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ABSTRACT 

The aim of the research is to outline the possibilities of utilizing waste heat in small 

municipal wastewater treatment plants. The facility, which was chosen as case-study, 

accepts about 2,300 m3 of raw sewage daily. In wintertime the wastewater temperature 

decreases to 10-14 °C which results in lower nitrification capacity based on measurement 

and validated model results. The excess heat of the wastewater would serve to increase 

the temperature of the aeration tank in order to enhance the microbiological activity and 

thus the efficiency of pollutant removal. The amount of reusable waste heat is calculated 

and with the help of dynamic simulation the effluent quality was determined to compare 

it with the original results. Increasing the temperature by 6 °C in the aerated tank, 

ammonium removal could be improved by 61%. This way not only the heat, but the 

nutrient pollution could be mitigated, too. 
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INTRODUCTION 

Wastewater treatment processes – no matter how advanced – are mostly end-of-pipe 

technologies focusing on removing the pollutants from the effluent before discharging it 

to the receiving water body [1]. Reuse of treated municipal wastewater is an issue only in 

countries where physical water scarcity has to be faced [2] for example in Namibia [3] or 

Israel [4] and reclamation of materials is in many cases unsolved [5]. Since (fossil 

fuelled) energy is needed to maintain the process and greenhouse gases are formed during
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the treatment, it can be said that conventional activated sludge wastewater treatment is 

often economically and environmentally unsustainable. According to the calculations of 

Elías-Maxil et al. [6], 80% of the energy used in the urban water cycle is spent on heating 

by the end-user. On the other hand, simulation of domestic water heaters showed that 

energy intensity can be decreased with the adoption of heat pumps [7]. Reclaiming the 

waste heat would be a step forward in sustainability and using it within the urban water 

cycle would facilitate closing the loop. 

Wastewater heat recovery can be achieved in three ways: 

• In a building (wastewater from bathroom and kitchen); 

• From raw wastewater in the urban wastewater distribution line; 

• In a wastewater treatment plant from treated wastewater. 

For the first version, heat exchangers have to be installed individually which might be 

difficult in existing buildings and special care has to be taken to avoid biofilm formation 

[8]. In the case of the second version, the water temperature cannot go below a certain 

minimum to allow the microorganisms to proliferate in the treatment facility. Thus 

careful design is needed to use this solution to avoid overcooling, but there are several 

examples for it [9]. A study showed that up to 35% of Brussels residences could be 

served with heat recovery systems installed in the sewer network [10].  

The viability of the third method is justified by the temperature dependency of 

microorganisms. The temperature range of bacteria used in activated sludge systems is 

within 10-40 °C [11], the rate of nitrification is doubled every 7 °C [12] but because 

oxygen dissolves better in colder water, the operation optimum is between 20-25 °C.  

The wastewater temperature shows a limited daily variability with variation coefficients 

between 0.90 and 1.05 [13] while the seasonal change is more significant.  

The temperature of the influent is dependent on the amount of the wastewater and the 

length of the sewer system, in winter time it varies between 8-18 °C. Lower values are 

consequences of long retention time in the sewer system and/or smaller volumes from the 

households. Because of the continental climate of Hungary, the microorganisms have to 

adapt to seasonally changing circumstances which usually results in lower performance 

in the colder periods. Though the limit values for discharging pollutants take this 

phenomenon into account, the reduced efficiency of nutrient removal contributes to the 

unsustainability of the present technology. Additionally, the temperature of the effluent 

in winter time is higher than of the receiving water body causing heat pollution as well.  

By implementing a heat pump after the treatment processes, the recovered heat may 

be used for heating communal buildings within the facility, providing hot water, sludge 

drying or for district heating/cooling. It is calculated that there are over 500 wastewater 

heat pump systems worldwide with thermal ratings between 10 kW-20 MW [14] for 

instance in Germany, Switzerland and the Scandinavian countries [8]. A Swiss study [9] 

found that Carbon dioxide (CO2) emission of a bivalent wastewater heat pump system is 

22% of an oil-fired heating system. Zhao et al. [15] showed that the heating Coefficient 

of Performance (COP) is about 4.3, and the cooling COP is about 3.5 in actual operating 

conditions which is comparable to the COP of a ground source heat pump [16, 17]. 

In an Austrian example the use of wastewater as the low-temperature heat source of 

the heat pump provided a total 45 MW of space heating with 9 MW of electricity input 

[18]. By applying spatial analysis the feasibility of integrating a Wastewater Treatment 

Plant (WWTP) local energy supply systems can be evaluated [19]. 

The systems utilizing the excess heat of wastewater are usually applied to larger 

facilities [14]. Small municipal WWTPs are prone to decreased water temperature due to 

relatively long retention time in the sewers and the fluctuation of flow rate as a result of 

variation in daily and weekly residential water use. Since the volume of wastewater is 
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less but varies more, the system is subject to abrupt changes. Unfortunately, they also 

often lack sophisticated monitoring systems which may result in inefficient operation or 

even unwanted environmental pollution. This paper discusses the possibility of applying 

heat pumps to reclaim the excess heat, which would be normally released to the 

environment and use it to increase the temperature in the biological train to avoid 

malfunctions due to overcooling. Dynamic simulation, a valuable tool to investigate 

solutions alternative to the business-as-usual operation [20], was used to assess the effect 

of higher temperature. 

MATERIALS AND METHODS 

The WWTP chosen for the study has an average hydraulic load of 2,300 m3/d.  

It consists of two parallel annular aerated basins of 3,000 m3 volume with diffused 

aeration and banana mixers, each encompassing a Dorr-type settler (Figure 1). Only one 

of these is in operation due to decreased amount of incoming wastewater. The WWTP is 

designed to have intermittent denitrification. If the Dissolved Oxygen (DO) 

concentration reaches 3.6 g/m3 aeration is turned off. It starts again when the DO goes 

below 0.6 g/m3 or after 50 minutes. The hydraulic retention time in the aeration tank is 

between 24-29 hours, the sludge age is around 20 days. 

 

 
 

Figure 1. Aerial view of the Várpalota WWTP – on the left is the system in operation, the other is 

out of service (source: Bakonykarszt Ltd.) 

 

The WWTP has no online measurement devices beside the DO probe for the aeration 

control and the flowmeter. Samples are taken twice a week to determine wastewater 

quality which does not give information on the daily fluctuation or the operational 

problems outside the measurement period. The plant was chosen to be a pilot to test the 

mobile laboratories and online warning system of an R&D project 

(GOP-1.3.1-08/B-2009-0027) in 2012.  

The mobile laboratories measured Chemical Oxygen Demand (COD), ammonium, 

orthophosphate, nitrite and nitrate and sulphide in the influent stream and COD, 

ammonium, orthophosphate and nitrate regarding the effluent. Besides that, pH, 

conductivity, temperature and turbidity were monitored on both sides and dissolved 

oxygen concentration in the aerated tanks. The samples were taken hourly and 

measurement results could be accessed through an online communication system.  

Activated Sludge Model No.1 (ASM1) [21] was chosen for modelling since there is 

no biological excess phosphorous removal. ASM1 is a grey box model describing 

organic matter and nitrogen removal by heterotrophic and autotrophic bacteria in a 

death-regeneration approach, omitting the storage of substrate in the growth process.  

The reactor was split up into four quarters (Figure 2) in order to take the plug-flow nature 

of the annular shape into consideration. Influent characterisation was carried out based on 
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the results of Pásztor et al. [22]. Since the data for raw wastewater flow was provided in 

daily averages by the management of the plant, the method of Langergraber et al. [23] 

was used to provide hourly values [eq. (1) and Figure 3]: 

 

�� ��� �  ��
� 	 
� � sin���� 	 
� � cos���� 	  
� � sin�2��� 	 
� � cos�2��� (1)

 
where ω is the angular frequency [eq. (2)]: 

 
� �  2�/� (2)

 

 
 

Figure 2. Schematic representation of the examined WWTP 

 

 
 

Figure 3. Estimated daily wastewater fluctuation (�� a = 2,190 m3/d, b1 = −350.00, b2 = −420.00,  

b3 = −160.00, b4 = 290.00, T = 1 d, ω = 2π rad/d) 

 
Temperature dependency was taken into consideration according the Arrhenius 

equation [eq. (3)] [24] for autotrophic and heterotrophic biomass growth and decay and 

hydrolysis rate. The temperature in the examined period varied between 10-14 °C 

(Figure 4): 

 
� � ��� � exp � � �! " 20�$ (3)

 
In order to maintain the nitrification the excess sludge removal rate was kept low in 

wintertime. While normally the plant would have satisfactory nitrification capacity, the 

quality of the effluent decreased in several cases. 
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Figure 4. Wastewater temperature during the examined period 

RESULTS 

Simulation was carried out in the time interval of 21st February-14th March 2012.  
The differences between simulation and measurement results were within 6.65% error in 
case of ammonium-nitrogen with 95% confidence. For nitrate-nitrogen these values were  

α = 0.05 and ε = 13.65%. Deviation from measured results was due to fact that hydraulic 
retention time is a function of flow rate and pairing the data could not be done in a 
straightforward manner. Also, while the DO control of the model was created to mimic 

reality, it was not possible to implement the inertia of the aeration system. Thus, while in 
real life DO concentration higher than 3.6 g/m3 was registered occasionally (22nd 

February and 1st March) the model results stayed under the threshold. In these instances 

the model ammonium concentrations were distinctively higher than the measured results. 
There were two occasions when sludge bleed-through was experienced (4th and 11th 

March) based on the samples taken for cross-validation (Figure 5 and 6, values labelled 

‘laboratory’). According to the data of the analysers, the phenomena occurred before for 
several times. The management chose to keep the sludge concentration high to 
compensate the effect of colder water (10-14 °C) but without supervision the sludge 

blanket rose high and the effluent suspended solids concentration increased temporarily. 
Table 1 shows the frequency of excess sludge removal. The last two were carried out 
because of the samples taken at that time. 

 

 
 

Figure 5. Ammonium-nitrogen concentration 
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Figure 6. Nitrate-nitrogen concentration 

 

Table 1. Timespan of excess sludge removal 

 

Date Interval (hours) 

31st January 2.0 

27th February 5.4 

12nd March 4.0 

13rd March 3.4 

 

According to simulation and online measurement results such processes took place 

between 23rd-24th February (Thursday and Friday) and 29th February (Wednesday 

evening), 4th-5th March (Sunday until Monday morning) and 10th-12th March (weekend). 

The peak in the ammonium curve on 14th March indicates that the model was more 

sensitive to the excess sludge removal than the real system itself. 

Though there are no limit values set for nitrogen forms in the case of Várpalota 

WWTP, the aim of management was to maintain efficiency by keeping the sludge 

concentration high. Based on the results this had the opposite effect. Sludge age could be 

kept lower and more excess sludge could be removed from the system if the nitrification 

rate could be improved. This may be done by increasing the water temperature in the 

aerated tank. 

Considering the lowest measured wastewater temperature (10 °C), the temperature of 

the effluent could be decreased by 6 °C safely. The smallest estimated flowrate was 

2,158 m3/d. That means that 627 kW could be retrieved even using a conservative 

estimate [eq. (4)]: 
 

% � &� ' � (' � �!) " !*� � 24,919
g

s
� 4.195

J

g℃
� �10 °C " 4 °C� � 627 kW (4)

 

This is the overall minimum, thus this amount of energy could be used to raise the 

water temperature in the aerated tank with the help of heat pumps and heat exchangers 

even if losses are accounted for. Of course, the exact amount of reclaimable heat depends 

on several factors, including the temperatures of the wastewater and the receiving surface 

water, heat loss, efficiency of heat pumps and foaming [25], among others. Assuming 

that the temperature in the aeration basin can be raised by 6 °C, it would theoretically 

result in an 80% increase in the growth rate according to eq. (5) [24]:  
 

 :; � :;�� � exp �0.0981 � �! " 20�$ (5) 
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In order to achieve the temperature increase in the aerated tank, a heat pump system 

would be installed to the space between the biological tank and the divider unit  

(Figure 7). It is assumed to be open from the effluent side since solids are removed in the 

settler but closed from the wastewater side to mitigate fouling. The Heat Exchanger (HE) 

has to be easy to clean or even self-cleaning as biofilm formation is unavoidable and it 

should not hinder mixing of the liquor and aeration inside the tank but effectively 

facilitate heat transfer in the reactor. Further research is required to choose the 

appropriate type, but alternatively to the submerged version depicted in Figure 7, the HE 

may be introduced to where the influent and the return sludge are mixed or an external 

solution may be applied. While due to the elevated temperature the amount of heat loss is 

expected to increase, that would be compensated by the heat production of increased 

biological activity. Previous results showed that the water temperature from influent to 

effluent increases between 0.8 and 1.5 °C [26]. Heat loss during the transfer of working 

fluids should be minimised by using insulated pipes. 
 

 
 

Figure 7. Schematic design of introducing heat pump and heat exchangers to utilize waste heat in 

the aerated tank 

 

After rerunning the simulation with the elevated temperature values, the results 

showed that, even with leaving the excess sludge removal rate as it was in the original 

case, the highest value would be 5.47 g N/m3 for ammonium concentration (Figure 8) and 

48.25 g N/m3 for nitrate (Figure 9). The comparison was made to the results of the 

original simulation (marked as default in the figures). On average, 61% decrease could be 

achieved in ammonium and 17% in nitrate concentration (Table 2). 
 

 
 

Figure 8. Changes in ammonium-nitrogen concentration if temperature is increased  

in the aeration tank 
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Figure 9. Changes in nitrate-nitrogen concentration if temperature is increased  

in the aeration tank 

 

If the wastewater in the aerated tank is reheated constantly it is safe to say that more 

heat can be reclaimed from the effluent without decreasing the water temperature below  

4 °C. Also, if the wastewater temperature is increased by 6 °C, the input of the heat pump 

would be 16 °C, neglecting changes due to heat gains and losses. That means more 

energy could and should be reclaimed to avoid heat pollution in the receiving water body. 

Thus another scenario was tested; the water temperature would be kept at 20 °C which is 

considered to be an operational optimum. It is a compromise between the higher 

temperature optimum of the bacteria and the fact that oxygen dissolves more in colder 

waters. Simulation results showed that at 20 °C the maximum ammonium concentration 

would be 5.56 g N/m3, while the average value would be 1.19 N/m3, meaning a 64% 

decrease (Figure 8). Regarding nitrate concentration these numbers would be  

48.87 g N/m3, 13.20 g N/m3 and 22%, respectively (Figure 9). Results of the scenarios are 

summarised in Table 2. 
 

Table 2. Enhanced nitrogen removal due to increased temperature 

 

 Ammonium-nitrogen Nitrate-nitrogen 

 default 
6 °C  

increase 

constant  

20 °C 
default 

6 °C  

increase 

constant  

20 °C 

Maximum  

[g N/m3] 
11.60 5.47 5.56 51.48 48.25 48.87 

Average  

[g N/m3] 
3.34 1.30 1.19 16.98 14.11 13.20 

Improvement 

[%] 
- 61 64 - 17 22 

 

The efficiency did not increase significantly in the second scenario. The average 

ammonium concentration improved by only 3% points while the mean nitrate 

concentration decreased by 5% points. This leads to the assumption that after reheating 

the aerated tank to a sufficiently high temperature (between 16-20 °C), the excess heat 

could be used for other purposes such as providing auxiliary energy to heating the 

buildings. 

CONCLUSIONS 

Apart from the temporary spilling of sludge, the results show that the plant operates 

sufficiently. Keeping high sludge concentration in the aerated tank is necessary, but to 
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avoid the overload of the settler the authors recommend measuring sludge settleability. 

The sludge volume after thirty minutes settling (SV30) provides quick information on the 

settling properties. It is advised to start sludge removal if the SV30 for diluted sludge is 

over 300-400 ml/l. To define the critical value when overflow starts, the SV30 should be 

measured frequently. Later, measurements can be carried out before weekends so that the 

bleed-through can be prevented. 

Regarding the utilization of the excess heat of the effluent the results showed that one 

solution can be providing sufficient temperature to facilitate the biological processes in 

the aerated tank. This would increase the robustness of the plant operation and eliminate 

the vulnerability caused by overcooled wastewater from the sewer system. Increasing the 

water temperature in the aerated tank by 6 °C the ammonium removal efficiency could be 

improved by 61% on average under the studied circumstances. Nitrate concentration 

decreased by 17% with the same parameters. Keeping the temperature at a constant 20 °C 

did not result in significant improvement which opens the possibility to use the excess 

heat for other purposes beside enhanced pollution removal, for example to provide 

heating in auxiliary buildings such as the dewatering facility or even for producing 

domestic hot water in the facility. To determine the configuration of the system that is 

capable of introducing the excess heat to the aerated tank and its feasibility needs further 

examination. 
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NOMENCLATURE 

b empirical constants [-] 

c specific heat capacity  [J/g °C] 

COD  chemical oxygen demand [g O2/m
3] 

DO dissolved oxygen concentration [g O2/m
3] 

k Arrhenius constant [-] 

&�  mass flow rate  [g/s] 

r rate of reaction  [-] 

Q potential reclaimable heat energy [kW] 

SV sludge volume after settling  [ml/l] 

t time instance  [d] 

T time period  [d] 

��  wastewater flow rate [m3/d] 

Greek letters 

α significance level [-] 

ε mean percentage error [%] 

µ  maximum specific growth rate of bacteria [1/d] 

θ temperature [°C] 

ω angular frequency [rad/d] 

Subscripts 

20 at 20 °C 

30 after thirty minutes settling 

A autotrophic microorganisms 

a daily average 
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c after heat reclamation (cold) 

h before heat reclamation (hot) 

w wastewater 

REFERENCES 

1. Bixio, D., Thoeye, C., De Koning, J., Joksimovic, D., Savic, D., Wintgens, T. and 

Melin, T., Wastewater reuse in Europe, Desalination, Vol. 187, No. 1-3, pp 89-101, 

2006, https://doi.org/10.1016/j.desal.2005.04.070 

2. Drechsel, P., Mahjoub, O. and Bernard, K., Social and Cultural Dimensions in 

Wastewater use, Wastewater: Economic Asset in an Urbanizing World (Drechsel, P., 

Qadir, M. and Wichelns, D., eds.), pp 75-92, Springer Netherlands, Dordrecht, 2015, 
https://doi.org/10.1007/978-94-017-9545-6 

3. Lahnsteiner, J. and Lempert, G., Water management in Windhoek, Namibia, Water Sci. 

Technol., Vol. 55, No. 1-2, pp 441-448, 2007, https://doi.org/10.2166/wst.2007.022 

4. Friedler, E., Lahav, O., Jizhaki, H. and Lahav, T., Study of Urban Population attitudes 

towards various Wastewater reuse Options: Israel as a Case Study, J. Environ. Manage., 

Vol. 81, No. 4, pp 360-370, 2006, https://doi.org/10.1016/j.jenvman.2005.11.013 

5. Sheik, A. R., Muller, E. E. L. and Wilmes, P., A Hundred Years of activated Sludge: 

Time for a rethink, Front. Microbiol., Vol. 5, Art. 47, pp 1-7, 2014, 
https://doi.org/10.3389/fmicb.2014.00047  

6. Elías-Maxil, J. A., van der Hoek, J. P., Hofman, J. and Rietveld, L., Energy in the 

Urban Water Cycle: Actions to reduce the Total Expenditure of Fossil Fuels with 

emphasis on Heat Reclamation from Urban Water, Renew. Sustainable Energy Rev., 

Vol. 30, pp 808-820, 2014, https://doi.org/10.1016/j.rser.2013.10.007 

7. Vieira, A. S., Humphrys, S., Beal, C. D. and Stewart, R. A., Optimising Residential 

Water Heating System Performance to minimise Water-energy Penalties, J. Sustain. 

Dev. Energy Water Environ. Syst., Vol. 4, No. 2, pp 161-172, 2016, 
https://doi.org/10.13044/j.sdewes.2016.04.0013 

8. Seybold, C. and Brunk, M. F., In-house Waste Water Heat Recovery, REHVA 

Journal, pp 18-21, 2013. 

9. Schmid, F., Sewage Water: Interesting Heat Source for Heat Pumps and Chillers, 

Swiss Energy Agency for Infrastructure Plants, Zürich, Switzerland, 2008. 

10. Spriet, J. and Hendrick, P., Wastewater as a Heat Source for Individual Residence 

Heating: A Techno-economic feasibility Study in the Brussels Capital Region,  

J. Sustain. Dev. Energy Water Environ. Syst., Vol. 5, No. 3, pp 289-308, 2017, 
https://doi.org/10.13044/j.sdewes.d5.0148 

11. van Haandel, A. C. and van der Lubbe, J. G., Handbook of Biological Wastewater 

Treatment: Design and Optimisation of Activated Sludge Systems, Water Intelligence 

Online 11, 2012. 

12. Henze, M., van Loosdrecht, M. C. M., Ekama, G. A. and Brdjanovic, D., eds., 

Biological Wastewater Treatment, Principles, Modelling and Design, IWA 

Publishing, London, UK, 2008. 

13. Cipolla, S. S. and Maglionico, M., Heat Recovery from Urban Wastewater: Analysis 

of the Variability of Flow Rate and Temperature, Energ. Buildings, Vol. 69,  

pp 122-130, 2014, https://doi.org/10.1016/j.enbuild.2013.10.017 

14. Hepbasli, A., Biyik, E., Ekren, O., Gunerhan, H. and Araz, M., A Key review of 

Wastewater Source Heat Pump (WWSHP) Systems, Energ. Convers. Manage.,  

Vol. 88, pp 700-722, 2014, https://doi.org/10.1016/j.enconman.2014.08.065 

15. Zhao, X. L., Fu, L., Zhang, S. G., Jiang, Y. and Lai, Z. L., Study of the Performance 

of an Urban Original Source Heat Pump System, Energ. Convers. Manage., Vol. 51, 

No. 4, pp 765-770, 2010, https://doi.org/10.1016/j.enconman.2009.10.033 



Journal of Sustainable Development of Energy, Water  

and Environment Systems 

Year 2018 

Volume 6, Issue 3, pp 494-504 
 

504 

16. Wołoszyn, J. and Gołaś, A., Coefficient of Performance stabilisation in Ground 

Source Heat Pump Systems, J. Sustain. Dev. Energy Water Environ. Syst., Vol. 5,  

No. 4, pp 645-656, 2017, https://doi.org/10.13044/j.sdewes.d5.0173 

17. Bedoić, R. and Filipan, V., Heating Performance Analysis of a Geothermal Heat 

Pump working with different Zeotropic and Azeotropic Mixtures, J. Sustain. Dev. 

Energy Water Environ. Syst., https://doi.org/10.13044/j.sdewes.d5.0189 

18. Nowak, O., Enderle, P. and Varbanov, P., Ways to optimize the Energy Balance of 

Municipal Wastewater Systems: Lessons learned from Austrian Applications,  

J. Clean. Prod., Vol. 88, pp 125-131, 2015, 
https://doi.org/10.1016/j.jclepro.2014.08.068 

19. Kollmann, R., Neugebauer, G., Kretschmer, F., Truger, B., Kindermann, H., 

Stoeglehner, G., Ertl, T. and Narodoslawsky, M., Renewable Energy from 

Wastewater-Practical aspects of integrating a Wastewater treatment Plant into Local 

Energy Supply Concepts, J. Clean. Prod., Vol. 155, pp 119-129, 2017, 
https://doi.org/10.1016/j.jclepro.2016.08.168 

20. Hvala, N., Vrečko, D., Levstek, M. and Bordon, C., The use of Dynamic 

Mathematical Models for improving the designs of upgraded Wastewater treatment 

Plants, J. Sustain. Dev. Energy Water Environ. Syst., Vol. 5, No. 1, pp 15-31, 2017, 
https://doi.org/10.13044/j.sdewes.d5.0130 

21. Henze, M., Grady, C. P. L., Gujer, W., Marais, G. v. R. and Matsuo, T., Activated 

Sludge Model No. 1, IAWPRC Scientific and Technical Report No. 1, IAWPRC, 

London, UK, 1987. 

22. Pásztor, I., Thury, P. and Pulai, J., Chemical Oxygen demand Fractions of Municipal 

Wastewater for modelling of Wastewater treatment, Int. J. Environ. Sci. Te., Vol. 6, 

No. 1, pp 51-56, 2009, https://doi.org/10.1007/BF03326059 

23. Langergraber, G., Alex, J., Weissenbacher, N., Woerner, D., Ahnert, M., Frehmann, 

T., Halft, N., Hobus, I., Plattes, M., Spering, V. and Winkler, S., Generation of 

Diurnal Variation for influent Data for Dynamic Simulation, Water Sci. Technol., 

Vol. 57, No. 9, pp 1483-1486, 2008, https://doi.org/10.2166/wst.2008.228  

24. Nic, M., Jirat, J. and Kosata, B., IUPAC Compendium of Chemical Terminology,  

(the “Gold Book”, 2nd ed.), 2006. 

25. Corbala-Robles, L., Volcke, E. I. P., Samijn, A., Ronsse, F. and Pieters, J. G., Effect 

of Foam on Temperature prediction and Heat recovery potential from Biological 

Wastewater treatment, Water Res., Vol. 95, pp 340-347, 2016, 
https://doi.org/10.1016/j.watres.2016.03.031 

26. Fernández-Arévalo, T., Lizarralde, I., Grau, P. and Ayesa, E., New Systematic 

Methodology for incorporating Dynamic Heat transfer modelling in Multi-phase 

Biochemical Reactors, Water Res., Vol. 60, pp 141-155, 2014, 
https://doi.org/10.1016/j.watres.2014.04.034 
 

 

 

 

Paper submitted: 26.09.2017 

Paper revised: 04.01.2018 

Paper accepted: 05.01.2018 

 


