)− 2ρ(C′)

satisfy all conditions of the proposition, but p, q are reduced to p′ = p − 1,
q′ = p − 1. Therefore the inductive assumption implies that Λ′

p = 0. So
v′ = p− 2, and therefore v = p− 1 and Λp+1 = 0. It follows that PK(Λ) = 0,
since Λ is orthogonal to the compact root εp+1.

Proposition 5.4 implies that the left hand side of (3.4) is 0 in this case.
On the other hand,

PL∩K(λ0) 6= 0

by (5.20) and (5.19). We conclude

Theorem 5.5. For GR = SOe(2p, 2q + 1), q ≥ p ≥ 1, the constant
corresponding to the third real form is

cp,q3 = 0.
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6. The case GR = Sp(2n,R), n ≥ 1

The real forms of OC correspond to integers p such that 0 ≤ p ≤ n. We
denote n− p by q. The h corresponding to p is

hp = (1, . . . , 1︸ ︷︷ ︸
p

, −1, . . . ,−1︸ ︷︷ ︸
q

), p = 0, 1, . . . , n.

Since l = lp is built from roots that vanish on hp, we see that

∆+
n (l) = {εi + εp+j

∣∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

It follows that for any A ⊆ ∆+
n (l),

(6.1) 2ρ(A) = (a1, . . . , ap | b1, . . . , bq),

with

0 ≤ ai ≤ q, 0 ≤ bj ≤ p,
∑

i ai =
∑

j bj.(6.2)

In particular,
ρn(l) = (q, . . . , q | p, . . . , p),

and this is clearly orthogonal to the roots of l ∩ k, which are given by

∆+(l ∩ k) = {εi − εj
∣∣ 1 ≤ i < j ≤ p} ∪ {εp+i − εp+j

∣∣ 1 ≤ i < j ≤ q}.

So the constants c = cnp can be calculated from (3.4). Since it is clear that in
our present case

∆(p1) = ∅,

(3.4) becomes

(6.3)
∑

A⊆∆+
n (l)

(−1)#APK(λ− 2ρ(A)) = cPL∩K(λ).

We take λ = λ0, where

(6.4) λ0 = (n, n− 1, . . . , q + 1 |n, n− 1, . . . , p+ 1),

(If p is 0 or n, then there is only one group of coordinates in the above
expression, and λ0 = (n, n− 1, . . . , 1).)

Since λ0 differs from ρl∩k by a weight orthogonal to all roots of l ∩ k,

PL∩K(λ0) = 1.

So to compute cnp we have to compute the left side of (6.3). The following
proposition describes the relevant A and the corresponding Λ.

Proposition 6.1. Let Λ = λ0 − 2ρ(A), with λ0 given by (6.4), and with
A ⊆ ∆+

n (l).

(i) If p and q are both odd, then PK(Λ) = 0 for all Λ as above.
(ii) Suppose that at least one of p, q is even, and suppose that for some A

the corresponding Λ satisfies PK(Λ) 6= 0. Then:
1. If p = 0 or q = 0, then A = ∅ and Λ = λ0 = (n, n− 1, . . . , 1).
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2. If 0 < p < n, let r = [p2 ] and s = [ q2 ]. Then there is a shuffle

1 ≤ i1 < · · · < ir ≤ r + s; 1 ≤ j1 < · · · < js ≤ r + s

of 1, 2, . . . , r + s such that

A = {αu,v, βu,v

∣∣ 1 ≤ u ≤ r, 1 ≤ v ≤ s} ∪B,

where

αu,v = εp+1−u + εn+1−v; βu,v =

{
εp+1−u + εp+v, iu < jv;
εu + εn+1−v, iu > jv.

and

B =





∅, p, q even;
{εr+1 + εp+j | s+ 1 ≤ j ≤ q}, p odd;
{εi + εp+s+1 | r + 1 ≤ i ≤ p}, q odd.

The corresponding Λ has coordinates

Λ1 = n+ 1− i1, . . . ,Λr = n+ 1− ir; Λp−r+1 = ir, . . . ,Λp = i1;

Λp+1 = n+ 1− j1, . . . ,Λp+s = n+ 1− js; Λn−s+1 = js, . . . ,Λn = j1,

and possibly in addition

Λp−r = n− r − s, if p is odd; Λn−s = n− r − s, if q is odd.

Proof. The statement is obviously true for any n if p = 0 or q = 0.
Hence it is true for n = 1. If n = 2 and p = q = 1, there are two cases:

A = ∅, or A = {ε1 + ε2}.

If A = ∅, then Λ = Λ0 = (n |n), so PK(Λ) = 0. If A = {ε1 + ε2}, then
Λ = (n−1 |n−1), and again PK(Λ) = 0. So the proposition is true for n = 2.

We proceed by induction on n. Assume that n > 2 and p, q ≥ 1, and
assume that the proposition is true for n− 2.

Using the definitions and the inequalities (6.2), we see that

Λ = (n− a1︸ ︷︷ ︸
[p,n]

, n− 1− a2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 1− ap︸ ︷︷ ︸
[1,q+1]

|n− b1︸ ︷︷ ︸
[q,n]

, n− 1− b2︸ ︷︷ ︸
[q−1,n−1]

, . . . ,

p+ 1− bq︸ ︷︷ ︸
[1,p+1]

).

So the coordinates of Λ are n integers between 1 and n, and assuming that
PK(Λ) 6= 0, they have to be different from each other, i.e., Λ has to be a
permutation of (n, . . . , 1). In particular, some Λi must be equal to n and
there are two possibilities:

(6.5) Λ1 = n or Λp+1 = n.

Assume first that Λ1 = n. Then

a1 = 0,
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and it follows that

ε1 + εp+j /∈ A, 1 ≤ j ≤ q.

This implies that

0 ≤ bj ≤ p− 1, 1 ≤ j ≤ q,

and so

Λ = (n, n− 1− a2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 1− ap︸ ︷︷ ︸
[1,q+1]

|n− b1︸ ︷︷ ︸
[q+1,n]

, n− 1− b2︸ ︷︷ ︸
[q,n−1]

, . . . , p+ 1− bq︸ ︷︷ ︸
[2,p+1]

).

If p = 1, then there is only Λ1 = n in the left group of coordinates, and we
see there is no place to put the coordinate 1. Therefore, if p = 1 then Λ1 can
not be n, hence Λp+1 = n, so we are in the second case which we treat below.
If p > 1, then there is exactly one place where 1 can be, i.e.,

Λp = 1.

This implies
ap = q,

and therefore
εp + εp+j ∈ A, 1 ≤ j ≤ q.

It follows that

1 ≤ bj ≤ p− 1, 1 ≤ j ≤ q,

and so

Λ = (n, n− 1− a2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 2− ap−1︸ ︷︷ ︸
[2,q+2]

, 1 | n− b1︸ ︷︷ ︸
[q+1,n−1]

, n− 1− b2︸ ︷︷ ︸
[q,n−2]

, . . . , p+ 1− bq︸ ︷︷ ︸
[2,p]

).

Let now g′ ∼= sp(2(n − 2),R) be the subalgebra of g built on coordinates
2, . . . , p− 1, p+ 1, . . . , n, and let l′ = l ∩ g′. Then

∆+
n (l

′) = ∆+
n (l) \ {ε1 + εp+j , εp + εp+j

∣∣ 1 ≤ j ≤ q},

and we set
A′ = A \ {εp + εp+j

∣∣ 1 ≤ j ≤ q}.

We define λ0 as in (6.4), but with n replaced by n−2 and p replaced by p−2.
Then Λ′ corresponding to A′ can be obtained from Λ by deleting coordinates
Λ1 and Λp, and decreasing all the other coordinates by 1. We now see that Λ is
a permutation of (n, . . . , 1) if and only if Λ′ is a permutation of (n− 2, . . . , 1).
By inductive assumption, this is equivalent to A′ and Λ′ being defined by
a shuffle as in the statement of the proposition, and this clearly implies the
same statement for A and Λ.

The other possibility in (6.5) is handled analogously: Λp+1 = n implies

b1 = 0,

and it follows that

εi + εp+1 /∈ A, 1 ≤ i ≤ p.
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This implies that

0 ≤ ai ≤ q − 1, 1 ≤ i ≤ p,

and so

Λ = (n− a1︸ ︷︷ ︸
[p+1,n]

, n− 1− a2︸ ︷︷ ︸
[p,n−2]

, . . . , q + 1− ap︸ ︷︷ ︸
[2,q]

|n, n− 1− b2︸ ︷︷ ︸
[q−1,n−1]

, . . . , p+ 1− bq︸ ︷︷ ︸
[1,p+1]

).

If q = 1, then there is only Λp+1 = n in the right group of coordinates, and
we see there is no place to put the coordinate 1. Therefore, if q = 1, Λp+1 can
not be n and we are back to the first case that we already handled. If q > 1,
then there is exactly one place where 1 can be, i.e.,

Λn = 1.

This implies

bq = p,

and therefore

εi + εn ∈ A, 1 ≤ i ≤ p.

It follows that

1 ≤ ai ≤ q − 1, 1 ≤ i ≤ p,

and so

Λ = ( n− a1︸ ︷︷ ︸
[p+1,n−1]

n− 1− a2︸ ︷︷ ︸
[p,n−2]

, . . . , q + 1− ap︸ ︷︷ ︸
[2,q]

|n, n− 1− b2︸ ︷︷ ︸
[q−1,n−1]

, n− 2− b3︸ ︷︷ ︸
[q−2,n−2]

, . . . ,

p+ 2− bq−1︸ ︷︷ ︸
[2,p+1]

, 1).

We now reason in the same way as in the first case, and conclude that the
proposition follows from the inductive assumption for n − 2 with p staying
the same and q being replaced by q − 2.

To finish the computation of the constant cnp , we first note that for every
A described in Proposition 6.1(ii)

(6.6) #A =
pq

2
.

Namely, the αu,v and βu,v make for 2rs elements of A. In addition, the set B
has 0 elements if p and q are even, s elements if p is odd, and r elements if q
is odd. So the total number of elements is

2rs =
pq

2
, p, q even;

2rs+ s = (2r + 1)s = p
q

2
, p odd;

2rs+ r = r(2s+ 1) =
p

2
q, q odd.
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On the other hand, since Λ is a permutation of (n, . . . , 1), PK(Λ) is equal
to ±1. To compute the sign, we need to find the parity of the permutation
bringing Λ to (n, . . . , 1). This parity can be found by counting the number of
inversions in Λ when compared with (n, . . . , 1), i.e., counting the number of
pairs (i, j), 1 ≤ i < j ≤ n, such that Λi < Λj . We know from Proposition 6.1
that

(6.7) Λ = (n+1−i1, . . . , n+1−ir, ir, . . . , i1 |n+1−j1, . . . , n+1−js, js, . . . , j1)

if p and q are both even. It is clear that ir, . . . , i1 are in inversion with
n + 1 − j1, . . . , n + 1 − js; that is rs inversions. The further inversions are
possible only between groups

(6.8) n+ 1− i1, . . . , n+ 1− ir and n+ 1− j1, . . . , n+ 1− js,

and

(6.9) ir, . . . , i1 and js, . . . , j1.

If iu is in inversion with jv, i.e., iu < jv, then n + 1 − iu > n + 1 − jv, i.e.,
n+ 1− iu is not in inversion with n+ 1− jv. The converse also holds, and it
follows that the total number of inversions in groups (6.8) and (6.9) is again
rs. So the total number of inversions in case p and q are even is

2rs =
pq

2
.

If p is odd, then Λ is again given by (6.7), except that there is in addition
r + s + 1 between n − ir and ir. This coordinate is in inversion with the
coordinates n+1− j1, . . . , n+1− js, and with no others, so the total number
of inversions in this case is

2rs+ s =
pq

2
.

Similarly, if q is odd, then Λ is given by (6.7), with the addition of r + s+ 1
between n+1−js and js. This coordinate is in inversion with the coordinates
ir, . . . , i1, and with no others, so the total number of inversions in this case is

2rs+ r =
pq

2
.

So we have proved that for each Λ from Proposition 6.1,

PK(Λ) = (−1)
pq
2 .

Combined with (6.6), and with the fact that N from (3.3) is in this case

N =

(
p

2

)
+ pq + p ≡ [

p+ 1

2
] mod 2,

this tells us that the nonzero contributions to the sum in (6.3) are all equal

to (−1)[
p+1
2 ]. Since the number of nonzero summands is by Proposition 6.1

equal to the number of (r, s)-shuffles of r + s, i.e., to
(
r+s
r

)
, we have proved:
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Theorem 6.2. Let GR = Sp(2n,R), n ≥ 1, and let p, 0 ≤ p ≤ n, be an
integer. Let r = [p2 ] and let s = [n−p

2 ]. Then the constant cnp for the real form

of OC corresponding to p is

cnp =

{
0, if n is even and p is odd;

(−1)[
p+1
2 ]

(
r+s
r

)
, if n is odd, or if n is even and p is even.

7. The case GR = SOe(2p, 2q), q ≥ p ≥ 1

There are three real forms of OC if q > p > 1, four if q = p > 1, and two
if p=1.

7.1. The first real form. This real form is defined in all cases; it corre-
sponds to

h1 = (2, 1, . . . , 1︸ ︷︷ ︸
p−1

| 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p+1

).

Since l = l1 is built from roots that vanish on h1, we see that

∆+
n (l) = {εi − εj

∣∣ 2 ≤ i ≤ p, p+ 1 ≤ j ≤ 2p− 1}.

It follows that for any A ⊆ ∆+
n (l),

(7.1) 2ρ(A) = (0; a1, . . . , ap−1 | − b1, . . . ,−bp−1; 0, . . . , 0),

with

(7.2) 0 ≤ ai, bj ≤ p− 1;
∑

i ai =
∑

j bj.

Furthermore, recall that ∆(p1) consists of noncompact roots that are 1 on h1.
So

∆(p1) = {ε1 − εj
∣∣ p+1 ≤ j ≤ 2p− 1} ∪ {εi± εj

∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q}.

It follows that for any C ⊆ ∆(p1),

(7.3) 2ρ(C) = (c; d1, . . . , dp−1 | − c1, . . . ,−cp−1; e1, . . . , eq−p+1),

with

(7.4)
0 ≤ cj ≤ 1; 0 ≤ c ≤ p− 1; c =

∑
j cj ;

0 ≤ di ≤ 2(q − p+ 1); −(p− 1) ≤ ej ≤ p− 1

(if p = 1, then
h1 = (2 | 0, . . . , 0),

so ∆+
n (l) = ∆(p1) = ∅).
By (7.1),

ρn(l) = (0, p− 1, . . . , p− 1 | − p+ 1, . . . ,−p+ 1, 0, . . . , 0).

This is clearly orthogonal to all roots of l ∩ k, which are equal to

(7.5)
∆(l ∩ k) = {εi − εj

∣∣ 2 ≤ i, j ≤ p} ∪ {εi − εj
∣∣ p+ 1 ≤ i, j ≤ 2p− 1}

∪ {εi ± εj
∣∣ 2p ≤ i, j ≤ p+ q}.
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By Proposition 3.1, this means that we can determine the constant c = cp,q1

from the equation (3.4). We apply (3.4) for λ = λ0, where

(7.6)

λ0 = (
1

2
; q −

1

2
, q −

3

2
. . . , q − p+

3

2
|

| −
3

2
,−

5

2
, . . . ,−(p−

1

2
); q − p+

1

2
, . . . ,

3

2
,
1

2
) if p ≥ 2;

λ0 = (
1

2
| q −

1

2
, q −

3

2
, . . . ,

1

2
) if p = 1.

Proposition 7.1. Let Λ = λ0 − 2ρ(A) − 2ρ(C), with λ0 given by (7.6),
and with A ⊆ ∆+

n (l) and C ⊆ ∆(p1). If PK(Λ) 6= 0, then:

1. If p = 1, then A = C = ∅ and Λ = λ0.
2. If p ≥ 2, then

A = ∅;

C = {εi − εj
∣
∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q − 1};

Λ = (
1

2
; p−

1

2
, p−

3

2
, . . . ,

3

2
| −

3

2
,−

5

2
, . . . ,−(p−

1

2
); q −

1

2
, q −

3

2
, . . . , p+

1

2
,
1

2
).

Proof. The proposition is clear if p = 1, since in that case ∆+
n (l) =

∆(p1) = ∅. We continue by induction on p. Let p ≥ 2 and let q ≥ p be
arbitrary. We assume that the proposition is true for p′ = p−1 and q′ = p−1,
and we show it is then also true for p and q.

By (7.6), (7.1) and (7.3), we have

Λ = (12 − c; q − 1
2 − a1 − d1, q −

3
2 − a2 − d2, . . . , q − p+ 3

2 − ap−1 − dp−1 |

| − 3
2 + b1 + c1,−

5
2 + b2 + c2, . . . ,−(p−

1
2 ) + bp−1 + cp−1;

q − p+ 1
2 − e1, q − p− 1

2 − e2, . . . ,
3
2 − eq−p,

1
2 − eq−p+1).

Using (7.2) and (7.4), we see that the coordinates Λp+1, . . . ,Λp+q are in
the following intervals:

Λ = (. . . | − 3
2 + b1 + c1︸ ︷︷ ︸
[− 3

2 ,p−
3
2 ]

,− 5
2 + b2 + c2︸ ︷︷ ︸
[− 5

2 ,p−
5
2 ]

, . . . ,−(p− 1
2 ) + bp−1 + cp−1︸ ︷︷ ︸
[−(p− 1

2 ),
1
2 ]

;

q − p+ 1
2 − e1︸ ︷︷ ︸

[q−2p+ 3
2 ,q−

1
2 ]

, q − p− 1
2 − e2︸ ︷︷ ︸

[q−2p+ 1
2 ,q−

3
2 ]

, . . . , 3
2 − eq−p︸ ︷︷ ︸

[−(p− 5
2 ),p+

1
2 ]

1
2 − eq−p+1︸ ︷︷ ︸
[−(p− 3

2 ),p−
1
2 ]

).

So Λp+1, . . . ,Λp+q are q half-integers between −(p− 1
2 ) and q− 1

2 . Moreover,
PK(Λ) 6= 0 implies that no two of these half-integers are equal or opposite to
each other. If q > p, it follows that q− 1

2 , q−
3
2 , . . . , p+

1
2 must each be equal

to some Λi, and the only possibility for that is

Λ2p = q −
1

2
, Λ2p+1 = q −

3

2
, . . . , Λp+q−1 = p+

1

2
.
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So e1, . . . , eq−p are all equal to −(p− 1), and hence

εi − εj ∈ C, εi + εj /∈ C, 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q − 1.

(If q = p, the above says nothing and should be skipped.)
This implies

(7.7) q − p ≤ di ≤ q − p+ 2, 1 ≤ i ≤ p− 1,

with di being q − p if εi+1 ± εp+q /∈ C, di = q − p+ 2 if εi+1 ± εp+q ∈ C, and
di = q − p + 1 if one of the roots εi+1 ± εp+q is in C while the other is not
in C. (If q = p, this gives no new information about the di. The following
arguments all work also in case q = p if we delete the group of coordinates
from place 2p to place p+ q − 1.)

Looking at the bounds for coordinates Λp+1, . . . ,Λ2p−1 and Λp+q, we see
that they are p half-integers between −(p − 1

2 ) and p − 1
2 , such that no two

of them are equal or opposite to each other. It follows that some of these Λj

must be equal to ±(p− 1
2 ). There are two possibilities:

Λ2p−1 = −(p−
1

2
) or Λp+q = p−

1

2
.

Let us first examine the possibility that Λp+q = p − 1
2 . If this is true, then

ep+q = −(p− 1), so

εi+1 − εp+q ∈ C, εi+1 + εp+q /∈ C, 1 ≤ i ≤ p− 1,

and it follows that

di = q − p+ 1, 1 ≤ i ≤ p− 1.

Using this together with the inequalities (7.2), (7.4) for ai and c, we see

Λ = ( 1
2 − c
︸ ︷︷ ︸

[−(p− 3
2 ),

1
2 ]

; p− 3
2 − a1︸ ︷︷ ︸

[− 1
2 ,p−

3
2 ]

, p− 5
2 − a2︸ ︷︷ ︸

[− 3
2 ,p−

5
2 ]

, . . . , 1
2 − ap−1︸ ︷︷ ︸
[−(p− 3

2 ),
1
2 ]

| . . . ).

So Λ1, . . . ,Λp are p half-integers between −(p − 3
2 ) and p − 3

2 . Moreover,
PK(Λ) 6= 0 implies that no two of these half-integers are equal or opposite to
each other. This is impossible, and so Λp+q can not be p− 1

2 .
It follows that

Λ2p−1 = −(p−
1

2
),

and hence

bp−1 = 0; cp−1 = 0.

This implies that

εi − ε2p−1 /∈ A, 2 ≤ i ≤ p;

ε1 − ε2p−1 /∈ C,
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and therefore

(7.8)
0 ≤ ai ≤ p− 2, 1 ≤ i ≤ p− 1;

0 ≤ c ≤ p− 2.

Using (7.8) and (7.7), we see that Λ1, . . . ,Λp are in the following intervals:

Λ = ( 1
2 − c
︸ ︷︷ ︸

[−(p− 5
2 ),

1
2 ]

; q − 1
2 − a1 − d1︸ ︷︷ ︸
[− 1

2 ,p−
1
2 ]

, q − 3
2 − a2 − d2︸ ︷︷ ︸
[− 3

2 ,p−
3
2 ]

, . . . ,

q − p+ 3
2 − ap−1 − dp−1︸ ︷︷ ︸
[−(p− 3

2 ),
3
2 ]

| . . . ).

So Λ1, . . . ,Λp are p half-integers between −(p − 3
2 ) and p − 1

2 . As before,
these half-integers must be different from each other, and no two of them are
opposite, so one of them must be equal to p− 1

2 , and the only possibility is

Λ2 = p−
1

2
.

So

a1 = 0; d1 = q − p.

It follows that

ε2 − εj /∈ A, p+ 1 ≤ j ≤ 2p− 1;

ε2 ± εp+q /∈ C,

and hence

0 ≤ bj ≤ p− 2, 1 ≤ j ≤ p− 1;

− (p− 2) ≤ eq−p+1 ≤ p− 2.

So we see that

Λ = (12 − c; p− 1
2 , q −

3
2 − a2 − d2, . . . , q − p+ 3

2 − ap−1 − dp−1 |

| − 3
2 + b1 + c1, . . . ,−(p−

3
2 ) + bp−2 + cp−2,−(p−

1
2 );

q − 1
2 , q −

3
2 , . . . , p+

1
2 ,

1
2 − eq−p+1)

(the coordinates q − 1
2 , q −

3
2 , . . . , p+

1
2 are not there if q = p).

We now consider the subalgebra g′ ∼= so(2p − 2, 2p − 3) of g built on
coordinates

ε1; ε3, . . . , εp; εp+1, . . . , ε2p−2; εp+q,

so the coordinates 2 and 2p−1, 2p, . . . , p+ q−1 are deleted. We also consider
the real form of OK′ given by

h′
1 = (2, 1, . . . , 1︸ ︷︷ ︸

p−2

| 1, . . . , 1︸ ︷︷ ︸
p−2

, 0),
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with centralizer l′ = l ∩ g′. Then

∆+
n (l

′) = {εi − εj
∣∣ 3 ≤ i ≤ p, p+ 1 ≤ j ≤ 2p− 2};

∆(p′1) = {ε1 − εj
∣∣ p+ 1 ≤ j ≤ 2p− 2} ∪ {εi ± εp+q

∣∣ 3 ≤ i ≤ p}.

We set

A′ = A ∩∆+
n (l

′) = A;

C′ = C ∩∆(p′1) = C \ {εi − εj
∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q − 1}.

Then

2ρ(A′) = (0; a2, . . . , ap−1 | − b1, . . . ,−bp−2; 0)

= (0; a′1, . . . , a
′
p−2 | − b′1, . . . ,−b

′
p−2; 0);

2ρ(C′) = (c; d2 − (q − p), . . . , dp−1 − (q − p) | − c1, . . . ,−cp−2; eq−p+1)

= (c′; d′1, . . . , d
′
p−1 | − c′1, . . . ,−c

′
p−2; e

′
q−p+1),

where we define

a′i = ai+1; b′i = bi; c′i = ci; c′ = c;

d′i = di+1 − (q − p); e′q−p+1 = eq−p+1.

The numbers a′i, b
′
i, c

′
i, c

′, d′i satisfy analogues of (7.2) and (7.4). We define λ′
0

by (7.6), but for GR = SOe(2p− 2, 2p− 1), i.e.,

λ′
0 = (

1

2
; p−

3

2
, . . . ,

3

2
| −

3

2
,−

5

2
, . . . ,−(p−

3

2
);
1

2
).

Then A′, C′, and

Λ′ = λ′
0 − 2ρ(A′)− 2ρ(C′)

satisfy all conditions of the proposition, but p, q are reduced to p′ = p − 1,
q′ = p − 1. Moreover, PK(Λ) 6= 0 is equivalent to PK′(Λ′) 6= 0. Therefore
the inductive assumption implies that A′ = C′ = ∅, and that Λ′ = λ′

0. This
implies the statement of the proposition for A, C and Λ.

In view of (3.4), to compute the constant c = cp,q1 we need to compute
PL∩K(λ0) and PK(Λ), where λ0 is given by (7.6), and Λ is given by Proposition
7.1.

To compute PL∩K(λ0), we note that we described l∩ k in (7.5); it has up
to three factors, two of which are u(p− 1), and the third is so(2(q − p+ 1)).
From the shape of λ0 it now follows that, in the notation of Lemma 5.2,

PL∩K(λ0) = P 1
q−p+1(λq−p+1),

and we see that Lemma 5.2(i) implies that

PL∩K(λ0) = 2q−p.
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To compute PK(Λ), with Λ as in Proposition 7.1, we first write Λ = (ΛL |ΛR)
and note that

PK(Λ) = P 1
p (ΛL)P

1
q (ΛR).

To use Lemma 5.2, we have to rearrange coordinates of ΛL and ΛR, using
the fact that P 1

p is skew for the Weyl group of so(2p), while P 1
q is skew for

the Weyl group of so(2q). Moreover, both polynomials are invariant under
sign changes of the variables; this follows since the sign change of the j-th
coordinate switches roots εi − εj and εi + εj.

To rearrange ΛL to λp, we only need to bring the 1
2 from the first coordi-

nate to the p-th coordinate, and hence

P 1
p (ΛL) = (−1)p−12p−1.

To bring ΛR to µq = (q, . . . , 1), after removing the signs which does not change
the expression, we need to bring coordinates p− 1

2 , p−
3
2 , . . . ,

3
2 , in that order,

to the right of p+ 1
2 , leaving

1
2 at the end. The sign produced in this way is

(−1)(q−p)+(q−p+1)+···+(q−2)=(−1)(p−1)(q−p−1)+ (p−1)p
2 =(−1)(p−1)(q−p−1)+[ p2 ],

and it follows from Lemma 5.2 that

P 1
q (ΛR) = (−1)(p−1)(q−p−1)+[ p2 ]2q−1.

Putting this together with the fact that

#A+#C = #C = (p− 1)(q − p),

that N of (3.3) satisfies

(7.9) N ≡ p− 1 mod 2,

and that

[
p

2
] + p− 1 ≡ [

p− 1

2
] mod 2,

we see that (3.4) implies the following result.

Theorem 7.2. For GR = SOe(2p, 2q), q ≥ p ≥ 1, the constant cp,q1 is

cp,q1 = (−1)[
p−1
2 ]22p−2.

7.2. The second real form. This real form exists for q ≥ p ≥ 2. It corre-
sponds to

h2 = (2, 1, . . . , 1︸ ︷︷ ︸
p−2

,−1 | 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p+1

).

This real form is conjugate to the first real form by the automorphism σ which
acts on h by changing the sign of the p-th coordinate, and leaving all other
coordinates the same. On the level of g, this is an outer automorphism, which
becomes the standard one if we compose it with the isomorphism so(2p, 2q) ∼=
so(2q, 2p). The automorphism σ satisfies the conditions of Lemma 3.4, and
we just have to compute the sign. The number n from Proposition 3.4 is, as
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in Subsection 5.1, equal to p − 1. The number N1 is by (7.9) congruent to
p− 1 modulo 2. Finally, N2 is easily seen to be always even. The conclusion
is that there is no sign in Proposition 3.4, so

(7.10) cp,q2 = cp,q1 = (−1)[
p−1
2 ]22p−2.

7.3. The third real form. This real form exists for all q ≥ p ≥ 1. It
corresponds to

h3 = (1, . . . , 1︸ ︷︷ ︸
p−1

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p

).

Since l = l3 is built from roots that vanish on h3, we see that

∆+
n (l) = {εi−εj

∣∣ 1 ≤ i ≤ p−1, p+2 ≤ j ≤ 2p}∪{εp±εj
∣∣ 2p+1 ≤ j ≤ p+q}.

It follows that for any A ⊆ ∆+
n (l),

(7.11) 2ρ(A) = (a1, . . . , ap−1;x | 0;−b1, . . . ,−bp−1; y1, . . . , yq−p),

with

(7.12)
0 ≤ ai, bj ≤ p− 1;

∑
i ai =

∑
j bj ;

0 ≤ x ≤ 2(q − p); −1 ≤ yj ≤ 1.

Furthermore, recall that ∆(p1) consists of noncompact roots that are 1 on h3.
So

∆(p1) = {εi ± εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q}

∪ {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p} ∪ {εp+1 − εi

∣∣ 1 ≤ i ≤ p− 1}.

It follows that for any C ⊆ ∆(p1),

(7.13) 2ρ(C) = (c1, . . . , cp−1;u | v; d1, . . . , dp−1; e1, . . . , eq−p),

with

(7.14)
− 1 ≤ ci ≤ 2(q − p); −(p− 1) ≤ u ≤ p− 1;

0 ≤ v ≤ p− 1; 0 ≤ dj ≤ 2; −(p− 1) ≤ ej ≤ p− 1.

If we write (7.11) for A = ∆+
n (l), we get

ρn(l) = (p− 1, . . . , p− 1; 2(q − p) | 0;−p+ 1, . . . ,−p+ 1; 0, . . . , 0).

This is clearly orthogonal to all roots of l ∩ k, which are equal to

(7.15)
∆(l ∩ k) = {εi − εj

∣∣ 1 ≤ i, j ≤ p− 1} ∪ {εi − εj
∣∣ p+ 2 ≤ i, j ≤ 2p}

∪ {εi ± εj
∣∣ 2p+ 1 ≤ i, j ≤ p+ q}.
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By Proposition 3.1, this means that we can determine the constant c = cp,q3

from the equation (3.4). We will use this for λ = λ0, where

λ0 = (q −
3

2
, q −

5

2
. . . , q − p+

1

2
; q − p+

1

2
| p−

3

2
;
1

2
,−

1

2
, . . . ,−p+

5

2
;

(7.16)

q − p−
1

2
, q − p−

3

2
, . . . ,

1

2
)

(out of the 5 groups of coordinates separated by semicolons and the bar, the
first and the fourth group are missing if p = 1, and the fifth group is missing
if q = p).

Proposition 7.3. Let Λ = λ0 − 2ρ(A)− 2ρ(C), with λ0 given by (7.16),
and with A ⊆ ∆+

n (l) and C ⊆ ∆(p1). If PK(Λ) 6= 0, then

1. If q > p ≥ 2, then

A = {εp − εj
∣∣ 2p+ 1 ≤ j ≤ p+ q};

C = {εi − εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q}∪

∪ {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p} ∪ {εp+1 − εi

∣∣ 1 ≤ i ≤ p− 1};

Λ = (p−
1

2
, p−

3

2
, . . . ,

3

2
;
1

2
| −

1

2
;−

3

2
,−

5

2
, . . . ,−(p−

1

2
);

q −
1

2
, q −

3

2
, . . . , p+

1

2
).

2. If q > p = 1, then A is as in (1), C = ∅, and

Λ = (
1

2
| −

1

2
; q −

1

2
, q −

3

2
, . . . ,

3

2
).

3. If q = p ≥ 2, then

A = ∅;

C = {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p} ∪ {εp+1 − εi

∣∣ 1 ≤ i ≤ p− 1};

Λ = (p−
1

2
, p−

3

2
, . . . ,

3

2
;
1

2
| −

1

2
;−

3

2
,−

5

2
, . . . ,−(p−

1

2
)).

4. If q = p = 1, then A = C = ∅ and Λ = λ0 = (12 | −
1
2 ).

Proof. By (7.16), (7.11) and (7.13), we have

Λ = (q − 3
2 − a1 − c1, . . . , q − p+ 1

2 − ap−1 − cp−1; q − p+ 1
2 − x− u |

| p− 3
2 − v; 1

2 + b1 − d1,−
1
2 + b2 − d2, . . . ,−p+

5
2 + bp−1 − dp−1;

q − p− 1
2 − y1 − e1, q − p− 3

2 − y2 − e2, . . . ,
1
2 − yq−p − eq−p).

There are five groups of coordinates separated by semicolons and the bar. If
p = 1, then the first and the fourth group of coordinates are missing, and if
q = p, then the fifth group of coordinates is missing.



COMPUTING THE ASSOCIATED CYCLES 315

Using (7.12) and (7.14), we see

Λ = (. . . | p− 3
2 − v

︸ ︷︷ ︸
[− 1

2 ,p−
3
2 ]

; 1
2 + b1 − d1︸ ︷︷ ︸
[− 3

2 ,p−
1
2 ]

,− 1
2 + b2 − d2︸ ︷︷ ︸
[− 5

2 ,p−
3
2 ]

, . . . ,−p+ 5
2 + bp−1 − dp−1︸ ︷︷ ︸
[−(p− 1

2 ),
3
2 ]

;

(7.17)

q − p− 1
2 − y1 − e1︸ ︷︷ ︸

[q−2p− 1
2 ,q−

1
2 ]

, q − p− 3
2 − y2 − e2︸ ︷︷ ︸

[q−2p− 3
2 ,q−

3
2 ]

, . . . , 1
2 − yq−p − eq−p︸ ︷︷ ︸

[−(p− 1
2 ),p+

1
2 ]

).

So Λp+1, . . . ,Λp+q are q half-integers between −(p − 1
2 ) and q − 1

2 . Since
PK(Λ) 6= 0, no two of them are equal or opposite to each other. If q > p, it
follows that q − 1

2 , q −
3
2 , . . . , p + 1

2 must each be equal to some Λi, and the
only possibility for that is

(7.18) Λ2p+1 = q −
1

2
, Λ2p+2 = q −

3

2
, . . . , Λp+q = p+

1

2
.

It follows that y1, . . . , yq−p are all equal to −1, and that e1, . . . , eq−p are all
equal to −(p− 1).

In case q > p = 1, this implies that A is as stated in the proposition, and
it is also clear that C = ∅. Moreover, it follows that x = q− p, and so Λ is as
stated in the proposition. Since the case q = p = 1 is obvious, this proves the
proposition for p = 1 and any q ≥ p.

We proceed by induction on p. Let p ≥ 2 and let q ≥ p be arbitrary.
Assuming that the proposition is true for p′ = q′ = p− 1, we will prove it for
p and q.

If q > p, we get back to (7.18) and see that it implies

εp − εj ∈ A, εp + εj /∈ A, 2p+ 1 ≤ j ≤ p+ q;

εi − εj ∈ C, εi + εj /∈ C, 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q.

This implies

(7.19)
x = q − p;

q − p− 1 ≤ ci ≤ q − p, 1 ≤ i ≤ p− 1.

Note that ci = q − p− 1 if εp+1 − εi ∈ C, and ci = q − p if εp+1 − εi /∈ C.
If q = p, then the above discussion does not apply; in this case (7.19)

is true, but this information is already contained in (7.12) and (7.14). The
following discussion applies equally to q > p and q = p, but in the latter case
the last group of coordinates should be deleted.
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Using (7.19) together with the inequalities (7.12) for ai and (7.14) for u,
we see

Λ = (q − 3
2 − a1 − c1︸ ︷︷ ︸
[− 1

2 ,p−
1
2 ]

, q − 5
2 − a2 − c2︸ ︷︷ ︸
[− 3

2 ,p−
3
2 ]

, . . . , q − p+ 1
2 − ap−1 − cp−1︸ ︷︷ ︸

[−(p− 3
2 ),

3
2 ]

;

1
2 − u
︸ ︷︷ ︸

[−(p− 3
2 ),p−

1
2 ]

| . . .

So Λ1, . . . ,Λp are p half-integers between −(p − 3
2 ) and p − 1

2 , such that no
two of them are equal or opposite to each other. There are two possibilities:

Λ1 = p−
1

2
, or Λp = p−

1

2
.

Let us first assume that Λp = p− 1
2 . Then

u = −(p− 1)

and it follows that

εj − εp ∈ C, εj + εp /∈ C, p+ 2 ≤ j ≤ 2p.

This implies

dj = 1, p+ 2 ≤ j ≤ 2p,

and we see that (7.17) becomes

Λ = (. . . | p− 3
2
− v

︸ ︷︷ ︸

[− 1
2
,p− 3

2
]

;− 1
2
+ b1

︸ ︷︷ ︸

[− 1
2
,p− 3

2
]

,− 3
2
+ b2

︸ ︷︷ ︸

[− 3
2
,p− 5

2
]

, . . . ,−p+ 3
2
+ bp−1

︸ ︷︷ ︸

[−(p− 3
2
), 1

2
]

; q − 1
2
, q − 3

2
, . . . , p+ 1

2
).

So Λp+1, . . . ,Λ2p are p half-integers between −(p − 3
2 ) and p − 3

2 , such that
no two of them are equal or opposite to each other, and this is impossible.

We conclude that

Λ1 = p−
1

2
,

and consequently

a1 = 0; c1 = q − p− 1.

It follows that

ε1 − εj /∈ A, p+ 2 ≤ j ≤ 2p;

εp+1 − ε1 ∈ C,

and therefore

0 ≤ bj ≤ p− 2, 1 ≤ j ≤ p− 1;

1 ≤ v ≤ p− 1.
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This implies

Λ = (. . . | p− 3
2 − v

︸ ︷︷ ︸
[− 1

2 ,p−
5
2 ]

; 1
2 + b1 − d1︸ ︷︷ ︸
[− 3

2 ,p−
3
2 ]

,− 1
2 + b2 − d2︸ ︷︷ ︸
[− 5

2 ,p−
5
2 ]

, . . . ,−p+ 5
2 + bp−1 − dp−1︸ ︷︷ ︸
[−(p− 1

2 ),
1
2 ]

;

q − 1
2 , q −

3
2 , . . . , p+

1
2 ).

So Λp+1, . . . ,Λ2p are p half-integers between −(p − 1
2 ) and p − 3

2 , such that
no two of them are equal or opposite to each other. It follows that

Λ2p = −(p−
1

2
),

and consequently

bp−1 = 0; dp−1 = 2.

It follows that

εi − ε2p /∈ A, 1 ≤ i ≤ p− 1;

ε2p ± εp ∈ C,

and therefore

0 ≤ ai ≤ p− 2, 1 ≤ i ≤ p− 1;

− (p− 2) ≤ u ≤ p− 2.

We see that

Λ = (p− 1
2 , q −

5
2 − a2 − c2, . . . , q − p+ 1

2 − ap−1 − cp−1; q − p+ 1
2 − x− u |

| p− 3
2 − v; 1

2 + b1 − d1,−
1
2 + b2 − d2, . . . ,−(p−

7
2 ) + bp−2 − dp−2,−(p−

1
2 );

q − 1
2 , q −

3
2 , . . . , p+

1
2 ).

(If q = p, the coordinates q− 1
2 , . . . , p+

1
2 are not there; if p = 2 there are no

coordinates involving ai, ci, bi or di.)
We now consider the subalgebra g′ ∼= so(2p − 2, 2p − 1) of g built on

coordinates

ε2, ε3, . . . , εp; εp+1, . . . , ε2p−1,

so the coordinates 1 and 2p, 2p + 1, . . . , p + q are deleted. We also consider
the real form of OK′ given by

h′
3 = (1, . . . , 1︸ ︷︷ ︸

p−2

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−2

),

with centralizer l′ = l ∩ g′. Then

∆+
n (l

′) = {εi − εj
∣∣ 2 ≤ i ≤ p− 1, p+ 2 ≤ j ≤ 2p− 1};

∆(p′1) = {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p− 1} ∪ {εp+1 − εi

∣∣ 2 ≤ i ≤ p− 1}.
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We set

A′ = A ∩∆+
n (l

′) = A \ {εp − εj
∣∣ 2p+ 1 ≤ j ≤ p+ q};

C′ = C ∩∆(p′1)

= C \ {ε2p ± εp; εp+1 − ε1; εi − εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q}

(if q = p, then A′ = A and C′ = C \ {ε2p ± εp; εp+1 − ε1}). Then

2ρ(A′) = (a2, . . . , ap−1; 0 | 0;−b1, . . . ,−bp−2)

= (a′1, . . . , a
′
p−2; 0 | 0;−b

′
1, . . . ,−b

′
p−2);

2ρ(C′) = (c2 − (q − p), . . . , cp−1 − (q − p);u | v − 1; d1, . . . , dp−2)

= (c′1, . . . , c
′
p−2;u

′ | v′; d′1, . . . , d
′
p−2),

where we define

a′i = ai+1; b′i = bi; c′i = ci+1 − (q − p);

u′ = u; v′ = v − 1; d′i = di.

The numbers a′i, b
′
i, c

′
i, u

′, v′, d′i satisfy analogues of (7.12) and (7.14).
We define λ′

0 by (7.16), but for GR = SOe(2p− 2, 2p− 1), i.e.,

λ′
0 = (p−

5

2
, p−

7

2
, . . . ,

1

2
;
1

2
; | p−

5

2
;
1

2
,−

1

2
, . . . ,−(p−

7

2
)).

Then A′, C′ and

Λ′ = λ′
0 − 2ρ(A′)− 2ρ(C′)

satisfy all conditions of the proposition, but p, q are reduced to p′ = p − 1,
q′ = p− 1. Therefore the inductive assumption implies that A′ = ∅, that

C′ = {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p− 1} ∪ {εp+1 − εi

∣∣ 2 ≤ i ≤ p− 1},

and that

Λ′ = (p−
3

2
, . . . ,

3

2
;
1

2
| −

1

2
;−

3

2
,−

5

2
, . . . ,−(p−

3

2
)).

This implies the statement of the proposition for A, C and Λ.

In view of (3.4), to compute the constant c = cp,q3 we need to compute
PL∩K(λ0) and PK(Λ), where λ0 is given by (7.16), and Λ is given by Propo-
sition 7.3.

To compute PL∩K(λ0), we note that we described l ∩ k in (7.15); it has
up to three factors, two of which are u(p − 1), and the third is so(2(q − p)).
From the shape of λ0 it now follows that, in the notation of Lemma 5.2,

PL∩K(λ0) = P 1
q−p(λq−p),

and in case q > p, we see that Lemma 5.2(i) implies that

PL∩K(λ0) = 2q−p−1.



COMPUTING THE ASSOCIATED CYCLES 319

If q = p, then PL∩K(λ0) = 1, which is not covered by the above formula. (In
Lemma 5.2, we could have defined P 1

0 = 1 and λ0 = 0, but the formula in
Lemma 5.2(i) would not work for p = 0.)

To compute PK(Λ) for Λ as in Proposition 7.3, we first write Λ =
(ΛL |ΛR) and note that

(7.20) PK(Λ) = P 1
p (ΛL)P

1
q (ΛR).

By Lemma 5.2(i),

(7.21) P 1
p (ΛL) = P 1

p (λp) = 2p−1.

To apply Lemma 5.2 also for ΛR, we must first rearrange coordinates of ΛR,
using the fact that P 1

q is skew for the Weyl group of so(2q), and invariant
under sign changes of the variables.

To bring ΛR to µq = (q, . . . , 1), after removing the signs which does not
change the expression, we need to bring coordinates

p−
1

2
, p−

3

2
, . . . ,

3

2
,
1

2
,

in that order, to the right of p+ 1
2 . The sign produced in this way is

(−1)(q−p)+(q−p+1)+···+(q−1) = (−1)p(q−p)+[ p2 ],

and it follows from Lemma 5.2 that

P 1
q (ΛR) = (−1)p(q−p)+[ p2 ]2q−1.

Putting this together with (7.20), (7.21), the fact that

#A = q − p; #C = 3(p− 1) + (p− 1)(q − p),

and the fact that N of (3.3) satisfies

(7.22) N ≡ p mod 2

we get the following statement.

Theorem 7.4. For GR = SOe(2p, 2q), the constant cp,q3 corresponding to
the third real form of OC is

cp,q3 =

{
(−1)[

p
2 ]+122p−1, q > p;

(−1)[
p
2 ]+122p−2, q = p.

7.4. The fourth real form. This real form exists if q = p ≥ 2. It corre-
sponds to

h4 = (1, . . . , 1︸ ︷︷ ︸
p−1

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−2

,−1).

This real form is conjugate to the third real form by the automorphism σ
which acts on h by changing the sign of the last coordinate, and leaving all
other coordinates the same. On the level of g, this is the standard outer
automorphism. It satisfies the conditions of Proposition 3.4, and we just have
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to compute the sign. The number n from Proposition 3.4 is equal to 0, since σ
preserves ∆+. The number N1 is by (7.22) congruent to p modulo 2. Finally,
N2 is the same as N1 because σ preserves ∆+ (or one can do a computation).
So there is no sign in Proposition 3.4, and

(7.23) cp,q4 = (−1)[
p
2 ]+122p−2

8. The case GR = SO∗(2n), n ≥ 1

8.1. The case of even n. If n is even, the real forms of OC correspond
to even integers p such that 0 ≤ p ≤ n. We denote n − p by q. The h
corresponding to p is

hp = (1, . . . , 1︸ ︷︷ ︸
p

| −1, . . . ,−1︸ ︷︷ ︸
q

).

Since l = lp is built from roots that vanish on hp, we see that

∆+
n (l) = {εi + εp+j

∣∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

It follows that for any A ⊆ ∆+
n (l),

(8.1) 2ρ(A) = (a1, . . . , ap | b1, . . . , bq),

with

0 ≤ ai ≤ q, 0 ≤ bj ≤ p,
∑

i ai =
∑

j bj.(8.2)

In particular,
ρn(l) = (q, . . . , q | p, . . . , p),

and this is clearly orthogonal to the roots of l ∩ k, which are given by

(8.3) ∆+(l ∩ k) = {εi − εj
∣∣ 1 ≤ i < j ≤ p} ∪ {εp+i − εp+j

∣∣ 1 ≤ i < j ≤ q}.

So the constants c = cnp can be calculated from (3.4). Since it is clear that in
the present case

∆(p1) = ∅,

(3.4) becomes

(8.4)
∑

A⊆∆+
n (l)

(−1)#APK(λ− 2ρ(A)) = cPL∩K(λ).

We take λ = λ0, where

(8.5) λ0 = (n, n− 1, . . . , q + 1 |n, n− 1, . . . , p+ 1)

(if p is 0 or n, then there is only one group of coordinates in the above
expression, and λ0 = (n, n− 1, . . . , 1)).

Since λ0 differs from ρl∩k by a weight orthogonal to all roots of l ∩ k,

PL∩K(λ0) = 1.

So to compute cnp we have to compute the left side of (8.4). The following
proposition describes the relevant A and the corresponding Λ.
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Proposition 8.1. Let Λ = λ0 − 2ρ(A), with λ0 given by (8.5), and with
A ⊆ ∆+

n (l).
Suppose that for some A the corresponding Λ satisfies PK(Λ) 6= 0. Then:

1. If p = 0 or q = 0, then A = ∅ and Λ = λ0 = (n, n− 1, . . . , 1).
2. If p, q > 0, let r = p

2 and s = q
2 . Then there is a shuffle

1 ≤ i1 < · · · < ir ≤ r + s; 1 ≤ j1 < · · · < js ≤ r + s

of 1, 2, . . . , r + s such that

A = {αu,v, βu,v

∣∣ 1 ≤ u ≤ r, 1 ≤ v ≤ s},

where
αu,v = εp+1−u + εn+1−v;

βu,v =

{
εp+1−u + εp+v, iu < jv;
εu + εn+1−v, iu > jv.

The corresponding Λ is

Λ = (n+ 1− i1, . . . , n+ 1− ir, ir, . . . , i1

|n+ 1− j1, . . . , n+ 1− js, js, . . . , j1).

Proof. The situation is combinatorially exactly the same as for GR =
Sp(2n,R), with n, p and q even. Therefore the proof of Proposition 6.1 applies
verbatim; the only difference is that the present proof is simpler because p
and q are even.

The complete parallel with the case of GR = Sp(2n,R), with n, p and q
even extends also to the computation of PK(Λ) for any Λ from Proposition
8.1, and the constant cnp . The only difference is that in the present case, N of
(3.3) is

N =

(
p

2

)
+ pq ≡

p

2
mod 2,

so the sign is now (−1)
p
2 . We conclude that the following theorem holds.

Theorem 8.2. Let GR = SO∗(2n), with n ≥ 2 even. Let p, 0 ≤ p ≤ n,
be an even integer. Let r = p

2 and let s = n−p
2 . Then the constant cnp for the

real form of OC corresponding to p is

cnp = (−1)
p
2

(
r + s

r

)
.

8.2. The case of odd n. For odd n the real forms of OC correspond to
even integers p such that 0 ≤ p ≤ n − 1. We denote n − 1 − p by q, so q is
another even integer. The h corresponding to p is

hp = (1, . . . , 1︸ ︷︷ ︸
p

| 0;−1, . . . ,−1︸ ︷︷ ︸
q

).
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Since l = lp is built from roots that vanish on hp, we see that

∆+
n (l) = {εi + εp+1+j

∣∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

It follows that for any A ⊆ ∆+
n (l),

(8.6) 2ρ(A) = (a1, . . . , ap | 0; b1, . . . , bq),

with

0 ≤ ai ≤ q, 0 ≤ bj ≤ p,
∑

i ai =
∑

j bj.(8.7)

In particular,
ρn(l) = (q, . . . , q | 0; p, . . . , p),

and this is clearly orthogonal to the roots of l ∩ k, which are given by

(8.8) ∆+(l∩k) = {εi−εj
∣∣ 1 ≤ i < j ≤ p}∪{εp+1+i−εp+1+j

∣∣ 1 ≤ i < j ≤ q}.

So the constants c = cnp can be calculated from (3.4).
The set ∆(p1) consisting of noncompact roots that are 1 on hp is

∆(p1) = {εi + εp+1

∣∣ 1 ≤ i ≤ p} ∪ {−εp+1 − εp+1+j

∣∣ 1 ≤ j ≤ q}.

So for any C ⊆ ∆(p1),

(8.9) 2ρ(C) = (c1, . . . , cp | d;−e1, . . . ,−eq),

with

0 ≤ ci ≤ 1; −q ≤ d ≤ p; 0 ≤ ej ≤ 1; d =
∑

i ci −
∑

j ej.(8.10)

To compute the constant cnp using (3.4), we take λ = λ0, where

(8.11)

λ0 = (n, n− 1, . . . , q + 2 | p+ 1;n− 1, n− 2, . . . , p+ 1), p, q > 0;

λ0 = ( | 1;n− 1, n− 2, . . . , 1), p = 0, q > 0;

λ0 = (n, n− 1, . . . , 2 | p+ 1), p > 0, q = 0;

λ0 = ( | 1), p = q = 0.

Using (8.8), we see that λ0 differs from ρl∩k by a weight orthogonal to all
roots of l ∩ k, and hence

(8.12) PL∩K(λ0) = 1.

So to compute cnp we have to compute the left side of (3.4). The following
proposition describes the relevant A and C, and the corresponding Λ.

Proposition 8.3. Let Λ = λ0 − 2ρ(A)− 2ρ(C), with λ0 given by (8.11),
and with A ⊆ ∆+

n (l), C ⊆ ∆(p1) as above.
Suppose that for some A and C the corresponding Λ satisfies PK(Λ) 6= 0.

Let r = p
2 and s = q

2 . Then there is an (r, s) shuffle

1 ≤ i1 < · · · < ir ≤ r + s; 1 ≤ j1 < · · · < js ≤ r + s

of 1, 2, . . . , r + s such that

A = {αu,v, βu,v

∣∣ 1 ≤ u ≤ r, 1 ≤ v ≤ s},
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where
αu,v = εp+1−u + εn+1−v;

βu,v =

{
εp+1−u + εp+1+v, iu < jv;
εu + εn+1−v, iu > jv,

and

C = {εi + εp+1

∣∣ r + 1 ≤ i ≤ p} ∪ {−εp+1 − εp+1+j

∣∣ 1 ≤ j ≤ s}.

The corresponding Λ is

Λ = (n+ 1− i1, . . . , n+ 1− ir, ir, . . . , i1 | r + s+ 1;n+ 1− j1, . . . ,

n+ 1− js, js, . . . , j1).

If p = 0, then the shuffle is necessarily trivial, i.e., there are no iu and
(j1, . . . , js) = (1, . . . , s). This means that

A = ∅;

C = {−εp+1 − εp+1+j

∣∣ 1 ≤ j ≤ s};

Λ = ( | s+ 1;n, . . . , n+ 1− s, s, . . . , 1)

= ( | s+ 1; 2s+ 1, . . . , s+ 2, s, . . . , 1).

Similarly, if q = 0 then (i1, . . . , ir) = (1, . . . , r), there are no jv, and

A = ∅;

C = {εi + εp+1

∣∣ r + 1 ≤ i ≤ p};

Λ = (n, . . . , n+ 1− r, r, . . . , 1 | r + 1)

= (2r + 1, . . . , r + 2, r, . . . , 1 | r + 1).

Finally, if p = q = 0, i.e., n = 1, then the shuffle contains no iu or jv,
A = C = ∅, and Λ = λ0 = ( | 1).

Proof. The statement is obviously true if n = 1, i.e., if p = q = 0. We
proceed by induction on n.

So let us assume that n ≥ 3 is odd, and let 0 ≤ p ≤ n − 1 be an even
integer. We assume that the statement is true for n − 2 and for any even
integer p′ between 0 and n− 3.

Using the definitions and the inequalities (8.7), we see that

Λ = (n− a1 − c1︸ ︷︷ ︸
[p,n]

, n− 1− a2 − c2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 2− ap − cp︸ ︷︷ ︸
[1,q+2]

| p+ 1− d︸ ︷︷ ︸
[1,n]

;

n− 1− b1 + e1︸ ︷︷ ︸
[q,n]

, n− 2− b2 + e2︸ ︷︷ ︸
[q−1,n−1]

, . . . , p+ 1− bq + eq︸ ︷︷ ︸
[1,p+2]

).

So the coordinates of Λ are n integers between 1 and n, and assuming that
PK(Λ) 6= 0, they have to be different from each other, i.e., Λ has to be a
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permutation of (n, . . . , 1). In particular, some Λi must be equal to n and
there are three possibilities:

(8.13) Λ1 = n or Λp+1 = n or Λp+2 = n.

Assume first that Λ1 = n; this is only possible if p > 0, i.e., p ≥ 2. Then

a1 = 0, c1 = 0,

and it follows that

ε1 + εp+1+j /∈ A, 1 ≤ j ≤ q;

ε1 + εp+1 /∈ C.

This implies that

0 ≤ bj ≤ p− 1, 1 ≤ j ≤ q;

− q ≤ d ≤ p− 1,

and so

Λ = (n, n− 1− a2 − c2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 2− ap − cp︸ ︷︷ ︸
[1,q+2]

| p+ 1− d︸ ︷︷ ︸
[2,n]

;n− 1− b1 + e1︸ ︷︷ ︸
[q+1,n]

,

n− 2− b2 + e2︸ ︷︷ ︸
[q,n−1]

, . . . , p+ 1− bq + eq︸ ︷︷ ︸
[2,p+2]

).

We see that there is exactly one place where 1 can be, i.e.,

Λp = 1.

This implies

ap = q, cp = 1,

and therefore

εp + εp+1+j ∈ A, 1 ≤ j ≤ q;

εp + εp+1 ∈ C.

It follows that

1 ≤ bj ≤ p− 1, 1 ≤ j ≤ q, −q + 1 ≤ d ≤ p− 1

and so

Λ = (n, n− 1− a2 − c2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 3− ap−1 − cp−1︸ ︷︷ ︸
[2,q+3]

, 1 | p+ 1− d︸ ︷︷ ︸
[2,n−1]

;

n− 1− b1 + e1︸ ︷︷ ︸
[q+1,n−1]

, n− 2− b2 + e2︸ ︷︷ ︸
[q,n−2]

, . . . , p+ 1− bq + eq︸ ︷︷ ︸
[2,p+1]

).

Let now g′ ∼= so∗(2(n − 2)) be the subalgebra of g built on coordinates
2, . . . , p − 1, p + 1, . . . , n, and let l′ = l ∩ g′. We consider the real form of
the corresponding OC given by h = hp−2.
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Then

∆+
n (l

′) = ∆+
n (l) \ {ε1 + εp+1+j , εp + εp+1+j

∣∣ 1 ≤ j ≤ q};

∆(p′1) = ∆(p1) \ {ε1 + εp+1, εp + εp+1},

and we set

A′ = A \ {εp + εp+1+j

∣∣ 1 ≤ j ≤ q};

C′ = C \ {εp + εp+1}.

We define λ0 as in (8.11), but with n replaced by n − 2 and p replaced by
p−2. Then Λ′ corresponding to A′ and C′ can be obtained from Λ by deleting
coordinates Λ1 and Λp, and decreasing all the other coordinates by 1. More
precisely, deleting the first and the p-th coordinate, we have

2ρ(A′) = (a2, . . . , ap−1 | 0; b1 − 1, . . . , bq − 1) = (a′1, . . . , a
′
p−2 | 0; b

′
1, . . . , b

′
q);

2ρ(C′) = (c2, . . . , cp−1 | d− 1;−e1 . . . ,−eq)

= (c′1, . . . , c
′
p−2 | d

′;−e′1 . . . ,−e
′
q);

Λ′ = (n− 2− a′1 − c′1, . . . , q + 2− a′p−2 − c′p−2 | p− 1− d′;

n− 3− b′1 + e′1, . . . , p− 1− b′q + e′q)

= (Λ2 − 1, . . . ,Λp−1 − 1 |Λp+1 − 1, . . . ,Λn − 1).

We now see that Λ is a permutation of (n, . . . , 1) if and only if Λ′ is a permu-
tation of (n− 2, . . . , 1). By inductive assumption, this is equivalent to A′ and
Λ′ being defined by a shuffle as in the statement of the proposition, and this
clearly implies the same statement for A and Λ.

The second possibility in (8.13) is Λp+1 = n, which implies d = −q and
hence

− εp+1 − εp+1+j ∈ C, 1 ≤ j ≤ q;

εi + εp+1 /∈ C, 1 ≤ i ≤ p.

This implies

ci = 0, 1 ≤ i ≤ p;

ej = 1, 1 ≤ j ≤ q,

and so

Λ = (n− a1︸ ︷︷ ︸
[p+1,n]

, n− 1− a2︸ ︷︷ ︸
[p,n−1]

, . . . , q + 2− ap︸ ︷︷ ︸
[2,q+2]

|n;n− b1︸ ︷︷ ︸
[q+1,n]

, n− 1− b2︸ ︷︷ ︸
[q,n−1]

, . . . , p+ 2− bq︸ ︷︷ ︸
[2,p+2]

).

We see that there is no place where 1 could be, so this case is impossible if
PK(Λ) 6= 0.
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The third possibility in (8.13) is Λp+2 = n; this is possible only if q > 0,
i.e., q ≥ 2. It follows that b1 = 0, e1 = 1, and so

εi + εp+2 /∈ A, 1 ≤ i ≤ p;

− εp+1 − εp+2 ∈ C.

This implies

0 ≤ ai ≤ q − 1, 1 ≤ i ≤ p; −q ≤ d ≤ p− 1,

and hence

Λ = (n− a1 − c1︸ ︷︷ ︸
[p+1,n]

, n− 1− a2 − c2︸ ︷︷ ︸
[p,n−1]

, . . . , q + 2− ap − cp︸ ︷︷ ︸
[2,q+2]

| p+ 1− d︸ ︷︷ ︸
[2,n]

;

n, n− 2− b2 + e2︸ ︷︷ ︸
[q−1,n−1]

, . . . , p+ 1− bq + eq︸ ︷︷ ︸
[1,p+2]

).

We see that there is exactly one place where 1 can be, i.e., Λn = 1. This
implies bq = p, eq = 0 and therefore

εi + εn ∈ A, 1 ≤ i ≤ p; −εp+1 − εn /∈ C.

It follows that

1 ≤ ai ≤ q − 1, 1 ≤ i ≤ p; −q + 1 ≤ d ≤ p− 1,

and so

Λ = (n− a1 − c1︸ ︷︷ ︸
[p+1,n−1]

, n− 1− a2 − c2︸ ︷︷ ︸
[p,n−2]

, . . . , q + 2− ap − cp︸ ︷︷ ︸
[2,q+1]

| p+ 1− d︸ ︷︷ ︸
[2,n−1]

;

n, n− 2− b2 + e2︸ ︷︷ ︸
[q−1,n−1]

, n− 3− b3 + e3︸ ︷︷ ︸
[q−2,n−2]

, . . . , p+ 2− bq−1 + eq−1︸ ︷︷ ︸
[2,p+3]

, 1).

We now reason in the same way as in the first case, and conclude that the
proposition follows from the inductive assumption for n − 2 with p staying
the same and q being replaced by q − 2.

To finish the computation of the constant cnp , we first note that for every
A and C described in Proposition 8.3

(8.14) #A = 2rs; #C = r + s.

On the other hand, since Λ is a permutation of (n, . . . , 1), PK(Λ) is equal
to ±1. To compute the sign, we need to find the parity of the permutation
bringing Λ to (n, . . . , 1). As in type C, we find this parity by counting the
number of inversions in Λ when compared with (n, . . . , 1). We know from
Proposition 8.3 that

Λ = (n+ 1− i1, . . . , n+ 1− ir, ir, . . . , i1

|r + s+ 1;n+ 1− j1, . . . , n+ 1− js, js, . . . , j1).
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Clearly ir, . . . , i1 are in inversion with n + 1 − j1, . . . , n + 1 − js; that is rs
inversions. Arguing as in type C, we get further rs inversions from the groups

n+ 1− i1, . . . , n+ 1− ir and n+ 1− j1, . . . , n+ 1− js,

and

ir, . . . , i1 and js, . . . , j1.

Finally, the coordinate

Λp+1 = r + s+ 1

is in inversion with

ir, . . . , i1 and n+ 1− j1, . . . , n+ 1− js.

So the total number of inversions is 2rs+r+s, and combined with (8.14) this
implies that the nonzero contributions to the sum in (6.3), which we know
come from A, C and Λ as in Proposition 8.3, are all equal to

(−1)#A+#CPK(Λ) = 1.

Furthermore, the number N of (3.3) satisfies

N ≡
p

2
mod 2.

Since the number of nonzero summands is by Proposition 8.3 equal to the
number of (r, s)-shuffles of r + s, i.e., to

(
r+s
r

)
, we have proved the following

theorem.

Theorem 8.4. Let GR = SO∗(2n), for an odd n ≥ 1, and let p, 0 ≤ p ≤
n− 1, be an even integer. Let

r =
p

2
, s =

n− 1− p

2
.

Then the constant cnp for the real form of OC corresponding to p is

cnp = (−1)
p
2

(
r + s

r

)
.

For the convenience of the reader, below is a table that gives the value of
the constant for each real form in every case.
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GR

KR

OC Real forms Constants

SU(p, q)
S(U(p)× U(q))

q ≥ p ≥ 1 [2p, 1q−p]

(1, · · · , 1︸ ︷︷ ︸
k

,−1, · · · ,−1︸ ︷︷ ︸
p−k

,

1, · · · , 1︸ ︷︷ ︸
p−k

, 0, · · · , 0︸ ︷︷ ︸
q−p

,−1, · · · ,−1︸ ︷︷ ︸
k

)
(−1)k(p+q−k)

(
p
k

)

k = 0, 1, · · · , p

SOe(2p, 2q + 1)
SO(2p)× SO(2q + 1)

q ≥ p ≥ 1 [3, 22p−2, 12(q−p+1)]

(2, 1, · · · , 1︸ ︷︷ ︸
p−1

,

1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)
(−1)[(p/2)]+122p−2

(2, 1, · · · ,−1︸ ︷︷ ︸
p−1

,

1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)
(−1)[(p/2)]22p−2

3rd real form
only if q > p − 1

(1, · · · , 1︸ ︷︷ ︸
p−1

, 0,

2, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p

)
0

Sp(2n,R)
U(n)

n ≥ 1 [2n] (1, · · · , 1︸ ︷︷ ︸
k

,−1, · · · ,−1︸ ︷︷ ︸
n−k

) (−1)[(k+1)/2]
(
r+s
r

)

(n odd) or (n and k even)

k = 0, 1, · · · , n 0
n even and k odd

r = [k2 ] and s = [n−k
2 ]

SOe(2p, 2q)
SO(2p)× SO(2q)

q ≥ p ≥ 1 [3, 22p−2, 12(q−p)+1]

(2, 1, · · · , 1︸ ︷︷ ︸
p−1

,

1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)
(−1)[(p−1)/2]22p−2

(2, 1, · · · ,−1︸ ︷︷ ︸
p−1

,

1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)
(−1)[(p−1)/2]22p−2

(1, · · · , 1︸ ︷︷ ︸
p−1

, 0,

2, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p

)
(−1)[p/2]+122p−1

if q > p

(−1)[p/2]+122p−2

if q = p

fourth real form
only if q = p

(1, · · · , 1︸ ︷︷ ︸
p−1

, 0,

2, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p

)
(−1)[p/2]+122p−2

SO∗(2n)
U(n)

n ≥ 1 [2n] (1, · · · , 1︸ ︷︷ ︸
p

,−1, · · · ,−1︸ ︷︷ ︸
n−p

) (−1)p/2
(n/2
p/2

)

n even 0 ≤ p ≤ n with p even

[2n−1, 12] (1, · · · , 1︸ ︷︷ ︸
p

, 0,−1, · · · ,−1︸ ︷︷ ︸
n−1−p

) (−1)p/2
((n−1)/2

p/2

)

n odd 0 ≤ p ≤ n− 1 with p even
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