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SUMMARY 

Novel approach for the high-accurate computation of Carson formulas is presented. Carson 
formulas are used for computation of per-unit length (pul) self and mutual impedances of 
infinitely long parallel conductors. Numerical algorithm described in this paper uses a piecewise 
approximation of the kernel function which appears in the Carson formula corrections. 
Approximated kernel function is multiplied by the rest of the integrands in the impedance 
correction expressions and analytically integrated. By using the proposed algorithm, high-
accurate results with the desired computed n-digit accuracy can easily be obtained. Results 
computed by the proposed algorithm are compared with the two most commonly used 
approximation methods for large frequency range. 

KEY WORDS: Carson formulas; mutual impedance; numerical algorithm; piecewise 

approximation; self-impedance. 

1. INTRODUCTION 

The computation of pul self and mutual impedances of power line conductors is a well-known 

topic which first appeared at the beginning of the 20th century. Exact formulas for the 

computation of pul self and mutual impedances of infinitely long parallel conductors were 

presented by Carson [1]. Carson formulas contain two integrals with infinite upper limits that 

cannot be analytically solved. Since then, many scientists and engineers have tried to solve this 

problem by using various approximation methods [1-8]. Carson integrals were developed for 

homogeneous earth containing the identical kernel function. This paper derives a new 

numerical algorithm that can successfully solve these two integrals by using piecewise 

approximation of the integrals’ kernel function. In other words, kernel function is sampled, and 

sampled pieces are approximated by a line or parabola. Approximated kernel function is then 

multiplied by the rest of the integrands in the impedance correction expressions which enables 

analytical integration. Infinite upper limits of the Carson’s integrals must be truncated in order 

to enable numerical solving [9, 10]. The accuracy of the proposed algorithm depends on the 

total number of sample points and chosen truncated upper limits of the semi-infinite integrals. 
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By increasing the total number of sample points, computed results reliably tend to exact 

values. In the event when the doubling and quadrupling of the total number of sampled points 

yields the same n-digit results, it can be concluded that the desired n-digit accuracy is 

achieved. Therefore, the proposed high-accurate algorithm can achieve the desired computed 

n-digit accurate results. 

This paper provides a summarized account of two widespread approximation methods of the 

Carson formulas. The first is referred to as “single-term approximation method”, proposed by 

Carson himself, where his infinite series were approximated by their first terms [1, 11-13]. The 

second one was proposed by Dubanton [3], described by Gary [4] and mathematically verified 

by Deri [5], where they proposed the imagined depth of the earth return conductors. 

Numerical examples show the comparison of proposed algorithms and comparison of results 

obtained by the proposed algorithms and the two approximation methods. 

2. EXACT CARSON FORMULAS 

Formulas used for the computation of self and mutual impedances were proposed by Carson 

[1]. It is important to say that they neglect displacement currents. They were developed for 

infinitely long parallel conductors and homogeneous earth. Figure 1 shows two parallel 

cylindrical conductors in the air, their images and all relevant distances between them. 

 

Fig. 1  Relevant distances between two conductors in the air and their images 

Exact formulas for pul self and mutual impedances can be divided into two parts [9, 10]: 

 
1pcg1 1cor

ii iiiiZ Z Z= +  (1) 

 
1pcg1 1cor

ik ikikZ Z Z= +  (2) 

where 
1pcg
iiZ  and 1pcg

ikZ  are pul self and mutual impedances of perfectly conducting ground, 

whereas 1cor
iiZ  and 1cor

ikZ  are pul self and mutual impedance corrections. Pul self and mutual 

impedances of the perfectly conducting ground can be written as: 
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1pcg 1 0 i

iii
i

ω μ 2 h
Z Z j ln

2 π r

⋅ ⋅
= + ⋅ ⋅

⋅
 (3) 

 
1pcg 0 ik
ik

ik

ω μ D
Z j ln

2 π d

⋅
= ⋅ ⋅

⋅
 (4) 

where 1
iZ  is the pul internal impedance of conductor, hi is the ith conductor height, Dik is the 

distance between ith conductor and the kth conductor image, dik is the distance between ith and 

kth conductor, ri is the ith conductor radius, ω is the angular frequency and μ0 is the magnetic 

permeability of vacuum. Distances Dik and dik are defined by: 

 ( )22
ik ik i kD a h h= + +  (5) 

 ( )22
ik ik i kd a h h= + −  (6) 

where hk is the kth conductor height and aik is the horizontal distance between ith and kth 

conductors. 

Exact formulas for pul self and mutual impedance corrections can be written as [1]: 

 ( )1cor 2 p λ0
ii

0

ω μ
Z λ j λ e dλ

π

∞
− ⋅⋅

= ⋅ + − ⋅ ⋅∫  (7) 

 ( ) ( )1cor 2 p λ0
ik

0

ω μ
Z λ j λ e cos q λ dλ

π

∞
− ⋅⋅

= ⋅ + − ⋅ ⋅ ⋅ ⋅∫  (8) 

where: 

 ikq a γ= ⋅  (9) 

 ( )
i

i k

2 h γ for i k
p

h h γ for i k

⋅ ⋅ ==  + ⋅ ≠
 (10) 

Complex wave propagation constant γ  and its magnitude γ  are described by: 

 ( )γ
γ 1 j

2
= ⋅ +    ;   0ω μ

γ
ρ

⋅
=  (11) 

where ρ  represents soil resistivity. Kernel function of the integrals in (7) and (8) is identical 

for both cases, and, most importantly, independent of soil characteristics and frequency. It can 

be divided into two parts [9, 10]: 

 
2 r if λ j λ f j f= + − = + ⋅  (12) 

It must be emphasised that only the positive solution of the square root is considered, meaning 

that the solution is placed in the first quadrant [14]. The real and the imaginary part of the 

kernel function are (Figure 2): 

 ( )
r

2

1
f

2 g 2 λ g
=

⋅ + ⋅ ⋅
   ;   

i 1
f

2 g
=

⋅
 (13) 

where: 

 
2 4g λ λ 1= + +  (14) 
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Fig. 2  Real and imaginary part of kernel function 

3. HIGH-ACCURATE NUMERICAL COMPUTATION OF CARSON FORMULAS 

3.1 COMPUTATION OF PUL INTERNAL IMPEDANCE 

Pul internal impedance of conductor must be computed for pul self-impedance of the perfectly 

conducted ground. High-accurate computation of pul internal impedance of solid and tubular 

cylindrical single-layer and two-layer conductors (Figure 3), at power frequency, can be 

performed by using the scaled Bessel and Neumman functions [15]. This computation method 

is valid only for small complex arguments (low frequency, low permeability and small 

dimension of the conductor). For large complex arguments, improved method with scaled 

modified Bessel functions for single-layer [16] and two-layer [17] conductors must be used. 

 

 

Fig. 3  Cross-section of a single-layer solid and two-layer tubular cylindrical conductors 

3.2 TRUNCATION OF SEMI-INFINITE INTEGRALS 

Numerical computations cannot handle infinite values, hence semi-infinite limits of integrals 

(7) and (8) must be truncated. Therefore, pul self and mutual impedance corrections can be 

written as: 

 

rm imλ λ
1cor r p λ i p λ0
ii

0 0

ω μ
Z f e dλ j f e dλ

π
− ⋅ − ⋅

 ⋅  = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅
 
 
∫ ∫  (15) 

 ( ) ( )
rm imλ λ

1cor r p λ i p λ0
ik

0 0

ω μ
Z f e cos q λ dλ j f e cos q λ dλ

π
− ⋅ − ⋅

 ⋅  = ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅
 
 
∫ ∫  (16) 
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The finite upper limits, rmλ  for the real part and imλ  for the imaginary part of the kernel 

function can be computed by using the asymptotic approximation of the kernel function for 

large arguments: 

 ( ) r i
a a a 3

1 1
f λ f j f j

2 λ8 λ
= + ⋅ = + ⋅

⋅⋅
 (17) 

By combining (17) with (15) and (16), the following nonlinear equations are obtained: 

 
rm

rm

p λ
p λr m

a 3
rm

e
f e 10

8 λ

− ⋅
− ⋅⋅ = =

⋅
 (18) 

 
im

im

im

p λ
p λi m

a
e

f e 10
2 λ

− ⋅
− ⋅⋅ = =

⋅
 (19) 

where m is the order of magnitude on which the accuracy of approximation depends. It is 

obvious that imλ  will always be higher than rmλ  because the imaginary part of the kernel 

function has a much slower rate of decay toward zero, which can be clearly seen in Figure 2. 

Nonlinear equations (20) and (21) can be solved by using the Newton-Raphson method [18]. 

3.3 PIECEWISE LINEAR APPROXIMATION 

Piecewise linear algorithm approximates the kernel function linearly between two successive 

sample points (Figure 4). Piecewise linear approximations of the real and the imaginary part of 

the kernel function, for k k 1λ λ λ +≤ ≤ , are described by: 

 
r r r

k kf s λ ; k 1, 2, ..., NR 1= ⋅ + = −l  (20) 

 
i i i

k kf s λ ; k 1, 2, ..., NI 1= ⋅ + = −l  (21) 

where r

ks , i

ks  are slopes and r

kl , r

kl  are y-intercepts of the linearly approximated kernel 

function. They are described by: 

 

r r i i
r ik 1 k k 1 k
k k

k 1 k k 1 k

f f f f
s ; s

λ λ λ λ
+ +

+ +

− −
= =

− −
 (22) 

 
r r r i i i
k k k k k k k kf k λ ; f k λ= − ⋅ = − ⋅l l  (23) 

where NR and NI are the total number of sample points for the real and the imaginary part of 

the kernel function, respectively. 

 

Fig. 4  Piecewise linear approximation of the real part of kernel function 
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Expressions for impedance corrections (15) and (16) can now be written as: 

 

k 1 k 1

k k

k 1 k 1

k k

λ λNR 1
1cor r p λ r p λ0
ii k k

k 1 λ λ

λ λNI 1
i p λ i p λ0
k k

k 1 λ λ

ω μ
Z s λ e dλ e dλ

π

j ω μ
s λ e dλ e dλ

π

+ +

+ +

−
− ⋅ − ⋅

=

−
− ⋅ − ⋅

=

 ⋅  = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ +
 
 

 ⋅ ⋅  + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅
 
 

∑ ∫ ∫

∑ ∫ ∫

l

l

 (24) 

 

( ) ( )

( ) ( )

k 1 k 1

k k

k 1 k 1

k k

λ λNR 1
1cor r p λ r p λ0
ik k k

k 1 λ λ

λ λNI 1
i p λ i p λ0
k k

k 1 λ λ

ω μ
Z s λ e cos q λ dλ e cos q λ dλ

π

j ω μ
s λ e cos q λ dλ e cos q λ dλ

π

+ +

+ +

−
− ⋅ − ⋅

=

−
− ⋅ − ⋅

=

 ⋅  = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ +
 
 

 ⋅ ⋅  + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
 
 

∑ ∫ ∫

∑ ∫ ∫

l

l

 (25) 

After analytical integration, (24) and (25) become: 

 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

NR 1
1cor r r0
ii k 1 k 1 1 k k 2 k 1 2 k

k 1

NI 1
i i0
k 1 k 1 1 k k 2 k 1 2 k

k 1

ω μ
Z s I λ I λ I λ I λ

π

j ω μ
s I λ I λ I λ I λ

π

−

+ +
=

−

+ +
=

⋅
   = ⋅ ⋅ − + ⋅ − +   

⋅ ⋅
   + ⋅ ⋅ − + ⋅ −   

∑

∑

l

l

 (26) 

 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

NR 1
1cor r r0
ik k 3 k 1 3 k k 4 k 1 4 k

k 1

NI 1
i i0
k 3 k 1 3 k k 4 k 1 4 k

k 1

ω μ
Z s I λ I λ I λ I λ

π

j ω μ
s I λ I λ I λ I λ

π

−

+ +
=

−

+ +
=

⋅
   = ⋅ ⋅ − + ⋅ − +   

⋅ ⋅
   + ⋅ ⋅ − + ⋅ −   

∑

∑

l

l

 (27) 

where: 

 ( ) ( )
p λ

p λ
1 2

e
I λ λ e dλ p λ 1

p

− ⋅
− ⋅= ⋅ ⋅ = − ⋅ ⋅ +∫  (28) 

 ( )
p λ

p λ
2

e
I λ e dλ

p

− ⋅
− ⋅= ⋅ = −∫  (29) 

 

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

p λ
p λ

3 2 2

p λ
2 2

22 2

λ e
I λ λ e cos q λ dλ q sin q λ p cos q λ

p q

e
p q cos q λ 2 p q sin q λ

p q

− ⋅
− ⋅

− ⋅

⋅
 = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅ − +

 − ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅
 

+

∫

 (30) 

 ( ) ( ) ( ) ( )
p λ

p λ
4 2 2

e
I λ e cos q λ dλ q sin q λ p cos q λ

p q

− ⋅
− ⋅  = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅ +∫  (31) 

Piecewise linear approximation algorithm can rather efficiently approximate the kernel 

function because the sampling of the kernel function can be performed until the desired 

computed n-digit accuracy is achieved. Approximation accuracy is a key factor that defines 

accuracy of the overall algorithm because the approximated kernel function is multiplied by 
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the rest of the integrands in the impedance correction expressions and then analytically 

integrated. 

3.4 PIECEWISE QUADRATIC APPROXIMATION 

Piecewise quadratic approximation algorithm can be considered as an improved piecewise 

linear approximation algorithm. This algorithm has a slightly more complicated expressions, 

although it demands less sampling points for the same accuracy degree of results. This is a 

more appropriate algorithm for robust computations since it is less time-consuming than the 

piecewise linear algorithm. Piecewise quadratic algorithm approximates the kernel function by 

a parabola. Parabola of the sampled finite element is defined by three points (Figure 5). 

 

Fig. 5  Sample points of the kth finite element for the real part of the kernel function 

For the kth finite element in interval 2k 1 2k 1λ λ λ− +≤ ≤ , the real and the imaginary part of the 

kernel function are described as follows: 

 
r r 2 r r

k k kf a λ b λ c ; k 1, 2 , ..., NER= ⋅ + ⋅ + =  (32) 

 
i i 2 i i

k k kf a λ b λ c ; k 1, 2 , ..., NEI= ⋅ + ⋅ + =  (33) 

where NER and NEI are the total number of finite elements for the real and the imaginary part 

of the kernel function, respectively. The coefficients of the parabolas are: 

 
( )

( )

( )
( )

r r r r
k 2k 1 2k 2k 12

2k 1 2k 1

i i i i
k 2k 1 2k 2k 12

2k 1 2k 1

2
a f 2 f f

λ λ

2
a f 2 f f

λ λ

− +
+ −

− +
+ −

= ⋅ − ⋅ +
−

= ⋅ − ⋅ +
−

 (34) 

 

( )
( )

( ) ( )

( )
( )

( ) ( )

r r
k 2k 1 2k 1 2k2

2k 1 2k 1

r r
2k 2k 1 2k 1 2k 1 2k 2k 1

i i
k 2k 1 2k 1 2k2

2k 1 2k 1

i i
2k 2k 1 2k 1 2k 1 2k 2k 1

2
b 2 λ λ f

λ λ

λ λ f λ λ f

2
b 2 λ λ f

λ λ

λ λ f λ λ f

− +
+ −

+ − − +

− +
+ −

+ − − +

= ⋅ ⋅ + ⋅ −
−

− + ⋅ − + ⋅


= ⋅ ⋅ + ⋅ −
−

− + ⋅ − + ⋅


 (35) 
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( )

( )

r r
k 2k 2k 1 2k 12

2k 1 2k 1

r r
2k 1 2k 1 2k 2k 1 2k 2k 1

i i
k 2k 2k 1 2k 12

2k 1 2k 1

i i
2k 1 2k 1 2k 2k 1 2k 2k 1

2
c λ λ f

λ λ

2 λ λ f λ λ f

2
c λ λ f

λ λ

2 λ λ f λ λ f

+ −
+ −

− + − +

+ −
+ −

− + − +

= ⋅ ⋅ ⋅ −
−

− ⋅ ⋅ ⋅ + ⋅ ⋅


= ⋅ ⋅ ⋅ −
−

− ⋅ ⋅ ⋅ + ⋅ ⋅


 (36) 

Equations (34)-(36) are derived with the assumption that 
k2λ  is the mid-point of the kth finite 

element: 

 2k 1 2k 1
2k

λ λ
λ

2
+ −+

=  (37) 

This means that the odd points of each finite element are sampled arbitrarily, depending on 

the demanded accuracy of the result, whereas the abscissas of the even points are computed 

by (37). The total number of sample points for the real and the imaginary part of the kernel 

function are: 

 12;12 +⋅=+⋅= NEININERNR  (38) 

respectively. 

As in the piecewise linear algorithm, the approximated kernel function is multiplied by the rest 

of the integrands. Thus (15) and (16) are now written as: 

 

2 k 1 2 k 1 2 k 1

2 k 1 2 k 1 2k 1

2k 1 2k 1 2k

2k 1 2k 1 2 k 1

λ λ λNER
1cor r 2 p λ r p λ r p λ0
ii k k k

k 1 λ λ λ

λ λ λNEI
i 2 p λ i p λ i p λ0
k k k

k 1 λ λ λ

ω μ
Z a λ e dλ b λ e dλ c e dλ

π

j ω μ
a λ e dλ b λ e dλ c e dλ

π

+ + +

− − −

+ + +

− − −

− ⋅ − ⋅ − ⋅

=

− ⋅ − ⋅ − ⋅

=

 ⋅  = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ +
 
 

⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅



∑ ∫ ∫ ∫

∑ ∫ ∫
1 





∫
 (39) 

 

( ) ( )

( ) ( )

( )

2k 1 2 k 1

2 k 1 2 k 1

2k 1 2k 1

2k 1 2k 1

λ λNER
1cor r 2 p λ r p λ0
ik k k

k 1 λ λ

λ λNEI
r p λ i 2 p λ0
k k

k 1λ λ

i p λ
k

ω μ
Z a λ e cos q λ dλ b λ e cos q λ dλ

π

j ω μ
c e cos q λ dλ a λ e cos q λ dλ

π

b λ e cos q λ

+ +

− −

+ +

− −

− ⋅ − ⋅

=

− ⋅ − ⋅

=

− ⋅

⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ +



 ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +
 
 

+ ⋅ ⋅ ⋅ ⋅

∑ ∫ ∫

∑∫ ∫

( )
2k 1 2 k 1

2k 1 2 k 1

λ λ
i p λ
k

λ λ

dλ c e cos q λ dλ
+ +

− −

− ⋅

⋅ + ⋅ ⋅ ⋅ ⋅



∫ ∫
 (40) 

After analytical integration, (39) and (40) become: 

 

( ) ( ){ ( ) ( )

( ) ( ) } ( ) ( ){
( ) ( ) ( ) ( ) }

NER
1cor r r0
ii k 5 2k 1 5 2k 1 k 1 2k 1 1 2k 1

k 1

NEI
r i0
k 2 2k 1 2 2k 1 k 5 2k 1 5 2k 1

k 1

i i
k 1 2k 1 1 2k 1 k 2 2k 1 2 2k 1

ω μ
Z a I λ I λ b I λ I λ

π

j ω μ
c I λ I λ a I λ I λ

π

b I λ I λ c I λ I λ

+ − + −
=

+ − + −
=

+ − + −

⋅
   = ⋅ ⋅ − + ⋅ − +   

⋅ ⋅
   + ⋅ − + ⋅ ⋅ − +   

   + ⋅ − + ⋅ −   

∑

∑

 (41) 
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( ) ( ){ ( ) ( )

( ) ( ) } ( ) ( ){
( ) ( ) ( ) ( ) }

NER
1cor r r0
ik k 6 2k 1 6 2k 1 k 3 2k 1 3 2k 1

k 1

NEI
r i0
k 4 2k 1 4 2k 1 k 6 2k 1 6 2k 1

k 1

i i
k 3 2k 1 3 2k 1 k 4 2k 1 4 2k 1

ω μ
Z a I λ I λ b I λ I λ

π

j ω μ
c I λ I λ a I λ I λ

π

b I λ I λ c I λ I λ

+ − + −
=

+ − + −
=

+ − + −

⋅
   = ⋅ ⋅ − + ⋅ − +   

⋅ ⋅
   + ⋅ − + ⋅ ⋅ − +   

   + ⋅ − + ⋅ −   

∑

∑

 (42) 

where the solutions of integrals ( ) { }iI λ ; i 1, 4∈  are given in (28)-(31), whereas: 

 ( )
2

2 p λ p λ
5 2 3

λ 2 λ 2
I λ λ e dλ e

p p p

− ⋅ − ⋅  ⋅= ⋅ ⋅ = − ⋅ + +  
 

∫  (43) 

 

( ) ( )

( ) ( )
( )

( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

2 p λ
6

2 p λ p λ
2 2

2 2 22 2

p λ p λ
2 3 3 2

3 32 2 2 2

I λ λ e cos q λ dλ

λ e 2 λ e
q sin q λ p cos q λ 2 p q sin q λ p q cos q λ

p q p q

2 e 2 e
3 p q q sin q λ p 3 p q cos q λ

p q p q

− ⋅

− ⋅ − ⋅

− ⋅ − ⋅

= ⋅ ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅   = ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅ +   + +

⋅ ⋅+ ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅
+ +

∫

(44) 

Again, the sampling can be performed until the desired computed n-digit accuracy is achieved. 

Both numerical algorithms, piecewise linear and piecewise quadratic approximation 

algorithm, can easily be achieved by using the appropriate mathematical software. 

4. APPROXIMATE FORMULAS 

4.1 SINGLE-TERM APPROXIMATION METHOD 

During the years, the exact Carson formulas for pul impedance corrections (7) and (8) 

obtained many approximations. The most commonly used approximation is the Single-term 

approximation, where two infinite Carson series for pul self and mutual impedance corrections 

are approximated by their first term. These approximate formulas were proposed by Carson 

himself [1], and they can be written as [11-13]: 

 
1cor e0 0
ii

i

Dω μ ω μ
Z j ln

8 2 π 2 h

⋅ ⋅
= + ⋅

⋅ ⋅
 (45) 

 
1cor e0 0
ik

ik

Dω μ ω μ
Z j ln

8 2 π D

⋅ ⋅
= + ⋅

⋅
 (46) 

where: 

 e
ρ

D 658.8716
f

= ⋅  (47) 

Formulas for pul self and mutual impedances, obtained by the sum of (3) and (4) with (45) and 

(46), thus become: 

 
1pcg1 1cor 1 e0 0

ii ii iii
i

Dω μ ω μ
Z Z Z Z j ln

8 2 π r

⋅ ⋅
= + = + + ⋅ ⋅

⋅
 (48) 
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1pcg1 1cor e0 0

ik ikik
ik

Dω μ ω μ
Z Z Z j ln

8 2 π d

⋅ ⋅
= + = + ⋅ ⋅

⋅
 (49) 

It can be seen that (49) considers only the height difference between the conductors and not 

the actual height of the conductors above the ground. Hence, this is a rather rough 

approximation method, accurate only at low frequencies. 

4.2 GARY-DUBANTON FORMULAS 

Since the Single-term approximation method yielded poor results at higher frequencies, the 

researchers and engineers tried to develop a new method for the computation of Carson 

formulas. The new method was proposed by Dubanton [3], described by Gary [4], and 

mathematically described by Deri [5]. Pul self and mutual impedance corrections in this 

method are described by [5, 6]: 

 
1cor 0 i 0 i
ii

i i

ω μ h δ ω μ 1 γ h
Z j ln j ln

2 π h 2 π γ h

⋅ + ⋅ + ⋅
= ⋅ = ⋅

⋅ ⋅ ⋅
 (50) 

 
( )2 2

i k ik1cor 0
ik

ik

h h 2 δ dω μ
Z j ln

2 π D

+ + ⋅ +⋅
= ⋅

⋅
 (51) 

where δ  is the complex depth of earth return plane: 

 
1 1 j

δ
γ 2 γ

−= =
⋅

 (52) 

Complete formulas for pul self and mutual impedances, obtained by the sum of (3) and (4) 

with (50) and (51), are: 

 
( )i1pcg1 1cor 1 0

ii ii iii
i

2 h δω μ
Z Z Z Z j ln

2 π r

⋅ +⋅
= + = + ⋅ ⋅

⋅
 (53) 

 
( )2 2

i k ik1pcg1 1cor 0
ik ikik

ik

h h 2 δ dω μ
Z Z Z j ln

2 π d

+ + ⋅ +⋅
= + = ⋅

⋅
 (54) 

Contrary to (49), the approximate formula for pul mutual impedance (54) considers actual 

conductor heights. Therefore, this method is a more precise method, valid also at high 

frequencies. 

5. NUMERICAL EXAMPLES 

The numerical examples in this section show the computations of Carson formulas by using the 

above explained proposed algorithms and approximate methods. The computations were 

performed for cylindrical conductors characterised by the following data: 

• ri = 6.18 mm 

• σ = 58·106 S/m 

• µr = 1 

The geometry of the conductors is (Figure 1): 
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• hi = 10 m   ;   hk = 11 m 

• aik = 1 m 

5.1 COMPARISON OF RESULTS COMPUTED BY PIECEWISE LINEAR AND PIECEWISE 

QUADRATIC APPROXIMATION OF THE KERNEL FUNCTION 

As explained in Section 3, the kernel function can be approximated by a line or parabola until 

the desired computed n-digit accuracy is obtained. This numerical example selected the 7-digit 

accurate result of the kernel function. Kernel functions' parts were divided into two intervals. 

For 10 <≤ λ  of the real and the imaginary part of the kernel function, the sample points were 

chosen to be equidistant in the linear scale, and for 1≥λ , the sample points are chosen to be 

equidistant in the logarithmic scale. The truncated upper limits 
rm

λ  and 
im

λ  depend on the 

order of magnitude m. In this numerical example, m is equal to -10. Further decreasing m does 

not affect the selected 7-digit accuracy. Computations of pul self and mutual impedance 

corrections were performed for soil resistivity ρ = 500 Ωm and for power frequency f = 50 Hz. 

The numbers of sample points required for both proposed algorithms are shown in Table 1. 

Table 1  Numbers of sample points required for the identical 7-digit accurate result, obtained by piecewise 

linear and piecewise quadratic approximation algorithm 

Number of 

sample 

points 

Piecewise linear approximation Piecewise quadratic approximation 

Re 

( 1cor
iiZ ) 

Im 

( 1cor
iiZ ) 

Re 

( 1cor
ikZ ) 

Im 

( 1cor
ikZ ) 

Re 

( 1cor
iiZ ) 

Im 

( 1cor
iiZ ) 

Re 

( 1cor
ikZ ) 

Im 

( 1cor
ikZ ) 

0 λ 1≤ <  1 266 1 266 1 031 1 031 23 23 24 24 

λ 1≥  11 513 14 147 11 305 13 871 178 218 169 207 

Total 

(NR / NI) 
12 779 15 413 12 336 14 902 201 241 193 231 

The results in Table 1 show that the total number of sample points used by the piecewise 

quadratic approximation is significantly decreased in comparison with the piecewise linear 

approximation algorithm. The numerical tests show that the increase in soil resistivity 

significantly increases the total number of sample points. This makes the piecewise linear 

approximation algorithm inappropriate for computations with higher soil resistivities, 

whereas the piecewise quadratic algorithm can easily handle any soil resistivity. 

5.2 COMPUTATION OF PUL IMPEDANCE CORRECTIONS BY USING PIECEWISE 

QUADRATIC ALGORITHM AND APPROXIMATE FORMULAS 

As explained above, the piecewise linear and piecewise quadratic algorithms can obtain the 

identical results of pul self and mutual impedances by using different approximations of the 

kernel function.  

This section depicts the computation of the real and imaginary parts of pul self and mutual 

impedance corrections of the cylindrical conductors. Computations were performed by using 

the proposed algorithms and approximate formulas for the frequency range 25 Hz ≤ f ≤ 10 

MHz. All computations were performed for three different homogeneous soil resistivities: 
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• ρ = 10 Ωm 

• ρ = 1 000 Ωm 

• ρ = 10 000 Ωm 

where 10 Ωm is considered to be the lowest, and 10 000 Ωm the highest soil resistivity which 

may occur in measurements. Computed real and imaginary parts of pul impedance corrections 

are presented in the semi-logarithmic scale (Figure 6). 

 

Fig. 6  Results obtained by piecewise approximation algorithm and approximate formulas for 

ρ = 1 000 Ωm: a) Re (
1cor
iiZ ), b) Im (

1cor
iiZ ), c) Re (

1cor
ikZ ), and d) Im (

1cor
ikZ ) 

Results in Figure 6 show that the 7-digit accurate results obtained by the proposed algorithm 

and Gary-Dubanton formulas have almost identical curves through the large frequency range 

and in all cases. This verifies the Gary-Dubanton formulas as a reliable approximation method 

for the large frequency range. Figure 6 clearly demonstrates that the Single-term 

approximation method is valid only at low frequencies. In addition, the imaginary parts of both 

impedance corrections have negative values at high frequencies. The computations performed 

by using two other soil resistivities show a similar behaviour of the results for both pul 

impedance corrections, and therefore they were not graphically presented. Gary-Dubanton 

formulas obtain an almost identical curve as the proposed algorithm in all cases, hence Figures 

7 to 9 show the percent errors of Gary-Dubanton formulas in relation to the 7-digit accurate 

results obtained by the proposed algorithm, for all considered cases. 

 

Fig. 7  Percent errors of Gary-Dubanton formulas for ρ = 10 Ωm: a) 
1cor
iiZ  and b) 

1cor
ikZ  

a)      b) 

c)      d) 

a)      b) 
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Fig. 8  Percent errors of Gary-Dubanton formulas for ρ = 1 000 Ωm: a) 
1cor
iiZ  and b) 

1cor
ikZ  

 

Fig. 9  Percent errors of Gary-Dubanton formulas for ρ = 10 000 Ωm: a) 
1cor
iiZ  and b) 

1cor
ikZ  

Percent errors of the Single-term approximation method are significantly higher at high 

frequencies, hence they are inappropriate for the graphic illustration. The maximum absolute 

and percent errors of both approximate formulas in relation to the 7-digit result for both pul 

impedance corrections are presented in Tables 2 to 4. 

Table 2  Maximum absolute and percent errors of both impedance corrections in relation to 7-digit 

accurate results (ρ = 10 Ωm) 

 Approximation method Absolute error (Ω) Percent error (%) 

R
e 

(Z
ii

1c
or

) Gary-Dubanton formulas 2.2377·10-4 3.3570 

Single-term approximation 9.5612 3.1006·103 

Im
 

(Z
ii

1c
or

) Gary-Dubanton formulas 8.4694·10-5 2.5241 

Single-term approximation 43.2046 1.3667·104 

R
e 

(Z
ik

1c
or

) Gary-Dubanton formulas 2.0184·10-4 3.3596 

Single-term approximation 9.5762 3.2638·103 

Im
 

(Z
ik

1c
or

) Gary-Dubanton formulas 7.6462·10-5 2.5249 

Single-term approximation 43.8163 1.4586·104 

 

 

 

 

a)      b) 

a)      b) 
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Table 3  Maximum absolute and percent errors of both impedance corrections in relation to 7-digit 

accurate results (ρ = 1 000 Ωm) 

 Approximation method Absolute error (Ω) Percent error (%) 

R
e 

(Z
ii

1c
or

) Gary-Dubanton formulas 2.2377·10-2 3.3570 

Single-term approximation 7.3978 299.2854 

Im
 

(Z
ii

1c
or

) Gary-Dubanton formulas 8.4694·10-3 2.5241 

Single-term approximation 17.0259 554.1361 

R
e 

(Z
ik

1c
or

) Gary-Dubanton formulas 2.0184·10-2 3.3596 

Single-term approximation 7.4921 315.1237 

Im
 

(Z
ik

1c
or

) Gary-Dubanton formulas 7.6462·10-3 2.5249 

Single-term approximation 17.5082 598.0664 

Table 4  Maximum absolute and percent errors of both impedance corrections in relation to 7-digit 

accurate results (ρ = 10 000 Ωm) 

 Approximation method Absolute error (Ω) Percent error (%) 

R
e 

(Z
ii

1c
or

) Gary-Dubanton formulas 0.1455 3.3570 

Single-term approximation 4.7733 93.6611 

Im
 

(Z
ii

1c
or

) Gary-Dubanton formulas 8.4694·10-2 2.5241 

Single-term approximation 7.8864 93.8790 

R
e 

(Z
ik

1c
or

) Gary-Dubanton formulas 0.1383 3.3596 

Single-term approximation 4.8955 98.4199 

Im
 

(Z
ik

1c
or

) Gary-Dubanton formulas 7.6462·10-2 2.5249 

Single-term approximation 8.1883 101.4012 

Results in Tables 3 to 5 show that the maximum percent errors of Gary-Dubanton formulas for 

pul self-impedance corrections are around 3,35%, and the maximum percent errors for pul 

mutual impedance corrections are around 2,5%, for all considered cases. Gary-Dubanton 

formulas have proven to be rather stable for different soil resistivities and at a larger 

frequency range. Single-term approximation method yields extremely unfavourable results at 

high frequencies (Figure 6). Results in Tables 3 to 5 show that the maximum percent errors of 

the Single-term approximation are significantly decreased for higher soil resistivities; 

however, these percent errors are still very high. The presented results confirm the statement 

that the Single-term approximation method is a rough approximation, valid only at low 

frequencies. 
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6. CONCLUSION 

High-accurate numerical algorithms for the computation of Carson formulas of the infinitely 

long parallel conductors are developed. The proposed algorithms are based on the piecewise 

linear and the piecewise quadratic approximation of the integrals' kernel function. The semi-

infinite integrals for pul self and mutual impedance corrections are truncated by using the 

asymptotic approximation for large arguments. The kernel function of the integrals is identical 

in both cases, and it is independent of the frequency and soil characteristics. This fact was the 

key in developing a universal approximation algorithm valid at any frequency and for any soil 

characteristics. The approximated kernel function is multiplied by the rest of integrands and 

analytically integrated. By using both proposed numerical algorithms, the results are obtained 

with the desired computed n-digit accuracy easily. Piecewise linear algorithm has simpler 

expressions, whereas the piecewise quadratic algorithm has a significant reduction of total 

sample points. 7-digit accurate results obtained by the proposed algorithms were compared to 

the results obtained by the two approximation methods at a large frequency range. The 

comparison shows that the Single-term approximation method is valid at low frequencies and 

not appropriate at large frequencies. Gary-Dubanton formulas obtain reliable results 

throughout the entire frequency range considered in this paper. 
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